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ABSTRACT 

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting 
women in childbearing age with a prevalence of up to 17.8%. The syndrome is characterized 
by hyperandrogenism, irregular cycles and polycystic ovaries. The etiology of PCOS is unclear, 
but it is thought to be multifactorial. There is a strong association between hyperinsulinemia 
and hyperandrogenism in PCOS, but the mechanisms behind their relationship with PCOS are 
not fully understood. Obesity and an aberrant metabolic profile is common in women with 
PCOS, and 50-70% of them are insulin resistant, which increase the risk of developing type 2 
diabetes (T2D), independently of body mass index (BMI)  and age.  

Women with PCOS have a reduced fertility rate, and when they become pregnant either by 
natural process or by assisted reproduction techniques, they are at higher risk of developing 
pregnancy complications including preeclampsia and gestational diabetes that worsen the 
prognosis of their own health and the health of the fetus. It is not well known if and how the 
intrauterine environment affects the fetus. In women with PCOS, a potential effect on the fetus 
can be hypothetically driven by direct exposure of high maternal androgens to the fetus or via 
dysregulation of placenta function. 

In both non-pregnant and pregnant women with PCOS, lifestyle modification including diet 
and physical exercise is the first line treatment. However, scarce information about treatment 
of pregnant women with PCOS to prevent the adverse outcomes is found in the literature. 
Acupuncture has been proposed as one treatment as has been shown to increase uterine artery 
blood flow in non-pregnant women. Importantly, acupuncture is usually reported to have less 
negative side-effects than pharmacological strategies. 

The overall aim of this thesis was to determine the role of androgens and obesity in pregnancy 
and whether acupuncture could modulate placenta function and fetal growth. First, in a cross-
sectional study, maternal blood and placental tissue were collected at delivery from 38 women 
with PCOS without pregnancy complications and 40 control pregnant women to investigate 
signal transducer and activator of transcription 3 (STAT-3) and mechanistic target of 
rapamycin (mTOR) signaling pathways in placenta. Second, in rats with prenatal 
androgenization (PNA), we evaluated markers of steroidogenesis, angiogenesis and 
sympathetic activity, and we tested the hypothesis that acupuncture with low-frequency 
electrical stimulation prevents any alteration in the expression of those markers. Thirdly, as 
women with PCOS are often overweight or obese, we investigated maternal growth and 
metabolism, placenta weight, placenta steroid receptor expression, and liver fat content from 
mice exposed to maternal androgen excess with or without diet-induced maternal obesity. 
Moreover, we performed a global proteomic analysis in placenta and fetal liver to find novel 
molecules that could be involved in the observed alterations. 

Pregnant women with PCOS display abnormal steroidogenic state, altered placenta gene 
expression of steroidogenic enzymes and molecules related to fetal growth as determined by 
the activation of STAT-3. Moreover, diet-induced maternal obesity and maternal androgen 
excess induced hepatic triglyceride accumulation and dysregulation of de novo lipogenesis in 



mothers. In proteomic analysis of placenta and fetal liver, we found a novel Catechol-O-
Methyltransferase (COMT) phosphorylation that was common in fetal liver and placenta. We 
also found altered gene expression of enzymes in the liver of female offspring suggesting that 
the sympathetic nervous system could play a role in the metabolic, reproductive or behavioral 
disturbances known in offspring of PCOS. These observations are supported by the finding that 
electroacupuncture given to pregnant dams exposed to testosterone increased systolic blood 
pressure, decreased fetal and placental growth and altered the expression of markers of 
angiogenesis, indicating an increased sympathetic nervous activity, contrary to our hypothesis.  
 
Besides pregnancy complications, it seems that molecular signatures might make women with 
PCOS more sensitive and vulnerable to metabolic challenges, which potentially can explain 
long-term health consequences in their offspring. Moreover, it seems that the sympathetic 
nervous system plays an important role for fetal development in androgenized dams. 
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1 INTRODUCTION  

1.1 POLYCYSTIC OVARY SYNDROME 

Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in 

women [1], with a prevalence of up to 17.8% and is characterized by hyperandrogenism, 

irregular cycles and polycystic ovaries [2, 3]. Obesity and an aberrant metabolic profile are 

common in women with PCOS, and 50- 70% of them are insulin resistant [4, 5]. Most women 

with PCOS are able to compensate for their insulin resistance (IR), but a large proportion of 

them have altered beta-cell function [6-8] causing glucose intolerance, which increase the risk 

of developing type 2diabetes (T2D), independently of body mass index (BMI) and age [9]. 

Further, women with PCOS have an increased risk of developing dyslipidemia and 

hypertension [10, 11], with an increased prevalence of metabolic syndrome [12]. The etiology 

of PCOS is unclear, but it is thought to be multifactorial. There is a strong association between 

hyperinsulinemia and hyperandrogenism (HA) in PCOS, but the mechanisms behind their 

relationship with PCOS are not fully understood [13].  

Most of the research within the field has been focused on how to improve the metabolic 

management of women with PCOS and to develop techniques that increase the fertility rate 

[14]. However, less attention has been paid to the pathophysiology involved in adverse 

pregnancy outcomes and the long-term health consequences in the offspring born to mothers 

with PCOS. Indeed, it is well known that , on one hand, women with PCOS are at increased 

risk of having pregnancy complications such as preeclampsia,  gestational diabetes and preterm 

deliveries [15-18]. On the other hand, their newborns, are more often born small for gestational 

age (SGA) [15-17, 19] or large for gestational age (LGA) [18, 20] and have an increased risk 

of meconium aspiration, hospitalization in intensive unit care and perinatal mortality [18]. 

Further, daughters of women with PCOS in peripubertal stage exhibit features of abnormal 

reproductive development [21, 22] and an altered adrenal function [1]. Not only daughters of 

women with PCOS are affected, sons of women with PCOS also display some metabolic 

derangements during peripubertal age, likely because of the exposition to an adverse 

environment during fetal life [23]. 

1.1.1 Definition 

PCOS is a complex entity that include a variety of signs such as clinical or biochemical 

hyperandrogenism, ovulatory dysfunction (oligo- or anovulation) and polycystic ovary 

morphology. Moreover, the diagnosis should be established in the absence of other diagnoses 
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like Cushing syndrome, congenital adrenal hyperplasia, androgen-producing tumors and 

hyperprolactinemia [24].  

1.1.2 Diagnostic criteria  

The first description of PCOS was done by Drs Stein and Leventhal in 1935 [25]. They 

described 7 cases where women had polycystic ovaries in association with amenorrhea and 

most of them displayed hirsutism [25, 26]. It was not until 1990 that the first diagnostic criteria 

was settled by experts from the National Institute of Health (NIH) in USA. The diagnostic 

criteria included hyperandrogenism and oligo/anovulation, excluding the polycystic ovarian 

morphology (PCOM) [27] (Table 1). In 2003, in the Rotterdam consensus conference, experts 

broaden the diagnostic criteria including the PCOM as a clinical sign to be considered together 

with the criteria determined by NIH consensus in 1990 [24] (Table 1). In 2006 the androgen 

excess and PCOS (AE-PCOS) society stated that androgen excess is the principal hallmark of 

the disorder, therefore, the diagnosis should be based on the presence of hyperandrogenism 

plus ovarian dysfunction  (oligo-anovulation or PCOM) [28]. Twelve years later, in 2012, the 

Evidence-based Methodology Workshop on PCOS, sponsored by NIH decided to maintain the 

broader Rotterdam criteria together with the specification of the phenotypes as follow: 1) 

Clinical and/or biochemical hyperandrogenism (HA) + Ovulatory Dysfunction (OD), that 

include oligo- or anovulation; 2) HA + PCOM; 3) HA + OD + PCOM and 4) OD + PCOM 

[29] (Table 1). This phenotypic classification would improve research and clinical practice for 

patient management according to the risk of co-morbidities, such as metabolic syndrome, T2D 

and cardiovascular disorder, for instance. 
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Table 1. Diagnostic criteria since 1990. 

 
NIH 

1990 [27] 

ESHRE/ASRM  

(Rotterdam) 

2003[24] 

AE-PCOS 

2006 [28] 

NIH 

2012 [29] 

Findings HA HA HA HA 

  OA OD OD or PCOM OD 

   PCOM  PCOM 

Phenotypes HA+OA 1) HA+OD+PCOM 1) HA+OD+PCOM 1) HA+OD+PCOM 

   2) HA+OD 2) HA+OD 2) HA+OD 

   3) HA+PCOM 3) HA+PCOM 3) HA+PCOM 

   4) OD+PCOM  4) OD+PCOM 

HA: Hyperandrogenism, T >50 ng/dl (Measured by LC/MS-MS) or clinical signs (Acne, 

alopecia and or hirsutism; OA: Oligo/anovulation: cycles >35 days; OD: Ovarian 

dysfunction; cycles >35 days or progesterone levels ≥ 7.0 ng/mL; PCOM: Polycystic ovarian 

morphology, defined by 25 follicles measuring 2 to 9 mm in the whole ovary or ovarian size 

>10 mL [30]. 

Phenotypes 1 and 2 (classic forms of PCOS), are more prevalent and severe [27, 28, 31] and 

are associated with other pathological conditions such as insulin resistance and T2D, metabolic 

syndrome, obesity, atherogenic dyslipidemia and cardiovascular disease (CVD) [32]. Further, 

these phenotypes account for two-thirds of all women with PCOS [33].  

1.1.3 Epidemiology of PCOS  

The prevalence of PCOS varies depending on the diagnostic criteria used. While with the NIH 

criteria the prevalence is up to 6.1% and 8.7%, the prevalence with the Rotterdam criteria is up 

to 19.9% and 17.8% in the same populations [3, 34]. PCOS also has been shown to be more 

prevalent among women with type 1 diabetes mellitus [35], T2D [36], gestational diabetes [37] 

and obese patients [38], although the latter is more controversial [39]. 

In PCOS, the highest prevalences of obesity was reported in studies from United States (76%), 

and Australia (61%) while 15% and 19% of the population was overweight, respectively [40, 

41]. However, the prevalence is different depending on whether the study population has been 

referred or is an unselected population indicating referral bias in the estimation of the 

prevalence of the obesity among women with PCOS. In United States, the prevalence of obesity 

in women with PCOS in a referral group has been shown to be 63% whereas in the unselected 

population the prevalence is 28.1%, similar to the unselected control (28.4%) [42]. In that study 

the severity of the syndrome was also different between study groups. While in the referral 
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PCOS group the most severe phenotype, e.g. oligo-anovulation + hirsutism + HA, was 52.7%, 

in the unselected group the phenotype was present only in 20.3% of the patients [42]. 

1.2 PATHOPHYSIOLOGY OF PCOS 

Despite detrimental impact on women’s health, the etiology of PCOS is not well understood. 

The pathophysiology encompasses signs and symptoms that originate from different key 

phenomenon including steroidogenic, metabolic and genetic abnormalities resulting in a broad 

spectrum of the disorder with mild and severe presentation where the hyperandrogenism is the 

hallmark of the syndrome (Fig.1). 

 

Figure 1. Pathophysiology of PCOS. 

1. Increase in LH pulse frequency and amplitude with normal or low FSH secretion results in an 

elevated LH/FSH ratio [43]. The unopposed LH secretion disrupts follicle development and results 

in thecal hyperplasia contributing to enhanced androgen production, and follicular atresia. 

Moreover, an increased hypotalamic-pituitary adrenal activity increase the secretion of DHEA and 

DHEAS that contribute to hyperandrogenism.  

2. Hyperinsulinemia as a compensatory response to reduced peripheral insulin insensitivity [44]. 

Insulin and in a minor degree IGF-I stimulate the androgen production by theca and stromal cells 

Obesity with a predominant abdominal fat accumulation which has been related to higher levels of 

testosterone and decreased SHBG secretion [45].Obesity decreases anti-inflammatory cytokines 

and induces pro-inflammatory cytokines, that in turn decrease synthesis of SHBG increasing the 

free androgen availability 

3. Increased sympathethic nerve activity that is related to higher androgen levels, obesity and insulin 

resistance 

4. Genetic component of the development of PCOS. 

LH: luteinizing hormone;FSH: follicle stimulating hormone; DHEA: Dehydroepiandrosterone; 

DHEAS Dehydroepiandrosterone sulfate; IGF-I: Insulin-like growth factor 1. 
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1.2.1 Androgen excess 

Normally, ovaries and adrenal glands are under control of luteinizing hormone (LH) and 

adrenocorticotrophic hormone (ACTH), respectively, and contribute to the synthesis of sex 

steroids [46-48].  In PCOS, a consistent elevation of GnRH pulse frequency cause an increase 

in LH pulse frequency and amplitude with normal or low follicle stimulating hormone (FSH) 

secretion and results in an elevated LH/FSH ratio [43]. In the normal ovary, LH stimulate the 

theca cells to synthetize androgens which in turn are converted to estrogen by CYP19A1 (or 

P450aromatase), in granulosa cells [49] (Fig. 2). In PCOS, activity of enzyme Cytochrome 

P450 c17 (CYP17), which converts progesterone to 17-hydroxyprogesterone and from 17-

hydroxyprogesterone to androstenedione (A4) is exaggerated and a decreased activity of 

CYP19A1 favours androgen production on these women [50]. Moreover, the unopposed LH 

secretion increases the synthesis of androgens by theca cells and results in thecal hyperplasia 

contributing to enhanced androgen production, disruption of follicle development and follicular 

atresia. 

 

 

Figure 2. Ovarian steroidogenesis. Granulosa and theca cells contribute to ovarian 

steroidogenesis. Theca cell contains enzymatic machinery for the synthesis of Androstenedione 

and Testosterone. Those steroids diffuse to granulosa cells for the conversion into estrogens. 

StAR: steroidogenic acute regulatory protein; CYP17: Cytochrome P450 c17; 3βHSD2: 3 

beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 2; AKR1C3: Aldo-keto 

reductase family 1 member C3 (also known as 17-beta-HSD 5); CYP11A1; cytochrome P450 

family 11 subfamily A member 1 (or cholesterol side chain cleavage cytochrome P450); 

CYP19A1: Cytochrome P450 19A1(or P450Aromatase); SDR5A: 3-oxo-5-alpha-steroid 4-

dehydrogenase 1 (or 5α-reductase). * , conversion mostly in peripheral tissues. 
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On the other hand, the adrenal gland also contributes to the hyperandrogenism in women with 

PCOS. Normally, the adrenal cortex produces, in descending order, dehydroepiandrosterone 

(DHEA), A4 and in minor extent testosterone (T) throughout mainly the ∆5 steroidogenic 

pathway [51] (Fig. 3). DHEA could be sulfated through DHEA sulfotransferase and released 

to the circulation as DHEA sulfate (DHEAS) [52]. These adrenal precursor androgens function 

as pre-hormones contributing in a large extent to the amount of the more potent androgens, T 

and dihydrotestosterone (DHT). For instance, 50% of the available T comes from the 

conversion of A4 in the liver, another 25% is synthetized directly in the adrenal and the rest in 

the ovaries [53]. DHEA is converted to A4 in the liver and directly to DHT from A4 in some 

peripheral tissues, without previous T formation. 50% of A4 and 20-30% of DHEA are 

produced in the ovaries and almost all the circulating DHEAS is produced in the adrenal cortex. 

Because of that, DHEAS is the best marker of adrenal androgen precursor production.  

 

 

Figure 3. Adrenal steroidogenesis. StAR: steroidogenic acute regulatory protein; CYP17: 

Cytochrome P450 c17; 3βHSD2: 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-

isomerase type 2; AKR1C3: Aldo-keto reductase family 1 member C3 (also known as 17-beta-

HSD 5); CYP11A1; cytochrome P450 family 11 subfamily A member 1 (or cholesterol side 

chain cleavage cytochrome P450); SDR5A: 3-oxo-5-alpha-steroid 4-dehydrogenase 1 (or 5α-

reductase);CYP11B1: cytochrome P450 family 11 subfamily B member 1;HSD11B2: 

hydroxysteroid 11-beta dehydrogenase 2; SULT2A1: sulfotransferase family 2A member 1* , 

conversion mostly in peripheral tissues.  

In PCOS, 20-30% have androgen excess of adrenal origin [54]. Of note, DHEAS is decreased 

in relation to increased age. DHEAS is 20-30% higher in women with PCOS when adjusted 
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for age and race [52]. Interestingly, higher levels of androgen precursors, DHEA, DHEAS and 

A4 have been found in non-obese patients with PCOS compared to obese women with PCOS 

[55]. Moreover, adrenal hyperandrogenism in women with PCOS has been associated with 

reduced insulin sensitivity and increased blood pressure [56].  

Insulin resistance with compensatory hyperinsulinemia is common in PCOS [44]. Insulin 

increase the activity of CYP17 that also favors the conversion of progestogen precursors to 

androgen production in adrenals and ovaries [51]. A recent study shows that obesity-induced 

hyperandrogenic anovulation is associated with 20 times higher levels of insulin and is reversed 

in transgenic littermates mice lacking the insulin receptor in theca cell [57]. The bioavailability 

of androgens is also favored because insulin decreases the synthesis of sex hormone-binding 

globulin (SHBG) and insulin-like growth factor binding protein (IGFBP-1) by the liver. This 

in turn increase free androgen availability and IGF concentration in the ovary, stimulating the 

production of androgen via stimulation of IGF receptors. 

Another factor that could increase the androgen excess of ovarian origin is anti-müllerian 

hormone (AMH). AMH is synthetized by granulosa cells of primary, pre-antral and small antral 

follicles [58]. Of note, primordial follicles do not produce AMH [59]. Normally, AMH 

regulates folliculogenesis by the inhibition of primordial follicle recruitment from the resting 

pool in order to select for the dominant follicle, and decreasing the sensitivity of small antral 

follicles to FSH activity after which the production of AMH diminishes [60]. In other words, 

AMH functions as a gatekeeper for the rate of depletion of primordial follicles and selection of 

maturing follicles [61]. AMH is significantly higher in women with PCOS due to an increased 

number of antral follicles and also a higher production per antral follicle, facilitating the 

follicular arrest in PCOS [61]. It is hypothesized that higher AMH in PCOS increase the 

follicular unresponsiveness to FSH and failure of follicular development lead by AMH-induced 

inhibition of aromatase, estradiol, and FSH and LH receptor acquisition in granulosa cells [61]. 

PCOS does not seems to have a Mendelian pattern of inheritance. Many studies have shown a 

large list of genes [62-64] that are related to the bioavailability and synthesis of androgen 

(CYP17A1, CYP19, AR, SHBG), insulin signaling and metabolism (INSR, IRS1, IRS2, PPARG, 

ADIPOQ), folliculogenesis (FSHR, LHCGR and AMHR) and inflammation (IL1A, IL1B, IL6, 

IL18, PAI1, FBN3, TNF), among others [62, 64]. Genome-Wide Association Studies (GWAS) 

executed in Han Chinese women [65] and later replication in European population [66] 

demonstrated around 20 single nucleotide polymorphisms (SNPs) associated with PCOS. 

Among them were THADA and DENND1A genes. The overexpression of a splicing variant, 

DENND1A.V2 in theca cells increase the CYP17A1 and CYP11A1 gene expression and 
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androgen biosynthesis. Although the mechanism is still unknown, studies show that a genetic 

component is also part of the pathophysiology of the syndrome [49, 62]. 

Although obesity is not part of the diagnosis, its presence exacerbates the PCOS phenotype [5]. 

Obesity with a predominant abdominal fat accumulation has been related to higher levels of 

testosterone and decreased SHBG secretion [45]. The enzyme aldoketoreductase type 1C3 

(AKR1C3), which converts A4 to the biologically active androgen testosterone and is 

modulated by insulin [67], is abundantly expressed in subcutaneous fat from both women with 

simple obesity [68] and in women with PCOS, who also display a lower gene expression of 

CYP19A1 [69]. Of note, an in vitro study showed that insulin increases adipose tissue 

expression and activity of AKR1C3, whereas androgen exposure increases adipocyte de novo 

lipid synthesis which was reversed by pharmacologic AKR1C3 inhibition [70] 

Adiponectin , an hormone considered as insulin sensitizer [71], has also been related to the 

pathophysiology of PCOS. The adiponectin level is decreased in obese PCOS patients 

compared to weight matched controls [72], and a defective secretion of adiponectin due to 

androgen excess has been reported. Further, adipocyte size together with circulating 

adiponectin and waist circumference has been demonstrated to be the strongest predictor for 

insulin resistance in women with PCOS [73]. Further, overexpression of adiponectin protects 

mice from developing a PCOS like metabolic, but not reproductive phenotype when exposed 

to DHT [74]. Comin et al has recently shown that adiponectin receptors (AdipoR1 and 

AdipoR2) are decreased in ovaries from women with PCOS, independent of BMI [75], 

suggesting an impaired adiponectin signaling.  

1.2.2 Obesity and metabolic disturbances associated with PCOS 

It is well accepted that obesity exacerbates the symptoms of PCOS, but there are controversies 

about whether obesity causes the syndrome. Obesity steadily increase in the developed world. 

In fact, the worldwide prevalence of obesity more than doubled between 1980 and 2014. In 

2014, 40% of women aged 18 years and over were overweight [76]. 

The effect of obesity in the development of PCOS is related to insulin resistance and 

compensatory hyperinsulinemia.  Insulin resistance range from 14 to 43% among women with 

PCOS and depend on the diagnostic criteria used. High BMI is also associated with lower 

SHBG levels, due to the fact that insulin suppresses the SHBG production from the liver [77]. 

Nevertheless, new insights have proposed that cytokines and adipokines, more than insulin, 

could have a role in the regulation of SHBG. Pro-inflammatory cytokines such as TNFα and 

interleukin 1β, downregulate the expression of SHBG in hepatocytes through down regulation 
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of hepatocyte nuclear factor 4 alpha (HNF4A) [78]. Further, adiponectin increases synthesis of 

SHBG via downregulation of genes related with de novo lipogenesis and increases the 

expression of those involved in fatty acid oxidation in HepG2 cells [78]. 

Studies have demonstrated that women with PCOS have increased abdominal or visceral fat 

accumulation [79]. However, the use of a gold standard method, magnetic resonance imaging 

(MRI) in age and weight matched case-controls does not demonstrate increased visceral fat 

content [73]. Moreover, in lean women with PCOS evaluated with MRI, the researchers found 

less visceral fat than control women without PCOS [80]. A recent study shows that alterations 

of lipid metabolism in women with PCOS persist after correction of central adiposity, with the 

worst metabolic profile associated with highest waist circumference (>0.98) [81]. Despite no 

clear evidence of more abdominal/visceral fat accumulation in women with PCOS, the adipose 

tissue function and morphology is hampered. Visceral fat has an increased lipolytic activity in 

response to catecholamines that increase the release of free fatty acids (FFA) to the liver trough 

portal circulation causing hepatic lipotoxicity and insulin resistance [82, 83]. Testosterone 

could have a role in visceral fat accumulation as demonstrated in iatrogenic hyperandrogenism 

in female-to- male transsexuals who were exposed to testosterone [84]. Rodent models also 

support a direct role for androgen excess in the accumulation of abdominal fat [74]. 

1.3 PREGNANCY AND PCOS 

As stated before, pregnant women with PCOS display an increased prevalence of gestational 

diabetes, preeclampsia and preterm deliveries [15-18]. Their newborns show more often altered 

size and admissions to intensive care unit [15-20]. 

Pregnant women with and without PCOS have increased circulating estrogen and progesterone 

levels together with a decreased level of SHBG in the second trimester. Further, the level of 

DHEAS and free androgen index (FAI) is higher in pregnant women with PCOS compared 

with control women in the second trimester [85]. Moreover, insulin secretion in response to an 

oral glucose tolerance test (OGTT) is higher in the second trimester. Metabolic disturbances 

are worse in women with a hyperandrogenic phenotype [16, 86].  

Women with PCOS show alterations in uterine artery Doppler indices in the first trimester of 

pregnancy, which could explain the increased risk for adverse perinatal outcome observed in 

women with the syndrome [87]. Moreover, the placenta displays higher rates of chorionic 

villitis and intervillositis in early pregnancy being more frequent in the more severe phenotypes 

(full-blown and non-PCO) than in the ovulatory and non-hyperandrogenic phenotypes [88]. At 

term, placenta from women with PCOS even without maternal complications, show more 
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macroscopic lesions than the placenta from control women [89]. Some studies have shown that 

women with PCOS have elevated blood pressure, even independent of BMI throughout the 

pregnancy [90], as well as altered uterine artery blood flow in the uterine artery, which is related 

to poor outcomes in pregnancy [16]. Thus, vascular alterations developed in pregnancy may 

affect placenta function as discussed before. Studies in women with preeclampsia, where fetal 

growth restriction (FGR) is more frequent, show altered placentation that could compromise 

the exchange of nutrients between mother and fetus [88]. 

1.4 PREGNANCY AND OBESITY 

Around 28% [91] to 63.7% [42] of women with PCOS are obese, which may increase the risk 

of poor pregnancy outcomes commonly seen in women with the syndrome. Obese women are 

more likely to suffer from infertility and impaired fecundity, which suggest that the uterine 

receptivity is altered [92]. During pregnancy, obesity per se is related to adverse obstetric 

outcomes regardless if the obesity is established in the pre-pregnancy period [93] or due to an 

excessive weight gain during pregnancy. Obese women display lower amount of mRNA of the 

leptin receptor in the syncytio-trophoblast without increased leptin protein levels [94], 

suggesting the existence of leptin resistance as found in obesity [95]. Further, during pregnancy 

obese women have higher serum leptin than their non-overweight counterparts although a 

lower leptin levels per unit mass of adipose in overweight/obese women through the 

progression of the pregnancy has been reported [96].  

Another hormone secreted by the adipose tissue that has an important role in pregnancy is 

adiponectin. Maternal adipose tissue is the primary source of circulating adiponectin during 

pregnancy and the synthesis in placenta at term has been questionable [97, 98]. Regardless of 

origin, adiponectin has been associated with the metabolic state during pregnancy and 

overweight/obese women who subsequently develop gestational diabetes have lower 

adiponectin than an euglycemic group during pregnancy [99]. Of note, the adiponectin/leptin 

ratio inversely correlates with homeostatic model assessment of Insulin Resistance (HOMA-

IR) in pregnancies affected with insulin resistance [100]. 

Animal models aiming to mimic maternal obesity before and during pregnancy induce maternal 

hypertension and glucose intolerance [101], increase [102] or decrease [103] fetal weight, and 

enhance the stress in the adult offspring [104]. Further, obesity is associated with changes in 

the methylation profile of oocytes and liver from offspring predisposing development of 

metabolic disturbances [105]. All these effects could be accompanied by an altered placental 

function [106]. Indeed, in rats, obesity impairs mitochondrial dynamics in placenta and liver 
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from offspring, increasing the risk of being obese in adulthood [107]. Interestingly, fetal 

abnormalities such as fetal growth retardation and brain abnormalities are associated with a 

failure in oocytes more than an adverse intrauterine environment in mothers fed with high fat 

diet [103].  

1.5 FETAL PROGRAMMING 

During the last century, the idea that the placenta was the perfect filter that gives protection to 

the developing fetus has changed radically. A number of examples demonstrate that the 

intrauterine environment is not a closed and unmodifiable system, and that the placenta is not 

always a permeable barrier that ensure a healthy fetal development. During the Dutch famine 

in winter of 1944-1945, the population, including pregnant women, were under a caloric 

restriction up to 500 kcal/day. Higher rate of obesity in sons that were exposed to maternal 

caloric restriction in the first trimester was observed compared to those exposed in the second 

and third trimester [108]. The latent effects of an adverse intrauterine exposure was better 

developed by David Barker [109] who describe several ideas in his theory of origin of the 

diseases such as the fetal conditions are persistent and their effects in health could remain latent 

after several years [110]. This “memory” could be originated in a biological mechanism called 

“programming” earlier in life [111]. Indeed, Barker state that the undernutrition or inadequate 

oxygen supply during pregnancy would “change or program the physiology and structure of 

the body” [109]. Although not exempt of criticism, because of the low quality of the statistical 

analysis done by Barker, his disease origins idea has been developed and tested by thousands 

of scientists worldwide [112-115]. 

Androgens and obesity also program the fetus to develop metabolic [21] and reproductive 

dysfunction [1], and behavioral disorders [116] in their infancy, puberty or in the adulthood. 

Daughters from women with PCOS exhibit features of abnormal reproductive development 

with increased ovarian volume, and in later puberty increased levels of fasting and 2 h insulin, 

triglycerides, testosterone and low SHBG compared with control girls [21, 22]. A similar 

profile is also evident in older age in spite of having better reproductive profile [117]. 

Furthermore, at the age of 15, between 28-36% of adolescent daughters born to women with 

PCOS have irregular periods, clinical and biochemical hyperandrogenism and PCO 

morphology [118]. In more recent studies, the levels of androgens in mixed arterial and venous 

blood has shown different results with either low [19, 20] or high androgen levels compared 

with controls. Interestingly, one study demonstrated that the maternal androgen levels were 

slightly inversely correlated with the weight of the newborn [19]. Nevertheless, the 

measurement of the steroids was done by chemiluminescent immunoassays, which is known 
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to have a low sensitivity and specificity compared with e.g. liquid or gas chromatography mass 

spectrometry [30].  

It is thought that the human placenta protects the fetus against hyperandrogenemia because 

placenta expresses CYP19A1, an enzyme that converts testosterone into estrogens [119]. 

Despite of that, it is not clearly established that androgens cross the placenta and affect the 

developing fetus. Whereas umbilical cord androgens levels are similar to the normal 

pregnancies in some studies [120], higher levels of testosterone have been shown in others [19, 

121]. A novel method that measures the sebum excretion on newborns have demonstrated that 

newborns born to mothers with PCOS excrete more sebum at birth compared to those born to 

control mothers [122]. Maternal androgen exposure increases 5α reductase (SRD5A) activity, 

but not the activity of 11β-hydroxysteroid dehydrogenase in 3 years old daughters of women 

with PCOS, suggesting a hyperandrogenic state that could contribute to the development of 

PCOS in the extra-uterine life [123]. Moreover, daughters of women with PCOS from Chile 

display hyperinsulinemia and augmented ovarian volume before puberty that persist during 

pubertal development, which placed them at higher risk for metabolic and reproductive 

derangements [22]. Sons born to PCOS mother are also affected and exhibit higher body weight 

from early infancy and insulin resistance when the subjects got older, placing them at risk for 

the development of T2D and cardiovascular disease later in life [23]. 

Obesity is associated with preterm deliveries and increased rates of infant mortality [124]. 

Moreover, children of obese mothers have an increased incidence of attention deficit 

hyperactivity disorder (ADHD), anxiety, and other psychiatric disorders at 3-5 years old [125]. 

Also, a strong association with cerebral palsy in newborns born to obese mothers at term has 

been found [126]. Later in the life, offspring from mothers who were obese during pregnancy 

have higher risk of hospital admission for cardiovascular events [127] and significant 

associations between increased maternal BMI, weight gain during pregnancy, and greater 

offspring waist circumference, BMI, and fat mass index at 30 years old is reported [128]. 

Moreover, sons of obese mothers have higher risk to display cryptorchidism and hypospadias 

[129].  

Although the majority of the human studies state association and not causality, animal models 

of maternal androgen excess have also demonstrated the deleterious effects in offspring, mostly 

through intergenerational studies approach. Indeed, maternal androgen excess exposure is a 

well-established animal model proved in rodents, sheep, and non-human primates. In those 

models, the offspring are usually affected by intrauterine growth restriction, whereas in adult 
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age, they develop a PCOS-like phenotype including reproductive, metabolic and behavioral 

alterations [130-135].  

Studies evaluating the effects of maternal obesity have demonstrated altered placental function 

[106], fetal overgrowth [102],  hypertension, glucose intolerance [101], stress [104] and even 

altered methylation profile in oocytes and liver from offspring,  predisposing them to develop 

metabolic failures [105]. Obesity also alters metabolic, vascular and anatomical impairments 

in the extra-uterine life [136, 137] such as leptin resistance and hepatic steatosis, hypertension, 

dyslipidemia and obesity [137].  

Further, female mice born to mothers fed high fat high sugar diet display impaired insulin 

sensitivity related to mitochondrial failure in skeletal muscle, that was transferred to the next 

two generations (up to F3) even when F1, F2 and F3 generations were fed with “healthy diet” 

[138]. The propagation of the mitochondrial failure suggest an increased risk to develop 

metabolic disturbances in the future generations [138].  

1.5.1 Placenta dysfunction in PCOS and obesity 

In PCOS, the adverse pregnancy state, fetal outcomes and long term consequences could be, at 

least in part, explained by alteration in the placental steroidogenic process. In the placenta from 

women with PCOS a higher activity of 3β-hydroxysteroid dehydrogenase type 1, which 

catalyzes the conversion of DHEA to A4, and a decreased activity of CYP19A1 which converts 

A4 to estrone and 16–hydroxytestosterone to estriol, and testosterone to estradiol [139-141] 

(Fig.4) is reported. These changes suggest an augmented capacity to maintain an androgenic 

state [119].  
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Figure 4. Simplified view of steroidogenesis pathways in human placenta. Placenta is not 

capable to synthetize androgens de novo because it lacks CYP17 enzyme. Then the placenta 

utilize the maternal and fetal DHEAS to produce androgens (A4 and T)  that subsequently are 

converted into estrogens by CYP19A1.  

Placenta nutrient transport is dependent on placenta size, morphology, nutrient transporter 

capacity and availability, utero and feto-placenta irrigation [142] and to genetically expected 

and the environmental interferences [143]. For the nutrition of the fetus, the nutrients have to 

cross the placenta trough two selective membranes: the microvillus membrane (MVM) that 

faces the maternal side and the basal membrane (BM) that faces to the fetal side and is closer 

to fetal capillaries [144]. Whereas glucose is transported by facilitated diffusion, amino acids 

are transported by proteins included in system A and L. As triglycerides cannot cross the 

sinciciotrophoblast they should first break down into FFA by placental triglycerides lipases: 

lipoprotein lipases and endothelial lipases [145, 146]. Later the FFA are transported by fatty 

acid transport proteins (FATP), fatty acid translocase (FAT/CD36), plasma membrane fatty 

acid binding protein (FABPpm), and fatty acid binding proteins (FABP) [146, 147]. 

In pregnant rats, a dose of 0.5 mg/kg of testosterone propionate in late pregnancy decreased 

fetal body and placenta weight [148] in both male and females [149]. In the same model, the 

authors reported that, even the fetal levels of testosterone were not affected [149], maternal 

androgen exposure caused a down-regulation of placental amino acid transporter expression 

and a decrease in placental amino acid transfer, which in turn decreased the fetal and placental 
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weight. Therefore,  the authors suggest that maternal androgen exposure would be able to affect 

the fetal development mediated by changes in placental function [149]. 

Mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 

3 (STAT-3) have been proposed as the major regulators of nutrients transport in placenta [150]. 

In animal models of fetal growth restriction, the lower protein intake inhibits placental insulin, 

mTOR and STAT-3 signaling that is associated with a down-regulation of placental amino acid 

transporters [151]. On the other hand, the high calorie intake increases the expression, through 

mTOR signaling activation, of some amino acid transporters and increase the activity of the 

system A and L in placenta, leading to increased fetal growth [152]. 

1.6 TREATMENT OF PCOS DURING PREGNANCY 

1.6.1 Lifestyle modifications 

There is scarce scientific literature about weight management in pregnant women with 

PCOS despite of being considered as the first-line treatment strategy in PCOS 

recommended by evidence-based guidelines. Weight management gain is defined as 

prevention of excess weight gain, weight loss, or maintenance of a reduced weight, 

through lifestyle behavioural interventions that include diet and physical activity [153].  

1.6.2 Pharmaceutical treatments  

Due to the heterogeneity of the syndrome where multiple organ systems are involved in its 

development, it is difficult to establish specific treatments. One of the pharmaceutical 

approaches used is the insulin sensitizer metformin. Its action has been related with improved 

uterine artery blood flow as demonstrated by reducing the uterine artery impedance from first 

to second trimester in women with PCOS [154], but the reduction of complications is less clear 

in this sense [154, 155]. Vanky et al demonstrated that despite not reducing circulating 

androgen levels during pregnancy, none of the women receiving metformin had severe 

pregnancy complications (0/18). In the placebo group, 7/22 women experienced at least one 

severe complication either during pregnancy or during partum [156]. Metformin also decrease 

the rate of pregnancy loss and preterm delivery [157]. Moreover, metformin decreased the 

amount of cell free fetal DNA, an indicator of pregnancy complications, in plasma of PCOS 

women compared to women that followed 12 weeks exercise management during pregnancy 

[158]. Surprisingly, metformin has shown no effects on glucose homeostasis in pregnant 

women with PCOS [159]. Glueck et al show that metformin in combination with dietary 

counselling prior to pregnancy is able to reduce: insulin secretion and testosterone, insulin 
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resistance, preconception weight, and maintaining these effects throughout pregnancy [160]. 

However, those results are questionable because the study did not include a placebo group. 

1.6.3 Electroacupuncture (EA) 

Acupuncture is an ancient therapy used by oriental cultures since more than 3000 years. The 

technique comprises the insertion of thin sterile needles (usually stainless steel) in the body 

with a variable depth. After insertion, the needles are stimulated manually or by electrical 

stimulation with high (100Hz) or low frequency (1-15 Hz), which is called electroacupuncture 

(EA). Western medical acupuncture is an adaptation of the Chinese approach and use current 

knowledge of anatomy, physiology, pathophysiology and evidence-base medicine [161]. 

The insertion of needles in muscles activates  somatic afferent nerves fibers, predominantly 

thick myelinated Aβ, thin myelinated Aδ and thinner unmyelinated C fibers [162]. This 

stimulation has simultaneous local (peripheral), segmental (spinal cord) and central 

(supraspinal) effects (Fig. 5) [163, 164]. The stimulation causes a peripheral release of 

neuropeptides that include substance P (SP), calcitonin gene-related peptide (CGRP), 

vasoinstestinal peptide (VIP) and nerve growth factor (NGF) [165]. At spinal area, acupuncture 

stimulate sympathetic reflexes of organs located in the same innervation area as needle 

placement [164, 166]. Simultaneously, the transmission of stimulation continues to the central 

nervous system (CNS) modulating hypothalamus and pituitary function [163, 167-170]. Of 

note, the muscle contraction provoked by EA results in similar effects that exercise does. In 

fact, both EA and exercise modulate the release of endogenous opioids.  

Acupuncture has been shown to influence visceral blood flow, an effect that seems to be 

mediated by modulation of somato-autonomic reflexes [171, 172]. Furthermore, acupuncture 

with low-frequency electrical stimulation of the needles has been demonstrated to increase 

ovarian blood flow response trough the modulation of sympathetic nerve fibers innervating the 

ovary [166, 169, 173]. 

Studies have shown that in non-pregnant women undergoing in vitro fertilization, eight 

acupuncture treatments with low-frequency EA increase uterine artery blood flow [174], with 

similar effects in non-pregnant rats [166, 173]. Zeisler et al evaluated the effects of acupuncture 

on uterine artery blood flow during healthy pregnancies [175]. In that study, acupuncture 

decreased the systolic/diastolic ratio in umbilical artery, without affecting the fetal heart rate 

after a single bout of acupuncture. However the study was conducted in normal pregnancies 

near term when umbilical blood flow has reported to be maximal [175]. 
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There is a lack of reports about the use of acupuncture in pregnancies with complications, for 

example preeclampsia or gestational diabetes. During pregnancy, the effect of acupuncture for 

pelvic girdle pain has been found superior to exercise and self-management group [176, 177], 

although no better when compared to sham acupuncture [178]. Low-frequency EA has been 

shown to decrease the need of epidural anesthesia although without a significant decrease in 

pain [179], and  to decrease the length of the active phase of labor [180]. 

 

Figure 5. Theoretical model of the effect of low-frequency electroacupuncture (EA) in PCOS. 

Electrical stimulation of needles inserted in skeletal muscles activate ergoreceptors that in turn 

activate afferent nerve fibers Aβ, Aδ and C fibers. That activation has a: 1) segmental effect, 

where the autonomic spinal reflexes can modulate the functioning of organs in the same area 

of innervation of the fibers stimulated by EA; 2) central nervous system effect, activated by 

ascending pathways that stimulate different areas in the brain, as hypothalamus and pituitary 

and therefore modulating nervous and endocrine system.  Indeed, the release of β-endorphin 

by acupuncture mediate, in turn, the secretion of GnRH and CRH  by the hypothalamus with 

the subsequent modulation of hormones from pituitary (LH/FSH, ACTH) and finally 

modulating the reproductive, adrenal hepatic and pancreatic function. (ACTH: 

adrenocorticotropin hormone; GnRH: Gonadotropin releasing hormone; CRH; Corticotropin 

hormone; FSH: follicle stimulating hormone; LH; Luteinizing hormone; NA: noradrenaline; 

A: Adrenaline) 
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2 AIMS 

2.1 GENERAL AIM 

The overall aim of this thesis was to determine the role of androgens and obesity during 

pregnancy and whether acupuncture could modulate placenta dysfunction and fetal growth. 

2.2 SPECIFIC AIMS 

Paper I 

To determine whether PCOS in women without pregnancy complications affect placental 

signal transducer and activator of transcription 3 (STAT3) and mechanistic target of rapamycin 

(mTOR) signaling. 

 

Paper II 

 
To test the hypotheses that maternal androgen excess decreases placental and fetal growth, and 

modulates placental expression of markers of steroidogenesis, angiogenesis and sympathetic 

activity, and that low-frequency EA prevents these changes. 

 

Paper III 

 
To evaluate maternal growth and metabolism, placenta weight, placenta steroid receptor 

expression, and fetal growth in mice exposed to maternal androgen excess with or without 

maternal obesity. 

 

Paper IV 

To explore how maternal androgen exposure with or without HF/HS-induced obesity affect the 

total and phosphorylated proteome of placenta and fetal liver, with the aim to find novel target 

and pathways that could explain altered placenta function and the development of fetal organs 

and their functions. 
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3 METHODOLOGICAL CONSIDERATIONS 

3.1 ETHICS 

All the studies presented here are in accordance to the Declaration of Helsinski (Paper I and 

IV) or according with the legal requirements of the European Community (Decree 

86/609/EEC) (Paper II, III and IV). Moreover, the studies were approved by the Research 

Specific Ethics at Uppsala University, Sweden (Dnr 2011-372) and Midt-Norge (145-04), 

(paper I); Animal Ethics Committee of the University of Gothenburg (Dnr: 53-2013, paper II), 

and (Dnr: 116–2014, paper III), and Animal Ethics Committee of Karolinska Institute (259-14, 

with addendum N263-15, paper IV). 

3.2 DESIGN 

3.2.1 Clinical study (paper I) 

Placenta tissues and blood were obtained from: 

• The PregMet Study, conducted at St.Olav´s Hospital, University Hospital of 

Trondheim, Norway. 

• Basic Biobank at Uppsala University, Sweden. 

Inclusion criteria: 

• PCOS: Diagnosis of PCOS according to Rotterdam criteria [24] by a gynecologist 

based in the documentation before pregnancy. 

Exclusion Criteria: 

• Preeclampsia 

• Gestational diabetes 

• Chronic disease as hypertension, kidney disease and diabetes 

• Multiple gestation  

• Other than scandinavian heritage 

Samples:  

• 40 Control pregnant women were selected from BASIC Biobank and 14 women with 

PCOS are from BASIC and 24 from PregMet study (Fig. 6) 

• In all women a venous blood sample was obtained at delivery. After clotting, serum 

was separeted by centrifugation and frozen at -70̊ C.  
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• After vaginal delivery or cesarian section, placentas were washed in sterile phosphate-

buffered saline and snap frozen at -70̊ C. 

 

 

 

 

 

 

 

 

Figure 6. Design of study paper I. Blood and placenta were collected from pregnant women 

with PCOS and control at term. Circulating steroids were analyzed in serum samples. Protein 

and gene expression of molecules involved in steroid action, metabolic pathway and cytokines 

were assessed in placenta.  

 

In paper IV, due to the identification of a novel phosphorylation of COMT in placenta and fetal 

liver, we aimed to study whether the same or a similar phosphorylation was present in human 

placenta. Therefore, placental tissues from normal weight women with (n=5) and without 

PCOS (n=4), and from overweight/obese women with (n=5) and without PCOS (n=5) were 

selected from BASIC Biobank to analyze targeted proteomic analysis of the COMT enzyme 

(Fig.7C, bottom part). Of note, women with female fetus was included in this analysis.  

3.2.2 Animal studies (paper II-IV) 

The design of the experimental studies included in paper II-IV are shown in Figure 7. Overall 

the studies aimed to investigate the effect of maternal hyperandrogenemia in the late pregnancy 

on fetal and placental development.  

In paper II, time pregnant Wistar (Charles River, Germany) rats were received at gestational 

day (GD) 7 (Fig.7A). Animals were fed normal chow and were injected with testosterone 

propionate (TP) (0.5mg/Kg) or vehicle from GD15 to 19. From GD16 to 20 the animals were 

treated with low frequency EA or handling. The sacrifice was done during GD 21 after 4 hours 

of fasting. In this study the dose of TP was selected in order to model the two-fold increase in 

circulating testosterone previously reported [149, 181]. 

In paper III and IV a combination of the prenatal androgenization (PNA) mouse model with a 

high-fat/high-sugar (HF/HS) diet-induced obese mouse model that has been shown to deliver 
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LGA offspring was used [102]. The phenotypic characteristics were evaluated by studying 

maternal growth and metabolism, placenta weight, placenta steroid receptor expression, and 

fetal growth (paper III, Fig.7B). A proteomic analysis of placenta and fetal liver in mice 

exposed to maternal androgen excess with or without obesity was performed (paper IV, 

Fig.7C). In studies III and IV mice were used, instead of rats, because of the opportunity to 

work with either transgenic or knock–out animals in the future, and because of the availability 

of antibodies and assays available for mice. Injection of DHT (250µg by body weight 

calculated from a 20g standard mouse) in a mixture of benzyl benzoate and sesame oil between 

GD 15.5 and 17.5 (paper III) was used to induce prenatal androgenization. In paper IV a fixed 

dose of 250µg was injected between GD16.5 and 18.5 in order to follow the original model 

described by previous authors [132, 182-185]. 

3.2.3 HF/HS obesity (papers III and IV) 

The obese mouse model used in this thesis aimed to induce the phenotype previously reported 

by Rosario et al with increased fat mass, glucose intolerance, high maternal circulating insulin, 

leptin, and cholesterol and a decrease in circulating adiponectin and overgrown fetus [102, 

152], and to combine it with the maternal androgen exposure model. In brief animals were fed: 

• High fat/high sucrose diet (HF/HS): 40 Kcal% fat, 43% carbohydrate and 17% of 

calories from protein, plus 20% of sucrose in water supplemented with vitamins and 

minerals for 4 to 10 weeks until the animals in HF/HS group reached 25% increase in 

BW (paper III, Fig. 7B) or for 10 weeks (paper IV, Fig.7C). 

• Control diet (CD) 10 Kcal% fat, 73% carbohydrate and 17% of calories from protein. 
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Figure 7. Design of studies in papers (A) II, (B) III and (C) IV. 

3.2.4 Treatment with low frequency electroacupuncture (paper II) 

The treatment with low-frequency EA was started on GD16, one day after the androgenization 

began. The procedure was done in conscious rats. In order to control for environmental factors, 

all rats, injected with either vehicle or testosterone received the same handling. Rats were 

wrapped up in a special homemade fabric harness that allows to insert the needles in the 

abdominal area and in the hind limbs. In the EA group, acupuncture needles, 0.20 mm in 

diameter and 15 mm in length were used. Two needles were inserted into rectus abdominis and 

two needles were placed into the triceps surae muscle in each hind limb. To provoke muscle 

contractions, all needles were connected to electrodes attached to an electrical stimulator and 

stimulated with 2 Hz frequency burst pulses. The length of the treatment on the first day was 

15 minutes and it was increased to 20 minutes the following days. As all the needles could 

potentially trigger a physiological response, in the control group rats were only handled and no 

needles were inserted.  
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3.2.5 Summary of the methods across the papers 

Table 1. Summary of methods used across the studies 

    

Human 

Study   Experimental  Studies 

Method  Paper I   Paper II Paper III Paper IV 

 Breeding    • • 

 Body composition (DEXA)    •  

 Tail-cuff   •  • 

 OGTT    •  

Assay      

 Western Blot •  • •  

 qPCR •   • • 

 ELISA   • • • 

 Mass spectrometry     • 

  HPLC or GC-MS/MS •     • • 

 

3.3 ANIMAL ASSESSMENTS 

3.3.1 Dual Energy X-ray Absorptiometry (DEXA) 

With DEXA, the body composition analysis allows to investigate not only bone mineral content 

(BMC), but also fat mass (FM) and lean body mass (LBM) [186]. DEXA has the advantages 

of low cost, low radiation, short evaluation times and conserve the animal for more studies in 

the same protocol. Disadvantages are that DEXA measure all body lipid content and not only 

the adipose tissue and secondly, animals have to be anesthetized. 

This method was used in paper III to evaluate the body composition the day before mating and 

at GD18.5 to investigate how body composition changed during pregnancy. 

3.3.2 Body composition analyzer (BCA) 

Nuclear magnetic resonance is a non-invasive, in vivo body composition analysis used in 

small animals, to image and quantify subcutaneous adipose tissue and lean mass. The method 

used in this thesis is time domain nuclear magnetic resonance (TD-NMR, Bruker) and was 

used to evaluate body composition of fetus in paper III.  

3.3.3. Oral glucose tolerance test and Insulin sensitivity index (HOMA-IR) 

The OGTT measures the ability of the body to clear the glucose from blood circulation and 

was used in paper III. Oral gavage include the incretin effect and is to be preferred above 

intraperitoneal injection [187]. In brief, after 6 hours of fasting, glucose measurements were 
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taken at basal level (time 0) and at 15, 30, 60 and 90 minutes after 50 mg of glucose/250µl 

NaCl 0.9% (20%, p/v). Blood samples for insulin measurement was taken at 0 and 15 minutes 

was taken. Although OGTT does not distinguish between peripheral insulin resistance and β-

cell dysfunction, different index could be calculated upon the fasting glucose and insulin levels 

to evaluate insulin sensitivity, as the HOMA-IR, or β-cell dysfunction with HOMA-β. 

3.3.4 Tail-cuff  

Tail–cuff plethysmography or photoplethysmography is a non-invasive method that 

allows measuring arterial pressure, specifically systolic blood pressure. In brief, a light 

illuminates a spot in the tail of the animal and pressure oscillations in the cuff related to 

changes in blood flow during release of the occlusion are sensed and measured by an 

aneroid manometer. For better measurements, the animal should be anesthetized, 

although is important to note that anaesthesia could decrease blood pressure. This method 

was used in paper III were the arterial pressure was evaluated in pregnant rats at GD21.  

In paper IV, CODA System was used as a non-invasive system for measuring arterial 

blood pressure. It is a volumetric based method to measure the blood flow and blood 

volume in the tail, where no artefacts related to ambient light are present. For the 

measurement, a special animal holder maintains anaesthesia in mice to avoid stress while 

the measures are taken.  

3.4 PROTEIN EXPRESSION ASSAYS 

3.4.1 Western Blot 

This is a widely used technique aimed to imunodetect proteins that have been separated by 

native or SDS-polyacrylamide gel electrophoresis and transferred onto a nitrocellulose or 

polyvinylidene difluoride (PDVF) membrane, most commonly trough electrophoretic transfer 

(electroblotting). Once the proteins are transferred, the membrane is incubated with specific 

antibodies followed by a subsequent visualization of the labeled protein, usually by 

chemiluminiscence. As a ladder is loaded in the same membrane, the identification of the target 

proteins is based on the visualization of the bands that should be at a specific size indicated the 

ladder. Depending of the antibody used, the protein could be detected in its unphosphorylated 

or phosphorylated form. In this thesis at least three systems that involve different technologies 

in electrophoresis, blotting or detection were used, but with the same principles listed above. 

Paper I used Invitrogen technology. In paper II, two methods were used, because method was 
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used in different universities: i) Bio-rad system (also used in paper III), and ii) the classical 

method (homemade gels and detection and quantification using x-ray films).  

3.4.2 Enzyme-linked immunosorbent assay (ELISA) 

ELISA is a plate-based antibody assay technique designed for detecting and quantifying, 

proteins, hormones, among others. The detection antibody can be covalently linked to an 

enzyme, or can itself be detected by a secondary antibody that is linked to an enzyme through 

bioconjugation. 

3.4.3 Mass spectrometry 

Gas, liquid or ultra-high performance liquid chromatography/ mass spectrometry (GC/MS-MS 

or LC/MS-MS, UPLC- MS-MS, respectively) are analytical techniques that by physical 

separation, ionization and ions sorting, detect different components of a sample based on their 

mass-to-charge ratio.  In this thesis, circulating steroids (paper I, II) were measured by either 

GC/MS-MS (paper I) or UPLC- MS-MS (paper III). Global proteomic analysis was done by 

LC/MS-MS (paper IV). 

3.4.4  Polymerase chain reaction and Real-time PCR (qPCR)  

PCR is based on using the ability of the enzyme DNA polymerase to amplify a DNA template 

to produce specific DNA fragments (amplicons) in vitro, by assembling free nucleotides 

using single-stranded DNA as a template and DNA oligonucleotides or primers to initiate 

DNA synthesis. PCR is a common method for amplifying DNA, and for measuring mRNA, 

where the mRNA sample is first reverse-transcribed to complementary DNA (cDNA). The 

use of primers or fluorescent DNA-binding dyes to detect and quantitate a PCR product allow 

quantitative PCR to be performed in real time (Real time PCR), where DNA or cDNA copy 

number can be established after each cycle of amplification. It is carried out in a thermal 

cycler that has the capacity to illuminate each sample with a beam of light at one specified 

wavelength and detect the fluorescence emitted by the excited fluorophore. Finally, 

quantitative PCR data can be expressed relative to an internal standard (relative 

quantification) used in this thesis, or relative to a standard curve. 

3.5 STATISTICS 

Statistical Package for Social Sciences (SPSS) and graphpad were used for statistical analyses. 

In paper IV, was R studio program used to perform two-way ANOVA. Most of the data are 
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shown as mean ± standard error of mean (SEM) and a p value <0.05 was considered as 

significant. 

In Paper I statistical differences were calculated with Fisher permutation test and categorical 

data were calculated by using χ2 test. Correlation were calculated by Spearman’s test. 

Paper II, Kruskal Wallis test followed by Mann Whitney U test for group comparison were 

used. Non parametrical test was used because in most comparison the groups had less than 10 

samples. 

With the objective to analyze the effect of diet or injection factors, a two way ANOVA 

followed by Bonferroni correction was selected to compare those factors (Paper III and IV). In 

proteomic analysis (paper IV), all data were log2-transformed and missing values were imputed 

from normal distribution. All data were filtered by one-way ANOVA tests with Benjamini-

Hochberg correction for multiple testing. False discovery rate (FDR) correction with a q value 

of 0.05 and at least 25 % in fold change in the subsequent t-test between the groups was used 

to filter the data of interest in each data set. After this filtering, selected proteins were analyzed 

by two-way ANOVA in order to investigate if it was a main effect of diet or injection factors, 

or an interaction of the main effects in the differential expression of proteins. 
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4 SUMMARY OF RESULTS 

4.1 PAPER I 

Abnormal steroidogenesis and dysregulated placental metabolic pathways in pregnant 

women with PCOS 

Women with PCOS have an altered steroidogenesis as demonstrated by elevated circulating 

androgen levels and decreased estradiol. Moreover, alterations in protein and gene expression 

of molecules related to energy homeostasis and steroidogenesis were found in placenta from 

women with PCOS.  A higher phosphorylation of STAT-3 together with a decrease of SCL2A4 

and CYP11A1 mRNA and an increase of 17β HSD (ARKI C3) mRNA were found. Although 

STAT-3 was activated, the downstream effectors 4EBP1 and S6 ribosomal protein remained 

unaffected in placenta. 

4.2 PAPER II 

Electroacupuncture impair fetal and placental development in rats exposed prenatally to 

testosterone. 

EA in pregnant rats injected with testosterone increased systolic blood pressure and decreased 

circulating norepinephrine and corticosterone. In rats exposed to maternal androgens, contrary to our 

hypothesis, the fetal and placental weight was decreased and there was an impairment in the angiogenic 

pathways as demonstrated by a decrease in protein expression of placenta VEGFR1 and augmented 

VEGFA/VEGFR1 ratio. Moreover, a decreased protein expression of proNGF protein expression, 

together with increased mature NGF (mNGF) and altered mNGF/proNGF ratio was also present. Of 

note, EA in control rats did not affect any of the variables studied. 

4.3 PAPER III 

Diet induced maternal obesity differentially affect maternal and fetal triglyceride metabolism 

in liver  

Mice fed HF/HS diet had higher fat content before mating and at GD18.5 with no difference in 

glucose homeostasis, whereas HOMA-IR was decreased in dams exposed to DHT during pregnancy. 

At GD18.5, the placental androgen receptor (AR) protein expression was increased compared with 

controls. Maternal livers weighed more in mice fed with HF/HS regardless of DHT injection and the 

triglyceride content was higher in their livers with a higher mRNA expression of Fitm1 and Pparg. 

Diet, injection or the interaction of both factors dysregulate the mRNA expression of enzymes related 

with de novo lipogenesis. In fetal livers from dams fed HF/HS-diet, the triglyceride content was lower 
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as well as mRNA expression of Srebf1c. Prenatal DHT exposure decreased Pparg mRNA expression 

in fetal livers.  

4.4 PAPER IV 

Diet induced maternal obesity and androgen exposure affect the catecholamine 

metabolism in placenta and fetal liver 

Circulating noradrenaline was decreased in animals injected with DHT. In placenta, the 

phosphorylation of ATP-citrate synthase (ACLY547) was decreased in mice fed HF/FS diet and 

an interaction between maternal diet and DHT exposure dysregulated the phosphorylation of 

Catechol-O-Methyltransferase (COMTS261). In female fetal livers, the phosphorylated 

COMTS261 was increased due to maternal obesity. Moreover, in liver from female offspring at 

adult age the gene expression of COMT was affected by the interaction of both factors, diet 

and DHT exposure. 
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5 DISCUSSION 

Many studies in the field of PCOS investigate pathophysiology of infertility and its long-term 

metabolic and behavioral health consequences, but less are focused on the effects of PCOS in  

pregnancy and its potential consequences on offspring health and ultimately the developmental 

origin of the syndrome. 

Pregnant women with PCOS are at higher risk to have pregnancy complications with health 

consequences in the offspring. In fact, women with PCOS are at higher risk to have 

preeclampsia or pregnancy induced hypertension [188, 189], gestational diabetes mellitus [15] 

and preterm deliveries [17, 190]. Babies born to mothers with PCOS are at higher risk to be 

born LGA [15, 18, 189] or SGA [15, 189, 191]. Of note, the SGA babies are smaller than the 

SGA in the control group [191]. Women fulfilling all three PCOS criteria before pregnancy are 

the more affected with pregnancy complications [86]. It is interesting to note that it is the risk 

of developing preeclampsia and gestational diabetes that is increased among women with 

PCOS, and no other complications, suggesting that there are specific pathophysiology 

mechanisms. It is not clear whether the hyperandrogenemia is the key factor in the development 

of these complications.  

In order to avoid any confounding effect of pregnancy complications, in the first article we 

only included women with and without PCOS with uncomplicated pregnancies. Pregnant 

women with PCOS showed higher levels of androgens as previously reported [14, 85].  

We found a higher phosphorylation in STAT-3Tyr-705. STAT-3 is recognized to regulate 

placental nutrient transport [151], angiogenesis [192] and fetal growth [151]. Interestingly, 

STAT-3 has been found to be induced by glucose in vitro [193] and also be highly 

phosphorylated in placentas from preeclamptic patients [194], although lower phosphorylation 

in severe preeclampsia [195] has also been found. It is known that leptin activates JAK-STAT 

signaling pathway, which in turn regulates system A amino acid transport activity [150]. 

However, mRNA of leptin and the leptin receptor was decreased in the placenta from women 

with PCOS, whereas phosphorylated STAT-3 was upregulated [196]. Interestingly, the 

activation of STAT-3 could be due to an inflammatory state [197] as was also suggested in 

paper II, where placentas from rats prenatally exposed to testosterone expressed higher level 

of p-JNK. JNK is a member of mitogen-activated protein kinase (MAPK) family that is related 

to inflammation [198], induced by cytokines but also by testosterone in vitro [199].   

Contrary to our hypothesis, dams injected with testosterone and treated with EA had increased 

systolic blood pressure, and a decrease in circulating norepinephrine. Many articles have 
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published beneficial effects of EA in lowering the blood pressure [200-202]. We hypothesized 

that EA, via somatic afferents, could modulate the sympathetic activity and increase blood flow 

as demonstrated in humans [174]. During EA treatment, sympathetic activity has been shown 

to increase [203, 204], followed by a decrease post treatment [205, 206].  In rats exposed to 

testosterone and treated with EA, we found decreased fetal weight in female fetuses and 

placenta. That could be a consequence of a decrease in the angiogenesis process suggested by 

the lower protein expression of VEGFR1 and a high VEGFA/VEGFR1 ratio in the same group 

of animals. Interestingly, patients with PCOS have elevated blood pressure during pregnancy 

[90] and patients with preeclampsia have increased circulating free testosterone [207] and 

decreased placental aromatase expression [208]. Moreover, higher protein expression of 

androgen receptor and lower protein expression of aromatase in placenta from patients with 

gestational diabetes have been shown [209]. All these findings, reinforce the idea that there is 

a link between higher androgens and gestational complications in PCOS that could be mediated 

by common molecular pathways. 

As the effect of EA is in part mediated via the sympathetic nervous system, we measured 

proNGF and NGF as markers of sympathetic activity [210]. In animals exposed to testosterone 

and treated with EA, an increase of mNGF and mNGF/proNGF ratio in placenta was found. In 

human placenta the NGF is localized in cyto- and syncytiotrophoblast, as well as in the 

extravillous trophoblast and decidual cells [211] and almost no stain has been shown in the 

fetal part [211]. NGF controls folliculogenesis and also angiogenesis [212, 213]. It is known 

that under stress, upregulation of NGF in decidua would induce a pro-inflammatory 

environment. The results of that condition is a pro-abortive environment, mediated by the 

stimulation of the expression of adhesion molecules intercellular adhesion molecule 1 

(ICAM1) and selectin platelet (SELP) and their ligands. Further, the neutralization of NGF in 

the maternal interface increase the infiltration of TRKA+-NK cells to the decidua, also deriving 

in local inflammation and abortion [214]. Of note, the VEGFR1 blockage have shown to have 

an effect in reducing inflammation but also angiogenesis [215]. Therefore, low-frequency EA 

in the animals injected with testosterone and treated with EA would have been exposed to an 

increased inflammatory environment given by the imbalance of NGF that the VEGFR1 

downregulation would not be able to normalize and affecting the angiogenesis process that is 

associated with a lower fetal and placental weight. 

As in PCOS, obese women by themselves also display infertility [216, 217], miscarriages 

[218], adverse pregnancy outcomes as preeclampsia [219, 220] and gestational diabetes [221, 

222]. It is known that the combination of obesity with PCOS is considered to be more 

deleterious [18, 86, 189, 190, 223]. In paper III and IV, we aimed to combine the well 
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characterized PNA mouse model [132, 182, 184, 185] with a maternal obesity model [102, 

152]. Contrary to what expected, the weight of the fetus was not different to the control group. 

One reasonable explanation might be the lower weight gain in dams fed HF/HS compared to 

dams on control diet. Alternatively, the diet may have cause a mild phenotype, although this 

was not demonstrated in the circulating adiponectin or glucose metabolism, as indicated by 

unaltered HOMA-IR. Surprisingly HOMA-IR was decreased in dams exposed to DHT 

indicating an acute effect of DHT. The lower increase in body weight during late pregnancy is 

in line with other studies in humans [224, 225] and animal models, using a similar HF/HS-

induced obesity model with the same litter size [226]. Our results are supported by a previous 

in vitro study of glucose-induced insulin secretion in cultured beta cells from normal rats [227]. 

Exposure for 72 hours to either DHT or testosterone reduced the insulin secretion, and the 

effect was reversed by the antiandrogen flutamide, demonstrating the capacity of androgens to 

modulate insulin secretion via androgen receptors [227].  

Because maternal androgens have the potential to affect the fetus and/or placental function 

[149], it is important to investigate the circulating levels of androgens and other circulating sex 

steroids. No previous studies using the maternal androgen excess model have measured DHT 

in maternal serum in mice [132, 182, 184, 185]. Progesterone was higher in the HF/HS group 

than in control animals regardless of DHT exposure. That is in line with a recent report that 

shows an increase of progesterone and a reduction of IFN-γ expression in NK cells that is 

known to be involved in supporting uterine spiral artery remodeling [228]. 

Liver weight and triglyceride content increased in dams fed HF/HS with a tendency to be higher 

in the obese dams exposed to DHT. It is known that obesity, specifically with large amount of 

visceral adipose tissue contributes to a high prevalence of non-alcoholic fatty liver disease 

(NAFLD) [229]. Moreover, the prevalence of nonalcoholic fatty liver disease in women with 

PCOS has been shown to be 25% [230] and hyperandrogenic women with PCOS exhibit higher 

liver fat content than women with PCOS without hyperandrogenism, independently of BMI 

and insulin resistance [231]. In this study, the high triglyceride amount in liver from obese 

dams with or without hyperandrogenism could respond to different stimulus or have synergic 

effect in the case of obese dams injected with DHT. Moreover, all non-invasive indices of 

hepatic steatosis and hepatic fibrosis are higher than normal in women with PCOS, and even 

highest when the metabolic syndrome is present [232].  

The molecular signatures behind the triglyceride accumulation were different across groups, 

but most of the changes were due to HF/HS induced obesity factor. In summary, lipid 

accumulation in maternal liver does not seem to be related to de novo lipogenesis demonstrated 
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by the decrease rather that increase in the mRNA expression of genes that constitutes the 

pathway [233].  Obese dams showed increased expression of Pparg in the liver, which is known 

to be related to HF/HS-induced steatosis [234, 235] although its participation is controversial, 

because its activation by thiazolidinedione’s reduces hepatic steatosis [236, 237]. It is known 

that Pparg overexpression results in increased expression of fat storage-inducing 

transmembrane protein Fitm1 [238],  a precursor of lipid droplet formation [239].  Therefore, 

it is possible that the increased expression of Fitm1 that we observed in the livers of dams fed 

with HF/HS constitutes a link between increased expression of Pparg and accumulation of TG 

in the liver of obese dams that was not modulated by DHT. 

The liver TG content was, on the contrary, decreased in fetus from dams fed with HF/HS and 

no changes in mRNA expression of genes related to de novo lipogenesis was found. Which is 

in contrasts to the higher lipid droplet accumulation in fetal livers from dams fed HF/HS 

previously shown [240]. Similar to our results, Abbott et al. showed a lower concentration of 

circulating FFA in female rhesus monkey fetuses from mothers that were androgenized, and 

who increased their body weight during pregnancy. [241] Of note, the FFA levels increase in 

adult female offspring [242]. One possible cause of the lower accumulation of TG in the fetal 

liver from obese dams could be a consequence of modifications of placental transfer of FFA 

[240], that is believed to be an important source for TG synthesis in the fetal liver [147]. 

Another possibility is that β-oxidation is activated in the fetal liver in obese dams, which was 

not the focus of this study. In those fetuses, the expression of Srebf1c was decreased which 

could be related to lower TG content [243, 244]. Interestingly, the expression of the 

transcription factor Pparg was decreased in livers from fetuses exposed to DHT, which is most 

likely related to a direct action of androgens on fetal liver. Of note, the effect of androgens on 

PPARg has been shown before where testosterone and DHT inhibit adipocyte differentiation 

in vitro by decreasing the gene expression of PPARg, mediated by the impairment of Bone 

Morphogenic Protein 4 (BMP4) signaling [245]. Moreover, we have demonstrated that in 

adipose tissue of women with PCOS the expression of Pparg mRNA is decreased compared 

to controls [246]. As it is not clear whether androgens could cross the placenta [20, 119], the 

higher amount of circulating androgens in maternal circulation could provoke changes in the 

placenta that could be harmful to the fetus, as in the case of the modulation of the expression 

of mRNA of Pparg. The placental protein expression of androgen receptor in DHT exposed 

dams was higher independent of diet, similar to what we have previously reported in the 

placenta from testosterone-exposed pregnant rats [247]. Of note, at adult age, female offspring 

displayed higher levels of oil red O staining in livers and high circulating testosterone and TG 

in the absence of any disruption in the glucose metabolism [247].  



 

 33 

Global total and phosphorylated proteomic analyses in female fetal livers indicate that either 

HF/HS induced obesity or prenatal DHT exposure affect biological processes related to hepatic 

fatty acid metabolism. We found that the expression of total Vasp, and Masv was modulated 

by the interaction of diet and DHT in female fetal livers. Vasp is a protein that increase hepatic 

fatty acid oxidation in mice [248] and Masv, is a protein that has been shown to be dissociated 

from the mitochondria in livers with steatohepatitis, impairing the inflammatory response in 

front of dsRNA challenge and promoting necrosis [249]. Another protein that showed 

differential expression was Forkhead box protein O1 (FOXO1), phosphorylated in serine 284 

(FOXOS284). FOXO1 is the most abundant protein in the insulin sensitive tissue such as liver 

and pancreas [250]. In our study (paper IV), the phosphorylation of Foxo1 was increased in 

fetal livers from dams exposed to DHT and decreased in fetal livers from mothers fed HF/HS-

diet. The same phosphorylation profile was shown for RptorS863, a protein that is part of the 

mechanistic target of rapamycin complex 1 (mTORC1) signaling that promotes hepatic 

lipogenesis by activating sterol regulatory element-binding transcription factor (SREBP) [251]. 

As neither the phosphorylation of FOXOS284 [252] nor RptorS863 have been studied previously, 

one may speculate that these phosphoylations may have a biologically significant effect in our 

study. 

In proteomic analysis of placenta and fetal liver, COMT was differentially phosphorylated in 

Serine 261 (COMTS261) in female fetal liver and also in placenta from female fetus. In fetal 

liver, COMTS261 showed an increased phosphorylation in livers from female fetuses exposed 

to HF/HS induced obesity, while in placenta, COMTS261 was affected by the interaction of the 

two factors, diet and injection, with decreased phosphorylation in mice fed control diet and 

exposed to DHT and increased phosphorylation in fetal liver from obese mothers, regardless 

the injection.  

COMT is an enzyme that degrades catechol compounds like catecholamines, like adrenaline, 

noradrenaline, and 3,4-dihydroxyphenylacetic acid (DOPAC, a dopamine metabolite), into less 

active compounds, such as metanephrine, normetanephrine and homovanillic acid (HVA), 

respectively [253, 254]. COMT also methylate catechol estrogens, converting them to methoxy 

estrogens such as 4- methoxyestradiol (4-MeO-E2) and 2-methoxyestradiol (2-MeO-E2) [255]. 

Also the enzyme metabolize catechol estrogens and some drugs such L-DOPA [255]. The 

enzyme has been studied mostly because its polymorphism that are related to anxiety [256, 

257], schizophrenia [258] and other psychiatric disorders [259]. In pregnancy, dysregulation 

of COMT enzyme activity could play a role in steroidogenic metabolism because low plasmatic 

2-methoxyestradiol and 2-methoxyestrone have been related to preeclampsia [260] although 
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also higher levels of  2-methoxyestradiol have been detected in those patients in absence of 

changes in COMT expression in placenta [261]. A previous study demonstrated 

phosphorylation in COMTS260  in several tissues from rats by using electrospray ionization with 

ion-trap tandem mass spectrometry (ESI-IT-MS/MS) [262]. However, there is no previous 

report on the activity of the enzyme in humans or animals related to these phosphorylations, 

and no report whether the phosphorylation causes an activation or inhibition of the enzyme. 

Although we did not find other signs of alteration in the catecholamine metabolism in placenta, 

(neither the gene expression of enzymes that degrades catecholamine nor the mRNA of their 

transporters was altered), the level of noradrenaline in plasma from mothers injected with DHT 

was lower. Most interesting is the fact that in F1 female generation, the hepatic mRNA 

expression of Comt was affected by the interaction of both diet and DHT exposure, decreased 

in animals from dams exposed to DHT and fed with control diet, and increased in animals from 

mother exposed to DHT and fed with HF/HS diet, compared to the vehicle injected group. In 

mouse liver, COMT is widely expressed and its activity is the highest between all the peripheral 

tissues [254]. It had demonstrated to have lower activity and protein expression in liver from 

spontaneously hypertensive male rats [263].  
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6 CONCLUDING REMARKS  

Besides of the pregnancy complications women with PCOS display, it seems that the syndrome 

by itself has its own molecular signatures that probably take the women with PCOS to a more 

sensitive and vulnerable state which might cause long-term health consequences to their 

offspring. Moreover, it seems that the sympathetic nervous system is involved in the 

development of observed alterations and may play and important role in the pathophysiology 

of the syndrome during pregnancy. 

 

The main conclusions of the papers included in this thesis are: 

Paper I 

Pregnant women with PCOS without any adverse pregnancy outcome display abnormal 

steroidogenesis and altered placental expression of steroidogenic enzymes and molecules 

related to fetal growth as was determined by the activation of STAT-3. 

 

Paper II 

EA treatment in a hyperandrogenic state during pregnancy alters the expression of molecules 

related to angiogenesis process and sympathetic modulation that compromised fetal growth.  

 

Paper III  

Diet induced maternal obesity and androgen exposure during pregnancy induce hepatic 

triglyceride accumulation and dysregulation of de novo lipogenesis in mothers, whereas in fetal 

liver this effect is not seen. Importantly, maternal obesity and prenatal androgenization affect 

the expression of important regulators of hepatic glucose metabolism that could affect the liver 

function in the offspring at adult age. 

 

Paper IV 

The novel COMT phosphorylation in fetal liver and placenta in mice and its altered gene 

expression in the liver of female offspring demonstrate that the sympathetic nervous system 

could play a role in the metabolic, reproductive or behavioral disturbances known in the 

offspring of PCOS.  
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7 FUTURE PERSPECTIVES 

There are scarce and redundant information about the effects of maternal androgen exposure 

on fetal development and developmental origin of the disease. It is known that women with 

PCOS affect the long-term health of their offspring, but the mechanisms are still poorly studied.  

 

The more specific questions that arise at the end of this work are related to the effects of the 

molecular alterations, which need be addressed in my future work: 

1. As we demonstrated activation of STAT-3 in placentas from women with PCOS: Is 

placental nutrient transport affected in these women? What phenotype is the most 

affected? What is the metabolic state of the children born to mother with PCOS that 

display these abnormalities in placenta? 

2. What is the specific role of the the alteration of NGF in fetal growth? Is the alteration 

of NGF common with others model of intrauterine growth restriction?  

3. Was the decreased expression of mRNA of pparg seen in fetal liver a consequence of 

a direct effect of maternal androgen exposure? 

4. What is the effect of the novel phosphorylation of COMT in the catecholaminergic 

metabolism? Why was the phosphorylation of COMT increased in HF/HS-DHT group 

whereas it was decreased in CD-DHT? What is the diet factor that is able to increase 

the phosphorylation of the enzyme?  

5. As it is known that offspring born to mother with PCOS display anxiety-like behaviour, 

does the novel phosphorylation have a role in that phenotype? 
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