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ABSTRACT 
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects approximately 1% 
of the population worldwide. Despite being rather common, the etiopathology of RA remains 
unclear. Approximately two-thirds of patients have antibodies to citrullinated proteins 
(ACPAs), generally detected using the 2nd generation cyclic citrullinated peptide (CCP2) 
ELISA. A wealth of evidence implicates ACPA in the etiology of RA: the major risk factors - 
a group of HLA-DRB1 alleles referred to as the shared epitope (SE), and smoking - have 
been described to associate primarily with the ACPA-positive subset of RA. Moreover, 
ACPAs can be detected years before clinical onset, and their presence are highly predictive of 
progression to RA. However, the mechanism by which ACPAs might contribute to disease, 
as well as the definitive in vivo target, is not understood. The aim of this thesis was therefore 
to better characterize the ACPA response in RA, in terms of antigen specificity, association 
with genetic and environmental risk factors, cross-reactivity with carbamylated antigens, 
presence in CCP2-negative RA, and finally the antigen specificity and functional 
characteristics of ACPA-positive B cells.  

Through studies using affinity purified anti-CCP2 IgG, we could demonstrate that the CCP2 
ELISA directly captures the ACPA response, and that ACPA purified in this manner bound a 
variety of citrullinated peptide epitopes and exhibited binding to RA synovial tissue and 
immune cells (Study I). We also discovered that purified ACPA could bind both 
carbamylated and citrullinated proteins, and peptide absorption experiments confirmed 
extensive cross-reactivity between ACPA and anti-carbamylated protein (CarP) antibodies in 
the context of the candidate autoantigen α-enolase, casting doubt on the specificity of the 
anti-CarP response, which we posit may be cross-reactive ACPA (Study II). By screening 
2,836 serum samples from the population-based case-control cohort EIRA on an autoantigen 
multiplex array, we then showed that “seronegative” RA is not truly a seronegative disease 
subset. Autoantibodies - including ACPA and rheumatoid factor (RF) - were present in a 
substantial proportion, and this subset resembled seropositive RA in terms of associations 
with risk factors (Study III). This study highlights the need for new biomarkers, better 
classification of seronegative RA, and more sensitive clinical tests for seropositive RA. 
Finally, we utilized a method of B cell immortalization to derive ACPA-producing B cell 
clones from RA synovial fluid that retained surface immunoglobulin expression. We 
successfully generated a CEP-1-positive B cell clone from a SE-positive RA patient, and 
visualized surface binding to citrullinated (but not native) protein (Study IV). This pilot study 
lays the ground for in-depth investigation of the characteristics of the ACPA lymphocyte 
population, specifically in regards to HLA-DRB1 SE-mediated antigen presentation. 

It is my hope that the data presented in this thesis can provide a basis for future studies into 
the putative specificity and mechanism of the ACPA response, in order to elucidate disease 
processes in RA and ultimately improve the diagnosis and treatment of the disease.  
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1 INTRODUCTION 
 

1.1 RHEUMATOID ARTHRITIS 

Rheumatoid arthritis (RA) is a severe autoimmune disease characterized by chronic 

inflammation of the joints. RA is endemic in almost all human populations, affecting 

approximately 0.5-1% of the population worldwide (1). RA affects primarily women, with a 

roughly 3:1 ratio of women to men (2), and typically occurs later in life (3). In addition to 

chronic pain, fatigue and possible disability, RA patients also exhibit increased morbidity and 

mortality, primarily from cardiovascular disease (CVD) (4). 

The primary tissue affected by RA is the synovium of the joint. In healthy individuals, 

the synovial membrane is comprised of a thin cell layer of synovial fibroblasts and 

macrophages, which maintain homeostasis in the joint. In RA, synovial inflammation leads to 

the development of a thick cellular layer called the pannus, which begins to grow over the 

articular surface. Synoviocytes and infiltrating immune cells, most notably neutrophils, 

macrophages, and T- and B-lymphocytes, fill the inflamed joint with pro-inflammatory 

cytokines, chemokines, prostaglandins and cartilage-degrading enzymes such as 

metalloproteinases (5), destroying cartilage as well as driving an inappropriate activation of 

osteoclasts to resorb bone, ultimately leading to permanent destruction of the joint (6).  

RA typically presents as polyarthritis, and is currently diagnosed according to the new 

unified ACR / EULAR criteria for RA, established in 2010 (7) (Table 1). The 2010 ACR / 

EULAR criteria additionally classify patients as seropositive or seronegative, based on the 

presence/absence of specific autoantibodies: rheumatoid factor (RF) directed against the 

constant region of immunoglobulin G, and anti-citrullinated protein antibodies (ACPA) 

directed against citrullinated proteins.  

Upon diagnosis, treatment is initiated with anti-inflammatory therapies such as 

glucocorticoids to quickly reduce pain and inflammation, coupled with administration of 

disease-modifying antirheumatic drugs (DMARDs) and/or biologicals aimed at long-term 

disease control (8). Aggressive treatment early in diagnosis can delay or prevent many of the 

more serious manifestations of the disease (9). 
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Table 1      The 2010 ACR/EULAR classification criteria for RA 
 

 Score* 
Symptom Duration  
< 6 weeks 0 
≥ 6 weeks 1 
  
Joint Distribution  
1 large joint 0 
2-10 large joints 1 
1-3 small joints (with or without involvement of large joints) 2 
4-10 small joints (with or without involvement of large joints) 3 
> 10 joints (at least 1 small joint) 5 
  
Serology  
RF- and ACPA- 0 
Low RF+ or low ACPA+ 1 
High RF+ or high ACPA+ 2 
  
Acute Phase Reactants  
Normal CRP and normal ESR 0 
Abnormal CRP or ESR 1 
  

* Scores of 6 or greater are classified as having RA. CRP = C-reactive protein; ESR = 
erythrocyte sedimentation rate. Adapted from Aletaha et al (10). 

 

Methotrexate (MTX) remains the standard first-line DMARD in RA (11); however, 

during the past few decades, a variety of biological DMARDs have entered the clinic, 

primarily targeting inflammatory cytokines. The most common of these have been 

biologicals inhibiting anti-tumor necrosis factor (TNF), including adalimumab, certolizumab, 

etanercept, golimumab and infliximab. In patients refractory to anti-TNF, B-cell depletion via 

the anti-CD20 antibody rituximab can be effective (12). Other biologicals include anakinra, 

the IL-1 receptor antagonist, the CTLA4-Ig fusion protein abatacept, which targets T cells, 

and the anti-IL-6 receptor antibody tocilizumab. The high cost of biologicals precludes their 

use as first-line DMARDs in many countries; they can also become immunogenic, leading to 

a loss of efficacy over time (13). Furthermore, many patients do not respond satisfactorily to 

biologicals due to side effects or for unknown reasons. In addition, even if inflammation 

subsides, many patients still experience pain and fatigue. 
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The development of novel therapies requires a greater understanding of the 

pathological mechanisms underlying RA, which yet remain unclear. Elucidating these 

mechanisms could provide better tools for earlier diagnosis, individual tailoring of therapies, 

and potentially make possible the development of antigen-specific tolerizing therapies (14) to 

treat or even prevent the disease in pre-disposed individuals.  

 

1.2 RISK FACTORS FOR RA: CLUES TO ETIOPATHOLOGY? 

Risk for developing RA has a definitive genetic component, with a concordance rate of 

7-15% in monozygotic twins (15,16). The major genetic risk factors for RA are associated 

with adaptive immunity. Chief among these are certain alleles of the gene HLA-DRB1, 

coding for the beta chain of major immunohistocompability complex type II (MHC II).  

 

1.2.1 Shared epitope 

A group of HLA-DRB1 RA risk alleles were found to share the same 5-amino acid 

sequence motif in the third hyper variable region in the peptide-binding groove, and are 

therefore collectively referred to as shared epitope (SE) (17). These alleles were later found to 

share a common arrangement of specific amino acids in certain positions in the peptide 

binding groove of MHC-II (18). The SE hypothesis proposes that these specific MHC II 

molecules may efficiently present specific peptides to autoreactive T cells. Conversely, other 

DRB1 alleles have been found to have a protective effect in RA (19). Importantly, SE is only 

a risk factor for ACPA-positive disease (20). 

 

1.2.2 PTPN22 polymorphism 

In addition to SE, polymorphism in protein tyrosine phosphatase nonreceptor 22 

(PTPN22), a protein tyrosine phosphatase expressed in lymphoid cells, have been associated 

with increased risk for autoimmunity, including RA (21). PTPN22 acts as a negative 

regulator of lymphocyte activity, and the common C1858T (rs2476601) allelic variant, 

resulting from a non-synonymous Arg620Trp single nucleotide mutation, is thought to 

contribute to autoimmunity by increasing survival in autoreactive lymphocytes (22). PTPN22 

C1858T is understood to be a shared risk factor for autoimmunity (23), and healthy carriers 

of the risk allele have been shown to have more autoreactive B cells in the periphery 



 

4 

compared to non-carriers. Interestingly, a gene-gene interaction between SE and PTPN22 has 

been described to increase RA risk progressively, and while PTPN22 associates with both 

seropositive and seronegative RA, the gene-gene interaction is only present in the 

seropositive subset (24). 

 

1.2.3 Other genetic risk factors 

In light of the ACPA response in RA, it is interesting that polymorphisms in the gene 

encoding the citrullinating enzyme peptidyl-arginine deiminase 4 (PAD4) have been 

associated with RA, primarily in Asian populations (25,26). A wide range of other risk genes 

have also been identified in RA, a large number of which govern immune function (27). Most 

of these genetic risk factors seem to associate mainly with ACPA-positive RA. 

 

1.3 ENVIRONMENTAL RISK FACTORS 

In addition to genetic risk factors, environmental exposures, hormones, and lifestyle 

factors contribute the development of RA, with smoking being the most established non-

genetic risk factor for RA (28). Interestingly, a gene-environment interaction between SE and 

smoking exists in seropositive RA (29). 

 

1.3.1 Smoking 

An epidemiological association between smoking and RA was first described in 1987 

(28) and ten years later explicitly demonstrated in a twin cohort where participants were 

discordant for RA (30). The association of smoking with RA has since been confirmed in a 

large number of studies (31). Similarly, silica exposure (32) and textile dust exposure (33) 

have also been identified as risk factors for RA, collectively implicating inflammation in the 

lung in the etiology of the disease. Interestingly, it has been shown that chronic inflammation 

in the lungs of smokers as well as chronic obstructive pulmonary disease (COPD) cause 

increased protein citrullination (34,35), thereby increasing the exposure of ACPA targets to 

the immune system; RA-related autoantibodies have also been found (albeit at low levels) in 

several inflammatory lung diseases (36), and in bronchoalveolar lavage of RA patients (37). 
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These studies pinpoint the lung as a possible site for initiating the ACPA response. Of note, 

the lungs are one of the most commons sites of extra-articular manifestations in RA (38). 

 

1.3.2 Microbial exposure 

A microbial basis for RA has long been hypothesized, with Epstein-Barr virus, 

parvovirus and cytomegalovirus infection historically implicated (39), though there is still no 

consensus regarding these viruses due to contradictory data (40). An association between 

periodontitis and RA has also long been discussed, with the epidemiological association 

between these two diseases being recently confirmed in a systemic meta analysis (41). It has 

been proposed that the link between RA and periodontitis could be accounted for by the oral 

bacteria Porphyromonas gingivalis (P.g), a major causative agent in the development of 

chronic periodontitis, that intriguingly expresses an enzyme capable of protein citrullination 

(42,43). A number of studies have shown increased levels of antibodies against P.g. in RA 

compared to healthy controls, especially in ACPA-positive RA (44). Moreover, an interaction 

between elevated anti-P.g. antibody levels and HLA-DRB1 SE, as well as cigarette smoking, 

has been described in the ACPA-positive subset of RA (45). More recently, Aggregatibacter 

actinomycetemcomitans (Aa), a Gram-negative bacterium linked to the development of 

aggressive periodontitis, has been demonstrated to induce hypercitrullination in neutrophils 

via a membranolytic pathway (46). Furthermore, association between SE and the presence of 

ACPAs and RF was found only in RA patients possessing anti-Aa antibodies, suggesting a 

causal link between exposure to AA and the development of ACPA-positive RA. Notably, 

citrullinated proteins are present in inflamed gingival tissue (43,47), and ACPA have been 

reported in non-RA patients with chronic periodontitis (48,49).      

 

1.4 ROLE OF AUTOANTIBODIES IN RA: BIOMARKERS AND POTENTIAL 
PATHOLOGICAL AGENTS 

Originally described in the 1930s, rheumatoid factor (RF), autoantibodies to the Fc 

portion of IgG, is one of the earliest known biomarkers for RA (50). While IgM RF is the 

most common isotype and most often measured clinically, IgG and IgA forms of RF also 

exist. IgA RF in particular is associated with smoking in RA patients (36,51), implicating 

mucosal immunity in the pathogenesis of the disease. Around two-thirds of RA patients are 

RF-positive, and RF-positive disease has been associated with a more severe disease course 

(52). While RF positivity has long been used to diagnose RA, its utility as a biomarker is 
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handicapped by its low sensitivity: among other instances, RF is found in other autoimmune 

diseases (53), B-cell lymphomas, as well as in systemically healthy individuals during 

infections  (54). RF would therefore seem to be more associated with states of immune 

activation than RA per se. 

In addition to RF, a variety of other autoantibodies have been historically associated 

with RA. Of these, the most important were antibodies binding to keratin (anti-keratin 

antibodies, or AKA), and the so called anti-perinuclear factor (APF) (55), later identified as 

antibodies to filaggrin, a keratin-binding structural protein (56). As filaggrin is not expressed 

in the joint, further research into the true antigenic target of these autoantibodies eventually 

led to the historic discovery that their real target was in fact citrullinated proteins (57,58). 

These autoantibodies are now collectively referred to as anti-citrullinated protein antibodies, 

or ACPAs.  The cyclic citrullinated peptide (CCP) test, which was the first commercially 

available assay for ACPA positivity, was based on cyclic citrullinated filaggrin-derived 

peptides (59); however, the second generation CCP test (CCP2) currently used in many 

clinics uses a combination of synthetic citrullinated peptide epitopes derived from a phage 

display library to provide an optimal combination of sensitivity and specificity for diagnosing 

RA (60). Importantly, the CCP2 peptide does not contain sequences derived from human 

proteins. 

The presence of ACPAs detected in this manner is highly specific for RA (i.e. 98%) 

(61), and around two-thirds of RA patients are positive for ACPAs. Together with RF, ACPA 

positivity is now a part of the current ACR EULAR criteria for RA (7), and the presence of 

ACPA and/or RF defines the seropositive subset of the disease. As with RF (62), ACPAs can 

be present for many years before joint symptoms develop, and are predictive of progression 

to RA (63,64), as well as a more destructive disease course, suggesting a direct pathogenic 

involvement. Crucially, it is now understood that SE and smoking are associated mainly with 

the development of ACPA-positive disease (65). However, given the extensive co-occurrence 

of ACPA and RF, and the strong gene-environment interaction between SE and smoking, it 

becomes difficult to elucidate the mechanistic relationship between ACPA and RF and 

SE/smoking in the etiopathogenesis of seropositive disease. Still, in recent years, focus has 

moved from RF to ACPA, when trying to understand the pathways underpinning RA. 
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1.5 CITRULLINATION IN HEALTH AND DISEASE 

Whereas L-citrulline is an ubiquitous non-coded amino acid generated as an 

intermediate in the urea cycle, peptidyl citrulline is found exclusively as a post-translational 

modification (PTM) arising from deimination of arginine residues by a class of calcium-

dependent enzymes, the peptidyl arginine deiminases, or PADs. Five different PAD isoforms 

have been described in humans, with differences in tissue expression, substrate specificity 

and subcellular localization (66). Of these, only PAD2 and PAD4 have been identified in the 

synovium; their increased expression has been correlated with the degree of inflammation in 

synovitis (67,68).  

Physiological citrullination is widespread: for example, the production of functional 

myelin in the central nervous system requires citrullination, and citrullination takes place 

during the formation of cornified layer of the epidermis (69). While upregulation of 

citrullinated proteins was at first posited to be a specific feature of rheumatic synovitis, 

citrullination has also been observed to be increased in non-RA synovitides (70). It has since 

been observed that inflammation-related upregulation of citrullination is not specific to joints, 

but seems to be a general feature of inflammation (71). For instance, increased protein 

citrullination has been described in the lungs of smokers (34,35), in the gingival tissue of 

periodontitis patients (47), in inflamed tonsils (71), in the brain of patients with Alzheimer’s 

disease (72) and multiple sclerosis (73), and in the muscles of myositis patients (29). 

Citrullinated proteins are also present in atherosclerotic plaques, providing a potential 

mechanistic link to cardiovascular disease in ACPA-positive RA (74).  

The link between increased protein citrullination and inflammation is not fully 

understood, but could be related to increased necrotic cell death. PAD activity is dependent 

on high Ca2+ concentrations, which are normally not present intracellularly, but when the cell 

membrane integrity is lost - as a result of terminal differentiation of cells or necrosis - the 

intracellular Ca2+ concentration is increased, and PAD can become activated. During 

necrosis, PAD could also be released to the extracellular space, with the potential to 

citrullinate extracellular proteins (75). 

 

 

 

 



 

8 

1.6 CITRULLINATED CANDIDATE AUTOANTIGENS 

While first described as binding to citrullinated fibrinogen present in the synovium 

(76), the “true” antigenic target of ACPAs is unknown: ACPAs have been demonstrated to 

bind to a variety of candidate citrullinated autoantigens also present in the synovium: 

vimentin (77), collagen type II (78), a-enolase (79) and more recently histones (80,81).  

 

1.6.1 Fibrinogen 

Fibrinogen is a hexameric plasma glycoprotein central to coagulation. As the inactive 

precursor of fibrin, fibrinogen is cleaved by the protease thrombin to fibrin monomers, which 

then polymerize to form a clot. Antibodies to citrullinated fibrinogen epitopes are found in 

approximately 50-60% of RA patients (82). Deposition of fibrin in the synovium is a feature 

of early RA synovitis, and has been posited to be a possible mechanism for the initiation of 

pannus formation (83).  

 

1.6.2 Collagen type II 

Collagen type II is a major constituent of hyaline cartilage, and is therefore a logical 

candidate antigen for RA. Immunization with collagen type II in rodents leads to the 

development of autoimmune arthritis resembling RA (collagen-induced arthritis, or CIA) 

(84), a widely-used animal model dependent on activation of both T (85) and B (86) 

lymphocytes. Antibodies to citrullinated collagen type II are found in up to 40% of RA 

patients (78). 

 

1.6.3 Vimentin 

Vimentin is a ubiquitously expressed component of intermediate filament, a major 

constituent of the cytoskeleton in eukaryotic cells. Antibodies to a mutated citrullinated 

isoform of vimentin (MCV) are found in approximately two-thirds of RA patients, and are 

used clinically as an alternative to the anti-CCP2 test, with comparable sensitivity and 

specificity (87), and potentially superior to CCP2 as a marker for joint destruction (88). 

While primarily an intracellular protein, one potential source of extracellular vimentin could 

be secretion by activated macrophages (89), which could then be citrullinated in an 

inflammatory microenvironment.  
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1.6.4 a-Enolase 

a-enolase, or non-neuronal enolase, is an isoform of enolase, an ubiquitously expressed 

glycolytic enzyme. Antibodies to the immunodominant citrullinated peptide epitope CEP-1 

are found in approximately 40% of RA patients (90). a-enolase is expressed in the cytoplasm 

and in the nucleus, and on the surface where it may function as a plasminogen receptor, 

which is upregulated during inflammation (91). Increased expression of a-enolase has for 

example been demonstrated in RA synovial fluid and -synovial tissue (79,92). Additionally, 

isoforms of enolase with a high sequence similarity to human a-enolase are expressed by 

several pathogenic bacteria, including Porphyromonas gingivalis. Anti-CEP-1 antibodies 

purified from RA sera bind citrullinated P.g. enolase, suggesting that molecular mimicry may 

play a role in the generation of the ACPA response in RA.  

 

1.6.5 Histones 

Large numbers of activated neutrophils infiltrate the RA synovial fluid and pannus 

(93), where they comprise a source of inflammatory signals and cause tissue damage through 

the generation of reactive oxygen species (ROS). They may also contribute specifically to the 

ACPA response through NETosis, a mechanism normally used by neutrophils to kill 

extracellular bacteria, in which activated neutrophils release their chromatin extracellularly, 

creating a sticky mesh of chromatin complexed with cytotoxic granules called neutrophil 

extracellular traps (NETs) to snare and kill pathogens (94). Hypercitrullination of histones by 

PAD4 is understood to be crucial to this process (95). NETosis is upregulated in RA and 

correlates with ACPA status (80), and ACPAs have been shown to specifically bind to 

citrullinated histones (81). 

 

1.7 AN ETIOLOGICAL HYPOTHESIS FOR THE DEVELOPMENT OF ACPA-
POSITIVE RA  

Based on the epidemiological association between RA and smoking, and between RA 

and periodontal disease, and the observation of increased PAD activity/protein citrullination 

in inflamed lungs and gingival tissue, it has been suggested that ACPA-positive RA may be 

triggered at mucosal sites, and a potential etiological model has emerged for the development 

of ACPA-positive RA (Figure 1, reviewed in (96)).  
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Figure 1: An etiological model for the etiology of ACPA-positive RA. Genetic risk factors 
(SE and PTPN22) and environmental insults (smoking, particulates, microbes) interact to 
cause a break in immunity towards citrullinated self-antigens in mucosal tissue, leading to 
autoimmunity and the production of ACPAs prior to joint pathology, which likely requires a 
second “hit” to initiate RA. Reproduced with permission from Nature Reviews 
Rheumatology (97). 

 

First, environmental factors such as smoking or infections lead to increased protein 

citrullination as a result of inflammation and subsequent upregulation of PAD activity. In the 

presence of danger signals (such as toxic components of cigarette smoke and/or bacterial 

DNA/LPS etc.), a break in tolerance to citrullinated protein(s) may occur, especially in 

genetically predisposed individuals – most importantly through SE-restricted presentation of 

citrullinated peptides on MHC II (29) to pathogenic T cells, and through increased resistance 

of autoreactive lymphocytes to induction of tolerance in the presence of PTPN22 risk alleles. 

Activated T cells subsequently help B cells to produce pro-inflammatory cytokines and high 

affinity ACPA, through clonal selection and antigen-driven affinity maturation.  
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Since ACPAs can be present for many years prior to the development of synovitis, a 

“second hit” is likely required in these pre-disposed individuals, in which an initiating event 

gives rise to inflammation in the joint, causing an upregulation of citrullination and activation 

and broadening of the ACPA response (98). Ultimately this results in a vicious circle of cell 

death, PAD activation, citrullination, ACPA production, immune complex formation, Fc 

receptor and/or complement engagement, and the activation of osteoclasts leading to 

increased bone resorption (99), eventually causing chronic inflammation and RA. 

The mechanism through which ACPAs exert these effects is not understood, but a 

wealth of experimental evidence implicates that they may act in a variety of ways to 

contribute to disease (100). For example, immune complexes containing citrullinated proteins 

and ACPA can active immune cells through Fc-receptor engagement (101), and are 

potentiated by RF (102). They might also function in an Fc-independent manner: the 

increased activation of osteoclasts by ACPAs has been demonstrated to occur through a 

chemokine-dependent mechanism (103), and a similar mechanism is thought to be 

responsible for pain behavior upon transfer of ACPAs to mice through activation of 

nocicecptors (104); low-avidity ACPA have also been demonstrated to be strong activators of 

complement (105).  

 

1.8 ANTIBODIES TO CARBAMYLATED PROTEINS 

Recently, antibodies to carbamylated proteins were identified in RA, denoted “anti-

CarP antibodies” (106). This confirmed earlier studies which described similar autoimmune 

reactions in animal models of arthritis (107,108). Carbamylation is a non-enzyme-dependent 

process in which the primary amines in the side chains of lysine residues react with cyanate 

ions to form homocitrulline, which is chemically similar to citrulline but contains an 

additional methyl group (Figure 2). Carbamylation is upregulated in inflammation, primarily 

through the production of cyanate by neutrophil myeloperoxidase; notably, increased plasma 

cyanate is also found in smokers (109).  
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Figure 2: Peptidyl citrulline (left) and peptidyl homocitrulline (right). Citrulline is a 

noncharged amino acid resulting from deimination of arginine residues; homocitrulline is a 

noncharged amino acid resulting from carbamylation of lysine residues. 

 

Anti-CarP antibodies share many similarities to ACPAs: they are specific for RA 

(though they have also been described at low frequencies in primary Sjögren’s disease (110)), 

and they are present prior to diagnosis, in which case they are also predictive for the 

development of RA (111). It has since been shown that the most commonly used in vitro 

method for the detection of peptidyl citrulline, the Senshu method (112), does not 

discriminate between homocitrulline and citrulline (113). Additionally, work with 

carbamylated fibrinogen has revealed cross-reactivity with ACPAs (114); however, several 

animal models of RA have been described to develop anti-CarP antibodies without ACPA 

(115). Importantly, there is no association between the presence of anti-CarP antibodies and 

specific risk factors for RA, such as SE alleles or smoking (116). In addition to carbamylated 

fibrinogen, anti-CarP antibodies have been demonstrated to target carbamylated vimentin 

(117,118). Antibodies to acetylated vimentin have also been described in RA (119).  
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1.9 THE ROLE OF B CELLS IN RA  

RA synovitis is typically characterized by infiltration of both innate and adaptive 

immune cells, and the formation of ectopic lymphoid structures, resembling germinal centers, 

has been described in the joints during chronic inflammation (120). While T cells have 

historically been implicated as major drivers of disease (121), the relative increase in efficacy 

of the B cell-depleting therapy rituximab in seropositive RA versus seronegative RA suggests 

an important role for B cells in ACPA-positive RA (122-124). Importantly, rituximab 

treatment does not fully deplete B cells in RA synovium, which is posited to be a 

consequence of the abundance of pro-survival factors in the inflamed synovial 

microenvironment (125), and as rituximab is an anti-CD20 antibody, it does not target plasma 

cells or plasma blasts, which do not express CD20. ACPA production is thought to also occur 

locally in inflamed joints: ACPA IgG is enriched in the synovium (126,127), and single-cell 

cloning experiments have revealed that a large proportion of synovial B cells are ACPA-

positive (128).  

In addition to their function as antibody secreting cells, B cells could also initiate or 

drive disease through cytokine secretion as well as their ability to serve as specific antigen-

presenting cells (APCs). The latter is an intriguing possibility for initiation of disease in the 

absence of an obvious trigger, as even small amounts of citrullinated autoantigens could be 

efficiently captured and presented by ACPA-positive B cells, and could represent a direct 

mechanism for the contribution of SE alleles to RA pathogenesis.  
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2 AIMS 
The general aim of the work presented in this thesis was to investigate specific autoimmune 

reactions in RA, with focus on the ACPA response, in order to learn more about disease 

processes in RA. This was to be accomplished in the following projects: 

1. Purify and characterize the antigenic specificity of ACPAs (Study I) 

2. Investigate the specificity of ACPAs in regards to the recently described 

autoantibodies to carbamylated proteins (Study II) 

3. Analyze and characterize the CCP2-negative subset of RA in regards to ACPA fine-

specificities, RF isotypes and potential reactivity to non-RA-specific autoantigens, in 

relation to RA risk factors (Study III) 

4. Generate genetically reprogrammed B clones towards the investigation of the antigen 

specificity and functional charactersitics of ACPA-positive B cells (Study IV) 
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3 MATERIALS AND METHODS 
 

3.1 RA PATIENT MATERIAL 

In Studies I and II, anti-CCP2 IgG or anti-CEP-1 IgG were purified from non-paired 

synovial fluid (SF) and plasma samples collected with informed consent from RA patients 

attending the rheumatology clinic at Karolinska University Hospital, Stockholm, Sweden, 

from 2001 to 2011. SF was collected from patients requiring arthrocentesis. All patients 

fulfilled the ACR/EULAR criteria for RA and were selected on the basis of having high anti-

CCP2 antibody levels (>300 AU/mL), or a strong anti-CEP-1 antibody response. Samples 

were stored at −20°C (short term) or −80°C (long term) until processed. In Study I, ACPA 

binding to in vivo-generated antigens was investigated using SF mononuclear cells isolated 

from RA patients requiring arthrocentesis, and synovial tissues obtained from RA patients 

undergoing hip or knee joint replacement surgery, at the Karolinska University Hospital. In 

Study IV, immortalized B cells were generated from SF mononuclear cells, obtained from 

two patients requiring arthrocentesis: an ACPA-positive / HLA-DRB1-SE-positive RA 

patient, attending the Karolinska University Hospital, and an ACPA-negative / HLA-DRB1-

negative, non-RA control patient attending the Academic Medical Center (AMC), in 

Amsterdam, the Netherlands. 

 

3.2 EIRA 

In Studies II and III, a serum biobank from the Swedish population-based case-control study 

EIRA (Epidemiological Investigation of RA) was used to investigate antibody reactivities. 

The EIRA cohort consists of newly diagnosed RA cases and controls matched for age, sex 

and residential area. Blood samples were collected at the time of recruitment, and information 

on cigarette smoking (as well as other environmental exposures) was obtained via self-

reported questionnaire at baseline (129). Genotyping for the identification of SE alleles (i.e. 

HLA-DRB1*01 (except DRB1*0103), *04 and *10) and PTPN22 polymorphism (i.e. 

rs2476601) was performed on DNA from blood as previously described (24,65). Information 

on C-reactive protein (CRP) levels and disease activity score for 28 joints (DAS28) was 

obtained by linking EIRA with the Swedish rheumatology register, where clinical data is 

stored as part of standard care (130). Serum anti-CCP2 antibody levels were measured in 

house, as described below (20).  



 

18 

For the studies included in this thesis, information on genetics, smoking habits, CRP 

levels, DAS28 and anti-CCP2 antibodies were retrieved from the EIRA database. 

 

3.3 ELISA 

In all studies, CCP2 positivity was determined in house using the anti-CCP2 IgG ELISA 

assay Immunoscan CCPlus® from Euro-Diagnostica AB, Malmö, Sweden, according to 

manufacturer instructions. Cutoff for positivity was 25 AU/mL. For detection of ACPA fine-

specificities, and anti-CarP antibodies, in house peptide and protein ELISAs were used as 

previously described (127,131). The use of a serum pool standard, made comparisons 

between different plates possible. Cutoff for positivity for each peptide ELISA was calculated 

on the basis of the 98th percentile in a group of 150 randomly selected EIRA controls.  

 

3.4 ISAC MULTIPLEX 

High-throughput investigation of antibody reactivities in the EIRA cohort was made possible 

through the use of the ImmunoCAP Immuno Solid-phase Allergen Chip (ISAC) peptide array 

system (Phadia AB, Uppsala, Sweden) containing antigens of interest, in Studies II, III and 

IV, as previously described (132,133). Antigens are spotted onto glass slides, which are then 

incubated with sample, washed to remove unbound antibody, and analyzed using a Cy3-

conjugated goat anti-human IgG (Jackson ImmunoResearch Laborities, Newmarket, UK). 

Antibody binding is then recorded as fluorescence intensity using a laser scanner, which is 

converted to normalized arbitrary units (AU/ml) after normalization against an internal 

control spot on each slide. Cutoff for positivity for each antigen was calculated as the 98th 

percentile using a group of 370 EIRA controls. 

 

3.5 ACPA PURIFICATION 

In Study I and Study II, polyclonal ACPA IgG was purified from ACPA-positive RA 

patient plasma and SF samples for use in in vitro experiments through affinity 

chromatography using the CCP2 peptide(s), kindly donated by Euro-Diagnostica AB. In 

brief, SF samples were centrifuged and treated with hyaluronidase to reduce viscosity, then 

proteins were precipitated and diluted in PBS; plasma samples were centrifuged and diluted 
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in PBS. Bulk IgG was isolated on Protein G coupled columns before CCP2 IgG was purified 

on CCP2 affinity columns. The CCP2-depleted flow through (FT) fraction was also 

preserved. In Study II, anti-CEP-1 IgG was isolated using a similar method: CEP-1 peptides, 

and the arginine-containing version REP-1, were directly coupled to NHS-Sepharose 

columns at 1 mg/ml. Protein G column purified IgG fractions from five CEP-1-positive 

serum samples were subsequently purified on the CEP-1 affinity column following pre-

absorption on the REP-1 column to eliminate any non-citrulline-specific antibodies. Also 

here, FT fractions were preserved. Purified anti-CCP2 IgG, anti-CEP-1 IgG and FT IgG were 

concentrated and buffer exchanged to PBS before aliquoted and stored at -20°C until further 

analyzed, or long-termed stored at -80°C. A total of three CCP2 pools were generated: one 

SF CCP2 pool from n=26 RA patients, and two plasma CCP2 pools from n=16 and n=38 RA 

patients, respectively. Purified anti-CEP-1 antibodies and FT fractions from the five CEP-1-

positive RA patients were not pooled, but kept separate. 

 

3.6 GENERATION OF POST-TRANSLATIONALLY MODIFIED PROTEINS 

In Studies I, II, and IV, citrullinated and carbamylated protein antigens were generated in 

house for use in in vitro experiments. Citrullination was performed by incubating proteins at a 

concentration of 1 mg/ml in PAD buffer (100 mM Tris, 10 mM CaCl2, 5 mM dithiothreitol 

(DTT), pH 7.6) with 2 U/mg protein of rabbit skeletal muscle PAD2 enzyme (Sigma, St. 

Louis, MO, USA) for 2 h at 37° C. The reaction was terminated by the addition of 20 mM 

ethylenediaminetetraacetic acid (EDTA), followed by thorough dialysis to calcium-free PBS. 

Carbamylation was performed by incubating proteins at a concentration of 1 mg/ml in PBS in 

the presence of 100 mM potassium cyanate overnight at 37°C, followed by thorough dialysis 

to calcium-free PBS. Successful citrullination and carbamylation were confirmed through 

mass spectrometry. 

 

3.7 IMMUNOBLOTTING 

In Study I and Study II, the purified ACPAs were analyzed for reactivity against modified 

proteins using Western Blot. Briefly, citrullinated, carbamylated or unmodified proteins were 

separated electrophoretically on NuPAGE® Bis-Tris 4-20 % gels and transferred to 

nitrocellulose membranes. Membranes were blocked (5% milk in TBS/0.05% Tween) before 

incubation overnight at 4°C with either purified anti-CCP2 IgG or FT IgG at a concentration 
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of 2 µg/ml in blocking buffer. Detection antibody (HRP-conjugated goat anti-human IgG) 

was added at a dilution of 1:10,000 in blocking buffer for 1 hour at RT, following detection 

using ECL chemiluminescence. 

 

3.8 IMMUNOHISTO- / IMMUNOCYTOCHEMISTRY 

In Study I, purified ACPAs were analyzed for binding to in vivo generated antigens using 

immunohisto- and immunocytochemistry. Briefly, synovial tissues from hip or knee biopsies 

were obtained from three RA patients undergoing joint replacement surgery. Snap frozen 

biopsies were cryostat sectioned, fixed with 2% formaldehyde, and stored at −80°C, before 

stained; SF mononuclear cells from three RA patients were isolated by ficoll separation, 

fixed in 2% formaldehyde, and stained. The SF ACPA IgG pool and corresponding FT IgG 

pool, described above, were biotinylated, before added at a concentration of 10µg/mL (on 

synovial tissues) or 5µg/mL (on SF mononuclear cells). Cells were permeabilized using 

PBS/saponine. Detection of bound antibodies was visualized using the vectastain detection 

system (on synovial tissues) or Streptavidin/HRP (on SF mononuclear cells).   

 

3.9 PEPTIDE ABSORPTION ASSAY 

In Study II, cross-reactivity between CEP-1 and carb-CEP-1 was determined through a 

peptide absorption assay. In brief, serum samples from CEP-1 single positive patients (n=4), 

carb-CEP-1 single positive patients (n=4) or CEP-1/carb-CEP-1 double positive patients were 

diluted 1:100 in RIA buffer and incubated with 100 µg/ml of either CEP-1 or carb-CEP-1 

peptide for 2 h at RT, before assayed for reactivity to CEP-1 or carb-CEP-1 using ELISA.  

  

3.10 B CELL CLONING 

3.10.1 B cell immortalization and cell culture 

In Paper IV, B cells were isolated from SF mononuclear cell samples (one RA patient and 

one non-RA disease control patient) via positive selection with CD22 Microbeads (Miltenyi 

Biotech). IgG-expressing memory B cells (CD19+CD27+IgM-IgA-) were subsequently 

isolated by flow cytometry on a FACSAria (Becton Dickinson); cells were then transduced 

with a retroviral vector expressing green fluorescent protein (GFP) marker, human Bcl-6 and 
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Bcl-xL, as previously described (134). GFP-positive clones were single-cell sorted by FACS 

into 96-well plates, expanded and maintained at a density of 2x105 cells/ml in expansion 

medium (IMDM + 8% FBS, penicillin/streptomycin and 25 mg/ml recombinant mouse IL-

21) in co-culture with γ-irradiated (50 Gy) mouse L-cell fibroblasts expressing human 

CD40L, plated at a density of 1x105 cells/ml. 

 

3.10.2 Antigen uptake assay 

In Paper IV, the ability of B cell clones to bind and internalize citrullinated fibrinogen was 

assessed using an antigen uptake assay. Human fibrinogen conjugated to Alexa-594 (Fib-594) 

was citrullinated according to the protocol described above. GFP-expressing B cell clones at 

a density of 1x105 cells/ml were then incubated with either unmodified (Fib-594) or 

citrullinated (cit-Fib-594) protein at a concentration of 1 µg/ml for 30 minutes at 4°C in PBS 

+ 10% FBS. Cells were then washed with PBS at RT, resuspended in VECTASHIELD 

mounting medium (Vector Labs) containing 4',6-diamidino-2-phenylindole (DAPI) for 

nuclear visualization, and transferred to glass slides for fluorescence microscopy using a 

Zeiss LSM710 Laser Scanning Microscope (Zeiss). 

 

3.11 STATISTICAL METHODS 

Differences in antibody levels (Study I, II and III), number of ACPA fine-specificities 

(Study II), DAS28 and CRP levels (Study III), between groups, were analyzed using Mann-

Whitney U test for independent groups. In Study II and III, odds ratios (OR) with 95% 

confidence intervals (CI) were calculated for associations between risk factors (i.e. smoking, 

HLA DRB1 SE and PTPN22 rs2476601) and different RA subsets. These analyses were 

performed in SAS version 9.3 (SAS Institute, Cary, NC, USA), and adjusted for age, gender 

and residential area. In Study III, co-occurrence of ACPA fine-specificities was calculated 

using Pearson correlation (R v. 3.3.3). For all statistical calculations, P-values <0.05 were 

considered significant.  
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3.12 ETHICAL CONSIDERATIONS 

The purpose of this PhD project - to gain a better understanding of the autoimmune reactions 

in RA - is aimed at benefiting patients. The project has involved patient material, and ethical 

considerations included protection of privacy and handling of personal data and biological 

material. All biological samples were collected with informed consent and ethical approval 

granted by the regional ethics review board at Karolinska Institutet, Stockholm, Sweden, or in 

the case for the patient from AMC in Study IV, from the medical ethical committee of AMC, 

Amsterdam, the Netherlands. Personal information has been handled under PUL, and kept 

behind the Karolinska University Hospital’s network firewall. Stored data does not include 

personal identifiers. All scientists and clinicians involved in the project have adhered to Good 

Clinical Practice / Good Laboratory Practice Guidelines. All studies were conducted in 

compliance with the Declaration of Helsinki: Ethical Principles for Medical Research 

Involving Human Subjects (135).
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4  RESULTS AND DISCUSSION 
 

4.1 STUDY I 

While the CCP2 ELISA is commonly used for diagnosing ACPA-positive RA in the 

clinic, the CCP2 peptide (or peptides) itself is an artificial antigen whose sequence does not 

match any human proteins, and is therefore considered a surrogate marker for the true in vivo 

antigenic targets of ACPAs. Furthermore, whether or not the antibodies detected by the CCP2 

ELISA are the same that react with the numerous candidate citrullinated autoantigens 

identified in RA had never been explicitly demonstrated, with the exception of citrullinated 

fibrinogen (136). Therefore, in our first study, we set out to characterize the specificity of 

ACPAs detected by the CCP2 ELISA by isolating them from ACPA-positive RA patient 

samples through CCP2 affinity chromatography. Synovial fluid (n=26) and plasma (n=16) 

samples were collected from ACPA-positive RA patients with higher anti-CCP2 antibody 

levels (>300 AU/mL). Bulk IgG was first purified using Protein G columns, followed by 

isolation of anti-CCP2 IgG using an affinity column containing the CCP2 peptide, kindly 

donated by EuroDiagnostica AB. Flowthrough IgG (FT) from the CCP2 column was also 

saved and analyzed. 

We found that polyclonal ACPA IgG could be efficiently isolated using CCP2 

peptide affinity chromatography, and that these antibodies constitute approximately 2% of the 

total IgG pool, in both plasma and SF. The resulting CCP2 column eluates were found to bind 

a range of citrullinated peptide autoantigens in vitro using ELISA, as well as specifically 

binding to citrullinated (but not native) versions of human fibrinogen, vimentin and a-enolase 

proteins in Western blot. Conversely, the flowthrough fraction showed no binding in either 

ELISA or WB to either citrullinated or native peptides or proteins. Importantly, purified anti-

CCP2 IgG also bound in vivo targets in RA synovial tissue and on immune cells isolated from 

RA synovial fluid, whereas FT IgG did not (Figure 3). This could indicate a direct 

involvement of ACPAs in RA joint pathology. 
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Figure 3: Immunohisto-/immunochytochemistry demonstrating binding of purified and 
biotinylated ACPA IgG to antigens expressed in RA synovial tissue and SF mononuclear 
cells. There is no binding of FT IgG. Figure from Study I.  

 

Taken together, these results provide direct evidence that the autoantibodies measured 

by the CCP2 ELISA are the same ACPAs identified as binding to citrullinated peptide and 

protein antigens in vitro, and provide further evidence for the direct binding of ACPAs to 

antigens expressed in the inflamed joint. In addition, this study provided a large pool of 

polyclonal ACPA IgG for use in-house and in collaborations to study the characteristics and 

potential pathogenic effects of ACPA in a variety of in vitro and in vivo systems. The purified 

ACPAs have for example been used to demonstrate that the Fc-glycan profile of ACPAs 

differs from non-ACPA IgG, suggesting differences in effector and immunoregulatory 

functions (137). Moreover, the ACPA pool was shown to induce pain in an experimental 

animal model (104), and to active osteoclasts in vitro (103). Study I additionally provided 

the technical basis for the efficient affinity purification of ACPA IgG, something that was 

implemented in Study II. 
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4.2 STUDY II 

In addition to ACPAs and RF, antibodies to carbamylated proteins (anti-CarP 

antibodies) have been described in RA (106).  While originally described as a distinct RA-

specific autoantibody system, the biochemical similarity between citrulline and 

homocitrulline calls this into question, especially in light of the fact that purified ACPAs have 

been demonstrated to also bind carbamylated fibrinogen (114). Moreover, the presence of 

anti-CarP antibodies largely overlaps with ACPAs, which was demonstrated in both EIRA as 

well as the Dutch Early Arthritis Clinic (EAC) cohort (116). This led us to hypothesize that 

these antibodies were possibly no more than cross-reactive ACPAs. Prior to our study, the 

only protein that had been investigated in the context of anti-CarP reactivity was fibrinogen. 

Thus, we decided to focus on another candidate autoantigen in RA, α-enolase.  

Using a pool of anti-CCP2 IgG purified from 38 RA patients, in the same manner as in 

Study I, we were first able to demonstrate that anti-CCP2 IgG could bind both citrullinated 

and carbamylated (but not native) fibrinogen and α-enolase in Western blot (WB) (Figure 4).  

 

 

Figure 4: Western blot demonstrating binding of purified ACPA IgG to citrullinated and 
carbamylated a-enolase and fibrinogen. There is no binding to unmodified proteins, and no 
(or only weak/background) binding when blotting with FT IgG. Figure from Study II. 

 

 
proteins. The corresponding FT IgG pool bound neither
modified nor native proteins; only some weak unspecific
background staining was observed.

Purified anti-CEP-1 IgG displays cross-reactivity with a
homocitulline-containing version of CEP-1
To further investigate the specificity and extent of cross-
reactivity between citrullinated and carbamylated epitopes,
we focused on α-enolase and the immunodominant CEP-1
epitope. Affinity-purified anti-CEP-1-specific IgG bound
not only CEP-1 in ELISA, but also a version of CEP-1
(denoted carb-CEP-1) identical in sequence but with
citrulline residues replaced with homocitrullines. Anti-
CEP-1 IgG purified from different patients with RA showed
consistently strong binding to the CEP-1 peptide in ELISA
(data not shown), and in addition displayed varying de-
grees of binding to the carb-CEP-1 peptide (Fig. 1b).

Flow-through IgG from the same five patients did not
bind to CEP-1 or carb-CEP-1, demonstrating that the
carb-CEP-1 reactivity was confined to the anti-CEP-1
IgG eluate fraction. None of the anti-CEP-1 IgG column
eluates demonstrated reactivity to the control peptide
REP-1 (data not shown). Taken together, these data sug-
gest that citrullinated α-enolase-specific ACPA also have
the ability to bind homocitrulline-containing epitopes.

Anti-carb-CEP-1 reactivity in relation to anti-CEP-1 status
in EIRA
Using the large EIRA case-control cohort, we next sought
to determine the proportion of patients with RA with
antibodies binding to carb-CEP-1, and how this reactivity
correlated with CEP-1 positivity. Reactivity to CEP-1,
REP-1 and carb-CEP-1 was therefore analysed in serum

Fig. 1 Human anti-citrullinated protein antibodies (ACPA) cross-react with carbamylated epitopes. a Native (n), in vitro citrullinated (Cit) and in vitro
carbamylated (Carb) samples of recombinant human α-enolase and purified human fibrinogen were subjected to western blot using affinity-purified
anti-CCP2 IgG (ACPA IgG) and CCP2-depleted column flow-through IgG (FT IgG), obtained from a pool of 38 rheumatoid arthritis (RA) serum samples.
b Affinity-purified anti-CEP-1 IgG and the corresponding column FT IgG fractions from five patients with RA were tested for reactivity to the carb-CEP-1
peptide in ELISA; antibody levels are presented as optical density (OD)

Fig. 2 Reactivity to CEP-1 and homocitrullinated CEP-1 peptide (carb-CEP-1) in Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA)
rheumatoid arthritis (RA) cases. a Sera from 2836 patients with RA from the EIRA cohort were tested for reactivity with CEP-1 and carb-CEP-1 using the
immuno solid-phase allergen chip multiplex assay (ISAC) platform and divided into subsets. b Anti-carb-CEP-1 antibody levels were compared between
the CEP-1+/carb-CEP-1+ and CEP-1-/carb-CEP-1+ subsets. Antibody levels are presented as arbitrary units (AU)

Reed et al. Arthritis Research & Therapy  (2016) 18:96 Page 4 of 9
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To investigate this crossreactivity in more detail, we then synthesized a “carbamylated” 

version of the immunodominant citrullinated α-enolase peptide epitope (CEP-1) - identical in 

sequence but with the citrullines replaced with homocitrullines - denoted carb-CEP-1. Sera 

from 2,836 EIRA patients and 373 EIRA controls were analysed for reactivity to CEP-1 and 

carb-CEP-1 in a high-throughput manner using the ISAC microarray. 41% of RA patients 

were found to be positive for anti-CEP-1 antibodies, in accordance with earlier data 

(131,138); the 21% of RA patients positive for anti-carb-CEP-1 antibodies were almost 

exclusively detected in the CEP-1-positive subset. Importantly, only 3% of patients were 

single positive for anti-carb-CEP-1 antibodies, and these patients had significantly lower anti-

carb-CEP-1 IgG levels than the double positive subset. Moreover, this subset was nearly 

eliminated (<1%) when the assay specificity was increased from 98% to 100%.  

In order to examine if the high co-occurrence of anti-CEP-1 and anti-carb-CEP-1 

antibodies was due to crossreactivity, we then performed peptide absorption experiments. 

Using sera from patients positive for either anti-CEP-1 antibodies only (n=4), anti-carb-CEP-

1 antibodies only (n=4), or both anti-CEP-1 and anti-carb-CEP-1 antibodies (n=4), we found 

crossreactivity to be consistently present, although at varying levels.  

To examine this cross-reactivity further, we purified anti-CEP-1 IgG from five CEP-1-

positive patients, using the same method as in Study I but with a CEP-1 column instead of 

CCP2. In ELISA, we found that purified anti-CEP-1 IgG showed strong and consistent 

binding to the CEP-1 peptide, but also varying degrees of binding to carb-CEP-1. FT IgG 

from the CEP-1 column did not bind to either peptide, indicating that antibodies binding to 

carb-CEP-1 were confined to the CEP-1 column eluate. These results clearly demonstrate that 

antibodies to citrullinated a-enolase also have the ability to bind to carbamylated epitopes. 

Positing that this cross-reactivity might be explained by the genetic or environmental 

basis of the disease, we also examined association with RA risk factors. Smoking and 

PTPN22 polymorphism showed no specific association with carb-CEP-1 positivity, in line 

with previous reports (116), while SE was significantly associated with both CEP-1 and carb-

CEP-1 positivity. The strength of the association was increased in double-positive patients 

compared to single-positive, indicating a SE-mediated effect on the development of cross-

reactive antibodies. Notably, we also observed an overall stronger ACPA response in the 

carb-CEP-1/CEP-1 double positive subset, compared to the CEP-1 single positive subset. 

Taken together, our data question the previous notion of anti-CarP antibodies as a 

separate autoantibody system in RA, and we propose that anti-CarP antibodies are cross-

reactive ACPAs. 
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4.3 STUDY III 

Most studies today are focused on trying to elucidate disease pathways in ACPA-

positive RA, where the autoantigen is known (at least to a certain extent), and where most 

known genetic and environmental risk factors seem to cluster. Much less is understood about 

the ACPA-negative subset of the disease. Using the commercially available anti-CCP2 

antibody assay frequently used in clinics, approximately 30% of RA patients will be 

considered ACPA-negative, and most of these patients will also be considered RF-negative. 

The lack of serological biomarkers presents an obstacle to prompt diagnosis for this group of 

patients. This subset comprises an intriguing complement to the “ACPA hypothesis” of RA 

pathogenesis: the relatively lower contribution of genetic and environmental risk factors 

important in ACPA-positive RA, combined with a relatively similar disease phenotype for 

both subsets suggests that disparate mechanisms in disease predisposition or initiation could 

lead to the development of a clinically similar disease. 

The overarching aim of Study III was to investigate how “seronegative” seronegative 

RA really is. We desired to confirm data from previous studies demonstrating that a subgroup 

of CCP2-negative RA patients have specific ACPAs that are not picked up by the CCP2 test 

(138,139). We also examined the frequency of IgM, IgG and IgA RF, since most RF tests 

used in the clinic identify primarily IgM RF. In addition, we analyzed a bank of non-RA-

related autoantibodies, including the anti-Ro/anti-La system, as the presence of non-RA-

related autoantibodies could potentially indicate possible disease misclassification in some 

cases. 

The basis for this study was a large serological dataset from the ISAC platform on the 

EIRA case-control cohort. Of the 2,836 RA sera examined, 989 were anti-CCP2 antibody 

negative, representing 35% of the whole EIRA RA population. Of these CCP2-negative RA 

patients, 67% were positive for at least one of the autoantibodies that we screened for; 34% 

were ACPA positive; 30% were RF positive; and 30% had antibodies to non-RA-related 

autoantigens. Cit-Fibb60-74 was the most common ACPA fine specificity among CCP2-

negative RA patients, with IgM RF as the most common RF isotype, and antibodies to the 

Ro/La antigens Ro60 and Ro52 as the most common non-RA-specific antibody.  

More ACPA fine-specificities and higher ACPA levels were detected in CCP2-positive 

RA, compared to CCP2-negative RA. All RF isotypes were also more frequent in the CCP2-

positive, compared to the CCP2-negative subset, while there was no such difference for other 

non-RA-specific autoantibodies. The co-occurrence of different ACPA, different RF isotypes, 
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and different antibody systems in general was more pronounced in CCP2-positive RA, 

compared to CCP2-negative RA (Figure 5). These findings suggest that there are at least two 

serologically distinct subsets of RA; and perhaps more importantly, that clinical screening for 

CCP2 and IgM RF clearly do not capture all “seropositive” RA patients.  

 

Figure 5: The distribution of ACPA, RF and other non-RA specific autoantibodies, among 
RA patients positive for at least one of these antibodies, in CCP2-positive and CCP2-negative 
subsets of EIRA. Figure from Study III. 

 

The different autoantibodies were subsequently analyzed in relation to CRP, DAS28 

and classical RA risk factors, in order to learn more about their potential role in RA etiology. 

These analyses showed only small differences in CRP levels and DAS28, indicating that 

presence/absence of these specific autoantibodies did not have a major impact on systemic 

inflammation or disease activity at the time of RA diagnosis, in line with what has been 

shown previously when comparing CCP2-positive and CCP2-negative early RA(140). 

Regarding HLA-DRB1 SE, we could confirm a previous report that SE associated with the 

presence of ACPA also in CCP2-negative RA, and in CCP2-positive RA we could 

demonstrate that the SE association was determined by six ACPA fine-specificities with high 

co-occurrence (or cross-reactivity). We could then show that presence of ACPA did not 

associate with smoking in CCP2-negative RA, but that presence of RF (and in particular IgA 
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RF) did, highlighting the importance of investigating ACPA in relation to RF when 

elucidating RA disease pathways. As shown previously, PTPN22 polymorphism, which has 

been linked to a number of autoimmune diseases as well as the presence of autoreactive B 

cells in systemically healthy individuals, seems to associate with RA, irrespective of ACPA 

and RF status (141,142). Interestingly, even when all autoantibodies were considered, the 

association with PTPN22 did not change significantly. The gene-environment and gene-gene 

interactions which are known to exist between SE and smoking (65) and between SE and 

PTPN22 (143) were not investigated in our study, but such analyses would add complexity to 

the interpretation of our findings. 

In summary, Study III supports the idea of RA as comprising at least two disease 

entities, possibly with disparate etiopathogenic mechanisms leading up to a similar clinical 

picture. Moreover, our study confirms that “seronegative” RA is not entirely a seronegative 

disease subset, and that additional screening for ACPA fine-specificities and RF isotypes 

could potentially help diagnose a substantial proportion of patients with RA at an earlier time 

point than is currently possible. This is of great importance, as earlier treatment in RA is 

beneficial regardless of serological status (144-146).  

 

4.4 STUDY IV 

Research on the ACPA response has largely focused on the antibodies themselves. 

However, much less is understood about the characteristics and potential pathogenic 

contribution of ACPA-producing B cells, despite the clear implication of B cells themselves 

in RA by the efficacy of rituximab. The major barrier to this line of inquiry has been the 

technical difficulty of maintaining or expanding B lymphocytes ex vivo without 

differentiation into plasmablasts, which lose their ability to present antigen to T cells.  

However, a recently published method allows the immortalization of B cells through the 

ectopic expression of Bcl-6 and Bcl-xL - regulators of B cell differentiation and apoptosis - 

which can then be expanded in the presence of CD40L and IL-21 without differentiation 

(134). These cells have been described as possessing a germinal center-like phenotype, with 

preserved costimulatory and antigen-presenting capacity. We utilized this method in Study 

IV to generate ACPA-producing B cell clones, in order to establish a platform for 

investigating the antigen specificity and functional characteristics of the ACPA B cell 

repertoire. 
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We first selected a SE-positive, CCP2-positive RA patient (denoted RA1003) with a 

high CCP2 titer, from which we isolated IgG-positive memory SF B cells 

(CD22+/CD19+/CD27+/IgM-/IgA-) using microbeads and flow cytometry. These memory B 

cells were then stimulated in the presence of CD40L and recombinant human IL-21 and 

subsequently immortalized by transduction with a retroviral vector expressing the 

transcription factors Bcl-6 and Bcl-xL, as well as GFP marker. Transduced GFP-expressing 

clones were then single-cell sorted into 96-well plates and expanded in the presence of 

CD40L and IL-21. We also derived B cell clones from SF of a non-RA, CCP2-negative 

disease control (denoted BB5327), in the same manner.   

Transduced B cell supernatants were assayed for ACPA reactivity using the CCP2 

ELISA. Of the 40 SF B-cell clones derived from RA1003, five tested positive for CCP2 

(12.5%); as expected, none of the 50 clones derived from BB5327 were positive in the CCP2 

ELISA. The proportion of ACPA-producing B cells derived from the RA patient is somewhat 

lower than previous reports for synovial B cells (25-40%) (128,147), but greatly increased 

when compared to the frequency in peripheral blood (approximately 1 in 12,500) (148), 

confirming the enrichment of SF B cells for ACPA positivity in seropositive RA.  

Next, we determined the ACPA fine-specificity of the CCP2-positive clones using the 

ISAC array containing citrullinated peptides, as in Study II and III. Only two of the five 

CCP2-positive clones (RA1003.3 and RA1003.4) produced IgG that bound citrullinated 

peptides on ISAC, with each of these clones binding strongly to CEP-1 and weakly to a 

citrullinated fibrinogen peptide (Cit-Fibb36-52). No binding was seen to the corresponding 

arginine-containing control peptides. Sequencing of the immunoglobuline sequence of the 

two CEP-1-positive clones revealed that they were in fact the same clone, expressing IgG1.  

As we wished to use this method to investigate the ability of ACPA B cells to present 

peptides from citrullinated proteins, we next determined the specificity of RA1003.3 to in 

vitro citrullinated or carbamylated α-enolase and fibrinogen in ELISA. RA1003.3 specifically 

bound citrullinated fibrinogen and carbamylated α-enolase. The lack of binding to 

citrullinated α-enolase despite strong binding to CEP-1 could be due to a lack of citrullination 

at the CEP-1 epitope, or a lack of accessibility of the CEP-1 epitope in ELISA. Finally, we 

proceeded to verify the ability of RA1003.3 to bind citrullinated fibrinogen on the cell 

surface. RA1003.3 cells were incubated with either unmodified or citrullinated fibrinogen 

coupled to Alexa-594, washed and subjected to confocal fluorescence microscopy. RA1003.3 

exhibited specific binding of citrullinated fibrinogen, and did not bind native fibrinogen 

(Figure 6). 
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Figure 6: Immortalized B cell clone RA1003.3 binds citrullinated fibrinogen (right panel), 
but not native fibrinogen (left panel). Green GFP indicates the cytoplasm; red Alexa-595 
shows fibrinogen; blue DAPI indicates the cell nuclei. Figure from Study IV. 

 

We have yet to demonstrate internalization, and that surface binding of citrullinated 

fibrinogen indeed is mediated by the B cell receptor. Still, our results confirm the utility of 

this method for deriving antigen-specific autoreactive B cells from patient material. It also 

supports our findings of cross-reactivity between ACPA and anti-CarP antibodies in Study 

II, as RA1003.3 was able to bind both citrullinated and carbamylated epitopes.  

  

 

 

 

Figure 3 

Specific binding of citrullinated fibrinogen by immortalized B cell clone RA1003.3. 

RA1003.3 clones expressing GFP in the cytoplasm (green) were incubated with either 

unmodified (A) or in vitro-citrullinated (B) human fibrinogen conjugated to Alexa-594 (red); 

nuclei were visualized by DAPI (blue); antigen-binding was evaluated by confocal 

microscopy. 
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5 CONCLUSIONS 
The main findings from the projects presented in this thesis are as follows: 

• The anti-CCP2 test detects ACPAs against a varity of in vitro citrullinated proteins 

and peptides, as well as antigens present in vivo in the rheumatoid joint (Study I). 

• Cross-reactivity is a common component of the ACPA response - between different 

citrullinated antigens, and between citrullinated and carbamylated (i.e. 

homocitrullinated) antigens (Studies II and IV). 

• In light of the cross-reactivity between citrullinated and carbamylated antigens, the 

existence of an independent anti-CarP antibody system is questionable (Study II).  

• Seronegative RA is not entirely a seronegative disease subset: ACPA and/or IgA RF 

and/or IgG RF are present in a proportion of CCP2-negative / IgM RF-negative 

patients, and this subset resembles seropositive RA in terms of associations with risk 

factors (Study III). 

• While HLA-DRB1 SE also associates with the presence of ACPA in CCP2-negative 

disease, smoking showed a significant association with RF, but not with ACPA, 

highlighting the importance of investigating ACPA together with RF when 

elucidating disease pathways in RA (Study III).  

• The ACPA-negative/RF-negative subset of RA still requires better biomarkers; no 

major association could be detected for autoantibodies present in other autoimmune 

diseases (Study III). 

• ACPA-producing B cell clones can be isolated and expanded from CCP2-positive RA 

patients, and are able to bind citrullinated proteins in vitro, providing a tool for the 

future investigation of the role of ACPA-producing B cells in RA (Study IV). 

Taken together, these results provide a basis for future investigation into the putative 

specificity and mechanism of the ACPA response. From Study I, it is clear that the CCP2 

assay comprehensively and directly captures the ACPA response. Work with purified ACPA 

IgG in Study I and II confirmed that cross-reactivity is likely a common component of the 

ACPA response. In particular, investigation of the crossreactivity of anti-CEP-1 antibodies 

with carbamylated epitopes in Study II suggests that the anti-CarP antibody response is far 

from discrete and may be a subset of ACPAs. The results of Study III further underline the 

serological differences between ACPA-positive and ACPA-negative RA and supports the 

idea that disease in ACPA-negative RA might arise through mechanisms disparate to ACPA-

positive RA. Finally, the results of Study IV provide a methodological basis for the 

mechanistic interrogation of ACPA-producing B-cells in RA. 
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6 FUTURE DIRECTIONS 
 

While the “ACPA hypothesis” of RA is intriguing, the lack of any definitive study 

supporting the pathogenicity of either human ACPAs or ACPA-specific lymphocytes is 

troubling. One possible explanation is that the ACPAs present in established disease may 

have lost their specificity and affinity due to epitope-spreading in the chronic inflammatory 

environment in the synovium. In this case, the isolation and characterization of ACPAs or 

ACPA lymphocytes present in the preclinical stage of the disease would be imperative to 

provide answers as to the true antigenic target of ACPAs (if one exists) as well as their ability 

to initiate disease. However, the fact that ACPAs in pre-clinical stages are present at such low 

levels, combined with the practical difficulty of prospectively recruiting pre-symptomatic 

individuals, makes this approach difficult. That said, a number of efforts are currently being 

made to recruit ACPA-positive individuals with arthralgia but before the onset of synovitis, 

in order to address precisely these questions.   

At least two published studies (149,150) have demonstrated that healthy individuals 

also commonly possess immature B cells in peripheral circulation capable of producing 

ACPAs upon activation (though they do not spontaneously secrete antibody in non-RA 

individuals). It has also been observed that non-RA B-cell lymphoma patients have 

significantly increased prevalence of ACPAs compared to healthy controls, albeit at low titres 

(151). It would seem likely then that control of B cell tolerance to (abnormally) citrullinated 

proteins is poorly regulated, and that the generation of ACPA-specific immature B cells is a 

common event. If so, this would underscore the importance of HLA-dependent T-cell help in 

the activation of these immature ACPA-positive B cells in RA. It would be interesting to 

explore the characteristics of these ACPA, either through isolation of B cell clones and/or 

molecular cloning of the immunoglobulin sequences from this "healthy" B cell population.  

However, there is also the possibility that ACPAs themselves are not pathogenic. 

Rather, they could be indicative of the immunological characteristics and/or anatomical 

location of inflammation in RA. Notably, low levels of ACPA are present in approximately 

2% of the general population (59), and the majority of these individuals will never develop 

RA. Moreover, while the transfer of ACPA to experimental animals can induce pain behavior 

and changes in bone structure, it does not seem to induce arthritis (103,104). Identifying the 

etiology of ACPAs would be crucial in elucidating their role in RA pathogenesis. Studies on 

pre-clinical serum samples have revealed that the ACPA response matures over time, with 

increased Ig levels, Ig usage, Fc glycosylation and epitope-spreading, before onset of clinical 

synovitis (63,152-154). However, no single ACPA fine-specificity have been identified as 
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being the first to appear, and no single ACPA fine-specificity have been shown to eventually 

cause arthritis. A broader approach to identify in vivo targets is therefore necessary. 

Additionally, while the use of peptide antigens derived from different candidate autoantigens 

is convenient for screening purposes, it is questionable if they have any relationship to in vivo 

B cell targets, as B cell epitopes are typically conformational, not linear.  

However, the findings of this thesis will hopefully allow these questions to be answered 

in the future. Through Study I, we have generated ACPA pools that are now being used for 

the identification of in vivo antigen targets, as well as effects on cell populations, as well as 

their capability to induce arthritis in animal models. Through Study II, we can confirm that 

ACPA cross-reacts with carbamylated antigens. This has now been shown for three candidate 

autoantigens in RA (i.e. fibrinogen (114), a-enolase and vimentin (118)), but whether this 

phenomenon has any relevance in vivo requires further investigation. Study III highlights the 

need for new biomarkers, better classification of seronegative RA, and better clinical tests for 

seropositive RA. And finally, the results in Study IV - while very preliminary - lay the 

ground for high-throughput, in-depth studies of the characteristics of the ACPA lymphocyte 

population, specifically in regards to HLA-DRB1 SE-mediated antigen presentation, and 

theoretically could even serve as a test bed for ACPA-specific therapeutics.  

 

   



 

 35 

7 ACKNOWLEDGEMENTS 
 

First and foremost, I’d like to thank my supervisor Karin: not only have you been an 
enthusiastic and positive supervisor with a sincere excitement for research, you’re also a 
genuinely kind and thoughtful person, and someone I’ve always felt I could depend on for 
support and guidance. Thank you for six formative and productive years! I’d also like to 
thank my co-supervisors: Vivi, for many interesting and fruitful discussions; and Lars, for 
creating such an open and welcoming environment for research at CMM. 

To all my friends, colleagues and collaborators at Rheuma and elsewhere: my fellow group 
members Nastya and Natalia, for our mutual adventures in ACPAs and svenska jultraditioner; 
Leonid and Johan R for discussions and advice; Lena, Monika and Heidi for technical know-
how and years of lab banter; Eva, Gloria, Julia, Gull-Britt and Barbro for all the samples, and 
not least for helping handle our incredibly temperamental freezer; Stina, Susanne and Gunnel 
for help navigating the labyrinth of administration; Khaled, Johanna, Catia, Vijay, Akilan and 
many others who I have neglected to mention here - it is because of all of you that my years 
at CMM have been spent in the most friendly and constructive atmosphere that I could 
imagine, and for that I am profoundly grateful.   

And finally, I’d like to thank my family: it is strange to think that I would have ended up as 
near the arctic circle as I am, but you have always been supportive, accepting and loving. I 
wouldn’t be here without you.  

  





 

 37 

8 REFERENCES 
 

1. Gabriel SE. The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am. 
2001 May;27(2):269–81.  

2. Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996 May 
3;85(3):307–10.  

3. Doran MF, Pond GR, Crowson CS, O'Fallon WM, Gabriel SE. Trends in incidence 
and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year 
period. Arthritis & Rheumatism. 2002 Mar;46(3):625–31.  

4. Symmons DPM, Gabriel SE. Epidemiology of CVD in rheumatic disease, with a 
focus on RA and SLE. Nat Rev Rheumatol. 2011 May 31;7(7):399–408.  

5. Hitchon CA, El-Gabalawy HS. The synovium in rheumatoid arthritis. Open 
Rheumatol J. 2011;5(1):107–14.  

6. Schett G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res 
Ther. 2007;9(1):203.  

7. Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification 
criteria. Rheumatology (Oxford). 2012 Dec;51 Suppl 6(suppl 6):vi5–9.  

8. Smolen JS, Landewé R, Breedveld FC, Buch M, Burmester G, Dougados M, et al. 
EULAR recommendations for the management of rheumatoid arthritis with 
synthetic and biological disease-modifying antirheumatic drugs: 2013 update. 
Annals of the Rheumatic Diseases.  2014. pp. 492–509.  

9. van Aken J, Heimans L, Gillet-van Dongen H, Visser K, Ronday HK, Speyer I, et 
al. Five-year outcomes of probable rheumatoid arthritis treated with methotrexate 
or placebo during the first year (the PROMPT study). Annals of the Rheumatic 
Diseases. 2014 Feb;73(2):396–400.  

10. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 
Rheumatoid arthritis classification criteria: an American College of 
Rheumatology/European League Against Rheumatism collaborative initiative. 
Annals of the Rheumatic Diseases. 2010 Aug 10;69(9):1580–8.  

11. Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and 
mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002 
Apr 6;359(9313):1173–7.  

12. Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et 
al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor 
therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, 
phase III trial evaluating primary efficacy and safety at twenty-four weeks. 
Arthritis & Rheumatism. 2006 Sep;54(9):2793–806.  

13. Schaeverbeke T, Truchetet M-E, Kostine M, Barnetche T, Bannwarth B, Richez C. 
Immunogenicity of biologic agents in rheumatoid arthritis patients: lessons for 
clinical practice. Rheumatology (Oxford). 2016 Feb;55(2):210–20.  



 

38 

14. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al. 
Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive 
rheumatoid arthritis patients. Sci Transl Med. 2015 Jun 3;7(290):290ra87–7.  

15. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K, et al. 
Characterizing the quantitative genetic contribution to rheumatoid arthritis using 
data from twins. Arthritis & Rheumatism. 2000 Jan;43(1):30–7.  

16. Hensvold AH, Magnusson PKE, Joshua V, Hansson M, Israelsson L, Ferreira R, et 
al. Environmental and genetic factors in the development of anticitrullinated 
protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an 
epidemiological investigation in twins. Annals of the Rheumatic Diseases. 2015 
Feb;74(2):375–80.  

17. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An 
approach to understanding the molecular genetics of susceptibility to rheumatoid 
arthritis. Arthritis & Rheumatism. 1987 Nov;30(11):1205–13.  

18. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee H-S, Jia X, et al. Five 
amino acids in three HLA proteins explain most of the association between MHC 
and seropositive rheumatoid arthritis. Nat Genet. 2012 Mar;44(3):291–6.  

19. van Heemst J, Hensvold AH, Jiang X, van Steenbergen H, Klareskog L, Huizinga 
TWJ, et al. Protective effect of HLA-DRB1*13 alleles during specific phases in the 
development of ACPA-positive RA. Annals of the Rheumatic Diseases. 2016 
Oct;75(10):1891–8.  

20. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grunewald J, et al. A 
new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR 
(shared epitope)-restricted immune reactions to autoantigens modified by 
citrullination. Arthritis & Rheumatism. 2006 Jan;54(1):38–46.  

21. Begovich AB, Carlton VEH, Honigberg LA, Schrodi SJ, Chokkalingam AP, 
Alexander HC, et al. A missense single-nucleotide polymorphism in a gene 
encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid 
arthritis. The American Journal of Human Genetics. 2004 Aug;75(2):330–7.  

22. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. 
Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function 
variant. Nat Genet. 2005 Dec;37(12):1317–9.  

23. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. 
Nat Rev Rheumatol. 2014 Oct;10(10):602–11.  

24. Källberg H, Padyukov L, Plenge RM, Rönnelid J, Gregersen PK, van der Helm-
van Mil AHM, et al. Gene-gene and gene-environment interactions involving 
HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. The 
American Journal of Human Genetics. 2007 May;80(5):867–75.  

25. Iwamoto T, Ikari K, Nakamura T, Kuwahara M, Toyama Y, Tomatsu T, et al. 
Association between PADI4 and rheumatoid arthritis: a meta-analysis. 
Rheumatology (Oxford). Oxford University Press; 2006 Jul;45(7):804–7.  

26. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density genetic 



 

 39 

mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012 
Dec;44(12):1336–40.  

27. Kim K, Bang S-Y, Lee H-S, Bae S-C. Update on the genetic architecture of 
rheumatoid arthritis. Nat Rev Rheumatol. 2017 Jan;13(1):13–24.  

28. Vessey MP, Villard-Mackintosh L, Yeates D. Oral contraceptives, cigarette 
smoking and other factors in relation to arthritis. Contraception. 1987 
May;35(5):457–64.  

29. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grunewald J, et al. A 
new model for an etiology of rheumatoid arthritis: Smoking may trigger HLA–DR 
(shared epitope)–restricted immune reactions to autoantigens modified by 
citrullination. Arthritis & Rheumatism. 2006 Jan 1;54(1):38–46.  

30. Silman AJ, Newman J, MacGregor AJ. Cigarette smoking increases the risk of 
rheumatoid arthritis. Results from a nationwide study of disease-discordant twins. 
Arthritis & Rheumatism. 1996 May;39(5):732–5.  

31. Baka Z, Buzás E, Nagy G. Rheumatoid arthritis and smoking: putting the pieces 
together. Arthritis Res Ther. 2009;11(4):238.  

32. Stolt P, Källberg H, Lundberg I, Sjögren B, Klareskog L, Alfredsson L, et al. Silica 
exposure is associated with increased risk of developing rheumatoid arthritis: 
results from the Swedish EIRA study. Annals of the Rheumatic Diseases. 2005 
Apr;64(4):582–6.  

33. Too CL, Muhamad NA, Ilar A, Padyukov L, Alfredsson L, Klareskog L, et al. 
Occupational exposure to textile dust increases the risk of rheumatoid arthritis: 
results from a Malaysian population-based case-control study. Annals of the 
Rheumatic Diseases. 2016 Jun;75(6):997–1002.  

34. Makrygiannakis D, Hermansson M, Ulfgren A-K, Nicholas AP, Zendman AJW, 
Eklund A, et al. Smoking increases peptidylarginine deiminase 2 enzyme 
expression in human lungs and increases citrullination in BAL cells. Annals of the 
Rheumatic Diseases. 2008 Oct;67(10):1488–92.  

35. Lugli EB, Correia RESM, Fischer R, Lundberg K, Bracke KR, Montgomery AB, et 
al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers 
and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res 
Ther. 2015 Jan 20;17(1):9.  

36. Janssen KMJ, de Smit MJ, Brouwer E, de Kok FAC, Kraan J, Altenburg J, et al. 
Rheumatoid arthritis-associated autoantibodies in non-rheumatoid arthritis patients 
with mucosal inflammation: a case-control study. Arthritis Res Ther. 2015 Jul 
9;17:174.  

37. Reynisdottir G, Karimi R, Joshua V, Olsen H, Hensvold AH, Harju A, et al. 
Structural changes and antibody enrichment in the lungs are early features of anti-
citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol. 
2014 Jan;66(1):31–9.  

38. Yunt ZX, Solomon JJ. Lung disease in rheumatoid arthritis. Rheum Dis Clin North 
Am. 2015 May;41(2):225–36.  



 

40 

39. Leirisalo-Repo M. Early arthritis and infection. Current Opinion in Rheumatology. 
2005 Jul 1;17(4):433.  

40. Sherina N, Hreggvidsdottir HS, Bengtsson C, Hansson M, Israelsson L, Alfredsson 
L, et al. Low levels of antibodies against common viruses associate with anti-
citrullinated protein antibody-positive rheumatoid arthritis; implications for disease 
aetiology. Arthritis Res Ther. 2017 Sep 30;19(1):219.  

41. Fuggle NR, Smith TO, Kaul A, Sofat N. Hand to Mouth: A Systematic Review and 
Meta-Analysis of the Association between Rheumatoid Arthritis and Periodontitis. 
Front Immunol. 2016;7:80.  

42. Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the 
humoral immune response to oral bacteria provides a stimulus for the development 
of rheumatoid arthritis. Inflammation. 2004 Dec;28(6):311–8.  

43. Lundberg K, Wegner N, Yucel-Lindberg T, Venables PJ. Periodontitis in RA-the 
citrullinated enolase connection. Nat Rev Rheumatol. 2010 Dec;6(12):727–30.  

44. Bender P, Bürgin WB, Sculean A, Eick S. Serum antibody levels against 
Porphyromonas gingivalis in patients with and without rheumatoid arthritis - a 
systematic review and meta-analysis. Clin Oral Investig. 2017 Jan;21(1):33–42.  

45. Kharlamova N, Jiang X, Sherina N, Potempa B, Israelsson L, Quirke A-M, et al. 
Antibodies to Porphyromonas gingivalis Indicate Interaction Between Oral 
Infection, Smoking, and Risk Genes in Rheumatoid Arthritis Etiology. Arthritis 
Rheumatol. 2016 Mar;68(3):604–13.  

46. Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, et al. 
Aggregatibacter actinomycetemcomitans-induced hypercitrullination links 
periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 
2016 Dec 14;8(369):369ra176–6.  

47. Nesse W, Westra J, van der Wal JE, Abbas F, Nicholas AP, Vissink A, et al. The 
periodontium of periodontitis patients contains citrullinated proteins which may 
play a role in ACPA (anti-citrullinated protein antibody) formation. J Clin 
Periodontol. 2012 Jul;39(7):599–607.  

48. Lappin DF, Apatzidou D, Quirke A-M, Oliver-Bell J, Butcher JP, Kinane DF, et al. 
Influence of periodontal disease, Porphyromonas gingivalis and cigarette smoking 
on systemic anti-citrullinated peptide antibody titres. J Clin Periodontol. 2013 
Oct;40(10):907–15.  

49. Hendler A, Mulli TK, Hughes FJ, Perrett D, Bombardieri M, Houri-Haddad Y, et 
al. Involvement of autoimmunity in the pathogenesis of aggressive periodontitis. J 
Dent Res. 2010 Dec;89(12):1389–94.  

50. Wöhler F, Müller W, Hofmann A. On the Nature of the Rheumatoid Factor. Annals 
of the Rheumatic Diseases. 1960 Jun 1;19(2):163.  

51. Mikuls TR, Hughes LB, Westfall AO, Holers VM, Parrish L, van der Heijde D, et 
al. Cigarette smoking, disease severity and autoantibody expression in African 
Americans with recent-onset rheumatoid arthritis. Annals of the Rheumatic 
Diseases. 2008 Nov;67(11):1529–34.  



 

 41 

52. Bukhari M, Lunt M, Harrison BJ, Scott DGI, Symmons DPM, Silman AJ. 
Rheumatoid factor is the major predictor of increasing severity of radiographic 
erosions in rheumatoid arthritis: results from the Norfolk Arthritis Register Study, a 
large inception cohort. Arthritis & Rheumatism. 2002 Apr;46(4):906–12.  

53. Renaudineau Y, Jamin C, Saraux A, Youinou P. Rheumatoid factor on a daily 
basis. Autoimmunity. 2005 Feb;38(1):11–6.  

54. Salonen EM, Vaheri A, Suni J, Wager O. Rheumatoid factor in acute viral 
infections: interference with determination of IgM, IgG, and IgA antibodies in an 
enzyme immunoassay. J Infect Dis. 1980 Aug;142(2):250–5.  

55. NIENHUIS RL, MANDEMA E. A NEW SERUM FACTOR IN PATIENTS 
WITH RHEUMATOID ARTHRITIS; THE ANTIPERINUCLEAR FACTOR. 
Annals of the Rheumatic Diseases. 1964 Jul;23:302–5.  

56. Sebbag M, Simon M, Vincent C, Masson-Bessière C, Girbal E, Durieux JJ, et al. 
The antiperinuclear factor and the so-called antikeratin antibodies are the same 
rheumatoid arthritis-specific autoantibodies. J Clin Invest. 1995 Jun;95(6):2672–9.  

57. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij 
WJ. Citrulline is an essential constituent of antigenic determinants recognized by 
rheumatoid arthritis-specific autoantibodies. J Clin Invest. 1998 Jan 1;101(1):273–
81.  

58. Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, et al. 
The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin 
autoantibodies are posttranslationally generated on various sites of (pro)filaggrin 
by deimination of arginine residues. J Immunol. 1999 Jan 1;162(1):585–94.  

59. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld 
FC, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a 
cyclic citrullinated peptide. Arthritis & Rheumatism. 2000 Jan;43(1):155–63.  

60. van Venrooij WJ, Zendman AJW. Anti-CCP2 Antibodies: An Overview and 
Perspective of the Diagnostic Abilities of this Serological Marker for Early 
Rheumatoid Arthritis. Clinic Rev Allerg Immunol. 2007 Sep 18;34(1):36–9.  

61. van Venrooij WJ, van Beers JJBC, Pruijn GJM. Anti-CCP Antibody, a Marker for 
the Early Detection of Rheumatoid Arthritis. Ann N Y Acad Sci. 2008 
Nov;1143(1):268–85.  

62. Aho K, Heliövaara M, Maatela J, Tuomi T, Palosuo T. Rheumatoid factors 
antedating clinical rheumatoid arthritis. J Rheumatol. 1991 Sep;18(9):1282–4.  

63. Rantapää-Dahlqvist S, de Jong BAW, Berglin E, Hallmans G, Wadell G, Stenlund 
H, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor 
predict the development of rheumatoid arthritis. Arthritis & Rheumatism. 2003 
Oct;48(10):2741–9.  

64. Chibnik LB, Mandl LA, Costenbader KH, Schur PH, Karlson EW. Comparison of 
threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide 
antibodies in predicting future rheumatoid arthritis. J Rheumatol. 2009 
Apr;36(4):706–11.  



 

42 

65. Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene-environment 
interaction between smoking and shared epitope genes in HLA-DR provides a high 
risk of seropositive rheumatoid arthritis. Arthritis & Rheumatism. 2004 
Oct;50(10):3085–92.  

66. Vossenaar ER, Zendman AJW, van Venrooij WJ, Pruijn GJM. PAD, a growing 
family of citrullinating enzymes: genes, features and involvement in disease. 
Bioessays. 2003 Nov;25(11):1106–18.  

67. Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S, et al. 
Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in 
synovial tissue of rheumatoid arthritis. Rheumatology (Oxford). 2005 
Jan;44(1):40–50.  

68. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Badine Al R, Méchin M-C, 
et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, 
PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close 
association with tissue inflammation. Arthritis & Rheumatism. 2007 
Nov;56(11):3541–53.  

69. György B, Tóth E, Tarcsa E, Falus A, Buzás EI. Citrullination: a posttranslational 
modification in health and disease. Int J Biochem Cell Biol. 2006;38(10):1662–77.  

70. Vossenaar ER, Smeets TJM, Kraan MC, Raats JM, van Venrooij WJ, Tak PP. The 
presence of citrullinated proteins is not specific for rheumatoid synovial tissue. 
Arthritis & Rheumatism. 2004 Nov;50(11):3485–94.  

71. Makrygiannakis D, af Klint E, Lundberg IE, Löfberg R, Ulfgren A-K, Klareskog L, 
et al. Citrullination is an inflammation-dependent process. Annals of the Rheumatic 
Diseases. 2006 Sep;65(9):1219–22.  

72. Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, et al. 
Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine 
deiminase in hippocampal extracts from patients with Alzheimer's disease. J 
Neurosci Res. 2005 Apr 1;80(1):120–8.  

73. Moscarello MA, Wood DD, Ackerley C, Boulias C. Myelin in multiple sclerosis is 
developmentally immature. J Clin Invest. 1994 Jul;94(1):146–54.  

74. Sokolove J, Brennan MJ, Sharpe O, Lahey LJ, Kao AH, Krishnan E, et al. Brief 
report: citrullination within the atherosclerotic plaque: a potential target for the 
anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis & 
Rheumatism. 2013 Jul;65(7):1719–24.  

75. Damgaard D, Senolt L, Nielsen MF, Pruijn GJ, Nielsen CH. Demonstration of 
extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients 
with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. 
Arthritis Res Ther. 2014 Dec 5;16(6):498.  

76. Masson-Bessière C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, 
Senshu T, et al. The major synovial targets of the rheumatoid arthritis-specific 
antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of 
fibrin. J Immunol. 2001 Mar 15;166(6):4177–84.  



 

 43 

77. Vossenaar ER, Després N, Lapointe E, van der Heijden A, Lora M, Senshu T, et al. 
Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. 
Arthritis Res Ther. 2004;6(2):R142–50.  

78. Burkhardt H, Sehnert B, Bockermann R, Engström A, Kalden JR, Holmdahl R. 
Humoral immune response to citrullinated collagen type II determinants in early 
rheumatoid arthritis. Eur J Immunol. 2005 May;35(5):1643–52.  

79. Kinloch A, Tatzer V, Wait R, Peston D, Lundberg K, Donatien P, et al. 
Identification of citrullinated alpha-enolase as a candidate autoantigen in 
rheumatoid arthritis. Arthritis Res Ther. 2005;7(6):R1421–9.  

80. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, 
Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate 
inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013 Mar 
27;5(178):178ra40–0.  

81. Pratesi F, Dioni I, Tommasi C, Alcaro MC, Paolini I, Barbetti F, et al. Antibodies 
from patients with rheumatoid arthritis target citrullinated histone 4 contained in 
neutrophils extracellular traps. Annals of the Rheumatic Diseases. 2014 
Jul;73(7):1414–22.  

82. Nielen MMJ, van der Horst AR, van Schaardenburg D, van der Horst-Bruinsma IE, 
van de Stadt RJ, Aarden L, et al. Antibodies to citrullinated human fibrinogen 
(ACF) have diagnostic and prognostic value in early arthritis. Annals of the 
Rheumatic Diseases. 2005 Aug;64(8):1199–204.  

83. Sánchez-Pernaute O, Largo R, Calvo E, Alvarez-Soria MA, Egido J, Herrero-
Beaumont G. A fibrin based model for rheumatoid synovitis. Annals of the 
Rheumatic Diseases. 2003 Dec;62(12):1135–8.  

84. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation 
against heterologous type II collagen induces arthritis in mice. Nature. 1980 Feb 
14;283(5748):666–8.  

85. Corthay A, Johansson A, Vestberg M, Holmdahl R. Collagen-induced arthritis 
development requires alpha beta T cells but not gamma delta T cells: studies with T 
cell-deficient (TCR mutant) mice. Int Immunol. 1999 Jul;11(7):1065–73.  

86. Svensson L, Jirholt J, Holmdahl R, Jansson L. B cell-deficient mice do not develop 
type II collagen-induced arthritis (CIA). Clin Exp Immunol. 1998 Mar;111(3):521–
6.  

87. Bang H, Egerer K, Gauliard A, Lüthke K, Rudolph PE, Fredenhagen G, et al. 
Mutation and citrullination modifies vimentin to a novel autoantigen for 
rheumatoid arthritis. Arthritis & Rheumatism. 2007 Aug;56(8):2503–11.  

88. Innala L, Kokkonen H, Eriksson C, Jidell E, Berglin E, Dahlqvst SR. Antibodies 
against mutated citrullinated vimentin are a better predictor of disease activity at 24 
months in early rheumatoid arthritis than antibodies against cyclic citrullinated 
peptides. J Rheumatol. 2008 Jun;35(6):1002–8.  

89. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. Vimentin is secreted by 
activated macrophages. Nat Cell Biol. Nature Publishing Group; 2003 Jan;5(1):59–



 

44 

63.  

90. Lundberg K, Kinloch A, Fisher BA, Wegner N, Wait R, Charles P, et al. 
Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid 
arthritis and cross-react with bacterial enolase. Arthritis & Rheumatism. 2008 
Oct;58(10):3009–19.  

91. Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, et al. 
Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely 
inflamed lung. Blood. 2009 May 28;113(22):5588–98.  

92. Kinloch A, Lundberg K, Wait R, Wegner N, Lim NH, Zendman AJW, et al. 
Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. 
Arthritis & Rheumatism. 2008 Aug;58(8):2287–95.  

93. Wittkowski H, Foell D, af Klint E, De Rycke L, De Keyser F, Frosch M, et al. 
Effects of intra-articular corticosteroids and anti-TNF therapy on neutrophil 
activation in rheumatoid arthritis. Annals of the Rheumatic Diseases. 2007 
Aug;66(8):1020–5.  

94. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. 
Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5;303(5663):1532–5.  

95. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone 
hypercitrullination mediates chromatin decondensation and neutrophil extracellular 
trap formation. J Cell Biol. 2009 Jan 26;184(2):205–13.  

96. Klareskog L, Lundberg K, Malmström V. Autoimmunity in rheumatoid arthritis: 
citrulline immunity and beyond. Adv Immunol. 2013;118:129–58.  

97. Catrina AI, Ytterberg AJ, Reynisdottir G, Malmström V, Klareskog L. Lungs, 
joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat Rev 
Rheumatol. 2014 Nov;10(11):645–53.  

98. Ioan-Facsinay A, Willemze A, Robinson DB, Peschken CA, Markland J, van der 
Woude D, et al. Marked differences in fine specificity and isotype usage of the 
anti-citrullinated protein antibody in health and disease. Arthritis & Rheumatism. 
2008 Oct;58(10):3000–8.  

99. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. Induction 
of osteoclastogenesis and bone loss by human autoantibodies against citrullinated 
vimentin. J Clin Invest. 2012 May;122(5):1791–802.  

100. England BR, Thiele GM, Mikuls TR. Anticitrullinated protein antibodies: origin 
and role in the pathogenesis of rheumatoid arthritis. Current Opinion in 
Rheumatology. 2017 Jan;29(1):57–64.  

101. Clavel C, Nogueira L, Laurent L, Iobagiu C, Vincent C, Sebbag M, et al. Induction 
of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor 
IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated 
proteins complexed with fibrinogen. Arthritis & Rheumatism. 2008 
Mar;58(3):678–88.  

102. Sokolove J, Johnson DS, Lahey LJ, Wagner CA, Cheng D, Thiele GM, et al. 



 

 45 

Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated 
inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014 Apr;66(4):813–21.  

103. Krishnamurthy A, Joshua V, Haj Hensvold A, Jin T, Sun M, Vivar N, et al. 
Identification of a novel chemokine-dependent molecular mechanism underlying 
rheumatoid arthritis-associated autoantibody-mediated bone loss. Annals of the 
Rheumatic Diseases. 2016 Apr;75(4):721–9.  

104. Wigerblad G, Bas DB, Fernades-Cerqueira C, Krishnamurthy A, Nandakumar KS, 
Rogoz K, et al. Autoantibodies to citrullinated proteins induce joint pain 
independent of inflammation via a chemokine-dependent mechanism. Annals of 
the Rheumatic Diseases. 2016 Apr;75(4):730–8.  

105. Suwannalai P, Britsemmer K, Knevel R, Scherer H-U, Levarht EWN, van der 
Helm-van Mil AH, et al. Low-avidity anticitrullinated protein antibodies (ACPA) 
are associated with a higher rate of joint destruction in rheumatoid arthritis. Annals 
of the Rheumatic Diseases. 2014 Jan;73(1):270–6.  

106. Shi J, Knevel R, Suwannalai P, van der Linden MP, Janssen GMC, van Veelen PA, 
et al. Autoantibodies recognizing carbamylated proteins are present in sera of 
patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci 
USA. 2011 Oct 18;108(42):17372–7.  

107. Mydel P, Wang Z, Brisslert M, Hellvard A, Dahlberg LE, Hazen SL, et al. 
Carbamylation-dependent activation of T cells: a novel mechanism in the 
pathogenesis of autoimmune arthritis. J Immunol. 2010 Jun 15;184(12):6882–90.  

108. Turunen S, Koivula M-K, Risteli L, Risteli J. Anticitrulline antibodies can be 
caused by homocitrulline-containing proteins in rabbits. Arthritis & Rheumatism. 
2010 Nov;62(11):3345–52.  

109. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, et al. 
Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat 
Med. 2007 Oct;13(10):1176–84.  

110. Bergum B, Koro C, Delaleu N, Solheim M, Hellvard A, Binder V, et al. Antibodies 
against carbamylated proteins are present in primary Sjögren's syndrome and are 
associated with disease severity. Annals of the Rheumatic Diseases. 2016 
Aug;75(8):1494–500.  

111. Gan RW, Trouw LA, Shi J, Toes REM, Huizinga TWJ, Demoruelle MK, et al. 
Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and 
are associated with its future diagnosis. J Rheumatol. 2015 Apr;42(4):572–9.  

112. Senshu T, Sato T, Inoue T, Akiyama K, Asaga H. Detection of citrulline residues in 
deiminated proteins on polyvinylidene difluoride membrane. Anal Biochem. 1992 
May 15;203(1):94–100.  

113. Shi J, Willemze A, Janssen GMC, van Veelen PA, Drijfhout JW, Cerami A, et al. 
Recognition of citrullinated and carbamylated proteins by human antibodies: 
specificity, cross-reactivity and the “AMC-Senshu” method. Annals of the 
Rheumatic Diseases. 2013 Jan;72(1):148–50.  

114. Scinocca M, Bell DA, Racapé M, Joseph R, Shaw G, McCormick JK, et al. 



 

46 

Antihomocitrullinated fibrinogen antibodies are specific to rheumatoid arthritis and 
frequently bind citrullinated proteins/peptides. J Rheumatol. 2014 Feb;41(2):270–
9.  

115. Stoop JN, Fischer A, Hayer S, Hegen M, Huizinga TW, Steiner G, et al. 
Anticarbamylated protein antibodies can be detected in animal models of arthritis 
that require active involvement of the adaptive immune system. Annals of the 
Rheumatic Diseases. 2015 May;74(5):949–50.  

116. Jiang X, Trouw LA, van Wesemael TJ, Shi J, Bengtsson C, Källberg H, et al. Anti-
CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their 
relationship to genetic risk factors, cigarette smoking and other autoantibodies. 
Annals of the Rheumatic Diseases. 2014 Oct;73(10):1761–8.  

117. Martínez G, Gómez JA, Bang H, Martinez-Gamboa L, Roggenbuck D, Burmester 
G-R, et al. Carbamylated vimentin represents a relevant autoantigen in Latin 
American (Cuban) rheumatoid arthritis patients. Rheumatol Int. 2016 
Jun;36(6):781–91.  

118. Ospelt C, Bang H, Feist E, Camici G, Keller S, Detert J, et al. Carbamylation of 
vimentin is inducible by smoking and represents an independent autoantigen in 
rheumatoid arthritis. Annals of the Rheumatic Diseases. 2017 Jul;76(7):1176–83.  

119. Juarez M, Bang H, Hammar F, Reimer U, Dyke B, Sahbudin I, et al. Identification 
of novel antiacetylated vimentin antibodies in patients with early inflammatory 
arthritis. Annals of the Rheumatic Diseases. 2016 Jun;75(6):1099–107.  

120. Young CL, Adamson TC, Vaughan JH, Fox RI. Immunohistologic characterization 
of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis & 
Rheumatism. 1984 Jan;27(1):32–9.  

121. Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid 
arthritis. Clin Exp Rheumatol. 2007 Sep;25(5 Suppl 46):S4–11.  

122. Tak PP, Rigby WF, Rubbert-Roth A, Peterfy CG, van Vollenhoven RF, Stohl W, et 
al. Inhibition of joint damage and improved clinical outcomes with rituximab plus 
methotrexate in early active rheumatoid arthritis: the IMAGE trial. Annals of the 
Rheumatic Diseases. 2011 Jan;70(1):39–46.  

123. Buch MH, Smolen JS, Betteridge N, Breedveld FC, Burmester G, Dörner T, et al. 
Updated consensus statement on the use of rituximab in patients with rheumatoid 
arthritis. Annals of the Rheumatic Diseases. 2011. pp. 909–20.  

124. Isaacs JD, Cohen SB, Emery P, Tak PP, Wang J, Lei G, et al. Effect of baseline 
rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab 
clinical response: a meta-analysis. Annals of the Rheumatic Diseases. 2013 Feb 
5;72(3):329–36.  

125. Vos K, Thurlings RM, Wijbrandts CA, van Schaardenburg D, Gerlag DM, Tak PP. 
Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid 
arthritis. Arthritis & Rheumatism. 2007 Mar;56(3):772–8.  

126. Masson-Bessiere C, Sebbag M, Durieux JJ, Nogueira L, Vincent C, Girbal-
Neuhauser E, et al. In the rheumatoid pannus, anti-filaggrin autoantibodies are 



 

 47 

produced by local plasma cells and constitute a higher proportion of IgG than in 
synovial fluid and serum. Clin Exp Immunol. 2000 Mar;119(3):544–52.  

127. Snir O, Widhe M, Hermansson M, Spee von C, Lindberg J, Hensen S, et al. 
Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid 
arthritis patients. Arthritis & Rheumatism. 2010 Jan;62(1):44–52.  

128. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, Joshua V, et 
al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients 
have a strong bias toward citrullinated autoantigen recognition. Journal of 
Experimental Medicine. 2013 Mar 11;210(3):445–55.  

129. Stolt P, Bengtsson C, Nordmark B, Lindblad S, Lundberg I, Klareskog L, et al. 
Quantification of the influence of cigarette smoking on rheumatoid arthritis: results 
from a population based case-control study, using incident cases. Annals of the 
Rheumatic Diseases. 2003 Sep;62(9):835–41.  

130. Saevarsdottir S, Wedrén S, Seddighzadeh M, Bengtsson C, Wesley A, Lindblad S, 
et al. Patients with early rheumatoid arthritis who smoke are less likely to respond 
to treatment with methotrexate and tumor necrosis factor inhibitors: observations 
from the Epidemiological Investigation of Rheumatoid Arthritis and the Swedish 
Rheumatology Register cohorts. Arthritis & Rheumatism. 2011 Jan;63(1):26–36.  

131. Mahdi H, Fisher BA, Källberg H, Plant D, Malmström V, Rönnelid J, et al. 
Specific interaction between genotype, smoking and autoimmunity to citrullinated 
alpha-enolase in the etiology of rheumatoid arthritis. Nat Genet. 2009 
Dec;41(12):1324.  

132. Brink M, Hansson M, Mathsson L, Jakobsson P-J, Holmdahl R, Hallmans G, et al. 
Multiplex analyses of antibodies against citrullinated peptides in individuals prior 
to development of rheumatoid arthritis. Arthritis & Rheumatism. 2013 
Apr;65(4):899–910.  

133. Hansson M, Mathsson L, Schlederer T, Israelsson L, Matsson P, Nogueira L, et al. 
Validation of a multiplex chip-based assay for the detection of autoantibodies 
against citrullinated peptides. Arthritis Res Ther. 2012;14(5):R201.  

134. Kwakkenbos MJ, Diehl SA, Yasuda E, Bakker AQ, van Geelen CMM, Lukens 
MV, et al. Generation of stable monoclonal antibody-producing B cell receptor-
positive human memory B cells by genetic programming. Nat Med. 2010 
Jan;16(1):123–8.  

135. World Medical Association. World Medical Association Declaration of Helsinki: 
ethical principles for medical research involving human subjects. JAMA. 2013 Nov 
27;310(20):2191–4.  

136. Ioan-Facsinay A, el-Bannoudi H, Scherer HU, van der Woude D, Ménard HA, 
Lora M, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-
citrullinated protein antibodies and contain overlapping and non-overlapping 
reactivities. Annals of the Rheumatic Diseases. 2011 Jan;70(1):188–93.  

137. Lundström SL, Fernandes-Cerqueira C, Ytterberg AJ, Ossipova E, Hensvold AH, 
Jakobsson P-J, et al. IgG antibodies to cyclic citrullinated peptides exhibit profiles 
specific in terms of IgG subclasses, Fc-glycans and a fab-Peptide sequence. PLoS 



 

48 

ONE. 2014;9(11):e113924.  

138. Lundberg K, Bengtsson C, Kharlamova N, Reed E, Jiang X, Källberg H, et al. 
Genetic and environmental determinants for disease risk in subsets of rheumatoid 
arthritis defined by the anticitrullinated protein/peptide antibody fine specificity 
profile. Annals of the Rheumatic Diseases. 2013 May;72(5):652–8.  

139. Wagner CA, Sokolove J, Lahey LJ, Bengtsson C, Saevarsdottir S, Alfredsson L, et 
al. Identification of anticitrullinated protein antibody reactivities in a subset of anti-
CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-
DRB1 “shared epitope” alleles. Annals of the Rheumatic Diseases. 2015 
Mar;74(3):579–86.  

140. Nell VPK, Machold KP, Stamm TA, Eberl G, Heinzl H, Uffmann M, et al. 
Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid 
arthritis. Annals of the Rheumatic Diseases. 2005 Dec;64(12):1731–6.  

141. Viatte S, Plant D, Bowes J, Lunt M, Eyre S, Barton A, et al. Genetic markers of 
rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative 
patients. Annals of the Rheumatic Diseases. 2012 Dec;71(12):1984–90.  

142. Bossini-Castillo L, de Kovel C, Källberg H, van 't Slot R, Italiaander A, Coenen M, 
et al. A genome-wide association study of rheumatoid arthritis without antibodies 
against citrullinated peptides. Annals of the Rheumatic Diseases. 2015 
Mar;74(3):e15–5.  

143. Källberg H, Padyukov L, Plenge RM, Rönnelid J, Gregersen PK, van der Helm-
van Mil AHM, et al. Gene-gene and gene-environment interactions involving 
HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. The 
American Journal of Human Genetics. 2007 May;80(5):867–75.  

144. van Nies JAB, Krabben A, Schoones JW, Huizinga TWJ, Kloppenburg M, van der 
Helm-van Mil AHM. What is the evidence for the presence of a therapeutic 
window of opportunity in rheumatoid arthritis? A systematic literature review. 
Annals of the Rheumatic Diseases. 2014 May;73(5):861–70.  

145. van Nies JAB, Tsonaka R, Gaujoux-Viala C, Fautrel B, van der Helm-van Mil 
AHM. Evaluating relationships between symptom duration and persistence of 
rheumatoid arthritis: does a window of opportunity exist? Results on the Leiden 
early arthritis clinic and ESPOIR cohorts. Annals of the Rheumatic Diseases. 2015 
May;74(5):806–12.  

146. Verschueren P, De Cock D, Corluy L, Joos R, Langenaken C, Taelman V, et al. 
Patients lacking classical poor prognostic markers might also benefit from a step-
down glucocorticoid bridging scheme in early rheumatoid arthritis: week 16 results 
from the randomized multicenter CareRA trial. Arthritis Res Ther. 2015 Apr 
9;17(1):97.  

147. Corsiero E, Bombardieri M, Carlotti E, Pratesi F, Robinson W, Migliorini P, et al. 
Single cell cloning and recombinant monoclonal antibodies generation from RA 
synovial B cells reveal frequent targeting of citrullinated histones of NETs. Annals 
of the Rheumatic Diseases. 2016 Oct;75(10):1866–75.  

148. Kerkman PF, Fabre E, van der Voort EIH, Zaldumbide A, Rombouts Y, Rispens T, 



 

 49 

et al. Identification and characterisation of citrullinated antigen-specific B cells in 
peripheral blood of patients with rheumatoid arthritis. Annals of the Rheumatic 
Diseases. 2016 Jun;75(6):1170–6.  

149. Reparon-Schuijt CC, van Esch WJ, van Kooten C, Schellekens GA, de Jong BA, 
van Venrooij WJ, et al. Secretion of anti-citrulline-containing peptide antibody by 
B lymphocytes in rheumatoid arthritis. Arthritis & Rheumatism. 2001 
Jan;44(1):41–7.  

150. Bellatin MF, Han M, Fallena M, Fan L, Xia D, Olsen N, et al. Production of 
autoantibodies against citrullinated antigens/peptides by human B cells. J Immunol. 
2012 Apr 1;188(7):3542–50.  

151. Assmann G, Shihadeh K, Poeschel V, Murawski N, Conigliarou J, Ong MF, et al. 
Prevalence of anti-citrullinated protein antibodies (ACPA) in patients with diffuse 
large B-cell lymphoma (DLBCL): a case-control study. PLoS ONE. 
2014;9(2):e88177.  

152. Kokkonen H, Mullazehi M, Berglin E, Hallmans G, Wadell G, Rönnelid J, et al. 
Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide 
precede the development of rheumatoid arthritis. Arthritis Res Ther. 2011 Feb 
3;13(1):R13.  

153. Rombouts Y, Ewing E, van de Stadt LA, Selman MHJ, Trouw LA, Deelder AM, et 
al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc 
glycosylation phenotype prior to the onset of rheumatoid arthritis. Annals of the 
Rheumatic Diseases. 2015 Jan;74(1):234–41.  

154. Sokolove J, Bromberg R, Deane KD, Lahey LJ, Derber LA, Chandra PE, et al. 
Autoantibody epitope spreading in the pre-clinical phase predicts progression to 
rheumatoid arthritis. PLoS ONE. 2012;7(5):e35296.  

 

 


