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Abstract
In medical research, many studies with the time-to-event outcomes investigate the effect
of an exposure (or treatment) on patients’ survival. For the analysis of time-to-event
or survival data, model-based approaches have been commonly applied. In this thesis,
a class of regression models on the survival scale, termed generalized survival models
(GSMs previously described in Appendix A of [1]), and full likelihood-based estimation
methods were presented along with four papers. The overall aim was to provide a rich
and coherent framework for modelling either independent or correlated survival data.

Our main contributions to GSMs and related estimation approaches were as follows:
First, we refined the mathematical and statistical backgrounds of the model components,
including the link function, log-time, and smooth univariate functions. Second, we
broadened the class to include generalized additive functional forms for representing
covariate effects, such as non-linear forms, time-dependent effects, joint time-dependent
and non-linear effects for age, and multivariate regression splines. Third, we introduced
the thin plate regression splines [2], which can use knot free bases, as an alternative
regression tool to knot-based regression splines into GSMs. Fourth, under a penalized
likelihood framework, we integrated the process of parametric estimation and model
selection for the number of spline basis functions. These refinements, extensions, and
related assessments were undertaken in the first three papers. These newly proposed
features of GSMs and estimation methods were implemented and integrated into the
rstpm2 package in R.

This thesis consists of four research papers for modeling either independent or
correlated survival data, together with either overall or net survival to be the measure of
interest. In Paper I, the outcomes under study were independent time-to-death due to
any cause (or time-to-any recurrence of disease). Parametric and penalized GSMs were
introduced with extensions, simulation studies and applications. In Paper II, the
outcome of interest was correlated time-to-some specific event due to any cause, such as
time-to-event data collected from patients in the same clinics. It is reasonable to consider
that the subjects within a cluster may share some unmeasured environmental or genetic
risk factors, which are commonly modeled by a random effect b (or frailty U) and
assumed to be independent of given baseline covariates. In this paper, GSMs with novel
extensions were proposed to analyze correlated time-to-event data. In Paper III, we
extended GSMs with novel features for relative survival analysis; the outcome of interest
was time-to-death due to the disease under study. In Paper IV, we analyzed
time-to-repeated event within the same subject using the proposed methods in Paper II
and described the time-dependent cumulative risks of subsequent outcomes for men in
different states since study entry.

In summary, these proposed methods performed well in extensive simulation studies
under the investigated setting, with good point estimates and coverage probabilities.
Through the analysis of example data sets, similar results can also be observed using the
proposed methods and other well-established approaches, under proportional hazards or
proportional odds models settings. Moreover, novel features were also illustrated in both
simulations and applications. Generally, the combination of GSMs and full-likelihood
based estimation methods can provide alternative tools for the analysis of survival data in
medical research.
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1 Introduction

In epidemiological and clinical studies, many outcomes are expressed as the time to a
specified endpoint, such as the time from diagnosis to recurrence of a tumor, or time
from diagnosis to death. The analysis of time-to-event (or survival) data needs specific
statistical methods to handle censoring and truncation, such as non-parametric
methods [3–6] and regression model-based approaches [7–13], combined with
likelihood-based estimation methods [14–17].

A conversation with Sir David Cox was reported by Nancy Reid in 1994 [18]:

Reid: “So if you had a set of censored survival data today, you might rather fit a
parametric model, even though there was a feeling among the medical statisticians
that that wasn’t quite right.”

Cox: “That is right, but since then various people have shown that the answers are very
insensitive to the parametric formulation of the underlying distribution. And if you
want to do things like predict the outcome for a particular patient, it is much more
convenient to do that parametrically.”

The conversation provides insight into the advantages of parametric survival models,
which can estimate baseline functions of survival times (e.g. baseline hazard and
survival functions) and related regression coefficients in one statistical procedure. By
contrast, the classical procedure usually requires two steps: first, based on Cox
regression, to obtain regression coefficients, and then the Nelson-Aalen estimator of
cumulative baseline hazards for predicting the survival. Alternatively, to increase
flexibility of functional forms for baseline hazard functions or covariate effects,
spline-based regression approaches [19–32] have become of interest in survival analysis
for either independent or correlated time-to-event data.

Based on maximum likelihood or penalized likelihood estimation methods, a fitted
parametric or regression spline-based survival regression model can provide all model
components, including regression coefficients and a baseline function. In this context,
several interesting features can be introduced to regression spline-based survival models,
such as (1) generalized additive functional forms [2] for covariate effects, e.g.
non-linear forms for continuous variables [33], joint time-dependent and non-linear
effects for age [34, 35]; and (2) low rank smoothers [36] for representing smooth
regression components, which do not depend on spline knots (e.g. the thin plate
regression splines [37]), as an alternative regression tool to knot-based regression
splines combined with full likelihood-based estimation methods.

In this thesis, within the framework of generalized survival models (GSMs) [1], we
have refined the mathematical and statistical backgrounds of the link function, smooth
univariate functions, and transformation of time; we have extended some novel features
for GSMs and full likelihood-based estimation methods; We have introduced a penalized
likelihood framework to integrate the process of parameter estimation and model
selection for the number of spline basis functions in one statistical procedure. Under
overall and relative survival settings, GSMs can be an alternative tool for the analysis of
either independent or correlated survival data in medical research.
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2 Background

In observational cohort studies, an initial event could have occurred before study entry
(e.g. the diagnosis of a disease) for some subjects, and some individuals could be censored
due to emmigration or at end of study period. The analysis of this type of censored (or
truncated) survival data is generally termed survival analysis.

2.1 Time-to-event outcomes

In survival analysis, observations of time-to-event outcome involve two quantities: (1)
the observed survival time To that usually measures the duration from study entry until
some endpoints (e.g. death and end of study); and (2) the event indicator ∆ that denotes
whether a specific event (e.g. death due to any cause) occurs. This means that there
should always be paired data (to,δ ) denoting observed survival times. Of more interest,
the time to the occurrence of a specific event (T with δ = 1) is considered as a continuous
non-negative random variable and has a continuous probability distribution. However, for
some subjects, the specific event does not occur or cannot be observed during the study
period. In this case, the type of observed survival times is right censored and we define C
to be the censoring time with δ = 0. Left-truncated survival data can be encountered in a
delayed entry study [38, 39] and time-to-event data can also be interval-censored [15].
In this thesis, right-censored survival data are mainly illustrated.

The situation in which both random variables (T and C) are potentially related to each
other is known as informative censoring. However the desirable situation is
un-informative censoring. In practice, in addition to observed time-to-event data
(toi,δoi), there are often several variables (zi) recorded for the patient i at diagnosis of the
disease under investigation, such as demographic variables (e.g. sex and age) and
clinical characteristics (e.g. stage at diagnosis and primary tumor site) in observational
cohort studies. These variables may be termed risk factors, prognostics factors,
exposures or treatments in different medical studies. For simplicity, these variables are
often termed covariates in this thesis.

In general, if not specifically stated in this thesis, we assume that the common
assumption of un-informative censoring holds after adjustment for measured
con-founders. In this context, T and C are considered to be conditionally independent,
given that

T |Z = z ⊥⊥ C|Z = z. (2.1)

Note: the term baseline is commonly used in this thesis for: (1) baseline covariates,
which means that the values of covariates are fixed (or time-constant) and measured at
study entry; and (2) baseline functions, which denotes the functions of survival times for
the specified reference group, with the values of zero for each categorized variable and
empirical averages for continuous variables.

3



2.1.1 Independent or correlated time-to-event data

For time-to-event data, one of our aims was to infer the underlying probability
distribution and hazard functions of t given z from a random sample of observations
{(to1,δ1,z1),(to2,δ2,z2), . . . ,(ton,δn,zn)}, where n is the sample size. Before processing,
we need to pay attention to the data types, and whether the data are independent. The
common assumption is that these samples are independent and identically distributed
given values of Z.

However, in some situations [40–42], clustered time-to-event data or repeated survival
data within the same individual may be encountered. In these situations, {(Toi j,∆oi j)|Z =
zi j; i = 1,2, . . . , I} for any subject j in the ith cluster may be correlated and within-cluster
dependence needs to be accounted for.

Therefore, it is necessary to choose appropriate statistical methods for the analysis of
different types of survival data. For example, the Cox regression and the proportional
odds model can be applied to independent survival data [7, 43]; some extended
proportional hazards or proportional odds model with random effects can be used for
correlated survival data [44, 45].

2.1.2 Overall or net (relative) survival

According to the research question of interest, either overall or net survival can be used
as measures of cancer survival [46]. Both these settings were investigated in this thesis
(i.e. overall survival and relative survival settings).

Let T be the random variable for all-cause mortality, the corresponding overall
survival function S(t|z) [8] is defined as the probability that the specific event does not
occur within the time interval (0, t], given z and t ∈ (0,∞), and is the complement of the
cumulative distribution function F(t|z) = P(T ≤ t|z) in the forms of

S(t|z) = P(T > t|z) = 1−P(T ≤ t|z) (2.2)

with S(0|z) = 1. Collett [11] used "the greater than or equal to" sign "≥" for defining the
survival function. The hazard function h(t|z) [8] is then defined as

h(t|z) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t;z)
∆t

=−d log{S(t|z)}
d t

, (2.3)

which is interpreted as an instantaneous rate of event occurring at time t for subjects
surviving at that time, with further relationships [8] between hazard, cumulative hazard
H(t|z) =

∫ t
0 h(u|z)du, and survival functions of continuous times t

S(t|z) = exp(−
∫ t

0
h(u|z)du) = exp(−H(t|z)).

In a long-term follow-up cohort study, the mortality for each patient may be due to
either the disease in question or all other causes, especially in elderly patients [47]. In the
relative survival setting, Pohar-Perme and colleagues [6] defined TEi as the time random
variable of death due to cancer with the survival function: SEi(t|zi) = P(TEi > t|zi), and
TPi as the time random variable of death due to other causes with the survival function:
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SPi(t|xi) = P(TPi > t|xi). Thus Ti = min{TEi,TPi} is the time random variable of all-cause
mortality and the overall (all-cause) survival [48] function for each patient can be given
as

P(Ti > t|zi) = P(min{TEi,TPi}> t|zi)

= P(TEi > t,TPi > t|zi)

= P(TEi > t|zi) ·P(TPi > t|zi) (2.4)
= SEi(t|zi) ·SPi(ai + t,yi + t|xi) (2.5)
= Si(t|zi), (2.6)

based on two main assumptions: (1) the formula 2.4 holds only if TEi and TPi are
conditionally independent, given a set of baseline variables zi; and (2) the formula 2.5
holds only if the mortality rate due to other causes can be represented by the matched
population life tables stratified by a set of variables xi, with ai and yi being the age and
period at diagnosis for the subject i. This verifies previously proposed
assumptions [6, 49] and demonstrates that the net survival for an individual i is
equivalent to the individual-level relative survival ratio:

SEi(t|zi) =
Si(t|zi)

SPi(ai + t,yi + t|xi)
. (2.7)

Furthermore hi(t|zi), hPi(t|xi) and hEi(t|zi) [6] are the hazard functions for each
patient, corresponding to the survival functions Si(t|zi), SPi(t|xi) and SEi(t|zi),
respectively. Based on the formula 2.7, the excess mortality due to cancer under study is
the difference between the observed (all-cause) hazards and the mortality due to other
causes [50, 51], which is expressed as

hEi(t|zi) = hi(t|zi)−hPi(ai + t,yi + t|xi), (2.8)

and the empirically marginal survival (net survival) [6] is

SE(t) =
1
n

n

∑
i=1

SEi(t|zi) =
1
n

n

∑
i=1

exp{−
∫ t

0
hEi(u|zi)du}. (2.9)

Similarly, based on proportional hazards models for independent survival data, adjusted
all-cause survival curves have been applied in medical research [52] .

2.2 Statistical models for survival data

2.2.1 Parametric survival models and their connections

The log-transformation of T is used to associate with prognostic factors in the broad
family of parametric accelerated failure time (AFT) models [11, 53] and is usually
described as

log(T ) = µ +β
T z+σε. (2.10)

5



where µ denotes the intercept, β and σ are unknown model parameters, and ε is the
random error. It is clear that survival times could be different, even if the given baseline
variables are the same for some subjects.

In general, parametric AFT models provide a basic framework to connect other survival
models introduced by Collett [11]. According to the definition of survival probability
function,

S(t|z) = P(T > t|z) = P(log(T )> log(t)|z)
= P(µ +β

T z+σε > log(t)|z)

= P(ε >
log(t)−µ−β T z

σ
).

Assuming a particular standard probability distribution for the random error ε , the
corresponding survival probability distribution of log-transformed survival times is
specified. For example, suppose ε has the standard logistic distribution, then

S(t|z) =
{

1+ exp
(

log(t)−µ−β T z
σ

)}−1

,

which can be reformulated as [11]

log
{

1−S(t|z)
S(t|z)

}
= log

{
1−S0(t)

S0(t)

}
+β

T
poz

= b0 +b1 log(t)+β
T
poz, (2.11)

where S0(t) is the unknown basis survival function, and b and βpo are re-arranged
parameters. The models have monotonic and unimodal hazards, which have been
applied to lung cancer survival data [54] and can be identified as the log-logistic
proportional odds (PO) model for survival data [43].

Similarly, the Weibull AFT model is related to the Weibull proportional hazards (PH)
model [11] in the form of

h(t|z) = λγtγ−1exp(β T
phz),

which can be expressed in survival function as

log{−log(S(t|z))}= log{−log(S0(t))}+β
T
phz

= logλ + γ log(t)+β
T
phz. (2.12)

In particular, in relative survival analysis, the excess hazards may monotonically
decrease along with the follow-up time, and it could be reasonable to explore Weibull or
log-logistic parametric distributions for baseline hazard functions (see the related
analysis and results in Paper III).

In general, there are relationships between the parameters in either the Weibull PH
model 2.12 or the log-logistic PO model 2.11 and the corresponding parametric AFTs. R
code for the related comparison is provided in the Appendix A.1.
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2.2.2 Spline-based regression models and semi-parametric approaches

To relax parametric forms for transformed baseline functions and covariate effects,
spline-based smooth modeling techniques, such as B-splines [55], restricted cubic
splines [53], P-splines [56], smoothing splines [57] and a class of penalized regression
splines [2], can be applied to represent smooth regression components. Following
Wood [37], regression splines (see Table 2.1) can be classified as: (1) pure regression
splines, which may be dependent on knots or not, usually with the number of spline basis
functions as the dimension of unknown parameters; and (2) penalized regression splines,
implemented in the mgcv package in R, including penalized B-splines (P-splines), with
effective degrees of freedom (or the equivalent number of parameters [36]) to be
automatically selected in the estimation procedure; where we need to specify the
maximum dimension of spline basis functions for each smooth regression components.

Table 2.1: Four types of regression splines

Regression splines knot-based bases knot-free bases

Pure 1. Require knots locationsc Require the number of bases

(MLEa) 2. Require the number of knots

(e.g. B-spline) (e.g. thin plate spline basis)

Penalized 1. Require knots locationsc Require the maximum dimension

(MPLEb) 2. Require the maximum dimension

(e.g. P-spline) (e.g. thin plate spline basis)

a MLE: Maximum likelihood estimation.
b MPLE: Maximum penalized likelihood estimation.
c Interior knots can be located at either the quantiles of x or equally-spaced points.

In general, B-splines and restricted cubic splines are predominantly used to estimate
smooth functions, commonly with the quantiles of continuous variables as predefined
knots in both Stata and R [30, 53]. By contrast, P-splines and penalized truncated power
basis functions [36] have been compared previously [58]. However, within the framework
of penalized knot-based regression splines, Eilers and Marx [58] pointed out that equally
spaced knots may be preferred, especially for constructing simple difference penalties.
Compared to these knot-based splines, there is one type of knot-free regression splines
based on radial basis functions (so-called penalized thin plate regression splines [37]),
which are mainly applied in generalized additive models implemented by Wood [2].

Truncated power basis functions

The truncated power function (or truncated piece-wise polynomial) of a continuous
variable x with exponent 3 can be defined as [36, 59]

x3
+ =

 x3, x > 0

0, x≤ 0.

7



Based on truncated power basis functions, a cubic spline function s(x) [20] can be
represented as

s(x) =
3

∑
j=0

β0 j x j +
K

∑
i=1

βi3 (x− ti)3
+, (2.13)

with the position of K knots being (t1 < t2 < · · ·< tK). To avoid having a poorly behaved
in the tails, Stone and Koo [60] proposed to construct the cubic function to be linear in
the tails, which means that the function s(x) is subject to β02 = β0 = 0 and ∑

K
i=1 βi3 =

∑
K
i=1 βi3 ti = 0 (see also [16, 20]).
For example, this type of restricted cubic splines (RCS) has been mainly applied to

the family of Royston-Parmar models or flexible parametric survival models [16, 30],
implemented in Stata with the name stpm2.

B-spline basis functions

B-splines can be derived by the Cox-de Boor recursive formula [55],

Bi,0(x) =

 1 if ti ≤ x < ti+1

0 otherwise

Bi,k(x) =
x− ti

ti+k− ti
Bi,k−1(x)+

ti+k+1− x
ti+k+1− ti+1

Bi+1,k−1(x).

where t1 < t2 < · · ·< tk are the ordered k knots. Eilers and Marx [58] provided an example
and the R code to demonstrate the relationship between B-splines and truncated power
functions using equally spaced knots, see [61] for further details.

Based on B-splines, another type of restricted cubic splines (also called natural
splines [36]) can be imposed on the same linear constraints in the tails as s(x). For
example, in the R package rstpm2 [62], natural cubic splines are adopted as the default
regression splines in the stpm2 function.

Radial basis functions

Another set of related spline basis functions are the radial basis functions described
in [36]. One advantage of this type of spline basis functions is that it can construct either
univariate or multivariate splines. Based on the radial basis functions, both knot-based
and knot-free bases can be constructed for modelling smooth functions [2].

Within knot-based approaches, given knots x1 < x2 < · · · < xK , the univariate radial
basis functions can be expressed as

Bi(x) = |x− xi|3 = 2(x− xi)
3
+− (x− xi)

3.

From this it is clear that radial basis functions are also related to truncated basis
functions. Based on the above cubic radial basis functions, knot-based thin plate
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regression splines [37] can be constructed as

s(x) =
3

∑
j=0

β0 j x j +
K

∑
i=1

βi3 |x− xi|3

and imposed on the same linear constraints in the tails as the above restricted cubic splines.
Within knot-free approaches, Wood [37] introduced to use the truncated

eigendecomposition method for producing knot free bases [2]. The thin plate regression
splines, which do not use "knots" [2], can be a type of knot-free regression splines. For
example, in the R package rstpm2 [62], the penalized thin plate regression splines are
treated as the default regression splines for the penalized estimation approaches with the
function pstpm2.

2.2.2.1 Spline-based hazard models

Cox regression [7] is the most popular survival regression model applied to the analysis
of time-to-event data

h(t|z) = h0(t)exp(β T
z z),

with the baseline hazard function h0(t) unspecified and a partial likelihood estimation
framework for estimating regression coefficients βz.

In the past three decades, spline-based smoothing techniques have been commonly
applied to the Cox proportional hazards model and extended models on hazard (or
log-hazard) scale, e.g. for representing non-linear effects of continuous covariates [21],
for modeling continuous-by-continuous interaction terms [22], for time-dependent
effects [63, 64], and for joint time-dependent and non-linear effects for age [34, 35].
More generally, the geoadditive hazard regression (combined P-splines) using a mixed
model approach [65, 66], smoothing spline ANOVA models for survival data [31, 57],
and the related regression models on hazard scale by Wood [67] have been developed
for the analysis of survival data.

For example, within the extended framework of Cox regression, four smoothing
techniques including restricted cubic splines, P-splines, natural splines and fractional
polynomials [68, 69] were compared for modelling non-linear effects of continuous
covariates under several simulated settings; see [70] for details.

2.2.2.2 Spline-based generalized survival models

Alternatively, a class of spline-based regression models on the survival scale was
originally introduced by Younes and Lachin [71] using the term link-based models,

gc{S(t|z)}= g{S0(t)}+β
T
z z, (2.14)

where B-splines were applied to represent the baseline hazard function and link functions
can be generalized to the parametric family gc(x) = log x−c−1

c .
Royston and Parmar [16] developed the class of spline-based survival models using

restricted cubic splines (based on truncated power functions) to represent transformed
baseline functions g{S0(t)} [16]. Within this framework, Royston, Lambert, and
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colleagues [1, 16, 30] further extended Model 2.14 with time-dependent effects to
produce a family of flexible parametric survival models in Stata, such as for clustered
survival data [72], competing risk [73], and population-based cancer survival
data [74–76]. The term “generalized survival models” was first introduced by Royston
and Sauerbrei in the Appendix A of [1].

2.2.2.3 Semi-parametric approaches

More specifically, under the similar model framework with 2.14, Dabrowska and Doksum
introduced the class of semiparametric “generalized odds-rate models” [77, 78]

gρ{S(t|z)}= α(t)+β
T
z z (2.15)

to include both proportional hazards and odds model as special cases, where α(t) is an
increasing function of t and a family of link functions, with gρ(·) the same as gc(·).
The class of semiparametric models have been developed for handling interval censored
data [79].

Additionally, a class of semiparametric transformation models with censored data [80]
were developed to include both proportional hazards and proportional odds models with
random effects [45, 81–83]. The class of models are closely connected to the class of
spline-based survival models [84] and the class of semiparametric survival models [77].

In addition to the class of regression models 2.14 on the survival scale, there is also a
class of models for the cumulative incidence functions within the competing risk setting.
Fine and Gray [85] introduced the concept of the subdistribution hazard (termed Fine
and Gray competing risk regression model), which can be connected to the
cause-specific cumulative incidence functions. Furthermore, the class of absolute risk
regression models on the cumulative incidence functions have been proposed, such as
using penalized estimation methods [86], with high-dimensional covariates [87], for
interval-censoring data [88].

2.2.3 Multistate models

For subjects who experience multiple events (or states) since study entry, multi-state
models with non-parametric estimation methods can be applied. In Paper IV, we applied
multistate models to estimate time-dependent risks of subsequent outcomes (or different
states) from different initial states. For illustration, assume that a stochastic process
{X(t) : t ≥ 0} is a continuous-time Markov process, with a finite state space
Ds = {0,1, . . . , p}. Transition probabilities can be defined as [89]

Pi j(t, t +d t) = Prob(X(t +d t) = j|X(t) = i) (2.16)

and transition hazards can be defined as

hi j(t) = lim
∆t→0

Pi j(t, t +d t)
∆t

Furthermore, the transition probabilities P(0, t) from an initial state i to a subsequent
state j over a time period (0, t) is a more interesting measure, and can be the solution to
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the Kolmogorov forward differential equations [89]

∂Pi j(0, t)
∂ t

= Pi j(0, t)hi j(t)

based on the Chapman-Kolmogorov equations Pi j(0, t) =Pik(0,u)Pk j(u, t), where 0< u<
t and k ∈Ds. One solution to the above equation in the matrix form is the Aalen-Johansen
estimators [89]

P̂(0, t) = ∏
0<tk≤t

(I+∆Ĥ(tk) (2.17)

where the cumulative translation hazard function Hi j(t) can be estimated by the Nelson-

Aalen estimator Ĥi j(t) =
∫ t

0
dNi j(u)
Yi(u)

and let Ĥii(t) = −∑ j Ĥi j(t) [89], where N(·) is a
corresponding counting process and Y (·) is the at risk indicator (see [40]).

2.3 Full likelihood-based estimation methods

A partial likelihood function [7] only involves the functional forms of covariate effects,
canceling out the information on the baseline functions of time. By contrast, a full
likelihood function often includes specified functional forms for both baseline hazard
functions (or other transformed basis functions of time) and covariate effects (e.g.
time-dependent and non-linear effects).

2.3.1 Maximum (full) likelihood estimation

For right-censored survival data, under the assumption of non-informative censoring 2.1,
a full log-likelihood of β can be formulated as follows [8]

logL(β ) =
n

∑
i=1
{δilogh(toi|zi;β )+ log(S(toi|zi;β ))} , (2.18)

which involves hazard functions only for subjects with the occurrence of an event, and
survival functions for all individuals.

The negative log-likelihood function −logL(β ) can be set to an objective function for
estimating optimal model parameters β , which is then converted to a mathematical
optimization problem of finding the optimal β in a feasible parametric space. For further
details on maximum likelihood estimation, see [90, 91]. Similarly, for correlated data,
the related marginal likelihood function [90] can be derived from integrating out random
effects for each cluster.

2.3.2 Maximum penalized log-likelihood estimation

For uses of penalized regression splines, such as P-splines by Eilers and Marx [92] and
all penalized regression splines implemented by Wood [2], the corresponding maximum
penalized likelihood estimation methods can be applied [22, 32, 40]. In this type of
estimation method, the maximum degrees of freedom for each smooth regression
component is prespecified, and then an effective degrees of freedom [22, 32, 93] for each
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smooth regression component can be automatically estimated through this statistical
estimation procedure.

The penalized log-likelihood function can be constructed to be the logarithm of the full
likelihood function 2.18 minus a penalty term for each smooth function. For example,
based on a spline-based proportional hazards model with only one smooth function of t,
the corresponding penalized log-likelihood can be formulated as

logLp(β |λ ) = logL(β )− 1
2

λP(β ) (2.19)

where P(β ) is the roughness penalty function and λ is the smoothing parameter to control
the smoothness of a fitted function.

Let Hpl and Hl be the Hessian matrices of the corresponding penalized log-likelihood
function 2.19 and log-likelihood function 2.18 evaluated with the same estimates,
respectively. pl denotes the related Hessian matrix is derived from the penalized
log-likelihood function, and l denotes the Hessian matrix is derived from the
log-likelihood function. Based on both Hessian matrices, the corresponding effective
degrees of freedom for each smooth regression component can be extracted from the
total degrees of freedom [22, 40] for a proposed model, which is given as

EDFλ (model) = Trace(H−1
pl Hl).

Similarly, for correlated data, the related penalized marginal likelihood estimation
procedures for spline-based flexible parametric models [94] can be applied to estimate
model parameters and the variance of random effects.

2.4 Survival models as dynamic regression models

2.4.1 Modeling components

As demonstrated in the above parametric models 2.11 and 2.12, a proposed survival
model can generally be decomposed as two additive terms: (1) the background
component to be a function of time for the reference subgroup; and (2) the comparing
component to be linearly combined relative ratios or absolute differences between
comparison subgroups and the reference subgroup. Martinussen and Scheike [95]
proposed the concept of dynamic regression models for time-to-event data. Younes and
Lachin [71] earlier proposed to take into account both effects of time t and covariates z,
where the effect of time is a transformed baseline survival function.

The idea can be illustrated through the well-defined multiplicative and additive
hazards modeling (e.g. Cox regression and Aalen’s additive hazards models). The Cox
regression [7] can be presented in an additive form, with the condition of h0(t)> 0,

logh(t|z) = logh0(t)+β
T
phz,

in which the term on the right-hand side was termed the linear predictor by Andersen
and Skovgaard [96]. It is clear that the multiplicative effects of covariates on the
baseline hazard function could be converted to the additive effects of covariates on the
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log-transformed baseline hazard function with some conditions. The Aalen’s additive
hazards model [97] can be given as

h(t|z) = h0(t)+βah(t)T z.

The main differences between the two classical models are: (1) the link functions for
baseline hazards, such as the log and identity links; and (2) the functional forms of
covariate effects, such as either time-constant or time-dependent effects, which can be
interpreted as log-hazard ratio and hazard difference, respectively.

2.4.2 Specifications

2.4.2.1 Modeling baseline hazard function of t

In practice, multivariate regression models are commonly applied to involve multiple
prognostic factors or investigate the effect of a treatment with adjustment for multiple
potential confounders (or balance the difference between compared groups at baseline).
In this context, the baseline hazard function is conditional on multiple baseline variables
being zero (for categorical variables) or the empirical average (for continuous variables).
It may be not clear whether standard parametric models (e.g. the Weibull or log-logistic
parametric baseline hazards) are appropriate for the specific reference group.

Alternatively, spline-based representations and non-parametric methods can be applied.
For larger survival data (or at the beginning of a follow-up study), it is desirable that
there is little difference between spline-based methods and non-parametric approaches.
However, for a cohort study with a small or moderate sample size, both approaches could
be influenced by the fact that there are commonly limited data at the end of follow-up.
For non-parametric methods, it is usual to suppose that there are constant effects over
some intervals without the occurrence of an event; in this context, spline-based regression
models also only provide a data-driven estimation, since the continuous assumption of
survival times will be valid during that period. It is noteworthy that the related estimates
of baseline functions of t and time-dependent effects of covariates should be interpreted
carefully at the end of follow-up.

Scheike proposed to set the maximum time (or a threshold point) as an argument in
the R function Gprop.odds for fitting a generalized semiparametric proportional odds
model [95, 98]. The idea could be very useful to gain stable estimates of regression
coefficients and especially the baseline hazard function and time-dependent effects.

2.4.2.2 How to model covariate effects

With empirical data (a random sample from a population), ideally the final selected
survival regression model should use appropriate functional forms for all given baseline
covariates. However, when proposing a statistical model for empirical survival data,
several statistical issues are naturally raised. For example, the question of how to specify
the effects of categorical variables, which may be time-constant or
time-dependent [64, 99]. The question of how to model functional forms for continuous
covariates in observational studies, investigating log-linear, step functional or nonlinear
relationships [33, 100–104]; joint time-dependent and non-linear effects for age have
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been considered by Abrahamowicz and colleagues [34] in the all-cause survival setting,
and by Remontet and colleagues [35] in the relative survival setting. All these issues
were noted in the international collaborative Strengthening analytical thinking for
observational studies (STRATOS) project, which was initiated and led by Willi
Sauerbrei [33].

In data analysis, it would be desirable to reduce the impact of misspecification of
functional forms for covariate effects. For example, the proportional assumption may not
be valid due to multiple reasons: (1) supposing a full model is a proportional hazards
model, Therneau and Grambsch [105] provided an example to demonstrate that the
hazards ratio varies over time due to omitting an important independent variable,
see [106] for the case of omitting confounders; and (2) due to a changing biological
effect of an exposure [76, 107].

In this context, the different choice of link functions will have the result that covariate
effects with different interpretation, such as in measures of either relative ratios or
absolute differences. Furthermore, the transformations [96, 108] by different links may
make the transformed baseline functions more linear over the follow-up period (or
transformed times). For illustration, three types of baseline hazard functions: (A) with a
decreasing shape; (B) with a unimodal shape; and (C) with an increasing shape are
presented in the upper panel of Figure 2.1. Based on these three baseline functions, the
corresponding baseline cumulative hazard functions and baseline odds can be derived
against original time (or log-transformed time).

In general, when using model-based methods in survival analysis, three issues need to
be considered: (1) which link function should be used, which will result in regression
coefficients in measures of either different relative ratios (e.g. log-hazards ratio, log-odds
ratio) or absolute differences (e.g. hazard differences [109]); (2) whether or how to
specify baseline hazard functions, which determines the choice of parametric or spline-
based flexible parametric models; and (3) how to model covariate effects, especially for
continuous covariates [33].
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Figure 2.1: Three types of baseline hazard functions presented in the top panel: (A) with
a decreasing shape, (B) with a unimodal shape, and (C) with an increasing shape. Based on
these three baseline hazard functions, the corresponding log-hazard v. time given in the second
row, log-cumulative hazard v. log-time in the third row, and log-odds v. log-time presented in
the bottom panel, respectively.
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3 Aims

The overall aim of the four studies was to provide a rich and coherent framework for
modeling independent and correlated time-to-event data for medical research. More
specifically, the aim of each study was:

I. To refine, extend GSMs and apply proposed approaches to independent survival
data, with either time-to-death due to any cause or time-to-any occurrence of a
disease as the outcome of interest.

II. To extend GSMs for correlated time-to-event data, with applications to simulated
and real data sets.

III. To extend GSMs for population-based cancer survival data analysis, with a
comparison of knot-based and knot-free regression splines; parametric and
penalized estimation procedures under a penalized likelihood framework.

IV. To investigate patterns of prostate-specific antigen (PSA) testing and subsequent
outcomes, partly using the proposed methods in Paper II.

These newly refined model components and extended GSMs were to be implemented
and integrated into the rstpm2 package in R [62].
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4 Refinement, extension and assessment

The class of GSMs [1] were originally in the form of

g{S(t|z)}= g{S0(t)}+β
T
z z (4.1)

where g is a specified link function, βz denotes unknown regression coefficients, z are a
vector of baseline covariates, and S0(t) is the baseline survival function defined for the
reference group.

4.1 Understanding components of GSMs

4.1.1 View of the link functions from statistical perspectives

The choice of a specific link function g in GSMs 4.1 can be related to the specification of a
cumulative distribution for random error in the following semi-parametric transformation
models [77, 80]

Tf (Y ) = µ +β
T
z z+σε (4.2)

where Tf (·) denotes a monotonic increasing transformation function, Y is the time
random variable T (or log(T )), µ is an unknown location parameter, σ is an unknown
scale parameter, ε is a standard random error with E(ε)=0, Var(ε)=1, and β is the
column vector of regression coefficients.

There are two unknown functions: the transformation function Tf (·) and the cumulative
probability distribution of ε . In this context, at least one assumption must be made for
estimation. In general, there are several options for estimating model parameters:

(1) Set two parametric forms for both functions: Tf (·)=log(·) and multiple specific
parametric distributions for ε , such as normal and logistic distributions. In this
setting, it can be identified as the class of classical parametric AFT models
2.10 [11];

(2) Only set Tf (·) to be the log-transformation function, but represent a cumulative
distribution function of ε by a flexible smooth functions, such as a truncated series
expansion [110] or splines [111];

(3) Only set a specific cumulative distribution for ε , but leave the transformation Tf (·)
as a flexible function, such as a well-defined monotonic I-spline or common
regression splines with a monotonic condition.

For instance, based on a monotonic increasing spline function s(·), we can make a
theoretical connection between 4.1 and 4.2. By definition, survival function of t (or
log(t)) given baseline covariates Z can be expressed as

S(y|z) = P(Y > y|z) = P(s(Y )> s(y)|z)
= P(µ +β

T
z z+σε > s(y)|z) (4.3)

= 1−P(µ +β
T
z z+σε ≤ s(y)|z)
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= 1−Fε

(
s(y)−µ−β T

z z
σ

)
where y = t or log(t), Fε(·) is a standard cumulative probability function of ε . One
commonly used distribution of ε is the standard Gumbel (minimum) distribution with
Fε(·) = 1 − exp(−exp(·)). The baseline survival function is then in the form of

S0(t)
Gum.
= exp{−exp(s∗ε(y))}, where the flexible spline representation s∗ε(y) absorbs two

naive parameters µ and σ . That is, the corresponding transformation function is the
log−log link, and then the transformed survival function is given as

log{−log(S(t|z))}= log{−log(S0(t))}+β
T
phz,

where σ is absorbed into β T
z z by the definition of β T

phz≡−β T
z z
σ

. The above model can be
treated as the classical proportional hazards model on the survival scale with the condition
h0(t)> 0.

Similarly, the standard logistic distribution for ε corresponds to the proportional odds
model and the corresponding link function is −logit(·),

log
{

1−S(t|z)
S(t|z)

}
= log

{
1−S0(t)

S0(t)

}
+β

T
poz.

More specifically, the standard exponential distribution for ε can be identified for an
additive hazard model on the survival scale with extended time-dependent coefficients,

−log{S(t|z)}=−log{S0(t)}+βah(t)T z = H0(t)+βah(t)T z,

the corresponding link function is−log(·) with the conditions of both baseline cumulative
function H0(t) and time-dependent effects βah(t) passing through (0,0).

4.1.2 Build GSMs using a linear predictor function

Under the model framework 4.1, functional forms of effects can be expressed in an
additive manner (see 2.4.1 and 4.1.1) on a transformed baseline function (e.g.
log-cumulative baseline hazard function and log-baseline odds function), so it is possible
to adopt a linear predictor function [96] for GSMs. For example, univariate smooth
regression components can be expressed as a linear combination of spline basis
functions.

In general, the transformed survival function can be expressed in a linear predictor in
the matrix form of

g{S(t|z)}= η(t,z;β ) = X(t,z)β (4.4)

where β is a column vector of parameters and X(t,z) is a design matrix (usually including
the first column of ones for the constant term) with rows for each subject and with columns
to include observations of corresponding predictors (or transformed predictors by spline
basis functions), with the sum-to-zero constraint for each additive smoother excluding
time-dependent effects.
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Suppose G{·} to be the inverse link functions of g{·}. Survival and hazard functions
then can be rewritten as

S(t|z;β ) = G{η(t,z;β )}

h(t|z;β ) =−G′{η(t,z;β )}
G{η(t,z;β )}

dη(t,z;β )

dt

 (4.5)

with

dη(t,z;β )

dt
= lim

∆t→0

X(t +∆t,z)−X(t−∆t,z)
2∆t

β = XD(t,z)β , (4.6)

where XD(t,z) denotes the first derivative of the design matrix X(t,z) with respect to t,
calculating by the finite difference method.

4.1.3 Select log(t) or t to match a specific link

Generalized survival models 4.4 are defined on t ∈ (0,∞), with unknown parameters β

and the condition of S(0|z) = 1. This implies that

lim
t→0

g{S(t|z)}= lim
t→0

η(t,z) =−∞,

when the link function is specified as either the log−log link or the −logit link. The
above formula holds, for example, if η(t,z) is a polynomial function of log(t) with
corresponding bounded parameters. For example, a GSM with the log−log link can
involve a transformed survival baseline function in the form of
log− log{S0(t)}= s(log(t)) or a time-dependent effect as β (log(t)).

However if g is specified as the −log link, that is

lim
t→0

log{S(t|z)}= lim
t→0

η(t,z) = 0,

which is valid when η(t,z) is to be a polynomial function of time t (or
√

t) with bounded
parameters, e.g. H0(t) = s(t) or s(

√
t).

4.1.4 Connecting smooth functions to regression splines

Various flexible smoothing techniques [33] have been used to explore non-linear
relationship between covariates and outcomes of interest, with linear relationship as a
special case. These potentially non-linear relationship are unknown, but can be assumed
as smooth functions that are related to regression splines (e.g. truncated power basis
functions or radial basis functions).

For example, consider the ordered sequence, a < x1 < x2 < · · ·< xN < b, as a random
sample of the continuous variable x with N observations. Suppose a smooth function of
x (i.e. f (x)) is differentiable four times with respect to x over its domain (a,b), with a
value c ∈ (a,b). Mathematically, the explicit representation of f (x) with a integral form
for reminder function [112] can be expanded at c by Taylor’s theory in the forms of

f (x) = f (c)+
3

∑
k=1

f (k)(c)
k !

(x− c)k +
∫ x

c

f (4)(u)
k !

(x−u)3du
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= f (c)+
3

∑
k=1

f (k)(c)
k !

(x− c)k +
∫ b

c

f (4)(u)
k !

(x−u)3
+du, (4.7)

where (k) denotes f (x) is k times differential. By the Riemann integral method, one
can approximate the last integral form in the formula 4.7 that depends on the location of
c. In order to use of all the information on the given observations, suppose c < x1 (for
specifying spline knots over the whole range of measured values x). In this context, f (x)
can be approximated and rearranged to be in the form of

f (x)≈
3

∑
j=0

β0 j x j +
N

∑
i=1

β1i (x− xi)
3
+,

with N + 4 unknown parameters in this equation. Extra conditions are required for
estimation with only N values.

As suggested by Stone and Koo [60], and further derived by Durrleman and Simon [20],
restricted cubic splines can be imposed to be linear in the tails (x < x1 and x > xN).
These constraints imply that β02 = β03 = 0, ∑

N
i=1 β1i = 0 and ∑

N
i=1 β1i xi = 0. The smooth

function is then be approximated by

f (x)≈ β00 +β01 x+
N

∑
i=1

β1i (x− xi)
3
+ subject to

N

∑
i=1

β1i =
N

∑
i=1

β1i xi = 0, (4.8)

in which there are N +2 parameters with two conditions.
Furthermore, based on the relationship between truncated basis functions and radial

basis functions

(x− xi)
3
+ =
|x− xi|3 +(x− xi)

3

2
and those boundary constraints, f (x) can be re-expressed in the notation of radial basis
functions, with new rearranged coefficients (say β ) in the form of

f (x)≈ β1 +β2 x+
N

∑
i=1

βi+2|x− xi|3 subject to
N

∑
i=1

βi+2 =
N

∑
i=1

βi+2 xi = 0. (4.9)

It is clear to see that: (a) the formula 4.8 is a general version of the formula (4)
provided by Durrleman and Simon in [20], but with N available observations; and (b)
the formula 4.9 is the full univariate thin plate spline described in [113], which is based
on cubic radial basis functions. Both of them are restricted cubic splines.

In practice, it is preferable to adopt an approximated function s(x) that lies in a finite
dimensional linear space. For example, s(x) = β1 + β2 x, with the remainder part (e.g.
∑

N
i=1 βi+2|x− xi|3 in 4.9) to be zero. Generally, based on few basis functions, regression

splines can be used for estimating smooth regression components. For example,

s(x) =


∑

k
i=1 β1i B1i(x) without linear form

β1 +β2 x+∑
k−2
i=1 βi+2 Bi(x) involving constant and linear forms,
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where β and β1 are spline coefficients estimated through likelihood-based approaches,
and both B1(x) and B(x) denote basis functions. Based on all observations of x, a
regression spline including constant and linear forms can be expressed by either
knot-based or knot-free bases in the matrix form as

s(x) = B(x)β =


1 x1 B3(x1) . . . Bk(x1)

1 x2 B3(x2) . . . Bk(x2)
...

...
...

. . .
...

1 xN B3(xN) . . . Bk(xN)





β1

β2

β3
...

βk


(4.10)

This implies that an estimated smooth function s(x) can be represented by a sum of
weighted basis functions, with coefficients β to be estimated by likelihood-based
estimation methods, which can be illustrated in the following graph [114].

Values of
continuous

variable

Prespecified a
set of basis
functions

Sum of k
weighted

basis

...

...

...

x1

x2

xn−1

xn

B1(x)B1(x)B1(x)B1(x)

B3(x)B3(x)B3(x)B3(x)

Bk(x)Bk(x)Bk(x)Bk(x)

β̂1

β̂3

β̂k

ŝ(x)

Figure 4.1: A estimated smooth function as a sum of k weighted basis functions
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4.2 Extensions of GSMs

4.2.1 Inclusion of knot-based and knot-free regression splines

Generally, based on either knot-based or knot-free basis functions, regression splines can
be used for representing smooth regression components in a proposed GSM.

For example, using knot-based approaches for pure regression splines, one needs to pre-
specify the number of knots or spline basis functions (e.g. {3,4,5,6,7}) for each smooth
regression component, then separately construct knot-based pure regression splines, e.g.
the use of restricted cubic splines [20, 30] to approximate 4.8. Finally, the maximum
likelihood estimation method can be applied to estimate corresponding model parameters.

By contrast, for penalized regression splines with knot-free bases [2], one only needs
to set the maximum degrees of freedom for each smooth regression component, and then
produce low-rank penalized regression splines by the following truncated eigen
decomposition method [36]. One feature of this type of spline basis functions is that
they do not depend on any spline knots, e.g. the thin plate regression splines
implemented for generalized additive models by Wood [2].

For illustration, a univariate thin-plate spline function [113] of time t can be identify
to be 4.9 in the form of

s(t) = b0 +b1 t +
1

12

n

∑
i=1

δi |t− ti|3 subject to∑
i

δi ti = ∑
i

δi = 0

where ti indicates observed time for each subject i (n is the total number of subjects),
with t1 < t2 < · · · < tn. b0, b1 and δi are spline coefficients that specify s(t). Since the
cubic spline s(t) is represented by many basis functions, it is preferable to use fewer basis
functions.

Based on all observations of t, a low rank smoother [36] can be achieved by the
truncated eigndecomposition method [37]. Suppose s= (s(t1),s(t2), . . . ,s(tn))T that can
be expressed in the form of

s = E δ +TT b

=U DUT
δ +TT b (4.11)

≈UkDk δk +TT b (4.12)

=UkDkQk−2 δk−2 +TT b, (4.13)

under three conditions: (1) the equivalent 4.11 bases on the eigendecomposition of the
symmetric matrix E with Ei j = |ti − t j|3/12, i, j=1,2, . . . ,n [113]; (2) the
approximation 4.12 holds, with eigendecomposition approximation of E by its principal
k components of eigenvectors and eigenvalues (Uk Dk UT

k ), where δ =Ukδk with Uk to be
the first k orthogonal eigenvectors in the eignvectors matrix U ; and (3) the formula 4.13
absorbs the linear constraints of T δ = 0, where Qk−2 is the last k-2 columns of the
orthogonal factor Q with UT

k T T =QR and T is the 2×n matrix,

T =

1 1 · · · 1

t1 t2 · · · tn

 .
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See [2, 37] for further details and multivariate splines.
Similarly to principal component analysis, the principal eigenvector of the basis matrix

E with the linear constraints in the tails are converted to the k-2 new basis functions
PC=UkDkQk−2, which do not depend on any knots. Combined the constant and linear
terms, the cubic spline s(t) evaluated at all observations can be calculated as

s≈ (PC1,PC2, . . . ,PCk−2)δk−2 +TTb.

Comparing to knot-based regression splines, this type of knot-free regression splines
can: (1) avoid the knot placement issue; (2) model not only univariate functions but also
multivariate splines; and (3) be a linear combination of k−1 known basis functions that
are nested with the set of k basis functions. To improve the numerical stability of the
final basis functions, Wood proposed to reset the mean square size of each column of the
corresponding basis matrix to be unity [115]. For identifiability, the sum-to-zero
constraint for all additive functional forms is commonly imposed in the process of
estimation.

Note that the thin plate regression spline basis can be a type of global polynomial
functions with local features [2]. For example, fractional polynomials [116, 117] and the
knot removal approach proposed in [61] can be (or produce) global polynomials. In the
appendix A.3, an implementation in R for a low-rank smoother has been made available.

4.2.2 Introduction of generalized additive functional forms

Within the framework of GSMs, most potential functional forms for categorical variables
can be fitted, such as time-constant effects, time-dependent effects,
categorical-by-categorical and continuous-by-categorical interaction terms.

In this thesis, we have introduced mature regression spline-based smoothing
techniques, e.g. penalized regression splines developed for generalized additive models
by Simon Wood [2], for the effects of continuous covariates. For example, the following
functional forms can be fitted within the extended GSMs:

� linear forms,

� non-linear forms (e.g. represented by regression splines),

� categorizations,

� continuous-by-continuous interaction terms (e.g. tensor product [94]),

� multivariate regression splines [94],

� joint time-dependent and non-linear effects for age [94].

4.3 Introduction of a penalized likelihood framework for GSMs

Regarding the uses of pure and penalized regression splines, there are two estimation
approaches to control the amount of smoothness of smooth regression components: (1)
within maximum likelihood estimation methods, models first need to be fitted with fewer
spline basis functions (e.g. k ∈ {3,4,5,6,7}), then the better model selected, with an

25



optimal k, according to the values of AIC; (2) within maximum penalized estimation
methods, the maximum degrees of freedom need to be set for each smooth component
and the effective degrees of freedom for each smooth component can be automatically
selected by an AIC-like criterion through the so-called smoothing parameters. These two
methods can be treated as two separate statistical procedures. However, we can also
realize both estimation approaches under the following penalized likelihood framework.

Given n observations in from of (u,δ ,z) and a proposed model (i.e. the model 4.1 with
one smooth function of t), a penalized likelihood function can be formulated as

logLp(β |λ ) =
n

∑
i=1
{δilog{hi(ui|zi;β )}+ log{Si(ui|zi;β )}}− λ

2
β

T Sβ

=
n

∑
i=1
{logLi(β )−

λ

2n
β

T Sβ} (4.14)

where, logLi(β )=δilog{hi(ui|zi;β )}+ log{Si(ui|zi;β )} is the full log-likelihood function,
the penalty matrix S=

∫
Ω

B′′(t)T B′′(t)dt is a predefined positive semi-definite matrix. For
example, for penalized B-splines (or P-splines [92]), it can be a difference parameter of
the corresponding smooth function. λ is a unknown smoothing parameter that controls
the amount of roughness of the smooth regression component. Si(ui|zi) and hi(ui|zi) are
the related survival and hazard functions for each patient, given zi, and can be calculated
from the equations 4.5. Note that the penalized log-likelihood function is conditional on
the smoothing parameter λ for each smooth function.

Under the penalized likelihood framework 4.14, given the link function g and λ= d (d≥
0), define the objective function as−logLp(β |d), then the M-estimator of β satisfies [118]

1
n

n

∑
i=1

Ui(β |d) =
1
n

n

∑
i=1

{
−∂ logli(β )

∂β
+

d
n

Sβ

}
= 0. (4.15)

That is the maximum penalized log-likelihood estimators (β ) become the solution to the
following optimization problem

β = argmin
β

{−logLp(β |d)}

with the constraint of hi(ui|zi; β̂ )> 0 for each patient i [84, 94].

4.3.1 Separate procedures for estimation and model selection

Set d=0 to be the extreme case in the formula 4.15, that is, the second term in the above
penalized likelihood function 4.14 becomes zero. The corresponding estimation
approach then changes to the maximum likelihood estimation approach for unknown
model parameters including spline coefficients, but vary the number of spline basis
functions for representing each smooth function. A quasi-Newton algorithm can be used
to estimate model parameters.

The strategy is computationally efficient for a model fit, but one still needs to choose
the optimal number of spline basis functions (or degrees of freedom) from multiple fitted
models by an information criterion (e.g. AIC), which may be complicated for a proposed
model with multiple smooth regression components.
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4.3.2 Integrated procedure for estimation and model selection

Ideally, an optimal value (d = λ opt ) for each smooth function can be automatically derived
from any given data by minimizing the modified likelihood-based leave-one-out cross-
validation criterion (LCV [32, 93, 119]),

LCV(λ ) =−
n

∑
i=1

logli(β̂ (λ ))+Trace{H−1
pl {β̂ (λ )}Hl{β̂ (λ )}},

where β̂ (λ ) = argmin
β

{−logLp(β |λ )}, Hpl and Hl are the Hessian matrices of the

corresponding penalized log-likelihood and full log-likelihood functions, respectively;
and Trace(H−1

pl Hl) is the total degrees of freedom for a proposed model, which depends
on the smooth parameters. We select λ opt that minimize LCV(λ ).

In general, given a link function, the process of model selection is continuous by
varying the smoothing parameter that can be automatically optimized in the penalized
estimation approaches. Furthermore, the optimally chosen smoothing parameters lead to
an effective degrees of freedom, being a value between one and the given maximum
degrees of freedom, for each smooth regression component. Hence, in the process of
performing penalized estimation methods, we do not need to re-choose the optimal one
from multiple model fits.

For example, if there are m smoothers in a proposed model, the number of parameters
in linear terms is p and q for all smoothers, then the total degrees of freedom can be
calculated as [40]:

EDFλ = trace(H−1
pl Hl) = trace(H−1

pl (Hpl−Sλ ))

= trace(H−1
pl Hpl)− trace(H−1

pl Sλ ))

= p+q− trace
(

Sλ

Hl +Sλ

)
where Hpl indicates Hpl(θ̂(λ )), Hl indicates Hl(θ̂(λ )), λ = (λ1, . . . ,λm), and

Sλ =


0 0 · · · 0

0 λ1S1 · · · 0
...

...
. . .

...

0 0 · · · λmSm


Given the optimal smoothing parameters, three properties can be provided:

1) When λ opt → 0, Sλ

Hl+Sλ
→ 0p+q,p+q , then trace

(
Sλ

Hl+Sλ

)
→ 0, EDF→ p+q

2) When λ opt → ∞, Sλ

Hl+Sλ
→

0 0

0 Iq

 , then trace
(

Sλ

Hl+Sλ

)
→ q, EDF→ p;

3) Others: p < EDF < p+q.
where 0 is the vector with m zeros, 0p+q,p+q is a (p+ q)*(p+ q) matrix with zeros, the
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Hessian matrix Hl is also a real symmetric matrix, and Iq is a unit matrix. Based on
the optimal smoothing parameters (or the corresponding effective degrees of freedom for
each smooth regression component), one can select β̂=argmin

β

{−logLp(β |λ opt)}.

Note that log-transformation of smoothing parameters, υ = log(λ ) was applied in the
model fitting, which aims to: (1) convert a non-linear constricted optimization issue with
λ > 0 to a common optimization issue without any condition; (2) reduce the range of
each λ ∈ (0,+∞) to a narrow range of each converted variable υ . To some extent, the
log-transformation imposes the effective degrees of freedom for each smooth regression
component to be away from the minimum value 1 and a larger real value [67].

4.4 Implementation and assessment

4.4.1 Implementation integrated into the R package rstpm2

The rstpm2 package in R was originally created and maintained by Mark Clements with
contributions from Paul Lambert, mainly for fitting flexible parametric survival
models [30].

All refinements and extensions in this thesis have been mainly integrated into rstpm2.
Currently, there are two main functions: (1) stpm2 is mainly used to fit so-called
parametric GSMs, with either parametric forms or pure knot-based regression splines for
representing smooth regression components and maximum likelihood methods for
parameter estimation; and (2) pstpm2 is first implemented to fit so-called penalized
GSMs, with penalized regression splines for modeling smooth regression components
and maximum penalized likelihood methods for parameter estimation. Furthermore, as
proposed in Paper III, the penalized likelihood framework can include both parametric
and penalized estimation methods for pure and penalized regression splines, respectively.
This means that pstpm2 has the ability to fit both parametric and penalized GSMs.

A description of the model formula syntax can be found in the R package rstpm2 [62],
which has been made available on the comprehensive R archive network (CRAN). The
following is the basis of the implementation:

(1) Firstly, construct likelihood components with all information on observations in
matrix forms, such as the design matrix X(t,z), its first derivative matrix XD(t,z)
with respect to time t, and a predefined penalty matrix for each smooth regression
component (especially for penalized estimation methods).

(2) All optimization problems for model parameters and smoothing parameters can be
solved by current mature implementation in compiled code (C/C++). The
likelihood components first need to be converted from R to C++ (see [120]), then
optimal model parameters and smoothing parameters are optimally estimated in
C++, which would accelerate the estimation process especially for non-linear
models.
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4.4.2 Measures beyond the hazard ratio

For independent survival data, survival and hazard functions can be estimated based on
all estimated parameters θ̂

Ŝ(t|z; β̂ ) = G{η(t,z; β̂ )}

ĥ(t|z; β̂ ) =−G′{η(t,z; β̂ )}
G{η(t,z; β̂ )}

∂η(t,z; β̂ )

∂ t

 (4.16)

where G(·) is the specific inverse link function, X(t,z) is the design matrix and its first
derivative XD(t,z) is also involved.

A: Ratios based on a estimated regression coefficient β̂z

For a comparison to reference group, GSMs can be expressed as

g{S(t|z)}−g{S0(t)}= β
T
z z, (4.17)

within the proportional hazards model (or a GSM with the log−log link), regression
coefficients β are interpreted as the related log-hazard ratios; but β denotes the
log-odds ratios when a GSM with the −logit link.

More specifically, in the presence of non-proportionality, some alternative measures
have been considered, e.g. the cumulative hazard ratio [121–123]. The measure in the
form of βz(t) can be estimated from a GSM with the log−log link

g{S(t|z)}−g{S0(t)}= βz(t)T z, (4.18)

where βz(t) can be interpreted as a cumulative effect.

B: Ratios based on all estimates β̂

In the presence of non-proportionality, a hazard ratio can be calculated from the estimated
hazards for two subgroups.

For example, suppose the subgroup A with baseline covariates za and the subgroup B
with baseline covariates zb, then the hazards ratio between the subgroup A and B is

HRab =
ĥ(t|za; β̂ )

ĥ(t|zb; β̂ )
,

which is based on all estimates β̂ .

C: Absolute difference based on all estimates β̂

Similarly, we can estimate hazard or survival difference from the absolute measure 4.16.
For the subgroup A and B comparison, the hazard difference is

Hazard differenceab = ĥ(t|za; β̂ )− ĥ(t|zb; β̂ ),
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and the survival difference is

Survival differenceab = Ŝ(t|za; β̂ )− Ŝ(t|zb; β̂ ).

D: Population average (adjusted) survival based on all estimates β̂

In addition to fitting a marginal GSM (on all measured covariates) to estimate
un-adjusted survival curves, adjusted survival curves have also been applied in the
medical research [52] based on proportional hazards models given baseline covariates
for each subject:

S(t) =
1
n

n

∑
i=1

S(t|zi; β̂ ) (4.19)

Assuming the proposed model is correctly specified, all these measures based on
estimated model parameters β̂ and smooth regression components, the
variance-covariance matrices of functions of multiple parameters can be derived by the
multivariate delta method.

Similarly, for correlated survival data, the population average survival probability can
be derived as

S(t|z) = Eb(S(t|z,b)),
which is averaged across all subjects with baseline covariates z and any frailty level b.

4.4.3 Assessment by comparison using simulations and examples

In this thesis, the performance of proposed methods has been assessed in two ways: (1)
by comparing results from proposed methods to "truth" that is predefined to generate
independent survival data sets for analysis; and (2) by analyzing real data sets to compare
results from proposed methods to those from comparable approaches. At the same time,
the corresponding implementation was also validated through these comparisons.

Simulation studies have been commonly applied to assess the performance of the
proposed statistical methods. In general, a simulation study uses a numerical technique
to mimic a specific "scenario" in which S(t|z) is specified to include: (1) a known
baseline hazard function; and (2) known functional forms of covariate effects. That is, all
model parameters are predefined, i.e. the "truth". Observations of Z are generated from
certain given distributions and are assumed to be fixed values for each data set.

Survival times (t) can be randomly generated from the survival probability function
S(t|z) using a previously proposed method [124]; censoring time c can be randomly
simulated from an independent distribution, with observed times min(t,c) and event
indicators I(t ≤ c). Under these conditions, several hundred independent survival data
sets are usually generated, which are analyzed by proposed methods and comparative
approaches. Finally, the properties of estimates (of model parameters and smooth
regression components) can be empirically summarized from all simulated data sets,
usually including the bias, random error and coverage probability through comparison to
the designed "truth".

Extensive simulation studies have been undertaken to assess the performance of
proposed statistical methods and corresponding implementation in Study I-III. In
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addition to comparing the proposed methods to predefined "truth", different strategies
including the model specification and estimation approaches can be compared through
the example data analysis. In Study I-III, we have demonstrated several comparisons
between proposed and well-established approaches under a proportional hazards or odds
model. Additionally, several novel features of GSMs have been illustrated in
applications.
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5 Summary of papers

Under the framework of extended GSMs, we have mainly studied several nested settings
( see Table 5.1) to be able to analyze either independent or correlated survival data, with
overall and net survival as measures of interest, respectively.

Table 5.1: Two types of survival data and two types of survival functions

Overall survival Net survival

(Recurrence-free survival) (Relative survival)

Individual level

(To,∆o)|Z = z Paper I Paper III

independent data

Cluster level

(Toi,∆oi)|Z = z Paper II & IV Future research

correlated data

5.1 Paper I

In this paper, the outcome under study was time-to-death due to any cause (or
time-to-any recurrence of disease); overall survival (or recurrence-free survival) will be
the corresponding survival function, given baseline covariates.

Refinements and extensions of GSMs

Within the framework of GSMs in the form of

g{S(t|z)}= X(t,z)β , (5.1)

we had made several refinements and extensions:

� Reviewed link functions (e.g. log−log, −logit and −log) from a statistical
perspective (4.1.1).

� Built GSMs using a linear predictor function (4.1.2).

� Specified smooth regression components of time on either a log(t) or t scale to
match a specific link (4.1.3).

� Included penalized regression splines for functional forms of baseline functions and
covariate effects, which are based on the available implementation (mgcv package
in R) for fitting generalized additive models by Wood [2] ( 4.2.1).
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� Introduced penalized likelihood estimation methods corresponding to penalized
regression splines, with each smooth parameter optimally selected in a continuous
manner for the corresponding smooth regression components (4.3).

The full log-likelihood function can be constructed as

logL(β ) =
n

∑
i=1

{
δilogh(toi|zi;β )+ log{S(toi|zi;β )}

}
(5.2)

where h(·) and S(·) are derived from Model 5.1. Similarly, the corresponding penalized
log-likelihood function can be constructed as the logL(β ) minus a roughness penalty
function for each smooth regression component, as described in 2.19.

Note: for a comparison of different statistical procedures related to GSMs, we used
parametric GSMs to indicate a statistical procedure using regression splines (e.g. natural
splines based on B-spline basis functions) to represent each smooth regression
component and applying maximum full likelihood methods for parameter estimation
(termed parametric procedures); penalized GSMs are suitable for another statistical
procedure with penalized regression splines (e.g. penalized thin plate regression splines
based on radial basis functions) for modeling each smooth regression component and
adopting maximum penalized full log-likelihood approaches to estimate all model
parameters (penalized procedures).

Comparison of results in simulation studies

In this simulation study, a proportional hazards or proportional odds model with known
baseline hazard function and regression coefficients was predefined. Then several
hundred data sets were generated from this defined model using the method of Bender
and colleagues [124]. Finally, we compared all results from the proposed approaches:
(1) to those predefined "truth"; and (2) to established methods, e.g. estimates of
regression coefficients based on partial likelihood estimation methods, and estimated
smooth baseline hazard functions using smoothing splines [57] or penalized
B-splines [125].

The performance of the proposed approaches, under the investigational settings, can be
summarized as follows:

� Both parametric and penalized procedures can capture the predefined varying trends
of baseline hazard function, measured by the integrated discrepancy [126] (or area
between the estimated and predefined curves), the time-dependent empirical mean
square error, and a probability-based symmetrized Kullback-Leibler distance [57].

� For a survival regression model with only one smooth regression component, both
parametric and penalized procedures can provide very similar results.

� Both parametric and penalize procedures can provide similar estimates of
regression coefficients to those from partial likelihood estimation methods.

� Both parametric and penalized procedures were comparable to another two
established approaches: (1) using the penalized estimation method combined with
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smoothing splines [57, 127]; and (2) smoothing under the framework of mixed
models combined with the restricted maximum likelihood approach [58, 126], for
estimating the baseline hazard function.

Comparisons and illustrations through examples

Using three examples, we compared estimates of regression coefficients from proposed
methods to established approaches, with either a proportional hazards or proportional
odds model. Additionally, we demonstrated model non-linear effects (or smooth
regression components) for continuous covariates and time-dependent effects of
categorical variables. Through these three applications, the following conclusions can be
made:

� Penalized procedures based on a GSM with the log-log link can provide similar
estimates of regression coefficients compared to those estimated from the Cox
regression model in sections 5.2.1 and 5.3.1 (Paper I).

� Penalized procedures based on a GSM with the -logit link can also provide similar
estimates of regression coefficients compared to other estimation approaches (see
Table 3 in Paper I).

� In empirical data analyses, the link function could be selected by the AIC criterion,
which had been demonstrated in the previous simulation and suggested in previous
studies [81].

� The Cox-Snell residual plot can be used as a graphic method to assess the fit of the
GSM.

� Based on a fitted GSM with either the log-log or -logit link, multiple relative or
absolute measures can be provided, such as the hazards ratio, odds ratio, and
survival difference.

5.2 Paper II

In this paper, the outcome of interest was clustered time-to-a specific event (or repeated
event within the same subject). It was reasonable to consider that the subjects within a
cluster may share some unmeasured environmental or genetic risk factors, which were
commonly modeled by a random effect b ( or frailty U ) for each cluster.

In this context, the corresponding overall survival functions given covariates Z and a
random effect b for each cluster can be modeled under the framework of GSMs. For
instance, GSMs with baseline covariates Z and a normally distributed random effect bi
for cluster i can be expressed as follows:

g{S(t|zij,bi)}= X(t,zij)β +bi. (5.3)

Refinements and extensions for GSMs

In this paper, several novel features had been added so that GSMs are able to:

35



� Analyze correlated time-to-event data, in particular including proportional odds
models with random effects, which was introduced in [45].

� use the functional ANOVA decomposition technique to estimate joint
time-dependent and non-linear effects for age (4.2.2).

� Incorporate penalized marginal likelihood estimation methods, corresponding to
penalized regression splines and clustered survival data.

� Incorporate multivariate regression splines that can be derived from radial basis
functions (4.2.1).

� Perform continuous stratified analysis on age combined with age-varying effects
for a specific treatment (4.2.2).

For clustered survival data, a full log-marginal likelihood function can be constructed
as a sum of I cluster-level log-marginal likelihood with a sample size of ni. This can be
given as

logLM(β ,θ) =
I

∑
i=1

log{LM
i (β ,θ)}

=
I

∑
i=1

log
{∫

∞

−∞

{ ni

∏
j=1
{h(toi j|zi j,bi)}δi j S(toi j|zi j,bi)

}
p(bi|θ)dbi

}
where h(·) and S(·) are derived from model 5.3, and p(·) was the density function of b
with a mean of unity and the variance of θ .

Similarly, the corresponding penalized log-marginal likelihood function can be
constructed as logLM(β ,θ) minus a roughness penalty function for each smooth
regression component 2.19. The remaining optimization problems for both parametric
and penalized estimation procedures are the same as those for independent survival data.

As seen from the above marginal likelihood method, clustered survival data requires
novel statistical procedures to: (1) construct a marginal (penalized) likelihood function
integrating out the unknown random effect for each cluster; and (2) approximate the
related integration for each cluster with different numerical techniques, including
Gauss-Hermite quadrature or adaptive Gauss-Hermite methods.

Comparison of results in simulation studies

To compare the results from the proposed approaches and some predefined model
components (with known model parameters), we assessed the performance of: (1) the
numerical approximation methods (e.g. adaptive Gauss-Hermite method); (2) the
(penalized) marginal likelihood estimation methods; and (3) the use of the AIC criterion
for the choice of a specific link function. We were also interested in investigating the
potential impact of model misspecifications on the estimates of baseline functions of
time and the regression coefficient of interest, such as misspecified functional forms of
covariates and the parametric distribution of random effects.

The simulation studies, undertaken in the investigational settings, demonstrated that:
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� Both parametric and penalized procedures perform well for estimating β and the
variance of random effect b when the fitted and the assumed models were the same.
The empirical coverage probabilities of the regression coefficients and the variance
were close to the nominal level of 95%.

� Estimates of regression coefficients were not sensitive to misspecification of
parametric distributions of random effects, but the estimate of the transformed
baseline functions of time) was affected. This may be due to the baseline hazard
function absorbing the expectation of frailty Ui = exp(bi) that may be not unity if
E(bi) = 0 (see the relationship of E(Ui) = exp(θ/2) in Section 10.2.1 of [11]).

� For an extended proportional hazards or proportional odds model with one random
effect, the proposed methods can provide similar results compared to other
implementation, such as survival:::coxph, coxme, and frailtypack in R. Compared
to these established methods, extended GSMs were able to include different links,
and provide a flexible framework for modeling time-dependent and non-linear
effects.

� The frequency of better models among all model fittings by the AIC [34] can
be a useful measure to examine which model coincides with the data generating
mechanism in simulation studies.

� The misspecification of the time-dependent effect of a binary variable leads to
biased estimates of the corresponding effects, but the bias in other estimates (of
regression coefficients and the variance) were not obvious in this settings. Further
investigations were required to theoretically explain "where" the difference in
β1(t)-β1 "goes" and what was affected by this misspecification. This could be
related to the proposed dynamic frailty process as a random effect [128].

� However, the misspecification of the non-linear effects of a continuous variable
will lead to biased estimates of corresponding variables; the estimates of the
transformed baseline function and the variance of random effect bi were also
impacted. For example, theoretically the difference between the underlying
functional form of age f (age) and a misspecified functional form g(age) will be
decomposed into two parts: (1) the empirical average of these difference
1
n ∑

n
i=1{ f (agei)− g(agei)} will be absorbed by the baseline function; and (2) the

remaining part will be added to the random effect bi, which did increase the
magnitude of the underlying variance of bi.

� The estimates of non-linear covariate effects from these proposed methods were
similar to those from Cox regression with random effects.

Comparisons and illustrations through examples

Through two available examples (i.e. readmission to hospital for colorectal cancer
patients [32] and diabetic retinopathy [129]), we aimed to compare our proposed
features to well-established methods and demonstrated the novel features proposed in
this paper. The following conclusions can be made:
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� In the first example, the results from proposed approaches were similar to
well-established methods for repeated events within the same patient, such as the
implementation of frailtypack, survival::coxph, and coxme to fit a gamma frailty
model with time-constant effects or a proportional hazards model with normally
distributed random effects. Additionally, we fitted Andersen-Gill models using
marginal approaches: a parametric GSM with the log-log link and the
implementation of survival::coxph. Both of these provided similar estimates of
the regression coefficients.

� In addition to time-dependent effects, continuous covariates (e.g. age) can be
represented in various functional forms, such as the conversion to categorical
variables or for constructing multivariate splines, and non-linear effects. All these
functional forms can be investigated in a proposed GSM for clustered data.

� In the second example, we compared GSMs to other well-established conditional
approaches, such as semi-parametric transformation models for both proportional
hazards and proportional odds models with random effects. The estimates of
regression coefficients of interest were also similar, within the time-constant effect
setting.

� GSMs can perform a stratified analysis in a continuous manner. For example, the
model proposed in Section 5.2 (Paper II) can be identified as a continuous stratified
analysis by age.

5.3 Paper III

We extended GSMs for relative survival analysis, and the outcome of interest was time-
to-death due to the disease of interest. Under the framework of GSMs, the corresponding
relative (or net) survival function SE(t|z) can be modeled in matrix form as

g


SE1(t|z1)

SE2(t|z2)
...

SEn(t|zn)

= X(t,z)β , (5.4)

where g is a user-specified link-function.
For population-based cancer survival data, the full likelihood function can be

constructed on both individual data and corresponding national life tables as

logL(β ) =
n

∑
i=1
{δilog{hEi(ui|zi;β )+hPi(ui +ai,ui + yi|xi)}+ log{SEi(ui|zi;β )}}

(5.5)

where xi denotes variables used to stratify mortality rates for those general population
and were matched to all patients under study, and hPi indicate matched mortality rates
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in the general population. SEi and hEi were the corresponding net survivals and excess
hazards for the patient i, respectively, and can be calculated from model 5.4. Based on
the formula 5.5, the corresponding penalized likelihood can be derived in the way as
described in 2.19.

Refined model components and extended features for GSMs

In this paper, we had added the following features to GSMs:

� Connected smooth functions to regression splines (e.g. truncated power basis
functions and radial basis functions).

� Incorporated knot-based and knot-free regression splines for GSMs.

� Included parametric (e.g. the Weibull proportional hazards model and log-logistic
proportional odds model) and spline-based flexible parametric models for relative
survival analysis.

� Introduced a penalized likelihood framework involving both maximum likelihood
and maximum penalized likelihood estimation approaches; reinterpreted penalized
likelihood estimation methods as a statistical procedure combining parameter
estimation and model selection for a number of spline basis functions, only
requiring the maximum degrees of freedom for each smooth regression
component.

Comparison of results in simulation studies

The simulation studies, undertaken the investigational setting, demonstrated that:

� The coverage probabilities for the estimates of regression coefficients were close
to the nominal level (95%); the coverage probabilities for the estimates of 10- and
15-year net survival using the proposed sandwich variance estimator also reached
the nominal level.

� Model-based methods and the Pohar-Perme method can provide similar estimates
along with the coverage probabilities, especially from the time since diagnosis to
the third quartile of observed survival time. For longer-term follow-up (greater than
the third quartile of observed survival time), the uncertainty of estimates from the
Pohar-Perme method becomes larger than that of the model-based approach, but
the coverage probabilities over that period from both approaches were close to the
nominal level.

� Under the penalized likelihood framework, both the parametric and penalized
estimation approaches can be performed for relative survival analysis. We
observed the same results from both statistical procedures. However, multiple
models need to be fitted within the parametric estimation approach, but only one
fitted model within the penalized estimation approach.

� Both approaches can capture the underlying varying trends for continuous
variables (e.g. time and age), and the underlying fixed-effect for the binary
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variable. Additionally, the model-based approach can provide more information
about some potential relationships between the prognostic factors of interest and
cancer survival or excess hazards.

Comparisons and illustrations through examples

� The knot-free regression splines had good properties and were able to: (1) be an
alternative tool to knot-based regression splines with a strategy using either equally-
spaced or quantiles points for the locations of knots; and (2) select the optimal
degrees of freedom of regression splines according to the AIC.

� Through comparing several knot-based regression splines to the knot-free
regression spline, we found that the value of the AIC from the final chosen model
was typically less than 3, under the time-constant effects setting.

� The Weibull parametric relative survival model provides a larger AIC value,
however all estimates of covariates were similar or only slightly different to the
results from the other three strategies.

� The penalized estimation approach was more easily applied in practice, as it does
not require fitting multiple models with different numbers and locations of spline
basis function (or spline knots).

5.4 Paper IV

Background and aims

Prostate cancer (PCa) is one of the leading causes of cancer death for men in many
western countries. The PSA test for prostate cancer was commonly used as a simple and
inexpensive way to find men with an increased risk of asymptomatic prostate cancer.
Moreover, consecutive PSA test intervals may vary within and between individuals. Our
objectives were: (1) to assess whether PSA testing had changed in recent years in
Sweden; (2) to describe the probabilities of subsequent outcomes for men in the general
population and those who have had a baseline PSA test; and (3) to describe the PSA
retesting frequencies for men who have had a baseline PSA test.

Study population

The study population was defined as men living in Stockholm between January 1, 2003
and December 31, 2014 with no previous diagnosis of prostate cancer. Data were
extracted from the Stockholm PSA and Prostate Biopsy Register. The PSA data included
information on the date of PSA test and the total PSA level. which were linked to data
from other health and population registers, including: (1) date and cause of death from
the Cause of Death Register; (2) date of cancer diagnosis from the National Cancer
Register; and (3) the population living in Stockholm in December of each year from the
Population Register. The individual data set was integrated using an encrypted identifier,
with data linkage performed by the National Board of Health and Welfare and Statistics
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Sweden. These registers had been shown to have high quality [130]. The analysis of the
linked data had been approved by the regional ethics committee in Stockholm.

Design and methods

The prevalence of PSA testing was modeled using a log-binomial regression for 10-year
age groups. We assumed a piece-wise linear period effect with a knot at 2010. We did
not model for the prevalence in 2014, as we expected that this would be affected by the
STHLM3 diagnostic trial [131]. We tested for a change in slope at 2010 and reported the
annual percentage change from 2010 to 2013.

The proportions of men in different testing and healthy states were estimated using
Markov multi-state models [12, 132]. Furthermore, we used a GSM with a gamma
frailty to estimate PSA retest rates and the cumulative proportion of men underwent a
PSA retest.

Analysis and results

Over the study period, 1,253,309 men underwent PSA testing. There was evidence for a
decline in PSA test rates during the period 2010 to 2013. The 10-year probability of
having a PSA test for men aged 50-59, 60-69 and 70-79 years was 62.6%, 59.0% and
43.4%, respectively. Large proportions of men had a PSA test at the 10-year follow-up,
which was associated with a markedly increased risk of being diagnosed with prostate
cancer for those with an index PSA test value of 3 ng/mL and over. The 10-year risk of
prostate cancer death was 0.1%, 0.3% and 1.2%, for men in the three age groups
respectively, with a PSA less than 3 ng/mL. Using a shared frailty model, there was
marked inter-individual variability in PSA retesting. The index PSA value was strongly
associated with the PSA retesting interval and explained approximately 20% of the
variability in retesting interval.

Table 5.1 provides the time-dependent cumulative risks (%) of being in subsequent
outcomes following three initial states: (i) since study entry without an index PSA test;
(ii) since study entry with an index PSA < 3 ng/mL; and (iii) since study entry with an
index PSA of 3+ ng/mL, stratified by age groups, Stockholm males, 2003-2014.

Conclusions

There was evidence that PSA testing had decreased since 2010. However, large
proportions of men have had a PSA test and there was a markedly increased risk of being
diagnosed with prostate cancer. Our findings provide a detailed description of prostate
cancer testing in one population, and provide useful evidence to clinicians when
counselling men for PSA testing.
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6 Discussion

6.1 Overall conclusion

The work presented in this thesis aimed to enrich the class of generalized survival
models and corresponding estimation methods. We have provided a coherent framework
to: (1) model independent and correlated time-to-event data; (2) incorporate both
knot-based and knot-free regression splines, with different estimation strategies; (3)
include corresponding parametric and penalized estimation procedures for parameter
estimation, with model selection for the number of spline basis functions in either a
non-continuous or continuous manner; (4) adopt full likelihood-based estimation
methods to be able to estimate all model components, including regression coefficients
and smooth regression components; (5) incorporate polynomials for representing
functions of time as parametric models; and (6) introduce mature regression spline-based
smooth techniques developed for generalized additive models into GSMs. The related
implementation has been made available on the CRAN for R-users.

In conclusion, these proposed methods performed well in extensive simulation studies,
with good point estimates and coverage probabilities. Through the analysis of real
example data, similar results can also be observed between the proposed methods and
some well-established approaches, under proportional hazards or proportional odds
models settings. Moreover, novel features were also illustrated in both simulations and
applications.

6.2 Strengths and limitations

In general, more than one statistical procedure can be used for a specific estimator in a
proposed survival regression model. Given the same real data, it would: (1) be
reasonable to obtain similar results (e.g. baseline hazard function, hazard and survival
functions given Z) from different statistical approaches, if the data sample is independent
identically distributed and event times are not sparse; (2) be possible to fit a proposed
model using different statistical procedures, e.g. either different ways to represent
smooth regression components or distinct estimation methods; and (3) be desirable to
have abilities to explore various investigations, e.g. distinct functional forms for effects
of age.

By contrast, strengths of these extended GSMs and estimation methods include:

� The use of the finite difference method for the calculation of hazard functions is
considerably less restricted in the choice of smooth functions (or the
transformation) for time;

� Inclusion of the knot-free thin plate regression splines avoids selecting the locations
of spline knots. Moreover, this provides a type of nested spline basis functions for
survival models;

� Under the penalized likelihood framework, effective degrees of freedom (or
dimension) can be optimally chosen for each smooth regression component
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through the corresponding smoothing parameters. Users only need to set the
maximum value of potential degrees of freedom for each smooth function.

Potential limitations includes:

� Use of only time-fixed baseline covariates;

� The process of the penalized estimation procedure could be time-consuming for the
analysis of larger data sets or a proposed model with multiple smooth regression
components. One alternative option is to set all smoothing parametric to be zeros
and perform parametric estimation procedure for model fitting; another option is
to apply efficient computational methods to larger data sets [133], which needs
further investigation;

� In correlated survival data analysis, random effects and baseline covariates are
assumed to be independent in the current extensions (Paper II), in which random
effects (or frailty) either are treated as unmeasured heterogeneity or model
within-cluster association. If the random effects represent the role of effects of
unmeasured confounders, Sjölander introduced the idea of a between-within
model for clustered data [134] into survival analysis [135], which could allow the
dependence between frailty and covariates especially for twin research [136, 137].

6.3 Specific issue 1: About the constraint: hi(t|zi)>0

This section aims to examine the condition of hi(t|zi)>0 that we considered in the process
of the maximum likelihood and maximum penalized likelihood estimation.

For example, for right-censored survival data, suppose all observations in a collection
of {(ui,δi,zi), i = 1,2, . . . ,n.}, where ui = min{ti,ci}, δi = I(ti ≤ ci) and the vector of
predefined baseline variables zi, and n is the total number of patients. The classical log-
likelihood function is in the form of

logL(β ) =
n

∑
i=1
{δilogh(ui|zi;β )−H(ui|zi;β )} (6.1)

where h(ui|zi;β ) and H(ui|zi;β ) are the hazard and cumulative hazard functions for an
individual i. The maximum likelihood estimators satisfy,

β̂ = argmin
β

{−logL(β )} subject to : hi(ui|zi;β )> 0. (6.2)

6.3.1 Solution 1: penalty method

One possible way to solve this constrained optimization problem is to apply the penalty
method [138] to get proper estimators. That is, a quadratic penalty term

Pn(β ) =
κ

2

n

∑
i=1

{
h2(ui|zi;β )I(h(ui|zi;β )< 0)

}
, (6.3)
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is subtracted from the above likelihood function, where κ is the penalty coefficient and
I(·) is an indicator function. The un-constrained optimization problems with the
augmented objective function as f (β |κ) = −logL(β ) + Pn(β ). The corresponding
maximum likelihood estimators β̂ satisfy that

β̂ = argmin
β

{ f (β |κ)}. (6.4)

In the jth iteration of the optimization process for β̂( j), there are two situations: (1) in

which hi(ui|zi; β̂( j))>0 for each subject i holds with κ=1, then Pn(β )=0 and an
appropriate optimization method can be applied to get the MLE of β ; and (2) in which
some hi(ui|zi; β̂( j))<0 with κ=1. We mainly illustrate the second situation with two types
of optimization algorithms.

6.3.1.1 Optimization methods only using the objective function

There is only the objective function f (β |κ) needed in the process of parametric estimation
with the Nelder-Mead optimization algorithm. In the iteration j, there are hi(ui|zi; β̂( j))<0

with κ=1. An iteration process of κ for the proper estimator of β̂( j) is to be performed

in the estimation procedure. The hi(ui|zi; β̂( j)) will be replaced by a small value (for
example, ε=1.0e-16) in the log-likelihood function 6.1 and is kept in the formulation 6.3.
With the initial value of κ being 1, the value of κ is doubled in next iteration for κ until
hi(ui|zi; β̂( j))>0 for each patient. Continue to the iteration j+1 for the proper estimator of

β̂( j+1) until a convergence criteria is met for β̂J , with the total J iterations.

6.3.1.2 Optimization with the Newton-Raphson algorithm

In addition to the objective function f (β |κ), the gradient function of the objective
function is usually required to obtain the MLE of β in the form of:

d f (β |κ)
d β

=
n

∑
i=1

{
−δi

d logh(ui|zi;β )

d β
I(h(ui|zi;β )≥ ε)+

d H(ui|zi;β )

d β

}
+κ

n

∑
i=1

{
h(ui|zi;β )

d h(ui|zi;β )

d β
I(h(ui|zi;β )< 0)

}
.

6.3.2 Solution 2: direct use of monotonic regression splines

An alternative solution to this quadratic penalty method is to directly use monotonic
regression splines for constrained smooth functions, such as monotone I-splines[139]
applied in the R package frailtypack or using B-splines with constrained
coefficients[140].

In general, hazard functions can be derived from a GSM. For instance, we use the
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formula 4.5
h1(t|z1)

h2(t|z2)
...

hn(t|zn)

=−G′(η(t,z;β ))

G(η(t,z;β ))

d η(t,z;β )

d t
=−G′(η(t,z;β )

G(η(t,z;β )
XD(t,z)β

with

−G′(η(t,z;β )

G(η(t,z;β )
> 0

where the common inverse link functions are G(·)=exp−exp(·) and G(·)=1/(1+exp(·)).
To ensure hi(t|zi)>0 for each subject, we only need XD(t,z)β>0, which indeed

coincides with two requirements: (1) If the definition of probability 4.3 holds, it requires
s(T ) or s(log(T )) to be an increasing transformation; (2) As described in 4.18, the
time-dependent cumulative hazards ratio and odds ratio can be a type of cumulative
effects, with increasing (or non-decreasing) first derivatives with respect to t or log(t).

6.4 Specific issue 2: Statistical inference for GSMs

6.4.1 Standard error and hypothesis testing

The M-estimator from both maximum likelihood and penalized likelihood estimation
methods can be asymptotically normally distributed,[22, 141], if the condition of the
proposed model is correct. In this setting, it may be reasonable to use Hl and Hpl

evaluated at β̂ to derive standard errors (SEs). Based on these SEs, hypothesis testing on
regression coefficients or smooth regression components can be performed, which can be
similar to related tests within generalized additive models [2].

In practice, we do not know whether or not the proposed model is correct. Generally,
in the situation in which the proposed model is misspecified, the commonly used SEs
approximated from the empirical Hessian matrix are invalid. Although one can apply the
sandwich algorithm for SEs, the corresponding estimates may be biased [142]. In
general, the bootstrap method based on re-sampling techniques can be applied to
construct confidence intervals for estimated regression coefficients and smooth
regression components, however, the proposed model remains unchanged. How to
specify functional forms in multivariable analysis (for observational studies) is being
investigated in an international collaborative study [33]. In this context, given baseline
covariates z, spline-based survival regression models could be a useful tool to
approximate the underlying model components, with data-driven functional forms for
baseline functions and covariate effects.

6.4.2 Model checking techniques

Based on a fitted survival model, a graphical method can be applied to check goodness-
of-fit (e.g. Cox-Snell residual plots in Paper I), which is also related to the martingale
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residual [105] based on estimated H(t|z) and the final status δ for each subject. In general,
the martingale residual can be expressed in a simple form for each subject [143]

Mi = δi− Ĥ(toi|zi).

Cortese and Scheike proposed an adjusted martingale residual to check goodness-of-fit
for relative survival models [144]. Collett proposed to explore effects forms for
continuous covariates by martingale residual plots [11]. Especially for parametric
regression with censored survival data, Lin and Spiekerman [145] proposed several
model checking techniques, which could be further investigated for GSMs.

6.5 Extension to biomedical research

If the phenotype of interest is a time-to-event outcome, it would be interesting to extend
the current statistical procedures to incorporate genomic data (or integrated omics data).

For instance, it is well known that when the outcome of interest is a binary variable over
a fixed time period, classic logistic regression is commonly applied for risk prediction
or classification. However, in practice, the sub-population might be a dynamic group
allowing subjects to be included or excluded for various reasons. The study period could
also be dynamic. This calls for, or can be extended to, the dynamic parametric log-
logistic proportional odds model and a GSM with the−logit link, both of which are exact
"dynamic" logistic regression models for censored survival data. Within survival analysis,
these models can be an alternative tool for prediction and classification of patients, and
also with similar interpretation to the "static" logistic regression model over a fixed time
period.

The proposed model with both clinical and genomic data can be given in the form of

log
{

1−S(t|zc,zg)

S(t|zc,zg)

}
= s(log(t))+β

T
c zc +β

T
g zg, (6.5)

where zc and zg are the vectors of clinical and genomic variables, respectively, and
s(log(t)) is a parametric form of log(t) or flexible regression spline representation for
estimating the transformed baseline survival function in the form:

s(log(t)) = log
{

1−S0(t)
S0(t)

}
, (6.6)

where S0(t) is the survival function for the reference subgroup with categorical variables
zc and zg be zero, with empirical average values for continuous variables zc and zg.

Note that, based on model 6.5, one potential challenge to predict survival probability is
to deal with the problem of small n large p, which indicates that there are p-dimensional
covariates that are much larger than the number of subjects n in the study population.
In statistics, LASSO (least absolute shrinkage and selection operator) [146] and Elastic
net [147] are common regression analysis methods to handle this issue.

More generally, joint models of survival outcomes and longitudinal data (e.g. clinical
biomarkers) have also been proposed in medical investigations, which simultaneously
handle the problem of variable selection [148]. In this thesis, after adjustment for
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measured covariates, censoring times are assumed to be independent of event times for
each individual. However, in biomedical studies, dependent censoring might arise in the
competing risks setting [149]. All these topics are of interest for future research.
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A Illustrative examples in R

A.1 R code for parametric models

## Load R Packages if you don't have them

library("rstpm2")

library("flexsurv")

library("SurvRegCensCov")

library("survival")

## Fit the Weibull AFT model

reg.weibull <- survreg(Surv(recyrs, censrec) ~ group, data = bc,

dist = "weibull")

## Convert to parametrs in the Weibull PH model

ConvertWeibull(reg.weibull, conf.level = 0.95)$vars

## Estimate SE

## lambda 0.03472474 0.005959304

## gamma 1.37965178 0.066787587

## groupMedium 0.84653938 0.171278007

## groupPoor 1.67243282 0.164243936

## Fit the Weibull proportional hazard model (parametric model)

summary(fit_ph <- stpm2(Surv(recyrs, censrec) ~ group, data = bc,

smooth.formula = ~log(recyrs),

link.type = "PH"))@coef

## Estimate Std. Error z value Pr(z)

## (Intercept) -3.3603117 0.17161617 -19.580391 2.272690e-85

## groupMedium 0.8465194 0.17128019 4.942308 7.720332e-07

## groupPoor 1.6725060 0.16424387 10.183065 2.360090e-24

## log(recyrs) 1.3796448 0.06678709 20.657359 8.382576e-95

## Intercept = log(lambda)

## log(recyrs) = gamma

## Fit the log-logistic AFT model

reg.loglogistic <- survreg(Surv(recyrs, censrec) ~ group, data = bc,

dist = "loglogistic")

## Convert to parametrs in the log-logistic PO model

ConvertWeibull(reg.loglogistic, conf.level = 0.95)$vars

## Estimate SE

## lambda 0.02352749 0.004729315

## gamma 1.75456634 0.084878201
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## groupMedium 1.09303127 0.208815258

## groupPoor 2.26035496 0.211622325

## Fit the log-logistic proportional odds model (parametric model)

summary(fit_po <- stpm2(Surv(recyrs, censrec) ~ group, data = bc,

smooth.formula = ~log(recyrs),

link.type = "PO"))@coef

## Estimate Std. Error z value Pr(z)

## (Intercept) -3.749586 0.2010123 -18.653513 1.182470e-77

## groupMedium 1.093031 0.2088153 5.234439 1.654865e-07

## groupPoor 2.260355 0.2116223 10.681078 1.248138e-26

## log(recyrs) 1.754566 0.0848782 20.671578 6.244161e-95

## Intercept = log(lambda)

## log(recyrs) = gamma

A.2 R code for flexible parametric models

## use penalized estimation procedure to fit a spline-based GSM

## a GSM with the log-log link

pfit_ph = pstpm2(Surv(rectime, censrec==1) ~ 1, data=brcancer,

smooth.formula = ~s(log(rectime), k=10) +

s(log(rectime), k=10, by=hormon),

link.type = "PH")

## the optimal smooth parameter

pfit_ph@sp

## [1] 1.152982 6576.648300

## the effective degees of freedom

pfit_ph@edf_var

## s(log(rectime)) s(log(rectime)):hormon

## 4.132525 2.000525

## a GSM with the -logit link

pfit_po = pstpm2(Surv(rectime, censrec==1) ~ 1, data=brcancer,

smooth.formula = ~ s(log(rectime), k=10) +

s(log(rectime), k=10, by=hormon),

link.type = "PO")

## the optimal smooth parameter

pfit_po@sp

## [1] 0.9062523 203.8098599
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## the effective degees of freedom

pfit_po@edf_var

## s(log(rectime)) s(log(rectime)):hormon

## 4.057106 2.012676

## Estimation of baseline hazard functions from two fitted GSMs

new.tim = seq(min(brcancer$rectime), max(brcancer$rectime),length=500)

par(cex.axis=0.7, cex.lab=0.7)

plot(pfit_ph, newdata=data.frame(rectime=new.tim, hormon=0),

ylim=c(0,0.0015), cex.main=0.75,

type="haz", xlab="Time (Days)", ylab="Baseline Hazard",

main="Appendix A.2: Estimated baseline hazards from GSMs with different links")

## prediction from the fitted proportional odds model

haz0_po = as.vector(predict(pfit_po, newdata =

data.frame(rectime=new.tim, hormon=0), type="haz"))

lines(new.tim, haz0_po, lty=2,col="blue")

legend("topleft",

legend=c("Estimate from a fitted GSM with the log-log link",

"Estimate from a fitted GSM with the -logit link"),

col=c("black","blue"),

lty=c(1,2), cex=.70, y.intersp=1.1, lwd=c(1,1),

bty="n")
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A.3 Univariate thin plate regression spline basis in R

## Following the procedures described in Section 4.2.1

m = 3 ## for cubic splines

set.seed(2017)

n_sample = 50

x_sam = seq(-6,3,length = n_sample)

x = sort(x_sam)

x = x - mean(x)

nn=length(x)

vec = vector()

for(i in 1:nn){

vec = rbind(vec,abs(x[i]-x)^m)

}

E=as.matrix(vec,n_sample, n_sample)/12
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## eigndecomposition

res = eigen(E, symmetric=TRUE)

D_old = diag(res$values)

U_old = res$vectors

# EE = U_old%*%D_old%*%t(U_old) ## eigen decompsition

## change the order to be |D_ii| > |D_i+1,i+1|

abs_value = abs(res$values)

ord = order(abs_value, decreasing = TRUE)

D = D_old[ord,ord]

U = U_old[,ord]

# EEE = U%*%D%*%t(U) ## eigen decompsition

## add bountary constraint TU_k\delta_k=0

k = 9

TT = matrix(rbind(rep(1,nn), x), 2, nn)

C12 = TT%*%U[,1:k]

## Get a basis for null space of the constraint

qrC = qr(t(C12))

Q = qr.Q(qrC,complete=TRUE)

## absorb constraint into basis

## E_k=U_k D_k U_k^T

## take the last k-2 columns

UDQ = (U[,1:k])%*%(D[1:k,1:k])%*%(Q[,(nrow(C12)+1):ncol(C12)])

UQ = (U[,1:k])%*%(Q[,(nrow(C12)+1):ncol(C12)])

## penalty matrix S=Q'DQ

S = t(Q[,(nrow(C12)+1):ncol(C12)])%*%(D[1:k,1:k])%*%

(Q[,(nrow(C12)+1):ncol(C12)])

res_S = eigen(S, symmetric=TRUE)

## final basis without the sum-to-zero constraint

basis0 = UDQ

bas_full = as.matrix(cbind(UDQ, rep(1,nn), x))

## improve the numerical stability of the algorithm, Wood suggests to

## impose the mean square size of each column of bas_full to be 1

## applied in the mgcv package in R

W_vec = sapply(1:ncol(bas_full), function(i)

sqrt(nrow(bas_full)/sum(bas_full[,i]^2)))

W = diag(W_vec)

bas_W = bas_full%*%W

## An example

par(mfrow=c(k/3,3),oma=c(0,0,2,0))

for(j in 1:k){
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plot(x, bas_W[,j], type="n", xlab="x", ylab=paste0("Basis ",j))

lines(x, bas_W[,j], lty=2)

title("Appendix A.3: the thin plate regression spline basis

(based on radial basis functions)", outer=TRUE)

}
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