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“Burning the candle in both ends gives a bright light” 

- Christoffer Hitchens 

  



 

 



 

 

ABSTRACT 

Renal cell carcinoma (RCC) is the 13th most common malignancy worldwide, and 

constitutes around 2% of all malignant tumors. The entity renal cell carcinoma comprises a 

heterogenous group of malignant tumors that originates from the epithelial cells in the renal 

proximal tubule. The most frequently occurring subtype is clear cell renal cell carcinoma 

which is characterized by a mutation in the von-Hippel-Lindau gene leading to 

accumulation of hypoxia inducible factor and subsequent upregulation of growth factors 

involved in angiogenesis. RCC is inherently resistant to conventional chemotherapy, and 

thus radical surgery before metastasis has occurred still is the best chance for permanent 

cure. However, in recent years, the introduction of various targeted therapies and immune-

modulators have changed the picture, and there are now numerous options which increases 

the hope for patients with metastatic disease.  

 

In this thesis, we investigated the tumor microenvironment to identify factors with impact 

on prognosis and response to anti-angiogenic therapy in patients with mRCC. We found 

that both high perivascular expression of PDGFR-β as well as high heterogeneity of 

perivascular PDGFR-β was significantly associated with shorter survival. In order to make 

an in-depth characterization of the tumor microenvironment, we compared vascular, 

perivascular and stromal features in renal, colorectal and ovarian cancer. This revealed 

significant differences regarding several metrics, but also similarities. We also studied the 

impact on tumor infiltrating B-lymphocytes in RCC and found that high infiltration 

conveyed a worse prognosis, counter to what is seen in many other tumor types, suggesting 

that high levels B-cells in RCC rather dampens the anti-tumor immune response than 

indicates an activated immune system. In the last paper, we investigated the role of intra-

tumoral vessel size for response to anti-angiogenic treatment and found that tumors 

dominated by medium sized vessels was more sensitive to sunitinib. 

 

In summary, our findings indicate that the tumor microenvironment influences prognosis as 

well as response to treatment in a context dependent manner, and that this prompts further 

investigation within this field. 
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1 RENAL CELL CARCINOMA 

 

1.1 General introduction 

Renal cell carcinoma (RCC) is a heterogenous group of malignant tumors that originates 

from the renal proximal tubule and around 270000 new cases of RCC are diagnosed every 

year making it number 13 on the list of most common malignancies in the world [1].  Many 

patients are cured by surgery alone but 25-30 % of patients have metastasis on presentation, 

making it a challenge to health care systems worldwide [2]. In 2008, 116 000 deaths were 

attributed to this disease and mortality rates were highest in Australia, New Zealand and 

North America, while Europe together with Africa and Asia reported the lower mortality 

rates [3]. Incidence of RCC is twice as high in men than in women, for reasons not yet fully 

understood [3]. In Sweden, around 1000 new cases per year are diagnosed, which 

constitutes 2.3% of male cancers and 1.5% of female cancers (National Swedish Cancer 

Registry). Most cases are diagnosed in people above 60 years of age, ca 80 cases per year is 

found in people younger than 50 years. The percentage of incidentally detected kidney 

cancers has risen, due to the more widespread use of ultrasound, MRI and CT.  

 

1.2 Risk factors 

The most thoroughly studied lifestyle risk factor for RCC is cigarette smoking. A meta-

analysis investigating five cohort studies and 19 case-control studies revealed that ever 

smoking increases the risk compared to never smoking but the association was not as strong 

as with cigarette smoking and lung cancer, even if a dose-response relation was found [4].  

Increased body weight is also considered a risk factor for RCC, a notion supported by both 

case-control and cohort studies were a correlation between higher body mass index (BMI) 

and risk of developing RCC.  For or every 5 kg/m2 increase in BMI there was an increased 

risk of 1.24 in men and 1.34 in women [5]. The stronger association with BMI and risk for 

RCC seen in women is not fully explained, and the   mechanisms by which obesity 

increases the risk are not fully elucidated, but one possible contributing factor is increased 

levels of blood glucose and IGF-1 which is known to have impact on tumor growth [6]. 

 

 

 



 

10 

1.3 Histopathology of RCC 

 

1.3.1 Clear cell carcinoma 

The most prevalent subtype of RCC is clear cell renal carcinoma (ccRCC) which accounts 

for about 75-85 % of all RCC cases and has its origin in the proximal tubule. Clear cell 

carcinoma is characterized by loss of the tumor suppressor von Hippel-Lindau gene [7]. 

The inactivation of VHL is possible by mutation, deletion or methylation. Mutations of the 

VHL gene found in sporadic RCC differ from those seen in RCC associated with inherited 

VHL disease. In sporadic RCC, 45% of the mutations are clustered in the second exon, 

although abnormalities are seen in all three exons. Large deletions are not observed, and 

48% of the mutations are micro-deletions or insertions, resulting in frame shifts of the 

protein-coding sequence [8].  

 

Under normal oxygen levels, the regulatory protein hypoxia inducible factor-α (HIF-α) is 

hydroxylated, which makes it bind to the VHL-protein. The VHL-protein is in turn a part of 

a ubiquitin-ligase complex (E3) that targets HIF for degradation [8]. In the case of 

inactivating VHL mutations, HIF is instead accumulating, leading to upregulation of 

VEGF, PDGF-beta and TGF-alpha [9]. This in turn leads to very high levels these growth 

factors which is the rationale for targeted therapy with TKIs targeting receptors of these 

growth factors.   

 

1.3.2 Papillary carcinoma 

Papillary RCCs constitutes ca 10 % of all RCCs and are suggested to be of renal proximal 

tubular origin [10]. Two subtypes are described, type-I and type-2. Type-1 papillary RCC is 

less frequent, associated with c-MET mutations and is seen in the hereditary papillary renal 

cancer syndrome and only occasionally in sporadic papillary RCC (with or without MET 

mutations) [11]. Key histological features include pale cytoplasm around the basement 

membrane of papillary cones. Psammoma bodies and foam cell-like macrophages is also 

commonly found [11]. Type-2 papillary RCC does not harbor c-MET mutations and is 

more commonly seen in sporadic cases [12].  Type-2 also in general have eosinophilic 

cytoplasm and nuclei described as “pseudostratified” [11]. 

 

1.3.3 Chromophobic carcinoma 

Chromophobe RCC is less common than clear cell and papillary cancers, and is seen in 

about 5 % of all RCCs [13]. Chromophobe RCC arises in the intercalated cells of the 
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cortical collecting ducts [13]. On the cytogenetical level, chromophobe RCC shows 

widespread loss of heterozygosity of chromosomes 1, 2, 6, 10, 13, 17 and 21 and 

hypoploidy due to non-random multiple chromosome losses [12]. These multiple losses 

have made it difficult to define specific genes essential to the development of chromophobe 

RCC but mutations in the FLCN- gene is described [14]. This gene is mutated in the Birth-

Hogg-Dubé hereditary syndrome.  This is an autosomal dominant disease leading to 

spontaneous pneumothorax, pulmonary cysts, dermal fibrofolliculomas and renal 

carcinomas [15]. 

 

1.3.4 Oncocytoma 

Oncocytomas are commonly considered as benign renal neoplasms, but cases of metastatic 

tumors have been described [16]. When metastasis has occurred, these tumors usually have 

been re-classified as chromophobe carcinomas. Similar to chromophobic carcinomas, 

oncocytomas are related to the hereditary Birth-Hogg-Dubé-syndrome and mutations in the 

FLCN-gene [14]. 

 

1.3.5. Collecting Duct Carcinoma 

The collecting duct carcinoma is the rarest form (1-2% of all cases), and it is derived from 

the collecting duct epithelia [11]. Data regarding the genetic aberrations of collecting duct 

carcinoma are scarce.  

  

 

Published by permission from IKCC, Netherlands. 
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1.4 Molecular subsets of RCC 

Since clear cell carcinoma is the most prevalent form of RCC, this chapter will focus on 

ccRCC. The most common genetic alteration in ccRCC is the inactivation of the VHL gene 

on chromosome p3. But also genes involved in maintenance of chromatin status (such as 

PBRM1) plays an important role. In a comprehensive report from Nature, 2013, 400 tumors 

were analysed using genetic platforms. In this analysis, they found 19 genes that showed 

significant grade of mutation. One of the most frequently mutated pathways was the 

PI3K/Akt-pathway, making inhibition of the several steps involved a potential therapeutic 

target. Further was DNA hypomethylation often seen, which was described as associated 

with mutations in H3K36 methyltransferase SETD2 [17]. Aggressive tumors showed signs 

of a metabolic shifting and downregulation of genes involved in the citric acid cycle. Other 

reported findings were decreased levels of the tumor suppressor protein PTEN, which 

negatively regulates the Akt-pathway and upregulation of genes involved in pentose and 

glutamine transport [17]. 

 

1.5 Prognostic factors 

The most widely used prognostic factors in RCC are based on anatomical features like size 

of the primary tumor, lymphnode involvement and metastasis-status (TNM classification) 

in combination with histological characteristics (Fuhrman grade, subtype) and clinical 

status (symptoms and performance status). When used alone, none of these features have 

very high accuracy. Therefore, combined scoring models are used in the clinic. Two 

scoring models previously used are the Leibovic score [18] and the Memorial Sloane 

Kettering Cancer Center risk group score (MSKCC) [19]. Today, the most widely used 

score is the HENG-score, which take into consideration time from diagnosis to start of 

systemic treatment, performance status, a hemoglobin level < 120 g/l, calcium-level, 

platelet and leukocyte count above normal range. A favourable HENG score (≤ 1p) is 

associated with a median survival of 43.2 months compared with only 7.8 months in the 

poor risk group (≥ 3p) [20].  

Yet other studies that have shown impact on prognosis have included treatment, 

performance status, time passing from diagnosis to start of treatment, number of metastatic 

lesions, hemoglobin level, white blood count, lactate dehydrogenase, alkaline phosphatase 

and serum calcium [21]. Another recent study from Saroufim et al 2014 proposed CD105 as 

an independent prognostic factor in curative resected clear cell RCC [22]. 

The most robust single prognostic factor is thus still the T-stage. According to a survey 

published 2014, patients with localized disease carries an excellent prognosis, with a 
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relative survival of 91.7% [23]. For patients with regional disease, the 5-year survival is 

64,2%, which decreases to 12.3% if distant metastasis is evident [23]. However, many 

previous reports include patients that were treated before modern targeted therapy was 

introduced on a broad scale. Wahlgren and colleagues have reported increased overall 

survival for mRCC patients in Sweden treated after introduction of targeted therapy. 

Patients with metastatic disease diagnosed 2009–2012 and 2006–2008 had a median-OS of 

18 and 13 months, respectively, whereas mRCC patients diagnosed 2002-2005 had a 

median OS of 10 months [24].  

 

1.6 Animal Models of RCC 

Few robust animal models for RCC have been presented, but Harlander and collegues 

introduced an autochtonous mice model mimicking ccRCC by a combined deletion of 

VHL, Trp53 and Rb1 in renal epithelial cells. The mouse tumors shared several similarities 

with human ccRCC such as activation of the mTOR pathway detected by high expression 

of P-4E-BP1. On the other hand, high expression of phospho-ERK indicative of activated 

MAP-kinase pathway was not detected. In this study, VHL-deletion alone was not 

sufficient to cause tumor in mice,  [25]. In this model, the authors tested sequential therapy 

with first sunitinib followed by everolimus and the HIF-inhibitor acriflavine upon 

progression. In general, there was mainly mixed responses, reflecting the heterogeneity of 

tumor clones within the same individual. This approach offers a possibility to test response-

predictive hypothesis in the future. 

 

Another model is described by Murphy et al from University of Minnesota. They have 

developed a technique of injecting mouse renal adenocarcinoma (RENCA) cells directly 

into the kidney. This primary tumor has then spread to the lungs, which enables study of 

metastasized disease [26]. How well this model mimics human RCC regarding genes 

expressed and activated pathways is not described.  
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2 TREATMENT 
 

2.1 Surgery 

Surgery remains the cornerstone in the treatment of RCC, despite advances in targeted 

treatment in recent years. Nowadays when possible laparoscopic, nephron-sparing surgery 

is the standard surgical procedure. When it is not feasible radical nephrectomy en bloc 

including perirenal fat, adrenal glands, lymphnodes in renal hilus and Gerotas fascia is the 

method of choice. In the interferon era, nephrectomy in patients with disseminated disease 

was generally considered superior to only interferon. This approach was supported by a 

study published by Flanigan and colleagues showing that survival after nephrectomy 

followed by interferon was 11.1 compared 8.1 months for interferon alone [27]. Similar 

results were reported by Mickisch et al. in Lancet 2001 [28], where nephrectomy before 

interferon-treatment significantly prolonged progression-free survival of patients with 

mRCC. 

 

2.2 Anti-angiogenic treatment 

Refractory to conventional chemotherapy, little was to offer patients with metastatic disease 

prior to introduction of interferon treatment in the early 1980s. The response rate for 

interferon-treatment have been reported to be from 3,3-31% in selected materials [29]. The 

therapeutic arsenal was broadened when anti-angiogenic treatment with VEGFR targeting 

drugs sorafenib and sunitinib were introduced in 2006-2007 [30, 31] followed by the VEGF 

targeted monoclonal antibody bevacizumab in 2008[32]. These drugs have then been 

followed by pazopanib [33], axitinib [34] and cabozantinib [35]. Another class of drugs that 

target angiogenesis are the mTOR-inhibitors (temsirolimus/everolimus), which were 

introduced around 2010 and is often used in second line or third line, when TKI-treatment 

has failed [36]. They inhibit the mTOR-serine/threonine-kinase which is a part of the 

PI3K/Akt-pathway leading to upregulation of HIF, PDGF and cyclinD1 [37].  

Sunitinib: This is a small molecule TKI that compete with ATP at the active site on the 

intracellular portion of tyrosine kinase receptors VEGF, PDGF, c-Kit and Flt-3 and thus 

prevents the phosphorylation of the substrate which inhibit further downstream signalling 

pathways [38]. It is administered orally at a dose of 50 mg per day, in a treatment cycle of 

four weeks on medication followed by two weeks off. In the pivotal phase III-study 

comparing sunitinib with interferon alpha in the first line setting, 750 patients were 

enrolled. PFS was 11 months for the sunitinib group vs 5 months for the interferon-alpha 
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group [31]. Besides RCC, sunitinib has been tried in studied in many tumor types, for 

example gastrointestinal stromal tumors and hepatocellular cancer [39-42].   

Sorafenib: is a small molecule multi-kinase receptor inhibitor targeting VEGF, PDGF- and 

FGF-receptors as well as kinases KIT, RAF and RET [43]. Sorafenib is reported to have 

less severe adverse effects [44]. In the pivotal 2007 phase III-study comparing sorafenib 

with placebo, 903 patients were enrolled to either placebo or 400 mg sorafenib twice a day. 

The median PFS in the sorafenib group was 5.5 months versus 2.8 months in the placebo 

group [30]. 

Bevacizumab: is an anti-VEGF antibody approved for a variety of tumors where it often is 

used in combination with cytotoxic drugs or interferons. In the pivotal phase-III-trial from 

2008, 732 mRCC patients were enrolled and received either IFN + bevacizumab or only 

IFN. Median PFS in the IFN/bevacizumab group was 8.5 months compared with 5.2 

months for IFN alone [45]. Positive results from phase III studies, with bevacizumab 

combined with chemotherapy, have been reported for colorectal, lung, ovarian and cervical 

cancer [46-52].  

 

  

Reprinted by permission of American Association for Cancer Research and Copyright Clearance Center. 
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2.3 Immunotherapy 

The newest contribution to the pharmacological armamentarium for RCC are the immune-

modulators that acts through the receptor of programmed cell death (PD1) and CTLA-4 

pathways which activate anti-tumoral cytotoxic T-cells [53]. 

 

Nivolumab:  is a human IgG4 monoclonal antibody that bind to the PD-1 receptor and 

prevent its interaction with its ligands PDL-1 and 2 leading to activation of cytotoxic T-

cells which in turn attack the tumor cells [53]. Clinical trials with PD-1 inhibitors in 

patients with unresectable melanoma resistant to other targeted therapies showed objective 

responses rates in 26–40%, with acceptable toxicity profiles [54]. In a phase III study 

comparing nivolumab to everolimus in mRCC patients which had progressed on prior 

treatment with TKIs, nivolumab showed improved survival. Based on this study nivolumab 

has received approval for therapy in mRCC. 

 

Ipilimumab: is a human monoclonal antibody that bind to cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) and inhibit the interaction between CTLA-4 and its ligands, 

CD80 and CD86. CTLA-4 serves as downregulator of anti-tumor immune-response by 

inhibiting cytotoxic T-cells from attacking tumor cells, and by blocking CTLA-4, this 

mechanism is reversed [55]. Ipilimumab is not yet approved for RCC, but at ESMO 2017 

Congress in Vienna, early data from a phase III trial comparing a combination of 

nivolumab and ipilimumab vs sunitininib in first line. In the subgroup of patients with 

intermediate- or high-risk advanced mRCC, the overall response rate was 42% with 

immunotherapy vs 27% for sunitinib (p < .0001). Complete responses were seen in 9.4% of 

patients who received the combination of nivolumab and ipilimumab, compared to only 1% 

with sunitinib (dr Schmindinger, Abstract LBA-6, September 10, 2017). This data might 

challenge sunitinib in the first line setting, but further studies are required, and it is 

important to keep in mind that these treatments are very expensive and combination therapy 

carries high risk for adverse events.  

 

2.4 Adjuvant studies in RCC 

Hitherto, adjuvant treatment for RCC has been carried out within clinical trials but is so far 

not introduced in routine clinical practice. However, long-term follow-up data from several 

adjuvant studies is now beginning to emerge. One study reported in NEJM 2016 showed 

prolonged time to recurrence for patients receiving sunitinib for 12 months after 



 

 17 

nephrectomy vs placebo [56]. Whether this also confers a survival benefit is debated. 

Another study published in Lancet 2016 showed no benefit of sunitinib or sorafenib vs 

placebo for patients with high risk of recurrence post-nephrectomy [57].  

 

3 TUMOR MICROENVIRONMENT IN RCC 

 

3.1 Cancer-associated fibroblasts in RCC 

 

3.1.1 General biology of CAFs 

Fibroblasts constitute the major component of the tumor stroma, and are often referred to as 

cancer-associated fibroblasts, or CAFs. They show specific phenotypic characteristics that 

differs from normal fibroblasts. For example, CAFs cultured in vitro show more rapid 

proliferation compared with normal fibroblasts [58]. The origin of CAFs is subject for 

debate. Suggestions include hematopoietic stem cells [59], adipose-derived stem cells [60], 

pericytes [61], endothelial cells [62], bone marrow -derived mesenchymal stem cells [63] 

and residing fibroblasts, whose transformation is induced by TGF-β [64].  TGF-β can be 

secreted by the tumor cells but also by CAFs themselves in an autocrine fashion creating a 

positive feedback loop [65]. Other growth factors secreted by CAFs include FGF, IGF, 

HGF, EGF [66]. 

 

Several studies using mice models have demonstrated an ability of CAFs to support tumor 

growth. Overexpression of HGF and TGF-β in mouse breast stroma induces malignant 

transformation of epithelial cells [67] and TGF-β expression by fibroblasts induced intra-

epithelial neoplasia in the prostate gland and invasive squamous-cell gastric carcinoma in 

mice [68]. Further, CAFs, but not normal fibroblasts, could induce growth of tumors in 

mice grafted with simian virus 40 (SV40)-transformed 'normal' prostate epithelial cells [69-

71].  

 

Common markers for CAFs include α-SMA, vimentin, endosialin, podoplanin, FSP-1, 

FAP, PDGFR-α and PDGFR-β [72-79].  

 

Metastasis: Metastasis development is a complex process still not fully understood. CAFs 

probably play a role both at the primary as well as the metastatic site. Pro-metastatic effects 

of CAFs at the primary site was originally proposed based on findings mesenchymal stem 
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cells, used as CAF models, when co-injected with cancer cells could promote metastasis in 

a breast cancer model [80]. Luga et al showed that fibroblasts can release exosomes, which 

induces autocrine Wnt-PCP signaling in tumor cells leading to metastasis [81]. In another 

study, combining tissue culture with animal experiments, Pena et al showed pro-migratory 

and invasive effects by PDGF-stimulated fibroblasts [82]. Similar findings have been made 

concerning TGF-beta activated fibroblasts [83]. Pre-clinical studies have also suggested 

that activation of fibroblasts is a critical component in the formation of a pre-metastatic 

niche [84, 85].  

 

Cancer stem cell support:  Malanchi and colleagues reported 2011 of how a small 

population of cancer stem cells was crucial for metastatic growth through the expression of 

the extracellular matrix protein periostin by CAFs. Invading tumor cells needed to induce 

periostin expression by stromal cells in the target organ to manage to establish metastatic 

growth. Periostin seems to be involved in Wnt-signaling in the cancer stem cells through 

recruiting Wnt-ligands [86]. In colon cancer, Wnt signaling has been implicated  to 

maintain stem ness not only in normal colon stem cells but also in their malignant 

counterparts [87]. According to Medema et al, CAFs-derived factors activate Noch and 

Wnt pathways which eventually promote cancer stemness [88]. Identification of such 

factors, like HGF, opens new opportunities for targeted therapy [83]. 

 

CAFs and Immune cells: Inflammatory processes accompanies tumor growth and 

progression [89]. CAFs exhibit pro-inflammatory gene signature and recruit macrophages 

in mouse model of squamous cell carcinoma. Interestingly, normal skin fibroblasts can be 

“educated” by cancer cells to express pro-inflammatory genes [90]. Elimination of CAFs in 

a murine model of metastatic breast cancer induced a shift from Th2 to Th1 in tumor 

stroma, increased expression of IL-2 and IL-7, and reduced recruitment of macrophages 

and regulatory T-cells leading to improved effect of doxorubicin [91]. Depletion of FAP-

positive CAFs can enhance the immune response, and lead to tumor regression in 

pancreatic cancer models [92]. Another model of pancreatic cancer showed better outcome 

with immune-modulatory drugs if CAFs were depleted [74]. Furthermore, melanoma-

derived fibroblasts have in co-culture experiments been shown to interfere with NK-cell 

cytotoxicity and cytokine production [93].  

 

Drug uptake: The effect of chemotherapeutic drugs depends on the uptake of the compound 

by the cancer cells. One obstacle for drug delivery is the interstitial pressure within the 
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tumor, which counteracts the passage in to the tumor cell [94]. Reduction of the interstitial 

pressure by enzymatic degradation of fibroblast-derived hyaluronan was shown to re-

expand the vasculature and improve drug delivery [95]. In another study, PDGFR-β-

antagonists, targeting CAFs, reduced interstitial fluid pressure and improved transcapillary 

transport and thus uptake of cytotoxic drugs as well as radio-immunotherapeutic antibodies 

[96]. Pietras et al showed that inhibition of PDGFR-β signaling improved therapeutic 

effects of Taxol and 5-fluorouracil in animals [97, 98]. The observation that fibroblast-

targeting can improve tumor drug-uptake has also been supported by studies using 

hedgehog-inhibitors targeting the stroma in models of pancreatic cancer [98, 99]. 

 

Drug sensitivity: Beside the effects on drug uptake, CAFs can also regulate drug sensitivity 

through paracrine signaling which reduce sensitivity to chemotherapeutic agents [99]. 

Furthermore, CAF markers or derived factors, such as the PDGFR-family have 

demonstrated independent association with survival [100]. Microarray studies have created 

gene expression signatures that is indicative of an activated fibroblast state. These “stroma 

signatures” have been investigated with regard to specific CAF features that correlates with 

prognosis in independent data sets of breast and lung carcinoma cohorts. In breast 

carcinoma, fibroblast features have been shown to influence response to therapy [100]. 

IHC-based analyses from two randomized breast cancer cohorts exploring the role of 

stromal PDGFR-β showed that benefit of adjuvant tamoxifen was significantly higher in 

patients with low PDGFR-β [101].  

 

3.1.2 Treatment targeting CAFs 

Today, there are no anti-tumoral drugs that act exclusively on CAFs, but many of the TKIs 

previously described are inhibitors of PDGF receptors which are well-known regulators of 

CAFs. How this inhibition contributes to the therapeutic effect is not clear. Among other 

CAF-related targets, FAP and TGF-beta have been subjected to clinical investigation, but 

studies have so far been inconclusive with no marked tumor responses reported [102-104]. 

 

3.1.3 Mechanistic studies of CAFs in RCC 

Mechanistic studies of CAFs in RCC are somewhat limited, but an increasing interest for 

the topic is seen. CAFs cocultured with RCC-cells showed increased proliferation and 

migration as well as reduced sensitivity to everolimus compared with RCC-cells grown 

without CAFs [105]. Another study showed that co-culture of mouse fibroblasts with 

human RCC-cells increased periostin transcription and accumulation leading increased 
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fibroblast cell proliferation and Akt-activation [106]. ERK-activation in fibroblasts was not 

inhibited to the same extent as in endothelial cells in RCC-cultures treated with sunitinib, 

implicating that fibroblasts are involved in resistance to ant-angiogenic drugs [107]. 

 

3.1.4 Prognostic and response-predictive studies of CAFs in RCC 

CAF activation detected by FAP has been shown to correlate with prognosis in RCC [108], 

and another study indicated that accumulation of stromal paladin was associated with worse 

outcome [109]. To our knowledge, there is no fibroblast-derived response-predictive 

marker described in the literature. 

 

3.2 Vessels and Pericytes in RCC 

 

3.2.1 General tumor biology 

During the embryogenesis vessels are created in two ways: 

 

- vasculogenesis: the formation of new endothelial cells and their assembly into tubes. 

 

- angiogenesis: new vessel sprouting from existing ones. 

 

One situation where angiogenesis plays an important role is in the case of wound healing. 

Under normal conditions this process is strictly regulated and is turned off after playing its 

physiological role. Tumors exploit these programs for induction of new vessel formation 

[110]. Tumor vessels develop in response to angiogenic chemokines, produced by both 

stromal and cancer cells [111]. Multiple pro- and anti- angiogenic factors have been 

identified. Some of the most studied factors are the pro-angiogenic VEGF-A and the 

angiogenesis-suppressor TSP-1. VEGF-A is important during embryonic development but 

also in supporting physiological endothelial cell homeostasis. In cancer tissue VEGF-A can 

be activated by e.g. altered oncogene signaling or hypoxia [112]. 

 

Under normal circumstances, the vasculature is organized in a strict hierarchical manner 

including: arteries, arterioles, capillaries, venules, and veins. Tumor vasculature, however, 

is composed of vessels with bizarre and disorganized appearance. They are larger than 

normal vessels, irregularly shaped and leaky. Because of these abnormalities, nutrients and 

oxygen supplies are altered, as well as removal of waste products. Altogether, these 

changes lead to hypoxia and lower pH in tumors [113], a fact that is believed to be an 
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important step in tumor progression [114]. Tumor vasculature is related not only to primary 

tumor growth, but also to cancer cell intravasation and formation of distant metastases 

[115]. HIF-1/α has been shown to regulate nitric oxide turnover in endothelial cells, thus 

affecting tumor cell extravasation and migration in opposite ways. HIF-1α knockout leads 

to decreased ability to form metastasis, while deletion of HIF-2α has the opposite effect 

[116]. 

 

In 1923, K.W. Zimmermann introduced the term “pericytes” and postulated that these are 

advential cells located within the basement membrane of capillaries and postcapillary 

venules. Pericytes provide support to the endothelial cells by stabilizing the vessel wall and 

takes part in the regulation of blood flow [117]. Precapillary arterioles are surrounded by 

smooth muscle cells, which give them their contractile properties. Several different markers 

have been used to describe pericyte status.  

 

One widely used marker is α-smooth muscle actin (α-SMA) which is expressed by tumor 

pericytes but is lacking in normal tissue [118]. Another pericyte marker is desmin, which is 

an intermediate filament protein expressed both in normal and tumor pericytes [118].   

 

PDGF receptor β, and its ligand PDGF-B, are known to be involved in pericyte recruitment 

in  mouse models [119]. Other molecular pathways related to pericyte function include 

TGF-β, S1P1 and EDG1, Ang1 and Tie2 [120].  

In the mature vasculature, the blood vessels are usually covered by pericytes and 

recruitment of them is important for the formation and stabilization of blood vessels [121]. 

Based on this observation, pericyte coverage is regarded as an indicator of the grade of 

maturation.  

Absence of pericytes in tumor vasculature is shown to be associated with metastasis and a 

shorter survival in patients with colorectal cancer [122]. A study by Qian et al. indicated 

that undifferentiated micro vessels are not covered with pericytes, which correlated with 

poor prognosis [123]. In this study, irregular coverage was seen in a fraction of the 

differentiated vessels. These findings in turn run counter to the findings by Cao et al., 

described in [124].  

 

Tumor perivascular smooth muscle cells and pericytes (PVCs) have abnormal structural 

features, consistent with the features of tumor vasculature [125]. Tumor pericytes and 

smooth muscle cells are often detached from endotheliocytes, which has been suggested to 
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facilitate endotheliocyte motility as a part of vasculogenesis. Tumor PVCs are also 

characterized by irregular shape and abnormal cytoplasmic processes [118]. As outlined in 

the following section, a series of pre-clinical studies imply pericyte status as a determinant 

of tumor growth, metastasis and response to VEGF-targeting anti-angiogenic therapies. 

Altogether, this indicate that undifferentiated vessels are completely immature, whereas 

differentiated vessels could be sub-divided into mature differentiated vessels and immature 

differentiated vessels, depending on the grade of pericyte coverage.  

Tumor growth: As mentioned above PDGF signaling is involved in pericyte recruitment. 

Preclinical studies suggest complex and tumor-type-specific effects of PDGF-dependent 

pericytes on tumor growth. In the B16 melanoma model, up-regulation of PDGF-

production in cancer cells resulted in increased pericyte abundance and enhanced tumor 

growth, which occurred in the absence of changes in vessel density [126]. However, when 

overexpression of PDGF-BB ligand was induced in colorectal and pancreatic cancer models 

marked tumor growth inhibition was noted, together with increased pericyte coverage 

[127]. This study [127] also noted enhanced tumor growth following treatment with a 

PDGF-inhibitor, which together with reduced PVC coverage rate. 

 

Metastases: Both stimulatory and inhibitory effects of PDGF-dependent pericytes have 

been seen in animal models exploring links between pericytes and metastasis. Moreover, it 

was shown that in PDGF-BB-expressed tumors inhibition of PDGFβ was associated with 

increased metastasis which was coupled to tumor hypoxia and HGF-mediated EMT of 

tumor cells [128]. The level of hypoxia might thus be important for the role  the pericytes 

play for metastatic ability. This was further supported by LeBleu et al. showing that 

pericyte depletion in primary mammary tumors in mice led to decreased ability to form 

lung metastasis in non-hypoxic, small tumors but the opposite in more advanced stages 

where hypoxia was evident [129]. 

 

However, contrasting effects were seen in other studies, where reduced pericyte coverage 

was linked to decreased formation of metastasis [119]. The latter study suggested that the 

net-effect on metastasis of reducing PDGF-dependent pericyte coverage would differ 

between tumors which displayed a high or low pericyte coverage. Experiments by Augustin 

et al. on endosialin-knockout and wild type mice showed that endosialin-expressing 

pericytes enhanced formation of distant metastasis without affecting the growth of the 

primary tumor, probably due to facilitation of tumor cell intravasation, since the number of 

circulating tumor cells was higher in mice endosialin-expressing mice [130]. In the same 
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study, the authors reported a correlation with high endosialin expression and increased 

metastasis rate in human mammary cancer. This group followed up with a study in Nat. 

Comm. 2017 where they showed that deletion of Tie2 in pericytes resulted in increased 

tumor growth indicating the importance of angiopoietin/Tie signaling in pericytes [131]. 

 

3.2.2 Pericytes and immune cell interactions 

Besides the role pericytes play in the vascular integrity/metastasis setting, there is also 

reports of their influence on leucocyte migration. In a study by Genové et al using a mouse 

model with genetic pericyte deficiency, they found a defect vasculature leading to a more 

hypoxic environment and upregulation of Il-6 in tumor cells. Il-6 in turn recruited myeloid  

derived suppressor cells  (MDSCs) myeloid  derived suppressor cells  (MDSC) which 

inhibits anti-tumor  T-cell activity .  Restoration of pericyte coverage was found to dampen 

infiltration of MDSCs [132]. 

 

Effects on sensitivity to VEGF-targeting drugs: Based on early studies in mouse models, 

Folkman suggested anti-angiogenic therapies as a novel approach for anti-cancer drugs 

[133]. Pivotal studies in animal models with VEGF-blockade provided experimental 

support for this notion [127]. This led to a series of clinical trials demonstrating benefit of 

anti-VEGF-agents, used in combination with chemotherapy, in colorectal, breast and lung 

cancer [52, 134-136].  Positive xenografts studies with mono-treatment with VEGF-

inhibitors have also been reported for renal cancer, ovarian cancer and neuroendocrine 

tumors [137, 138]. Anti-VEGF-treatment is this now an established modality, although 

survival effects in metastatic settings are in general modest (reviewed in [111] and [139]).  

 

Anti-VEGF inhibitors are generally believed to exert their anti-tumoral effects through 

vessel-targeting and a “starvation-effect” on tumors. In addition to this mechanism a 

“vascular normalization” hypothesis has been proposed.  According to that hypothesis anti- 

VEGF therapy rather normalize vessels then reduce vessel number. This notion has been 

supported by a series of animal studies which have demonstrated that anti-VEGF-treatment 

leads to a change in tumor vasculature towards a phenotype of more normal-like vessels 

with proper pericyte coverage [140-142]. These findings have also been used to argue that 

pericyte-coverage is a determinant of the “starvation-effect” of anti-VEGF-drugs, and as 

such represent candidate biomarkers for sensitivity and resistance to these drugs. 

 

There is now emerging evidence that some tumors rather than inducing angiogenesis in 
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some circumstances instead take advantage of preexisting blood vessels from the 

surrounding normal tissue and incorporate them in the tumor. This process is described as 

vessel co-option or vascular co-option [143-145]. Several studies have shown that this is 

the case in non-small-cell lung cancer, where a “non-angiogenic” subtype show growth of 

cancer cells in the alveoli. Intact alveolar walls including its capillaries are here 

incorporated [146-150]. Similar results have been reported in cases of human lung 

metastasis [151, 152]. This finding has also been reproduced in preclinical models of lung 

metastasis [153]. 

 

3.2.3 Prognostic studies of vessels and pericytes 

Mechanistic studies have implicated that pericyte depletion leads to different outcome 

depending on when in the tumor development it occurs as discussed above. In addition to 

the animal models, Viski et al. also studied a cohort of human mammary tumors and found 

that high endosialin expression was associated with shorter survival [129]. The same result 

was seen for angiopoietin-2 expression in human mammary cancer, with high expression 

correlating to shorter survival [129]. Other prognostic studies have shown that pericyte 

status also might be determined by expression of PDGFR-α and -β which have been 

reported for colorectal [154] and ovarian cancer [155].  

 

3.2.4 Mechanistic studies of vessels and pericytes in RCC 

Mechanistic studies of vessels and pericytes in RCC are scarce, due to few established 

animal models for RCC. In one study from 2001, Hemmerlein et al. [156] performed 

experiments including microspheres of cultured RCC-cells and suggested that high-

proliferative RCCs outgrow their vascular supply and develop chronic hypoxia, which 

decreases proliferation rate. 

 

3.2.5 Prognostic studies of vessels and pericytes in RCC 

RCC is a hyper-vascularized tumor where data on the relation between tumor vascularity 

and prognosis are conflicting [157]. Yoshino et al [121] reported that patient survival was 

significantly improved if the tumors had lower micro vessel density (MVD), while a meta-

analysis including 15 studies showed no correlation to overall survival [158]. Thus, the 

grade of maturation of vessels might be important, as well as the extent of pericyte 

coverage, which is proposed by Cao et al [124]. They found that a higher pericyte coverage 

(PC) was related with more aggressive disease, and that the MVD:PC ratio was a more 

reliable prognostic factor than MVD alone [124].  
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3.2.6 Response-predictive studies of vessels and pericytes in RCC 

Much attention has been attributed to find response-predictive markers among the 

angiogenesis related factors in RCC, given the impact of these factors in the initiation and 

development of this disease. So far, no exclusively response-predictive factor has thus been 

identified and validated. One candidate marker is the microvessel area (MVA), and a study 

by Aziz et al report a correlation with high MVA and better response to sorafenib [159] in a 

cohort of 96 patients. In this study, they also evaluated the impact of VEGF, VEGF-R1, 

VEGF-R2, VEGF-R3, c-RAF, B-RAF, c-Kit, and PDGFR-β expression in primary tumor 

tissue without finding any correlation to outcome.  

Other studies have focused on circulating angiogenic factors like VEGF. Analysis of 

baseline circulating VEGF-levels from patients included in the pivotal phase-III study for 

sorafenib showed that both high and low VEGF-groups benefited from sorafenib but those 

patients with highest VEGF-levels benefited more [160]. 

Yet another type of vessel-related factors that have been studied are the single-nucleotide 

polymorphisms (SNPs) in the VEGF-pathway. One study by Beuselinck et al showed that a 

variant in VEGFR1 (CC-genotype in VEGFR1 SNP rs9582036) predicted short PFS and 

OS on sunitinib-treatment [161]. 

 

3.3 B-cells in RCC 

 

3.3.1 General tumor biology 

B-cells plays an important role in the humoral part of the adaptive immune system and is 

vital for upholding tissue homeostasis in mammals. Their main task is to produce and 

secrete immunoglobulins after they have been presented for antigens by antigen-presenting 

cells.  [162]. B-cell development starts with a hematopoietic stem-cell in the bone marrow 

through pro-B cell (CD19+ CD20-  Ig-) via pre-B cells (CD19+ CD20+  Ig-) to immature 

B-cells (CD19+ CD20+  Ig+)   The immature B-cells leaves the bone marrow and enter in 

to the blood stream to relocate to the peripheral lymphoid tissues, becoming naïve B-cells 

(CD19+ CD20+ Ig+ CD38+/- ).    After being presented for antigens, they become active 

naïve B-cells (CD19+ CD20+ Ig+ CD38+) [163]. 

When maturation is complete and the B-cells have migrated to their peripheral site, 

stochastic events determine further differentiation into subsets with specific functions. 

Examples of subsets are: B-1 cells which produce natural antibodies, B-2 marginal zone 

precursors, B-regulatory cells (Bregs) and plasma cells which secrete immunoglobulins 
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[164]. Bregs secrete IL-10, which is an anti-inflammatory cytokine which dampens immune 

response [165]. A majority of B-cell lineages express the cell surface receptor CD20 

(except pro B-cells and plasma cells). CD20 is a Ca2+ ion channel [166] important for 

antibody-responses not involving T-cells [167].  CD20 can be targeted by monoclonal 

antibody therapy with rituximab which is successfully used in B-cell lymphomas [168].  

Besides the important role in maintaining tissue homeostasis, B-cells have during the last 

decade become known as actively involved in initiation and formation of solid tumors. 

Gunderson and Coussens describe in review several ways in which B-cells contribute to 

tumorigenesis [169]. One is through deposition of immune complexes consisting of 

immunoglobulins and complement factors in the TME, leading to ligation of the immune 

complexes to either FcγR or C5aR expressed on myeloid cells infiltrating the tumor. These 

interactions lead in turn to expression of various cytokines and initiation of T-helper 2 cell 

expansion and inhibition of cytotoxic T-cells, as well as secretion of pro-angiogenic and 

pro-survival factors. 

In a study published in Cancer Cell 2014 by Affara et al, B cells were found to enhance 

HPV16 induced squamous cell carcinoma in mice through deposition of immune 

complexes.  Depletion of B-cells led to slower tumor progression and made the tumors 

more susceptible to chemotherapy.  In a mouse model of orthotopic pancreatic cancer, 

Pylayeva-Gupta et al showed that depletion of B-cells in KRAS-mutated mice significantly 

reduced tumor volume and the pro-tumorigenic effect was exerted by IL-35 secretion from 

a subset of B-cells [170]. Another KRAS-mutated murine pancreatic cancer model is 

described by Lee at al [171]. They used an autochtonous cancer model to show how 

deletion of HIF-α increased tumor growth and was accompanied by infiltration of B-cells, 

an effect that could be reversed by using  CD20-monoclonal antibodies. 

 

3.3.2 Mechanistic studies of B-cells in RCC 

Animal models of RCC where B-cells are studied are to our knowledge not described in the 

literature. Cell culture experiments focusing on B-cells in RCC is also scarce, but one 

article Cai et al report of IL-10-secreting B and T-cells in RCC [172]. Il-10 secreting cells 

had generally lower expression of CD19 and CD20 compared with non-IL-10 producing 

cells, and also lacked IgM and IgD. Further, Il-10 was found to suppress the immune 

system by recruiting Tregs [172]. 

 

3.3.3 Prognostic studies of B-cells in RCC 

Prognostic studies of B-cells alone have not been previously described, but several studies 
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report of tumor infiltrating lymphocytes (TILs, which is both B- and T-cells) that have 

prognostic relevance.  One study by Wang et al. compared RCC TILs to peripheral blood 

lymphocytes (PBL) in RCC-patients or melanoma TILs, and found that RCC had fewer 

CD27+ T-cells, and less naïve and central memory T-cells than melanoma, but instead 

more effector memory T-cells [173]. Their hypothesis was that the RCC tumor 

microenvironment were skewing the TIL phenotype toward effector memory T-cells.  

Another study by Liotta et al. showed that regulatory T-cells were significantly higher in 

TIL than in peripheral blood of patients with RCC. Regulatory T-cells showed in vitro an 

inhibitory activity on effector T cells isolated from kidney tumors. The increase in both 

peripheral and intra-tumoral regulatory T-cells was associated with worse prognosis [174]. 

Notably, also infiltrating CD8+ T-cells was associated with more aggressive disease and 

higher risk of recurrence if they expressed PD-1 and Tim-3, which shows that not only 

Tregs are suppressing anti-tumor immunity [175]  

 

3.3.4 Response-predictive studies of B-cells in RCC 

No studies presenting B-cells in the response-predictive setting have, to my knowledge, 

been published.  
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4 PRESENT INVESTIGATION 

 

4.1 Aims 

The aim of this thesis was to analyze the tumor micro environment of RCC and search for 

prognostic markers and response-predictive markers for tyrosine kinase inhibitors.  

Analyses of tumor vasculature and fibroblast-rich stroma  were performed using a 

computerized algorithm. Selected immune cells were analyzed using conventional semi-

quantitative scoring. Analyses were performed on primary tumors from different RCC 

cohorts. 

 

4.2 Results 

Article I 

Perivascular PDGFR-β is an independent marker for prognosis in renal cell 

carcinoma. 

In this study, a cohort of 314 untreated RCC-cases was investigated regarding perivascular 

and vessel characteristics using IHC-double stainings with CD34 together with either 

PDGFR-β or α-SMA.  Initial analysis revealed a heterogeneous perivascular expression of 

these markers in RCC. For each of the two perivascular markers, two metrics were 

collected: fraction of covered vessels (FCV) and median intensity of staining in 

perivascular areas (PVI). A correlation study was performed showing both PDGFR-β and 

α-SMA FCV being negatively correlated to vessel density, but neither was correlated to 

vessel size. A significant positive correlation was also detected between the two 

perivascular markers.  

Data on perivascular status, vessel density and vessel size were analysed regarding 

associations to clinic-pathological characteristics. Analyses showed that high perivascular 

PDGFR- β expression was associated with high tumour stage and high Fuhrman grade. 

High perivascular α-SMA was significantly associated with high Fuhrman grade but not to 

stage. For vessel density and size, there was an association with high Fuhrman grade. Low 

vessel size but not vessel density was associated with high T-stage.  An association was 

also seen between male sex and low vessel density.  

Analyses were expanded to include associations to clinical outcome, which revealed a 

significant correlation between high PDGFR-β FCV, as well as high α-SMA FCV, and 

shorter OS. For low PDGFR- β, OS was 48 months vs 26 months for high PDGFR- β. For 

α-SMA, median OS in the low-expression group was 52 months vs 29 months in the high-
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expression group. Also vessel density was associated with worse outcome; the group with 

low vessel had a median survival of 29 months vs 43 months for the high vessel density 

group.  

These results were then corrected for clinicopathological parameters in a multivariate 

analysis, including T-stage, nuclear grade, histology, metastatic disease upon presentation, 

patient age and sex. This analysis showed that all three metrics acted as independent 

predictors for overall survival in RCC. 

An in-depth analysis was undertaken to investigate the impact of the three metrics in patient 

subgroups according to their clinico-pathological features. This showed a significant 

association of high PDGFR-β FCV with poor survival in patients with high T- stage of 

disease (T4), older patients, male patients and patients with clear cell type renal cancer. 

High α -SMA FCV was correlated to poor survival in T4-tumours and tumours of clear cell 

histology. Vessel density showed an association with survival in the T4 group, high age, 

clear cell histology, metastasis at diagnosis and in female patients.  

The variation of perivascular expression of PDGFR-β of individual vessels enabled   

determination of an index related to intra-case heterogeneity of perivascular intensity, 

described as inter-quartile range of perivascular intensity (PVI IQR). Analyses showed that 

high heterogeneity was significantly associated with shorter survival in both uni- and 

multivariate analysis. This novel metric was introduced in an ovarian cancer cohort of 138 

patients, showing similar results regarding overall survival in both uni- and multivariate 

analysis.  

 

Article II 

Multi-parametric profiling of renal cell, colorectal and ovarian cancer identifies 

tumor-type-specific stroma phenotypes and a novel vascular biomarker. 

In this article, patient cohorts from three different tumor types were analysed and compared 

regarding stromal- and vessel phenotypes including intra-tumor heterogeneity. 

Tumor stroma: Regarding stromal features, RCC showed the highest intensity of PDGFR-β 

staining in the tumor stroma, whereas the fraction of tumor area positive for PDGFR-β was 

highest in CRC.   

Vessels: RCC cases showed higher vessel density as compared to OC and CRC. Regarding 

vessel size, analyses showed that both absolute values and intra-case variation of vessel size 

were larger in OC in comparison to CRC and RCC 

Perivascular cells: CRC-cases displayed higher absolute values and higher intra-case 

variation of perivascular PDGFR-β -expression than OC and RCC. 
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Correlation analysis: Values for vessel density, vessel size, and perivascular status were 

correlated pairwise within the different tumour types. 

Associations were in general low. In RCC, but not in the other two tumor types, cases with 

higher vessel density were also characterized by lower perivascular expression of PDGFR-

β. Strong positive correlations were seen for all three tumor types regarding PDGFR-β 

positive stroma fraction and perivascular intensity of PDGFR-β.  

Heterogeneity as a marker for poor prognosis 

In article I, we demonstrated that high heterogeneity of perivascular expression of PDGFR-

β is associated with poor prognosis in RCC and OC. In article II, we introduce a novel 

metric termed ‘vessel distance IQR’, which describes the variation in distance to the closest  

vessel for each vessel in the tumor sample. This metric was analysed regarding its 

association with clinico-pathological characteristics and overall survival. High 

heterogeneity in vessel density were found to be significantly associated with shorter 

overall survival in RCC and CRC but not in OC. 

High vessel distance IQR correlated with female sex, advanced T- and M-stage and low 

differentiation in CRC.  In RCC, this metric was correlated with male sex and high 

Fuhrman grade. In OC, no significant association was found between vessel distance IQR 

or any of the clinico-pathological parameters.  

 

Article III 

Identification of a CD20/ MS4A1-high minority-group of renal cell cancer associated 

with poor prognosis. 

In paper III, two cohorts of RCC-patients were evaluated regarding infiltration of B-

lymphocytes. A gene signature for B-cells were then analysed in a TCGA-cohort to validate 

the findings from the initial IHC-based findings.  In the main cohort, 297 RCC patients 

were analysed regarding CD20+ lymphocyte infiltration. A large majority of cases 

displayed absence of, or only low infiltration of CD20+ lymphocytes. In a minority of 

patients (14%), a prominent infiltration of CD20+ cells were seen. This high CD20-group 

was found to have significantly shorter overall survival compared with patients with low or 

no infiltration of CD20+ cells. These findings remained significant in a multi-variable 

analyses correcting for sex, age, histology, T-stage, M-stage and Fuhrman-grade. The B-

cell-high group was also associated with high Fuhrman grade and a trend towards 

association with metastasis (M-stage) was observed. Regarding B-cell-status and sex, age, 

tumor stage or histology, no associations were detected.   
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The findings from the main cohort were validated in a second cohort of 64 sunitinib-treated 

mRCC-cases.  In this cohort, 28 % was identified as having high infiltration using the same 

cut-off level as in the main cohort. In this cohort B-cell-status was not found to be 

associated with any clinic-pathological parameters including sex, age, histology, MSKCC-

grade, T- or M-stage. Survival analyses in this cohort confirmed a significant association 

between shorter overall survival and high B-cell infiltration.  

To further test the hypothesis based on the IHC-based findings, a B-cell gene signature was 

created using a combination of MS4A1 (CD20-gene), CD19 and PAX5 (B-cell 

transcription factor) for each patient. Based on the dichotomization of the population-based 

cohort, a group of high B-cell signature score was defined composed of the 14% of cases 

with highest score. Analyses showed a significantly shorter survival in the B-cell-signature-

high group in uni-variable analysis. However, this did not remain significant in 

multivariable analysis including sex, age, T-, N- and M-stage. 

 

Article IV 

Vessel diameter predicts response to sunitinib in mRRC. 

In article IV, a cohort of 137 sunitinib-treated mRCC-patients were analyzed in order to 

analyze potential associations between  vessel characteristics and response to sunitinib.  

When dividing the study-population into groups with low, intermediate or high median 

vessel diameter based on CD34-IHC (CD34D), we found that intermediate CD34D was 

associated with longer PFS and “sunitinib-OS” in uni-variable Cox-regression analysis in 

sunitinib-treated mRCC. The difference remained significant for both PFS and OS in multi-

variable Cox-regression analyses including MSKCC-score, sex, histology or age. 

Intermediate CD34D was not associated with sex, age, histology and MSKCC-score. The 

CD34D-defined groups did not show differences regarding vessel density or perivascular 

intensity of PDGFRβ. 

Additional analyses explored if CD34D acted as a true response-predictive factor, or if 

survival associations rather reflected a more aggressive phenotype. In this context time to 

development of metastasis was used as proxy for the intrinsic aggressiveness of the disease. 

CD34D was not associated with time to development of metastatic disease in the sunitnib-

treated cohort. Furthermore, CD34D was not associated with survival in a larger cohort of 

sunitinib-untreated patients.  
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4.3 Conclusions and future perspectives 

The aim of the first two studies was to characterize stromal and vascular features and their 

relevance for the disease course. The third study was aimed at investigating the importance 

if infiltrating B-cells and the fourth study was set up to detect possible vessel-related 

response-predictive markers for sunitinib.  

Article I was focusing on perivascular status as determinants for prognosis in RCC, while 

article II was a comparative study regarding stromal and vascular features in RCC, CRC 

and OC.   

Results from these two studies support the assumption that the tumor micro environment 

has an impact on tumor growth and prognosis in some but not all tumors and that TME-

contribution to tumorigenesis is a complex and not yet fully understood process.  

The differences in stromal and vascular features across tumor types might reflect 

differences in underlying driver mechanisms which are initiated at the earliest steps in 

tumor formation, and directs the tumor stroma and perivascular/vessel development in a 

context-dependent way. Tumor-type-specific features could also reflect differences in 

physiological “stroma-programs” of the tissues. 

Both models might explain the apparently contradictive results from pericyte manipulation 

in various tumor models. It is also recognized that yet unknown biological effects of 

pericytes might contribute to the observed survival associations. The advent of novel RCC 

mouse models [25] should allow continued mechanistic studies on the role(s) of PDGFR-β-

positive pericytes in RCC initiation, growth and progression. Further validation of the 

potential of these findings in independent cohorts and continued experimental studies is 

required for identification of underlying biological mechanism(s) between perivascular 

PDGFR-b and survival. 

One limitation of study I and II is the small size of tumor samples of TMA-based cohorts, 

given the known intra-case heterogeneity of tumors.  

 

In paper III, the significance of infiltrative B-lymphocytes is studied in the context of 

prognosis, where a high infiltration is associated with shorter survival in two independent 

cohorts and also supported by a B-cell gene signature in a TCGA-dataset. The interest for 

infiltrating immune cells has shown a surge in the last five years, and probably immune-

modulating therapies will replace anti-angiogenic drugs in first line treatment for mRCC. 

The CD20+ lymphocytes found in article III may represent a subset of B-cells with 

regulatory function that possibly recruit Tregs which in turn hampers immune response. 

Continued research in this area should incorporate analyses of other immune cell types. As 
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above, the novel RCC mouse model appears as an interesting resource for studies where 

effects of B-cell-depletion can be analyzed. In summary, the observations in this study 

suggest validation studies on independent RCC-cohorts with known clinical, genetical and 

molecular data. This sort of studies could give information regarding what molecular and 

genetic features that are associated with CD20-infiltration, and also suggest mechanistic 

explanations.    

 

In article IV, an association with median vessel size and prolonged PFS and OS was found in 

a cohort of 137 sunitinib-treated patients. This finding implies that vessel size determines the 

susceptibility to sunitinib, possibly due to more sensitive pericytes which when targeted 

destroy the tumor-supporting vasculature. One way to test this is to perform pre- and post-

treatment biopsies from RCC-bearing mice subjected to sunitinib therapy. This approach 

would also allow for mechanistic studies and a more in-depth molecular profiling. Similar 

studies can be envisioned in biopsy-based clinical studies, where vessel size properties can be 

compared before and after treatment. As discussed above it is recognized that a limitation of 

the study is the reliance on primary tumors rather than the metastatic lesions that are 

subjected to treatment. The correlative findings of study IV should also be validated in 

independent patient cohorts with sunitinib-treated RCC-cases. Furthermore, future studies 

should investigate potential associations between vessel size and sensitivity to other vessel-

targeting RCC drugs such as pazopanib. Ideally, these validation cohorts should come from 

randomized trials were RECIST-data for detection of true progression are included.  
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