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ABSTRACT 
Regulatory variants are the main factors responsible for genetic predisposition to how e.g. 
humans react differently to the environment. Therefore, it is important to locate and measure 
their effects, which can result in pre-disease intervention, new drugs, or as part in the personal 
medicine era, where selection and dose of a drug is based on a person’s genetic profile.  

In this thesis we have investigated the potential to link genetic markers to transcription using 
allele specific expression (ASE), which can avoid influence of both population stratification 
bias and trans-factors, increasing the statistical power compared to using total RNA based 
linkage methods. To quantify expression levels, we have used RNA-sequencing, which 
automatically makes it possible to measure ASE, provided that there is a heterozygous variant 
within the transcribed fragment, which in turn makes it possible to discern the expression 
between the two alleles. RNA sequencing data tend to be complex and requires to be 
summarized into count measures before further analyzed for ASE. To facilitate this process 
and provide additional analytical support, we developed the software AllelicImbalance, 
which now is freely accessible within bioconductor, a bioinformatics repository for code and 
data. Using this software we investigated ASE behavior on the individual level of a single 
transcribed variant, within a gene, and for connections between an ASE event and known risk 
markers, previously established from Genome Wide Association Studies (GWAS).  

We showed in a dataset of 10 individuals that by measuring a consistent ASE over 
consecutive exons withing the same gene that an ASE signature is robust against 
dissimilarities in sequence. Further, because we showed that ASE stability covered several 
SNPs we established that short read sequencing is not a fundamental obstacle to the 
implementation of this technique. However, more individuals were needed to better assess a 
link to genetic variants. We continued our analysis in a larger dataset, in which one of the 
sequenced tissues had a representation of 680 individuals. This was enough to measure ASE 
as a regression of allelic fraction by genotype (aeQTL), conceptually similar to the regression 
of expression by genotype commonly used in eQTL studies. In this data we were able to 
explain novel risk SNPs using the aeQTL method, and showed that any bias for the reference 
allele had no significant effect on the regression. We moved on to test if aeQTL could pick up 
unique signals for 205 individuals in a tissue previously investigated for eQTL using a large 
cohort of more than 5000 individuals. Indeed, we detected 15 novel aeQTLs, which probably 
were masked by trans-regulation in the previous investigation. In addition, we describe the 
software ClusterSignificance, which tests for separation of groups in data with reduced 
dimensionality. The algorithm sets statistical rigor to a task previously done by visual 
inspection. 

This thesis gives an overview of progress of us and others in ASE investigations, which is 
becoming more than being just a compliment to eQTL. The future signals a more dominant 
role as more sequencing data becomes readily available, accessing the closest active link to 
cis-regulation.  



 

 

POPULÄRVETENSKAPLIG SAMMANFATTNING 
Denna avhandling handlar om hur man kan använda modern teknik till att mer precist kunna 
bestämma kopplingen mellan kända mutations-varianter och gener. Från en individs 
vävnadsprov kan man med hjälp av avläsningsmaskiner digitalt bestämma exakt mängd av 
genavskrifter från alla aktiva gener, och dessutom avgöra om genavskrifterna härstammar 
från mammas eller pappas kromosomala kopia. 

Människor har olika genetiska förutsättningar för hur kroppen reagerar på t.ex., rökning, 
medicin eller andra miljöfaktorer. Det betyder att om alla livsomständigheter skulle vara lika 
för två personer så är risken att drabbas av sjukdom individuellt betingat på genetik. Även om 
det kan tyckas vara orättvist att vissa människor från födseln har ökad risk för någon specifik 
sjukdom, så är skillnader i arvsmassa det som gör det möjligt för genetiker att kartlägga hur 
samspelet mellan arvsmassa och de funktionella enheterna i celler formar dessa 
förutsättningar. Mer specifikt är det en kartläggning av vilka vanliga mutationer, även kallat 
varianter, som är kopplade till sjukdom och hur dessa påverkar regleringen av celler. Denna 
information kan sedan användas till att dels karaktärisera en sjukdom bättre, men också 
resultera i mer direkta åtgärder såsom rekommendation av dosering och typ av medicin som 
är bäst lämpad för en person. Detta kallas på engelska populärt för “personalized medicine”.   

Vi har i detta arbete utnyttjat det finurliga med att varje människa har två relativt oberoende 
aktiva uppsättningar av varje kromosompar, de som härstammar från mamma och pappa. I de 
fall en person har två olika varianter, kan man mäta deras relativa inflytande på produktionen 
av genavskrifter. Detta medför att man i princip kan använda endast en person för att finna 
relationen mellan varianter och genavskrift, men också att varje person blir sin egen 
statistiska kontroll eftersom miljöfaktorer påverkar personens båda kromosomer lika. Det 
låter bra i teorin, men kopplingsprocessen är fortfarande kantad av en del tekniska 
omständigheter, t.ex. att detektionsutrustningen kan behandla genavskrifter olika, om de inte 
ser likadana ut. I vissa fall finns även faktorer i cellen som påverkar genavskrifterna efter att 
de har producerats. Men vi har visat att om ett flertal individer studeras samtidigt, så kan man 
balansera ut deras negativa påverkan, genom en speciell fördelning i olika testgrupper. Vi 
utvecklade också en metod att statistiskt avgöra ifall två eller fler tidigare kända grupper går 
att separera med hjälp av mindre delar av den totala datamängden. Syftet med metoden är att 
undersöka om någon del är tillräcklig för att ensam signalera en skillnad, vilket för 
avskriftsdata från gener innebär att man kan upptäcka grupper av gener som ensamma 
signalerar sjuk eller frisk. Skillnaden mot traditionella metoder är att den här metoden inte är 
bunden till några antaganden kring datapunkternas fördelning.  

I arbetet med denna avhandling har vi utvecklat programvara för hantering och analys, vilken 
kan laddas ner och användas fritt. Vi har visat ett flertal nya kopplingar mellan varianter och 
gener för hjärtsjukdomar, schizofreni och reumatism. För forskare är kopplingarna 
användbara för att få en djupare förståelse för sjukdomarnas uppkomst, eller som inkörsport 
till en ny era av personalized medicine. 
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1 INTRODUCTION 
This section starts with a brief historical connection to the discovery of diploid inheritance, 
evolutionary propulsion, and how natural selection is hijacked by medical applications in 
order to reduce human suffering. Then follows an introduction to eQTL and aeQTL studies, 
the global ASE landscape, some observations of ASE in twin studies, a brief overview of 
ASE-software, and an assumption free method to test class separations.  

1.1 The Purpose of Genetics in Evolution and Human Intervention 

Since Gregor Mendel presented examples of how a carriers information for a trait always 
comes in a pair of distinct units1, the field has taken a relatively huge jump to present-day 
methods where it is technologically and economically feasible to measure millions of markers 
in thousands of individuals for these distinct units now called alleles. The advancement has 
made it possible to address complex traits and diseases from multiple alleles and how they 
interact. 

The driving force behind Mendel’s experiments was to gain a deeper insight into breeding of 
sheep, as it was the economical backbone for the region he lived in. Mendel used his 
education in plant science and insight in pollination to conduct the cross experiments that 
would give rise to the important insights about segregation and individual assortment of 
gametes2. Humans are like the pea-plants of Mendel, a diploid organism, and we transfer our 
traits between generations in a similar fashion. Besides the benefits of recombination and 
segregation3, another benefit of having a diploid is its increased power to locate and 
characterize the impact of genetic markers on gene expression. In this thesis we will present a 
method using RNA-sequencing and genotype arrays to establish these links. The link is 
important to understand disease etiology, but to set this in the overarching context of disease 
prevention, let us first consider harmless variation in the genome, its visual presence and the 
evolutionary reason for its existence.  

When all nucleotides in the genome are the same, as for monozygotic twins their 
phenotypical appearance will be similar. Apart from environmental variation, the reason 
people look different is because of nucleotides varying at certain areas in the genome, 
regulating gene expression responsible for phenotypic traits. This indicates that genetics is a 
major contributor in shaping the development of the human being. Today, the dbSNP 
database4 contains more than 135 million variants discovered throughout the genome. 
Luckily, the majority of genetic variants don’t confer any remarkable or dangerous 
differences. Instead, the purpose of their presence is to act as an evolutionary catalyst in 
adaptations to changes in the environment. However, variants can have a serious influence on 
complications that come late in life, as the level of fitness steadily loses importance by the 
presence of offspring. Speculatively, in an evolutionary perspective, early death could 
actually act have an importance in the balance of available resources to the generation of 
offspring for each generation? Nevertheless, in the context of the modern society, a favorable 
evolutionary step would be to treat diseases caused by the environment, instead of a large 
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pool of variation. As a long-term goal, a world free from disease would reduce the 
economical and emotional burden of the suffering involved with disease and death. To reach 
there, it is important to map which genetic variants that contribute to changes in expression, 
and from that knowledge we can take measures in how we want to intervene, e.g., using the 
temporary effects of drugs, or through gene therapy.  

1.2 The Role of Allelic Imbalance in Functional Analysis of Genetic Risk 
Markers 

Several names, e.g. Allelic Imbalance (AI)5, Allele Specific Expression (ASE)6, Differential 
Allele Expression (DAE)7, have been suggested to explain the phenomena of unequal 
expression of a gene caused by diploid chromosomal heterogeneity. We started out using AI, 
but as the term competes with the popular concept of Artificial Intelligence (also AI), I have 
in this thesis chosen to use ASE. The underlying assumption in using ASE for genetic 
mapping, is founded on the idea that if the region around a gene is similar on both the 
maternal and paternal chromosome for a gene, then all factors responsible for transcription 
should act equally on both alleles, resulting in an equal level of transcriptional expression.   

Mapping of a genetic variants influence on the transcriptional process becomes possible first 
when we have a collection of individuals with at least two different genotype groups, e.g. one 
group containing the heterozygous case AB, and another group containing the homozygous 
case AA. The process of mapping the influence of genotypes on total RNA is called 
expression quantitative trait loci (eQTL) analysis, where significant association can be 
attributed as eQTLs. As more high-throughput expression data are made accessible from 
microarray or RNA-sequencing, eQTL studies are being increasingly common8,9, and are 
suitable either as independent studies or complimentary to other investigations on expression.  

In RNA sequencing experiments, ASE information can without further experiments directly 
be used as a compliment to eQTL analyses adding power in that it e.g. avoids population 
stratification bias, as each individual is its own control. In theory, the presence of ASE is 
itself a proof of existing regulatory control over the transcription. However, for a better 
characterization of the genetic impact, it is of interest to detect which variants are responsible 
for ASE, which can be done in a similar fashion to eQTL studies, with the pre-requisite that 
the phase has to be determined, i.e., we need to know which regulatory allele is on the same 
phase as which transcribed allele. Such an analysis constitutes the backbone of this thesis, 
and because of its similarities to eQTL, we chose to denote the method as allele specific 
quantitative trait loci (aeQTL). 

1.3 ASE is Measured if Heterozygous. 

With existing methods of microarrays and RNA-sequencing it is only possible to differentiate 
ASE if it contains a marker, in this case a heterozygous variant. Even though the genome is 
rich in variation, exons from which much of the transcriptional content origins from, have a 
sparser set, and even for exons harboring common variation, it is not certain the variant is a 
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heterozygote for a specific individual. For this reason, eQTL will still be the only way to 
assess associations for transcripts of less heterozygosity.  

1.4 ASE is Necessary for Functional Analysis of Genetic Risk Markers. 

A reduction in population stratification is not the only benefit using aeQTL, but the internal 
case-control condition between alleles also applies to transcriptional factors, which are 
regulated by other parts of the genome in adaptation to a cells spatial experience, i.e., any 
transcriptional factor will have the same probability of initiating transcription of a gene, if the 
genetic region it binds to is exactly the same. The large benefit is that total levels of RNA, 
which can fluctuate during the day won’t have an impact on ASE, which only uses the 
fraction of expression, which is relative and stays the same. However, in an eQTL analysis 
the total RNA levels will have an impact, and force large sample sizes to detect a signal 
through all inter-individual variation. This opens up the opportunity for aeQTL to detect cis 
QTLs, using smaller sample sizes, provided that they have the required heterozygosity.  

1.5 Knowledge of ASE from Twin Studies 

As a proof of concept for the ASE phenomenon and to investigate its heredity, Cheung et 
al.10, conducted a study where they investigated the co-expression pattern of ASE in 
monozygotic twins (MZ) using genotype arrays. After filtering SNPs to have at least five 
heterozygote twin pairs, they were left with 211 SNPs. For 63 SNPs there were a significant 
similarity in ASE expression. Their results suggest that MZ not only show coherent ASE 
signals, but as well share levels of expression. Additionally, the high intra correlations for 
ASE fractions suggest a strong heredity of the levels of imbalance. 

In a more recent study, Buil et al.11, sequenced fat, skin, blood and lymphoblastoid cell 
lines(LCL) for ~400 female twin pairs, to investigate the proportions of genetic and 
environmental effects on ASE. They found that environmental effects do have an effect on 
ASE (11% LCL, 16% skin, 21% fat and 35% blood), and affects the magnitude of ASE. 
However they clearly state that, initially the difference in transcription of the alleles must 
come from a difference in sequence. About 80% of the genes with a reported ASE also had a 
significant eQTL, i.e., the identification of an ASE event is likely to also be an eQTL.  

1.6 Correcting for Mapbias Underlies All Further Analysis 

The post-processing step, which can bias reference mapping has been seen to affect several 
studies and different methods have been developed to adjust for it: Measuring the bias by 
producing artificial reads of equal quantity12. Allow more mismatches in the alignment step, 
but increasing the risk of false mappings13. Map the reads to personalized phased genomes, or 
transcriptomes14,15). But the most straightforward and accessible way to handle mapping bias, 
here denoted as mapbias, is to mask all SNPs within the reference genome with the generic 
nucleotide indicator N. However, this will make it harder to map, and the loss of reads can be 
huge if the amount of SNPs in a region is large. The remaining source of mapbias after 
mapping to a masked genome would be in the regions with presence of a novel SNP, and 
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solely not masked16. Compensating mapbias using the map ratio for sequenced gDNA has 
been popular, and should ideally give 1:1 ratio in absence of technical variation17,18,19,20, but 
has been shown less effective compared to masking SNPs21. Another option to reduce bias is 
to produce longer reads22, as longer reads in general increase the confidence in mapping.  

It has also been a concern that the problems with mapbias seen for ASE and aeQTL could be 
equally problematic for eQTLs, potentially disqualifying previous discoveries. This concern 
is correct in theory, but has been shown to have limited effect in practice23. Additionally, 
eQTL results have normally been validated in a separate experiment, increasing the reliability 
of the findings. When eQTLs are performed in RNA sequencing data, extending the analysis 
to detect aeQTLs is an additional cost-effective validation.  

1.7 Investigations of ASE in Tissues or Other Sub-compartments 

A global analysis is important to describe the ASE in certain regions, among tissues or to 
quantify the amount of technical ASE bias among all or a subset of SNPs. For the biological 
and technical understanding it can be of interest to study the variation of ASE in different 
regions e.g. like start, middle and end of transcripts or for different types of transcripts e.g. 
like lncRNA, miRNA or protein coding genes. Mapbias on a global level can be measured by 
averaging the allele fraction from all heterozygotes with the same allele as the reference 
genome. The more deviation of the average fraction from 1:1 ratio, the more mapbias is 
present. 

ASE quantification of only one SNP in one individual can unfortunately not by its own say 
anything of the presence of bias, but subsetting SNPs into smaller regions, i.e. investigating 
all SNPs located in a gene or exon of interest can reveal regional stability of ASE 
measurements24. 

Comparing ASE globally between tissues have in a study by Kukurba et al25 shown that ASE 
is co-expressed in tissues more often for tissues with the same embryonic origin. Comparing 
ASE between tissues are robust in the sense of avoiding bias from regional differences in the 
DNA, which is the concern but also necessity for aeQTL, i.e., with no genotypic difference 
we cannot distinguish the maternal and paternal allele. 

1.8 An R, and Bioconductor Based Software for Allele Imbalance 

Numerous softwares and pipelines have recently been developed to explore and detect global 
ASE for different experimental conditions. The AlleleSeq26 software constructs paternal and 
maternal reference genome based on variant phasing from family-trios. MMSEQ27 uses the 
polyHap software to phase according to the hapmap project. The software Allim28 for F1 
crosses handles the phasing in the alignment step with the read aligning software GSNAP29. 
Other pipelines or softwares are e.g. Allele Workbench30, WASP31, MBASED32, EMASE33, 
ALEA34, ASARP35, QuASAR36, GeneiASE37, MAMBA38 and RASQUAL39. Two softwares 
for ASE analysi in the R and Bioconductor environment are iASeq40 and AllelicImbalance24. 
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1.9 Assumption Free Method to Test Separation of Clusters with Known 
Label 

It is common that gene expression data is analyzed using dimensionality-reducing methods 
that reduce a high-dimensional space to something more comprehensible, which makes it 
possible to detect the formation of clusters, which in turn would suggest relatedness of the 
points in each cluster. Often these are assessed by visual inspection, lacking statistical 
objectivity, but can be ok if a separation is clear, i.e., there is no overlap. In the situations 
when the formations of clusters are not clear, because of a substantial overlap between 
classes, more sophisticated ways are required to assess if there is a true separation of clusters. 
The basic idea of our algorithm is to use a computer approximation of how humans 
comprehend patterns, by using principle curves41, which makes it possible to further reduce 
the data down to one dimension. For the many dimensionality reduction methods available a 
general test requires to assume no particular distribution, and the algorithm we have 
developed has taken that into consideration.  
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2 AIMS 
The general aim has been to investigate the potential of ASE information within RNA 
sequencing data to find the link between regulatory genetic markers and gene expression.   

PAPER I  To develop a software to handle ASE data from RNA sequencing and 
investigate the potential of using ASE in the ASAP cohort; can independent ASE signals be 
used to reliably assess links to nearby regulatory variants? 

PAPER II  What is the potential of using ASE in a larger cohort, which allows for 
establishing an association in a regression over genotypes; can we detect associations for 
GWAS risk variants in schizophrenia that eQTL cannot? 

PAPER III Can we discover similar results as in PAPER II in a smaller cohort of less 
sequencing depth; is it still possible to detect associations by ASE, which haven’t previously 
been found by large eQTL efforts within the same tissue? 

PAPER IV To develop a software to test separations in clusters resulting from 
dimensionality reduction methods.  
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3 METHODOLOGICAL CONSIDERATIONS 
This section describes how to we assured enough heterozygosity and read depth in our 
analyses, followed by a description of the material and experimental techniques used in 
each study. Lastly, a presentation of the filters and statistics applied in the studies. 

3.1 Examinations of Heterozygous Probability and Read Depth 

In order to assess the amount of individuals required to increase the chances to make a 
statement about ASE in any selected gene, we needed to characterize the heterozygous 
landscape in humans. To calculate the probability for a gene to contain at least one 
heterozygote site, we used dbSNP13542 and UCSC-known-genes-hg19 (2012-06-27)43. 

A two-sided binomial test for which one allele has 39 reads and the other has 61 reads is 
enough to detect significant ASE signals (p=0.0352), assuming no bias or sequencing errors. 
An experiment is however not free from bias or technical variation, and sadly not equally 
distributed among all genes, i.e., one gene might be affected more by e.g. bias or sequencing 
errors than another. Similar to other statistical tests experiments, the more samples included 
(in this case read coverage), allows us to detect smaller effect size differences and reduce the 
impact of spurious technical artifacts. Yet, mapbias continues to pose a problem for regions 
hard to align, and its impact is problematic for single txSNPs. 

To decide on a cost-effective sequencing depth, we knew from previous microarray 
experiments, that only about 50% of the genes in a measured tissue had a meaningful level of 
intensity44. However, in RNA sequencing, we are not limited by cross-hybridization problems 
of low level expression, but each tissue can have a quite dramatic difference in expression, 
and more common genes or remains of eg. rRNA will consume the majority of nucleotides 
used in the sequencing, leaving genes with low expression a smaller pool of nucleotides to 
share. Early RNA sequencing experiments outlined the potential for RNA-sequencing using 
around 100 million paired-end 36-42mer reads to be enough for a gene specific depth 
coverage of at least 10 reads for about 50% of ~36 000 EnsEMBL genes45. We designed a 
pilot experiment of 100 million pair-end 100mer reads, to ensure an acceptable depth for the 
majority of genes to be investigated for ASE. 

3.2 RNA Sequencing of Vascular Tissue from the ASAP Cohort 

In PAPER I, we both described our developed software for managing ASE-data, and some 
applications on RNA sequenced Aorta and Liver tissue from the ASAP study46. In total 26 
sample were sequenced at a depth of ~100 million pair-end reads each, 8 individuals for 
each tissue, plus 2 additional individuals for aorta, to accompany another ongoing 
experiment in the lab. The library preparation protocol used RiboZero and strand-specific 
sequencing47, randomly distributed in the sequencing lanes to reduce batch effects. The 
mean fragment size generated was 100bp long, which had been showing good QC measures 
by the sequencing facility. However, to our disappointment, it many times resulted in the 
same regions being read twice, losing many of the advantages of paired-end sequencing. 
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The mean fragment size of 100 yielded many shorter fragments, which all of them 
contained adapter sequences, additionally reduced the reason for using a read length of 100 
in the sequencing. All SNPs investigated in PAPER I were determined by DNA genotype 
arrays for 500 000 variants. However, for the development of the AllelicImbalance 
software, which took place previous to our prototype RNA sequencing experiment, we used 
public data from Montgomery et. al.48 

3.3 RNA Sequenced Brain Tissue from Consortium 

In PAPER II, RNA sequenced brain tissue from Dorso Lateral Prefrontal Cortex 
(DLPFC)(n=680) and Hippocampus (n=421) in 782 individuals, was used in collaboration 
with the Lieber Consortium. Paired-end read sequencing with two samples per lane with a 
mean depth of 129.8 million for each sample.  The library preparation protocol contained a 
mixed setup of poly-A capture or RiboZero, no retained strand-specific information and a 
mean fragment size of ~300bp, a size exploiting the full use of pair-end sequencing. The 
use of poly-A capture achieves a maximization of read coverage for mRNA specific 
fragments, by not spending reads on non-coding RNAs, or degradation products. For 
genotyping, the Illumina Human1M-Duo v3.0, illumina 650K and omniX+ microarrays 
were used. In the purpose of establishing a phase estimate as link between risk SNPs and 
txSNPs, and to increase the amount of investigable variants, we used SHAPEIT249, and 
IMPUTE250, using the 1000 Genomes phase III haplotype panel51. 

3.4 RNA Sequenced PBMC from the Combine Study 

In PAPER III, we applied our developed method in PAPER II in a mixed cohort of 
rheumatology patients (n=150) and healthy subjects (n=55), where 137 individuals have 
complete data for two visits, three months apart. For RNA-sequencing, the library was 
prepared by a polyA+ extraction of all fragments containing a poly-A tail. Two samples per 
lane were used producing an average of 11 million paired-end reads per sample. For 
genotyping, the Illumina OmniExpress-platform was used, while phasing and imputation 
was done in the same manner using SHAPEIT249 and IMPUTE250 as in PAPER II. 

3.5 Public Microarray Data to Exemplify a ClusterSignificance Use Case 

In PAPER IV, the data used to demonstrate the algorithm came from public microarray data 
of 2096 patient samples and representing 6 different hematological malignancies as well as 
non-leukemic and healthy patients. These were subset to only include lncRNA expression 
profiles, resulting in 4283 unique lncRNA genes, subsequently dimensionally reduce by t-
SNE52, which is characterized by a preservation of neighbourhoods better than a standard 
PCA. 

3.6 Generation of an N-masked Reference Genome 

In order to reduce mapbias, in Paper I, II and III we based our alignment procedures on a N-
masked reference genome, inspired by Degner et al.16, who had reported a decrease in 
mapbias on a global level, which after masking was within the boundary of the expected 
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binomial distribution. However, they also noted that several independent loci still showed an 
imbalance for simulated reads, caused by a reads ability to align equally or better at another 
loci in the genome53. In this regard, we only used unique alignments in PAPER I. 

The N-masked reference genome was generated through functionality in the 
AllelicImbalance software, which is fed coordinates of SNP evidence (dbSNP13854). Two 
popular splice aware aligners main aligners were considered: TopHat55, which had gain a 
lot of user-feedback and mileage due to early popularity and STAR56, which at release 
outperformed other aligners by a factor >50 in run-time, as well as increasing mapping 
sensitivity and precision56. In paper I, we used TopHat as example to demonstrate its ability 
to mapbias, but due to the all-around better performance of STAR, it was the only aligner 
used for Paper I, II and III. 

3.7 Gene Annotation and Filtering 

To reduce the risk of technical artifacts showing up as ASE, for paper II and III, we set 
several filtering cutoffs: A threshold of at least 10 reads from each allele for a txSNP. And 
to hinder sequencing errors creating false allelic imbalance, we also required that at least 
10% of the total expression came from the less expressed allele. To perform a linear 
regression at least 5 usable individuals in at least two groups were required. These ad-hoc 
thresholds were determined using trial and error on early data, and proved to prevent many 
systematic misinterpretations. Further, txSNP-regions were defined according to the UCSC 
RefSeq gene annotation database (version 12-11-201557 in PAPER II, and version 01-16-
201758 in PAPER III) in a way that each txSNP-region corresponded to one gene. The only 
exception was overlapping genes, which were included in the same txSNP-region. Using 
the phase information we then summarized all txSNPs in the region to get a single value for 
each sample. To reduce the multiple testing burden, the association tests were constructed 
in pairs of genes and risk variants that were within a distance of 200kb in PAPER II and 
500kb in PAPER III, a distance proven sufficient in previous studies59. 

3.8 Using a Binomial Test to Assess ASE 

In PAPER I, we investigated the presence of individual ASE:s using the binomial test, 
which statistically is similar to any random sampling of two random entities from the same 
set of data. When testing for ASE, the two random entities are the two types of allele-
fragments randomly sampled from within the same tissue. Like many other statistical 
methods, the more samples (here reads) available, the smaller differences can be given 
statistical evidence. 

3.9 Using a Regression Analysis For eQTL and aeQTL 

The regression method used in PAPER II and III, is especially appealing in its resemblance 
of the three-genotype group eQTL analysis, which facilitates a direct comparison of the 
result, see figure 1. The method was inspired by a similar method by Almlöf et al.60, who 
instead of RNA sequencing used RNA in the form of cDNA on a DNA microarray 
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platform. As for allelic imbalance in general, we rely on the presence of heterozygote 
txSNPs to construct a fraction, and as all genotypes were computationally phased, the 
relevant allelic imbalance fractions were always calculated in the parent-1-allele direction. 
Taken together this prompts the fractionP1 variable, defined as the amount of parent-1 reads 
divided by reads from both chromosome copies. Since the non-transcribed risk-SNP is also 
phased, the association between risk-SNP and the allelic imbalance it creates can be 
investigated using the linear regression model: 

FractionP1 ~ genotype-group + covariates 

Even if aeQTL is then theoretically set up to ignore trans-effects caused by confounders, to 
reduce the risk of their influence, we included several covariates, age, sex, RIN, the first 
three principal components (PCs) from a PCA on the genotype profile, and the ten first PCs 
from a PCA on normalized whole gene expression estimates. In order to compare the 
aeQTLs ability in detecting QTLs, we performed an eQTL analysis, which used the same 
covariates, but instead of txSNP expression values, we used normalized whole gene read 
counts. Additionally in PAPER III, we assessed eQTLs using total RNA from each txSNP 
respectively; with purpose of creating groups comparable enough to characterize the 
relative influence of trans-regulation, using the difference in effect size between aeQTL and 
eQTL. In PAPER III, we facilitated the use of mixed models to take the extra information 
of both visits into account: 

fractionP1 ~ genotype-group + covariates | patient-ID  

In the performed aeQTL the genotype-group value is enumerated as 0, 1 or 2; being either 
heterozygote of one phase, e.g. A|G , homozygote, e.g. A|A and G|G, or heterozygote in 
opposing phase, e.g. G|A. The symbol | indicates that the genotype is phased, and on the left 
side is the allele variant from parent-1. 
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2

Figur 1 A side-by-side comparison between the data point distribution in respect to the two models of 
eQTL and aeQTL. Heterozygote points indicate homozygote individuals and red points indicate 
heterozygote individuals. There are slightly fewer points in the aeQTL analysis, which can be explained by 
the methods dependence on a presence of heterozygote txSNPs. The established link between AS3MT and 
rs11191419 is one of the strongest associations in respect to p-value in PAPER II. 
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3.10 Combining Gene-wide ASE Measures to Increase Statistical Power 

Multiple variants can be present within an exon, and for which of the variants an individual 
is heterozygote for varies. Summarizing the fraction measures over a gene-region thereby 
increases the amount of genes amendable for analysis by raising the total number of 
contributing individuals compared to specific txSNP measures, see example figure 1.  

 

3.11 Test Cluster Separations in Data of Known Label 

In its most basic form the separation test performed in ClusterSignificance uses a 
permutation on ranked data to avoid any assumptions on distribution or assessment of 
effects size. The aim was to set statistical rigor to a field in science where separations 
otherwise was assessed by pure visual inspection. To become a general test appropriate for 
all types of distributions produced by the plethora of dimension-reduced algorithms 
available61, no assumptions of the underlying distribution were acceptable, and to mimic 
the interpretational assessment of human vision, we applied principal curves to make the 
final simplification down to one dimension, which moreover is ignorant of assumptions. 
The simplification to one-dimensional space also makes it feasible to produce a ROC curve 
from all possible linear discriminants, resulting in a score calculated using a formula 
provided by Song et al.62, which e.g. makes it possible to compare groups of unequal size. 
To test against a certain null case, we advocate an initialization of the permutation so that it 
wraps the whole pipeline. In this way, any introduced artificial separations by the original 
dimensionality reduction algorithm are included in the null case. Another reason to perform 
randomization of the data before the initial dimensionality reduction can be in a setup 
where e.g. one wants to assess if a set of genes produce a better separation than picking a 
random set of genes.  
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Figur 2 An example of how a united measure for a gene region can result in more individuals available for an 
aeATL test. Heterozygote SNPs are here illustrated as red rectangles, and in the presence of at least one 
heterozygote SNP for an individual, it is indicated as a green box. In this example all three individuals will be able to 
contribute to test for aeQTL on the gene level, but maximum two for individual txSNPs. 
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4 RESULTS 
Here the work is presented in chronological order to best describe how certain results or 
opportunities guided the projects within this thesis forward.  It starts with an early 
explorative analysis leading to PAPER I, and thereafter a section describing how we 
planned to deal with the many uncertainties of ASE measures. Subsequently, how the 
opportunity using larger cohorts (in PAPER II and III) allowed us to try a more robust 
variant of ASE analysis, partly ignorant to some of the problems individual ASE measures 
are subjected to. Finally, a description of ClusterSignificance, which is a method and 
software to statistically test cluster separations. 

4.1 Preliminary Results and Considerations 

Before the time of any pilot experiments we wanted to calculate the total amount of 
individuals needed to get a reasonable chance to have at least one individual with a 
heterozygous SNP for any given gene. From the Hardy-Weinberg equilibrium equation, we 
know that frequency of heterozygotes is the frequency of allele q multiplied by allele f. The 
probability p for a gene to have at least one heterozygote SNP is then p=1-(1-(f * q))^n, 
where n equals number of individuals. Applying this equation on coding exonic frequencies 
demonstrated that more than 80 percent of all gene transcriptions larger than 2000bp would 
be available for investigation using 8 individuals, figure 3A. 

Our RNA-sequenced samples matched well previous described gene-read-depth relationship 
with 16500 genes with 10 reads or less, figure 3B. 

 

 

 

4.2 Paper I 

Towards our aim of using ASE to detect gene-expression links in experiments of small 
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process allelic count data from RNA-sequencing. The result was a software 
AllelicImbalance24, and alongside extensive documentation and an introductory vignette, it 
was accepted and published in the Bioconductor project63, a bioinformatics code repository 
written in the R programming language64. For development and as examples in the vignette 
we used public RNA-sequencing data from Montgomery et al.48, including 16.9 ±	 5.9 
million poly-A purified 37bp sequencing reads. As second objective, and in order to reveal 
factors potentially influencing the early steps of library assembly and sequencing, we decided 
to test the performance of the software in our own pilot experiment, using a read depth of 100 
million pair-end, RiboZero and strand-specific sequencing. The in-house aorta and liver 
samples sequenced were used with the AllelicImbalance package to demonstrate 
methodological insights: 1) Even in a small sample size of only 8 individuals there is enough 
heterozygosity to calculate ASE in consecutive exons spanning the same gene region. 2) By 
measuring txSNPs in consecutive exons it is possible to self-validate an ASE in a gene by 
confirming a consistent pattern. 3) When using N-masked data, it is possible to achieve a near 
mapbias-free read count for a gene. 4) Strand-specific ASE can effectively be visualized in a 
“dual barplot”, which represents one strand as upward bars and the other as downward bars. 
The difference between sense and anti-sense transcription tend to be large, and there can be 
significant p-values also for the opposing strand. 5) Equal expression of alleles tends to be 
rather common, and does not show a significant difference even when the read count for each 
allele is over 10 000, Fig2-a (PAPER I). 

4.3 Follow up on RNA-sequenced Samples, Characteristics, Mapbias and 
Filtering 

From our RNA sequenced aorta samples we could demonstrate that about 14000 genes had a 
read coverage larger than 100 reads, figure 3B. The AllelicImbalance software proved useful 
to investigate occurrence of ASE, and shone light on a fundamental impact of mapbias for 
single ASE measures. Even if we offered ways to reduce mapbias influence e.g. N-masking 
the reference genome, map-bias remains a critical source of doubt for all genes not harboring 
heterozygotes in multiple exons in the same individual. To increase the reliability, we began 
to develop a suite of tests to measure the robustness of ASE measures in respect to different 
applied filters. Although, promising results, extensive filtering also reduce the amount of 
SNPs amendable for analysis. It started to become clear that more individuals were needed to 
provide additional support for the detected AIs. 

4.4 Paper II 

Due to a cost-wise uncertainty if an investment in more RNA sequencing was a justified 
prioritization, and as RNA sequencing started to become a more common procedure among 
researchers, we looked for collaborative opportunities to investigate the potential of aeQTL. 
More samples would allow us to move from assessing the impact of mapbias on a single 
individuals ASE measures, to a more traditional inference technique using a linear regression, 
which circumvents mapbias, under the criterion the reference allele is spread equally among 
the genotypes tested for association. In a collaboration with the Lieber Consortium, we had 
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access to 782 individuals in two tissues, DLPFC(n=680) and hippocampus(n=421), with an 
average depth of ~100 million paired-end reads per sample. Complimenting an ongoing 
eQTL analysis, we designed a study linking Schizophrenia GWAS findings with aeQTL and 
compared our results to previous eQTLs and eQTLs in the same cohort. We could 
demonstrate that 1) 4 riskSNPs could only be linked by using aeQTL. 2) For all situations 
with both an eQTLs and an aeQTLs, their direction of correlation was the same. 3) 340 of the 
493 risk-SNP proximate genes were amendable to aeQTL analysis in respect to 
heterozygosity and read depth 4) RIN value was not a main covariate in our cohort. 5) Using 
covariates influence eQTL results more than aeQTL. 6) The closest gene to a risk SNP is not 
necessarily the one under control. 7) In a down-sampling experiment we showed that more 
aeQTLs and eQTLs could be attributed DLPFC than hippocampus. 

4.5 Paper III 

In response to the success of applying aeQTL to detect links not possible using standard 
eQTL in brain tissue, we wanted to further test the method in in-house RNA-sequencing data 
originating from blood of 150 RA-patients and 55 healthy controls. Multiple eQTLs had 
previously been detected in a large-scale analysis based on riskSNPs from a GWAS on 
rheumatology, however far from all risk SNPs were given a functional link. Except the direct 
application of the method developed in Paper II, we provided a theoretical reasoning on the 
source of trans-regulatory footprints detectable by comparing aeQTL and eQTL. The main 
results in paper III were 15 novel QTLs, only detectable by aeQTL, suggesting a strong 
influence of trans regulatory mechanisms, since Okada et al were not able to establish these 
links in their eQTL analysis of over 5000 individuals. To test the potential of a more detailed 
genome-relative investigation of trans-regulatory control within a tissue, we used the same 
individuals for both eQTL and aeQTL for the same expression readings over each txSNP. 
However, even for significant gene level eQTLs, no txSNP specific eQTLs were significant, 
prompting for larger cohorts to allow direct comparisons to txSNP-eQTLs. In summary, 
paper III demonstrates 1) aeQTLs are detectable in a cohort of both lower sample size as well 
as sequencing depth compared to the work on SZ. 2) aeQTLs reveal associations not possible 
using eQTL in thousands of samples. 3) Trans regulation is likely the main source to inter-
individual variation of expression as variation from e.g. Brownian motion is stabilized 
through gene bursts. 

4.6 Paper IV 

This thesis also describes a methodological work, not obviously linked to previous work on 
ASE, instead budding from a statistical need in the characterization of gene expression in 
respect to different diseases. The aim was to provide an assumption free statistical method to 
assess class cluster separations, which is a common procedure in gene expression analysis to 
detect e.g. if only long-coding RNA alone can reveal separations of two classes of data. 
Previously, a separation was established only by visual inspection, a difficult task when 
classes have a considerate overlap. Instead our method justifies a separation by the use of 
principal curves to catch the fidelity of the data similar to the human eye, but puts it in a 
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permutation framework in order to establish a p-value. To facilitate usage of the method, we 
constructed a software application, which was released within the Bioconductor environment. 
Subsequently, we published an article describing a use case of selected long non-coding 
RNAs from public microarray data. Altogether, we used the software to demonstrate that 
long non-coding RNA represented on microarray to alone be enough to separate all except 
one pair of cancers types in the data. 
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5 DISCUSSION 

5.1 A “One Hit Wonder” 

One of the initial issues in this project was if heterozygosity, a pre-requisite to measure ASE, 
was widespread enough within exons to measure a sizeable part of the exome. A developed 
probability model predicted that around 8 individuals would be sufficient to describe ASE for 
around 80% genes. In theory, one individual could be enough to link regulatory SNPs to 
expression, provided that only one gene around a risk SNP is subjected to presence of ASE. 
This we discussed as the one hit wonder possibility. In reality, however, it is rare to fulfill 
these conditions as e.g. several nearby genes could be subjected to a non-disease risk SNP 
altering a change from 1:1, and therefore be incorrectly determined to be important factors in 
disease. Another detrimental factor complicating the discovery of a “one hit wonder” analysis 
is the difficulty to assess mapbias influence on ASE, making every event unreliable without 
further validation. Of course, an ASE that is in the favor of the non-reference allele is more 
likely to represent a true ASE, which can be furthermore supported by comparing the 
reference/alternative allele composition in the read length for all reads overlapping the 
examined txSNP. Provided that bias from mapping has no influence on the establishment of 
ASE, the detection of a large discrepancy from 1:1, also prompts for a strict regulation, by 
one or more variants in cis. Still provided adequate mapbias handling, for multiple samples it 
would be possible to find group-specific ASE signals, which would suggest a common 
regulatory variation responsible to e.g. disease.  

5.2 Exploiting Consecutive Heterozygous Exons for Internal Validation 

PAPER I, described consistent 1:1 signals over multiple exons in the same gene, and how N-
masking corrects deviations due to mapbias. In Fig1 (P1) some txSNPs seem to respond to N-
masking, while others don’t, suggesting that either the masking was unsuccessful in removing 
mapbias or there was no mapbias to remove. As the masked reference genome seem to center 
the expression near 1:1 for all involved txSNPs, speaks for a quite successful reduction using 
an N-masked genome. Another technical message revealed by studying Fig1(P1) and worth 
to highlight is that the effect among txSNPs is somewhat different, while the bias seem to 
occur at almost the same effect size in e.g rs7596677. As the occurrence of additional SNPs 
around a measured txSNP reduces the mappability of reads coming from that region, one 
consistent interpretation of our observations is that the region for each txSNP varies more 
than one region does between individuals, but also a recent shared ancestry among the 
subjects. 

5.3 The Success of Unsuccessful Discrimination Tests 

The more reads over a txSNP the smaller deviations from 1:1 can be statistically established, 
but a small effect size is not necessarily relevant for disease. Interestingly, for some txSNPs 
covered by thousands of reads not even a tiny difference from 1:1 generated a p-value lower 
than 0.05, e.g. Fig2:a and b (W1). It supports the idea that alleles truly are equally expressed 



 

14 

when gene-regulation is the same, which is a fundamental assumption in ASE and aeQTL 
studies. It also confirms RNA sequencing as a technique capable to deliver reliable results. 
However, these heavily read covered genes might pose an exception in a genomic landscape 
otherwise full of technically or non-genetic regulator induced ASE. In complex regions of 
high variation and e.g. enhancer influence a distant variant has a regulatory effect, and it 
becomes difficult to assure the baseline of equal expression compared to regions of low 
variation and no enhancer influence. 

5.4 Unstable ASE measures Become Robust as aeQTLs 

In addition to linking txSNPs to nearby genetic variation, aeQTL gain additional properties 
by basing the ASE-fraction value on one of the parental phases (haplotypes), which allows 
for a fraction value based on either the ref or alt-allele. An equal amount of ref-allele in all 
genotype groups should cancel most of the mapbias influence on the correlation to genotype, 
i.e. present bias is spread equally among the correlated genotypes. Supplemental S2-2C Paper 
II can prove an example of this phenomena, as the mean reference fraction is higher than 
expected 0.5 for heterozygous genotypes tested. Intriguingly, the reference fraction for the 
homozygous genotype appears to actually be centered on 0.5, possibly explained from a 
mapbias-causing heterozygote SNP only present when the tested genotype also is 
heterozygote. 

5.5 Library Preparation and Allele Specific mRNA Degradation 

Compared to mapbias, library preparation and mRNA degradation are two less investigated 
sources of allele specific bias. In library preparation several sources of bias have been 
described: 

There are three potential sources for technical bias in library 
preparation: RNA-specific molecular biology (RNA fragmentation, 
reverse-transcription), RNA selection method (rRNA depletion, polyA 
selection), and sequencing-specific molecular biology (adapter ligation,  
library enrichment, bridge PCR). (Lahens et. al, 2014)65 

Translated into allele specific terms, in library preparation, restriction endonucleases or 
primers might favor fragments for one allele. Library preparation protocols using ribosome 
removal techniques might be more sensitive to allele specific degradation than poly-A 
capture techniques, i.e., some alleles might be persistent to degradation after tail or cap 
removal. Another potential source is miRNA directed mRNA degradation, which can act on 
any part of the mRNA fragment, likely introducing a bias for sites of variation66,67,68. 
However, in the same way as aeQTL inherently reduce mapbias influence on by an equal 
distribution of bias, we could assume the same to be true for allele bias occurring in any 
regulatory step that in some way act on a heterozygous fragment. 

5.6 Phase Reproducibility, Sequencing and LD 

To know if a risk-SNP allele is on the same chromosome as the txSNP requires a phasing 
procedure. Independent from our RNA sequencing results, we established a phase using the 
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1000 genomes haplotype panel and genotype data from DNA. Although, it would certainly be 
an advantage to make use of the phase information within RNA sequencing reads, as the 
process wouldn’t rely on a haplotype panel as reference. For the Shapeit2 software, the 
process would exclude phase informative heterozygote reads not matching the haplotype 
panel filling in where phase generation is uncertain. However, we considered that a genotype 
call from RNA-sequencing comprises a risk to subsequent phasing for cases of wrongly 
called genotypes, therefore only including genotypes from DNA. Haplotype generation 
through a reference panel is not perfect, but uncertainty would translate into a random 
genotype assignment, which would show up as noise rather than a bias. The relation between 
haplotypes and LD is strong, and as expected we found the reproducibility of haplotypes to 
be equal or better as a pure LD R^2 estimate, supplemental material S1-5 (PAPER II). In the 
future, if long-read DNA sequencing costs continues to fall, it would be a more effective way 
to generate a reliable phase not limited by inference, likely replacing imputation techniques 
used today.  

5.7 Read Depth and Overlap 

A substantial read coverage is critical in order to get reliable fraction estimates for aeQTL, 
which besides heterozygosity represents a stern limitation in respect to todays sequencing 
costs. In eQTL analysis read-depth is also important, but low levels of total RNA is 
acceptable, as individuals with a coverage of zero reads for a certain gene still can be useful 
in comparison to individuals with a coverage over the same gene. After the alignment of 
reads, there is a quantification step counting the number of overlapping reads over exons or 
txSNPs. Long reads allow coverage of multiple exons and txSNPs, which directly impact the 
united fraction values, which we applied to increase sample power for gene-regions (PAPER 
II and III). Even though there is an underlying complexity of all isoforms originating a 
region, such as e.g. alternative transcription initiation, alternative splicing, alternative poly-
adenylation or alternative translation initiation69, a merge over all fraction values in a region 
is still representative to characterize the united gene expression. Using this gene 
summarization technique, we consider the level of false positives to remain low, as a 
significant fold change most probably represents a difference regardless of isoform setup. A 
false negative not due to sample size, would occur when two or more isoforms perfectly 
cancel eachother. RNA sequencing experiments that use ribosome removal (PAPER I) can 
catch fragments of premature mRNA, containing intronic regions rich in heterozygosity, 
which makes it interesting for ASE. However, in competition with mature mRNA fragments 
the amount of reads available are relatively low, at date making it infeasible for robust ASE 
measures, but can prove valuable in a future perspective e.g. as a proxy in determination of 
allele specific degradation rate. Another general complication in eQTL, but where aeQTL 
performs slightly worse, is for comparing detection rates of QTLs between tissues, which 
gets inherently difficult as expression levels tend to be tissue-specific, making it statistically 
possible to detect a QTL in one tissue, whilst the same gene in another tissue sometimes 
simply haven’t the reads required to detect the same effect size, or perform a test at all. 
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5.8 Fine-mapping aeQTLs in The Era of Personalized Medicine 

As a first step, linking GWAS variants to gene expression helps to prioritize among the drug 
target candidates in the risk variant region. The main limiting factor in an aeQTL analysis is 
the level of heterozygosity in a gene for a population, which makes it impossible to link genes 
with no variation. However, after application of quality filters, we were in our SZ-analysis 
(PAPER II) able to investigate presence of aeQTL in 340 of 493 genes for the 200kb +/- 
region around the 101 risk loci, and in the RA-analysis (PAPER III) we were able to 
investigate 911 of 1351 genes for the 500kb +/- region around the 100 risk loci. A gene under 
regulatory control from a disease-associated polymorphism e.g. found by GWAS, might as 
well be under control by other polymorphisms, which can prove particularly valuable to 
detect in personal medicine applications. The potential of aeQTL for fine-mapping has also 
been in the focus of others offering various methodological approaches70,71,39. Like pure ASE 
measures, fine-mapping will be limited to the same pool of heterozygous genes amendable 
for analysis, but as tested variants can be homozygous for inclusion in the association model, 
any additional decrease in sample size only occurs when no more than two groups are 
available. Similar to eQTL, fine-mapping additional parameters are valuable to take into 
consideration e.g. picking individuals from different ethnic groups to reduce LD masked 
polymorphisms. As we slowly enter the era of personalized medicine, aeQTL finemapping 
might prove useful to map the landscape of genetic influence for existing or new drug target 
genes. 

5.9 Avoidance and Measurement of Trans Regulation 

ASE as a measure avoids influence of trans regulation, defined as regulatory mechanisms 
from other chromosomes. A special case is when an initiation of transcription relies on the 
fixed presence of another chromosome, which for one cell then could contribute with a form 
of cis expression, slightly breaking its definition as the regulatory difference is present on 
another chromosome than the gene investigated. However, in pooled samples, the 
chromosome-chromosome interactions are likely random, enforcing ASE:s capability to 
detect in cis associations.  

5.10 ClusterSignificance  

Like other tests, the larger the sample size, the smaller the effect size results in a significant p-
value. The recommended follow-up on a significant separation is therefore to evaluate if the 
result is meaningful in terms of effect. However, a problem with dimensionally reduced data 
is that effect size can be difficult to interpret, as the transformation from high-dimensional to 
low-dimensional space is non-trivial. Nevertheless, an established difference does not 
necessarily depend on the effect size to be meaningful, as a difference always origins from a 
real difference. Another issue is the final required reduction down to one-dimensional space, 
in that every reduction excludes information. However, to minimize the risk of loosing the 
separating information in that last reduction, several different dimensionality reduction 
algorithms can be tested on the data before testing for a separation in ClusterSignificance.  
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5.11 R software Design Considerations 

Both AllelicImbalance and ClusterSignificance are products of optimization in storage and 
calculative operations, as well as functional extendibility design, which does not interfere 
with existing users, i.e., new functions do not disrupt existing workflows. AllelicImbalance is 
a general tools package for ASE operations, and has been used extensively throughout Paper 
I, II and II. The ASEset class object functions as a container of pre-processed sequencing, 
genetoype and other sample variables like e.g. covariate measures.  The data storage is copy-
on-modification, lowering the memory usage and processing time, required to smoothly 
process millions of SNPs in a single run. The package takes full advantage of the 
GenomicRanges-suit in Bioconductor, which lowers over-head maintenance costs and 
facilitates integration and usability within the community. Some updates under consideration 
are handling of txSNP indels and shrinking the count data using sparse-matrices or other 
index based implementations. One non-released branch of a sparse-matrices implementation 
exists, but the development required assistance of many basic arithmetic operations to 
accommodate the current 3D-array, which is the internal representation. This shines light of a 
conflict between storage and rapid processing, i.e., it is very unnecessary to use a top of the 
art storage system if every access requires a transformation back to a memory-consuming 
structure to be able to use existing arithmetic operations. The development of arithmetic 
operations for tailored indexing has potential, but risks a large over-head cost. Generally, if 
computer capacity is not increasing in the same speed as more data become available for 
analysis, we will be forced to balance more time on optimization than interpretation. 
ClusterSignificance is compared to AllelicImbalance not a general tools package, and 
requires less flexibility in storage considerations. Expected input is merely the output of a 
dimensional reduction algorithm in the format of a 2D-matrix, limited by sample and feature 
size. 

5.12 Future Perspectives 

With recent technical innovations it is possible to apply more sample-efficient as well as cell 
specific ASE examinations. 

A more careful design can increase statistical power for genes with low read depth or 
with few heterozygots 
One path to reduce the loss of data from filtering heterozygote sites, is to perform an 
experiment from e.g. biobank samples previously genotyped and only include samples 
harboring at least one heterozygote in e.g. genes previously indicated important in disease. 
Combining this pre-selection with a full multiplex RNA-sequencing experiment72 focusing 
on a probe-capture73 lowly expressed genes can reveal their relatively unexplored landscape 
of genetic regulation in a high-throughput setting; lowly expressed genes that otherwise only 
accessible through very costly deep sequencing experiments. 

Single cell sequencing can reveal spatial ASE and within each cell type  
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RNA sequencing for single cells has recently become feasible, and especially important for 
e.g. lineage tracing during cellular differentiation and organ or embryo development74. Using 
single cell sequencing information to measure ASE is an interesting option but has to take 
into account e.g. that cells burst allele specific expression75. This would reduce the ability to 
perform accurate ASE measurement, i.e. an individual might shift which allele is the only one 
expressed. This makes it impossible to get a robust measure of ASE for genetic linking, using 
just one cell at one time point. Instead, using RNA sequencing on a population of cells will 
comprise the mean expression of all RNA molecules among the pooled cells, and thus 
represent a better estimate of ASE. Bioinformatically, there is no difference whether the 
merge of allele expression takes place before or after the sequencing, and in that respect there 
is no strong gain in using single cells to address ASE, compared to sequence a whole 
population of cells. On the contrary, there has been a certain success for single cell eQTLs, 
using connectivity between cells to reduce the influence of trans-regulatory variability, which 
prompts a possibility to enhance ASE measures using the same principles. Additionally, 
single cell sequencing can reveal detailed spatial distribution within tissues76, in turn 
revealing potential differences in ASE within the same tissue, triggered by the use of different 
transcription factors. This reasoning is an extension of the tissue specific results from e.g. 
Korkuba et al25, and organ differentiation by Saliba et al74. Single-cell sequencing has the 
potential of narrowing down genetic contributed ASE in smaller spatial tissue space than in 
pooled tissue samples, but maybe more important is its capability to purify ASE measures for 
mixed cell population. Additionally, single-cell sequencing has also been proven useful for 
phase generation, facilitating coherent ASE within a gene77.  

Digital qPCR can be used to validate ASE findings from RNA-sequencing 
Another way to validate ASE-events is to use digital qPCR78, which similar to RNA-
sequencing can quantify and discern the alleles, in the existence of heterozygote sites. 
However, this method is not standard procedure and could likely be exposed to bias in the 
library construction, whereas any of the alleles may be more or less easy to replicate.  

Suggestions to reduce the need for heterozygosity to assess ASE 
The perfect aeQTL experiment totally avoids the need for heterozygosity, but adding an 
artificial marker to only one portion of identical RNA fragments based on ancestry is difficult 
to achieve. An unelaborate proposal would be to infer allele specific expression based on 
additional regulatory mechanisms, such as histone markers, chromatin-status coupled with 
the information depth provided by single cell expression measures. Or more wishfully, a 
micro-monitoring device, which captures and follows all mRNA processes in living cells.  

aeQTL can be a major player in advancing personalized medicine 
Personalized medicine is part of the EU agenda and is described as “ a fast-growing market 
and Europe's healthcare industry has the potential to build on its leading position, providing 
economic growth and jobs.” (European Commission79).  Many drugs act on repressing gene 
expression or their protein product to lower the effect of a protein involved in a certain 
disease. The individual response varies, and in treatment the choice of drug is today more a 
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“trial and error” process than based on scientific evidence. Therefore, to reveal genetic 
influence on drug-targeted genes and providing the markers affecting the transcriptional 
machinery is of great public interest. Using aeQTL to connect genetic markers and the 
expression for e.g. drug-targeted genes, allows the pharmaceutical industry to select 
candidates less influenced of genetic regulation or to specifically address a smaller portion of 
the population in the clinical trial. 

5.13 Ethical Risks 

Genetic analysis is always sensitive, since the donors’ genetic information also can be used to 
infer attributes for their relatives. This thesis is using genotypes from a hundreds of 
individuals, but which is a small figure compared to the thousands of individuals used in e.g. 
GWAS studies. With that said, even if the sample size is small in comparison to GWAS 
studies, using anonymized keys we kept the integrity of our participants to not let their 
contribution end up where they did not consent. 

If we extend the ethical concerns from how to handle the data in a secure way to discuss the 
general danger of genetic research, can it be so that the bad effects could outweigh the good? 
There are several moral concerns regarding economy, humanity and the environment. E.g. 
insurance companies might request genetic information to set up a lower fee for individuals 
with a genome less likely to experience high-cost diseases. Similar in dating, individuals 
might be locked out of society by not having a preferable genome. All research can end up 
being misused with the wrong intentions, but as long as we are aware of the dangers, and can 
provide sufficient transparence, the risks might be worth taken. The alternative would be to 
stop science and stay satisfied with how life is today. 
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6 FINAL REMARKS 
ASE analyses are of growing importance in the field of genetic linkage analysis, while it is 
also the closest genetic active link to explain expression. This will become increasingly 
important in order characterize specific drug-target genes for the use in personalized 
medicine. Despite all possible harmful elements that risk biasing an ASE analysis, it seems 
possible to design experiments so the distribution of test groups allows e.g. measuring a 
single gene target to be analyzed with the full power of ASE. Even if the global analysis 
methods are important to screen out the mass QTL effects, the non-symmetrical 
heterogeneity among SNPs makes it difficult to compare QTLs with each other. Unless the 
pool of accessible samples is not large enough, p-values and effect size measures will only 
indicate associations, not their relative importance. To be used in a clinical setting the 
findings are still required to be validated and independently quality controlled for bias. Gene 
or region centric quality control tools, like the ones in the AllelicImblance package24, are thus 
of importance.  

The ClusterSignificance is a statistical tool to set p-values of cluster separations, especially an 
aid for overlapping separations where visual inspection is not enough. Like the 
AllelicImbalance package, it is an open-source and free package completely written in the R 
programming language and can be downloaded from the Bioconductor repository. 
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