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Diverse coordinate frames on 
sensorimotor areas in visuomotor 
transformation
Yusuke Fujiwara1, Jongho Lee2, Takahiro Ishikawa2, Shinji Kakei2 & Jun Izawa1,3

The visuomotor transformation during a goal-directed movement may involve a coordinate 
transformation from visual ‘extrinsic’ to muscle-like ‘intrinsic’ coordinate frames, which might be 
processed via a multilayer network architecture composed of neural basis functions. This theory 
suggests that the postural change during a goal-directed movement task alters activity patterns of 
the neurons in the intermediate layer of the visuomotor transformation that recieves both visual 
and proprioceptive inputs, and thus influence the multi-voxel pattern of the blood oxygenation 
level dependent signal. Using a recently developed multi-voxel pattern decoding method, we found 
extrinsic, intrinsic and intermediate coordinate frames along the visuomotor cortical pathways during 
a visuomotor control task. The presented results support the hypothesis that, in human, the extrinsic 
coordinate frame was transformed to the muscle-like frame over the dorsal pathway from the posterior 
parietal cortex and the dorsal premotor cortex to the primary motor cortex.

Performing a visuomotor transformation is essential to allow the brain to produce motor commands to generate 
a goal-directed movement toward a visual target. The neural mechanism underlying this function has often been 
formalized by the coordinate transformation between the extrinsic coordinate frame that represents the visual 
target location in the external of the body and the intrinsic coordinate frame that represents the motor commands 
based on the muscle kinematics1. Ample neurophysiological data suggest that this transformation is mediated by 
gain fields represented in the posterior parietal cortex (PPC) and in the dorsal premotor cortex (PMd), in which 
the neural activities are representing the target as well as the movement directions, are modulated by the postural 
information2,3. A model prediction of a neural network model of visuomotor transformation4–6 is compatible with 
measurements of the gain field of the PPC neurons, whose tuning functions are modulated by the hand location 
and the eye location7,8. Extrapolating from these computational models, the neurons of the input layer represents 
information either on the intrinsic ‘proprioceptive’ coordinate frames or the extrinsic ‘visual’ coordinate frames 
and those of the output layer represents it on the intrinsic ‘muscle’ coordinate frames while the neurons of inter-
mediate layer does not rely on any explicit coordinate frame but, as a result of integration of two input layers, it 
appears to depend on an intermediate coordinate frames. However, it is as yet unclear how exactly these diverse 
coordinate frames are represented in multiple cortical regions in the human brain. While this question is funda-
mental to understanding the neural mechanism of the coordinate transformation, it remains unsolved.

Investigating the coordinate frames of the regional activity of each cortical area aligned on the dorsal stream 
is essential to understand the neural mechanism of visuomotor transformation. The recently established multi-
variate analysis of the BOLD signals allows us to assay the selectivity of the neural population. In particular, the 
tuning function over the motor movement directions that appears in the multi-voxel activity pattern has been 
found in the primary motor cortex(M1), PMd, the primary sensory area (S1), and PPC9,10. These results support 
the theoretical prediction that a collection of the neural activities inside a certain voxel following the tuning func-
tions of the population code form a tuning function of the BOLD signals and, thus, the directional tuning of the 
stimulus-related-activity can be read out from the multi-voxel pattern of the BOLD signals11. Based on this idea, 
previous papers have decoded motor commands as well as target representations from the multi-voxel activity 
pattern of the visuomotor areas using fMRI decoding12–15. During a center-out reaching task, this fMRI decoding 
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technique clearly dissociated the coordinate frame of M1 from PMd and PPC, exhibiting directional tuning func-
tions over the movement and target directions16,17. These results suggest that fMRI decoding enables us to capture 
the gain fields formed by population coding. While the previous papers reported the posture dependencies of the 
decoding accuracy18, it has not been examined yet which coordinate frame such as the extrinsic or the intrinsic 
frame is represented in each cortical area.

In this study, we established a decoding model to estimate coordinate frames from voxel patterns and applied 
it to human fMRI data during the experimental paradigm developed by Kakei et al.19, where their monkey subject 
conducted an isometric center-out wrist movement toward eight target directions across two forearm postures. 
To identify the coordinate frame of the wrist muscles of human, we conducted an intramuscular electromy-
ography (iEMG) experiment separately from the fMRI experiment. We then measured fMRI data from human 
participants who underwent this task. Changing the posture for each target led the participants to produce two 
muscle activation patterns for each single target. This alters the multi-voxel activity pattern of the cortical area 
that encodes information in the intrinsic (muscle-like) coordinate frame, but preserves it in the area that encodes 
information in the extrinsic coordinate frame.

Results
We recorded fMRI data while participants underwent an isometric wrist force control task where they were asked 
to manipulate a cursor that represented their hand force (i.e., a force cursor). The force cursor was displayed on 
a screen mounted inside the MRI scanner, so that the cursor could reach inside the visual target while the hand 
force was measured by the in-house MRI-compatible force sensor (Fig. 1A–D). Note that the arm cuff prevented 
participants from using their shoulder and elbow muscles, and thus forced them to control only their wrist mus-
cles. A task block with a 6-s duration began with the presentation of one of the eight target directions (0, 45, …, 
315°), which was followed by four repetitive step-like cursor movements toward the visually instructed aiming 
direction (Fig. 1C and D). This isometric force control task was conducted in two forearm postural conditions: 
the pronated (Pro) posture and the midway (Mid) posture, which was supinated approximately 90° from the Pro 
posture and thus was in between the pronated posture and the supinated posture (Fig. 1B and C). The generated 
reach was directed to the presented target unbiasedly (Fig. 1D): The mean biases to the instructed directions 
across participants were −2.2° ± 7.0° and −6.4° ± 4.8° in Pro and Mid postural conditions, respectively.

In advance of this fMRI experiment, we identified the coordinate frame of the wrist muscles of human par-
ticipants, which was estimated as the rotation angle of the preferred direction (PD) of the wrist muscles caused 
by a posture change. Intramuscular electromyography (iEMG) was measured from two participants while they 
performed a similar isometric wrist control task as that in the scanner. Note that the participants in this study do 
not overlap with those in the fMRI experiment. The tuning function of the muscle activity was estimated from 

Figure 1. Overview of the decoding analysis for the visuomotor control task. (A) An MR-compatible force 
sensor mounted on the bed of the MRI scanner recorded the hand force produced by the wrist muscles. An arm 
cuff connected to the bed prevented participants from using their shoulder and the elbow muscles. (B) The task 
was conducted under two postures: pronated (Pro) and midway (Mid), which was between the pronated and the 
supinated postures. (C) The coordinate frame of the task space: the extension under the Pro postural condition 
(i.e., up for the participant) was defined as 0°. (D) The visual stimulus on the screen positioned in front of 
the participant’s face inside the scanner. Visual feedback of the aiming accuracy was provided by displaying 
force trajectories and the force target position. (E) Regions of interest. (F) A schematic of the model-based 
examination of coordinate frames. The 90° supination/pronation of the wrist altered the multi-voxel activity 
pattern of a region of interest (ROI) as well as the decoded pattern, which led to the rotation of the decoded 
aiming direction. Estimation of the rotation of the decoded direction Δθ indexes the coordinate frame of the 
embedded information in the multi-voxel activity pattern of the ROI. A rotation of 0° in the predicted direction 
indicates the extrinsic coordinate frame, and a rotation of 90° indicates the joint coordinate frame.
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the four representative muscles (ECRL: extensor carpi radialis longus; ECU: extensor carpi ulnaris; FCR: flexor 
carpi radialis; FCU: flexor carpi ulnaris) in the two postural conditions (Pro and Mid). We found that the PD of 
the muscle was rotated 58.8° ± 18.3° clockwise when the posture changed from Pro to Mid (Fig. 2 and Methods 
section in detail). This estimated rotation angle is consistent with the previously reported intermediate coordinate 
frame between the extrinsic-like (0°) and the joint-like (90°) coordinate frames in the monkey. Note that, in this 
paper, we refer to the coordinate frame attached to the external of the body which is uninfluenced by the postual 
change of the wrist as the extrinsic coordinate frame, and it attached to the wrist which significantly rotates as the 
wrist rotation as the intrinsic coordinate frame. We also categorize the intrinsic coordinate frame by two: one that 
rotates exactly the same extent as the joint rotation as the joint-like coordinate frame and the other that rotates 
intermediately between the extrinsic and the joint as the muscle or proprioceptive coordinate frame.

Postural sensitivity to the directional tuning property of the decoder. We then analyzed postural 
selectivity of the multi-voxel patterns in anatomically defined ROIs (see Methods): M1, S1, PMd, The left ventral 
premotor cortex (PMv), PPC, the supplementary motor area (SMA), the superior occipital gyrus (SOG), the 
pre-supplementary motor area (preSMA), and the primary visual cortex (V1); see Table 1 for Talairach coor-
dinate. First, we trained and tested on a decoder built in each ROI by the leave-one-run-out cross-validation to 

Figure 2. Cosine-tuning of muscle activities in different postures. Activities of the four forearm muscles 
(ECRL, ECU, FCU and FEC) observed from participant #1 and the two forearm muscles (ECRL and ECU) 
in participant #2 were measured during isometric wrist movements. The average activities relative to the rest 
period were calculated for each direction and each posture (blue, Pro; red, Mid). The filled circles with the error 
bars indicate the average and the 95% confidence intervals over the 10 trials. A cosine function was fitted to 
estimate the preferred direction of the muscle. The vertical dotted lines are the estimated preferred directions. 
The numbers in the upper right corner indicate shifts of the preferred directions from Pro to Mid postural 
conditions.

ROI name x y z

M1 −35 −16 40

S1 −40 −18 45

PMd −23 −2 50

PMv −49 6 22

SMA −7 −12 41

preSMA −10 14 37

PPC −23 −54 48

SOG −13 −89 14

V1 −12 −84 −9

Table 1. Across-participant average Talairach coordinates of ROI.
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Figure 3. The tuning properties of the decoder over the aiming directions and the coordinate frames embedded 
in each ROI. (A) The across-participant mean with 95% CI of the fraction of the predicted direction of the 
decoder on each ROI. All predicted directions were aligned with respect to the tested true direction centered at 
0°. Of the within-posture generalization (Blue), the trained and the tested multi-voxel activities were taken 
under the same postural condition. Of the across-posture generalization (Red), the trained and the tested multi-
voxel activities were taken under different postural conditions. The gray solid line indicates the chance level of 
the prediction. (B) The bar graph of the difference of the asymmetry index between the within- and the across- 
postural conditions (across-participant mean ± 95% CI), where the asymmetry index was evaluated as the 
difference between the averaged prediction errors over the positive angles (45°, 90° and 135°) minus those over 
the negative angles (−45°, −90° and −135°). Asterisks indicate a significant effect of the postural condition on 
the asymmetry index (paired t-test, p < 0.01, Bonferroni corrected). Daggers indicate a significant difference 
from V1 (paired t-test, p < 0.01, Bonferroni corrected). (C) The prediction accuracy of the decoder with the 
across-posture rotation model (Equation 1) is plotted over the coordinate rotation angle Δθ (red dashed line), 
which provides the best estimate of the rotation angle θ̂∆  (red vertical solid line) that indexes the coordinate 
frame of the reference frame as the rotation angle from the extrinsic coordinate frame (0°, black). The rotation 
angle of the joint coordinate frame is 90° (green) and that of the muscle-like coordinate frame estimated from 
the iEMG data is 58.8° (blue). Every plotted line is the across-participant average, with the shaded area showing 
95% CI.



www.nature.com/scientificreports/

5SCIenTIfIC REPORTS | 7: 14950  | DOI:10.1038/s41598-017-14579-3

compute the fraction of predicted labels under the same postural condition (e.g., Pro). We then plotted them, 
aligned with respect to the instructed aiming label (i.e., the true label) of the tested data. With this analysis, we 
aimed to illustrate the within-posture generalization property of the built decoder over all aiming directions. As 
expected, in all ROIs except preSMA, the profile of the decoding generalization profile showed a single peak (PD, 
preferred direction) at the trained aiming direction with a moderate tuning curve (Fig. 3A, blue), which reminds 
us of the tuning properties of single neurons in these cortical areas19–21.

Second, we trained the decoder on the data taken under one of the two postural conditions (e.g., Pro) and then 
tested it on the data taken under the other posture (e.g., Mid), and vice versa, to illustrate the across-posture gen-
eralization property. If a certain ROI represents information in the extrinsic coordinate frame, a posture change 
should not affect the decoding property. In fact, the overlap of the V1 tuning function between the within-posture 
and across-posture generalizations indicates that the aiming direction might be represented in the extrinsic 
coordinate frame, which is congruent with previous literature on the retinotopic organization of V122. However, 
if a certain ROI represents information in the intrinsic coordinate frame, the postural change might alter the 
multi-voxel activity pattern of this ROI and then bias the generalization profile. For M1 and S1, the fraction of the 
trained label (0°) exhibited a remarkable decrease, while those for the positive 45° and 90° showed an increase as 
if the PD of the tuning function shifted towards the right (Fig. 3A, red). This apparent rotation of the PD appeared 
in M1 and S1 suggests that the coordinate frame representing aiming direction is attached to the forearm and 
rotates as the forearm rotates, indicating that these coordinate frames are more intrinsic-like than extrinsic-like.

We then evaluated this postural sensitivity to the generalization property by taking the difference between 
the average of the decoding accuracy over the positive angles (45°, 90° and 135°) and the negative angles (−45°, 
–90° and –135°) and compared this asymmetry index between the within-posture and the across-posture condi-
tions (Fig. 3B). Because the postural conditions significantly altered the asymmetry indexes of M1 and S1 (t-test, 
p < 0.01, Bonferroni corrected) and these were significantly different from that of V1 (paired t-test, p < 0.01, 
Bonferroni corrected), these two areas might adopt dissociable coordinate frames from that of V1’s extrinsic 
coordinate frame. In contrast, because the sensitivity of PMd, PMv, PPC, SMA and preSMA, and SOG were not 
significantly different from that of V1, the extrinsic-like coordinate frames might be employed in these six areas.

Decoder-based identification of coordinate frame. Extrapolating from these results, we hypothesized 
that, if the observed PD’s rotation is mainly caused by the postural influence on the encoded cortical information, 
we might be able to build a decoder that can predict the presented visual aiming direction from the fMRI data 
taken across two postural conditions by simply rotating the predicted aiming direction (Fig. 1F). Here, we call 
this decoder for two postural conditions a ‘common decoder’. If the coordinate frame of a certain ROI is extrinsic, 
the estimated rotation angle of the coordinate frame should be zero, whereas if it is attached to the forearm, it 
should be the same angle as that of the posture rotation (i.e., 90°). Thus, the estimated rotation angle quantifies 
how far the coordinate frame of the ROI is from the extrinsic coordinate frame, and thus enables us to index the 
coordinate frame embedded in this ROI.

We employ a linear decoder that transforms the N-dimensional vector of the voxel to the two-dimensional 
aiming direction. The common decoder w (2 × N vector; N is the number of voxels) on the multi-voxel activity 
patterns of both the Pro rPro (N × 1 vector) and the Mid rMid (N × 1 vector) conditions predicts the vectorial rep-
resentation of the aiming direction v (2 × 1 vector) defined in the extrinsic frame when the direction predicted 
from the multi-voxel activity pattern of the Mid condition is rotated by Δθ,

θ= = ∆v wr wrR( ) (1)Pro Mid

where θ θ θ
θ θ

∆ = 



∆ − ∆
∆ ∆





R( ) cos sin
sin cos

 is the rotation matrix (Fig. 1F).

We estimated the decoder w with varying Δθ from –45° to 315° to find the best estimate of the coordinate 
index θ̂∆ . This best estimate of the rotation angle θ̂∆  indexes the coordinate frame of each ROI. The extrinsic 
coordinate frame is indexed with θ̂∆ = °0 , the joint coordinate frame is indexed with θ̂∆ = °90 , and, the muscle 
coordinate which laid in between these two19 is indexed, in this paper, with θ̂∆ = . °58 8  according to the iEMG 
data.

The dotted red line of Fig. 3C illustrates the across-participant average of the mean square error of the pre-
dicted aiming vector over the tested coordinate index Δθ that provides the best estimate of this index θ̂∆  at the 
minimum of this error function. The best estimate of the coordinate index of M1 is 50.0° ± 16.9° (mean 
angle ± 95% Confidence interval [CI]), which is significantly different from both the extrinsic coordinate frame 
and the joint coordinate frame (one sample test for circular variable, p < 0.001) and appears to be overlapped with 
the muscle-like coordinate frame. The index of S1 (42.0° ± 21.0°) also overlaps with the muscle-like coordinate 
frame, and those of PMd (4.6° ± 21.1°, p = 0.60), PMv (4.6° ± 49.5°, p = 0.85), and V1 (19.0° ± 22.3°, p = 0.30) are 
not different from the extrinsic coordinate frame. Then, the index of PPC (19.0° ± 22.3°) lies in between the 
extrinsic and the muscle-like. The error functions of SMA and preSMA are almost flat, and the estimated coordi-
nate indices have a wide confidence interval.

Discussion
By conducting the decoding analysis, we identified both the coordinate frame used in each cortical area. We 
found that both S1 and M1 represent the aiming vector in the muscle-like coordinate frame, PMd represents 
it in the extrinsic coordinate frame, and PPC represents in in the t intermediate between the extrinsic and the 
muscle-like coordinate frames.
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To develop this multi-voxel pattern analysis to estimate coordinate frames, we hypothesized that a collec-
tion of the neural tuning functions in a certain cortical area that codes the visual target/movement direction 
should form an intrinsic multi-voxel activity pattern. We then built a decoder of the multi-voxel activity pattern 
to predict the visual target/movement vector over the two postures and directly estimated the angular difference 
between these two predicted vectors in the different postures. This estimated angular difference represents a 
coordinate index that enabled us to evaluate the significance of the coordinate rotation. Importantly, the esti-
mated coordinate indices are consistent with the monkey neurophysiology literature: the muscle-like coordinates 
observed in neurons in M119 and S121, as well as the extrinsic coordinates seen in PMd23,24. This consistency sup-
ports our working hypothesis that the coordinate frame embedded in the cell activities characterizes the posture 
dependent alteration of the multi-voxel activity pattern.

In PPC, we found the intermediate coordinate frame. This is also consistent with the previous results, where 
the monkey PPC contains cells that represent an intermediate coordinate frame between the hand-centered coor-
dinate frame and the eye-centered coordinate frame25,26. In theory, the intermediate coordinate may contribute to 
converting signal representations ascending from different sensory modalities, and thus the intermediate coordi-
nate frame might indicate a middle layer’s representation of the multi-sensory integration process4–6,27,28. Hence, 
the intermediate reference frame appeared in the voxel patterns of PPC, might be a signature of the PPC’s contri-
bution for the intermediate-stage representation of the visuomotor transformation via multi-sensory integration.

We should note that the wide confidence interval appeared in SMA and pre-SMP does not necessary mean 
that these two areas do not code any movement-related information or have any specific coordinate frames. The 
low decoding accuracies and the wide confidence interval might depend on the signal to noise ratio of voxels in 
ROIs.

Taken together with cortico-cortical connections from PMd and PPC to M1 found in monkey neuroana-
tomical studies29,30 as well as diffusion MRI tractography study in humans31, the projection from PMd and PPC 
to M1 might contribute to the coordinate transformation from the extrinsic or the intermediate frames to the 
muscle-like frames. These connections might play an important role in the feedback control32–34 based on online 
sensory inputs and the feedforward control35 unaffected by sensation. Further analyses would shed light on this 
question.

Methods
Participants. Twelve right-handed volunteers (2 female, mean age 25 ± 4.5 years old) without any history of 
the neurological disorder and with normal or corrected-to-normal vision participated in the fMRI experiment. 
An additional two right-handed healthy volunteers (male 33 and 38 years old) participated in the intramuscular 
EMG experiment. All participants gave written informed consent before participating in this study. The exper-
imental paradigm was approved by the Institutional Review Board of Advanced Telecommunications Research 
Institute International and was conducted according to the Declaration of Helsinki.

fMRI experiment. Inside the scanner, the participants grasped the handle of the in-house made MR com-
patible force sensor with their right hand, where their shoulder and elbow movement were restricted by a cuff 
that was mounted on the scanner bed. They were asked to push the handle toward the aiming direction, which 
was instructed by a short line starting from the fixation point along the requested aiming direction with a size of 
1° of visual angle. The task was started with the presentation of an indicator for 0.5 s, and then the fixation point 
flickered four times over 4 s, i.e., once every 1 s. After the aiming direction was presented, the participant pushed 
the handle four times, following the end of the flicker of the fixation point. Subsequently, the visual feedback of 
the produced force trajectories was presented for 0.5 s, where 1° in visual angle corresponded to 1 N of measured 
wrist force. Meanwhile, the visual feedback of the required wrist force was presented with a circle 1° in radius 
located along the aiming direction, 5° from the center (i.e., 5 ± 1 N). After this feedback signal, a 1 s rest period 
was inserted, so that the duration of each block was 6 s. In each scan run, composed of 32 blocks, the target aiming 
direction was randomly selected every trial from eight directions, so that each direction appeared four times in 
total. A 20 s rest period was inserted at the beginning of each run to measure the baseline activity, and another 
6 s rest period was added at the end of each run to allow for the time constant of the hemodynamic response. The 
participants experienced either the Pro or Mid postural condition for the first consecutive 7–9 runs and then 
experienced the other posture for the next consecutive 7–9 runs, to give 14–18 runs total. The order of the expe-
rienced postural conditions was counterbalanced across the participants.

MRI Data Acquisition and Preprocessing. MRI data were obtained using a 3.0-T Scanner (Siemens 
MAGNETOM Verio) with a 32-channel head coil located at the ATR Brain Activity Imaging Center. fMRI 
signals were scanned with a gradient-echo echo-planar imaging (EPI sequence; TR = 2000 ms; TE = 26 ms; 
flip angle = 80°; field of view = 192 × 192 mm; voxel size = 3 × 3 × 3 mm; slice gap = 0 mm; number of 
slices = 33), covering the entire cerebral cortex. T1-weighted high-resolution (MP-RAGE sequence; field of 
view = 256 × 256 mm; voxel size = 1 × 1 × 1 mm; slice gap = 0 mm) structural images of the whole brain were 
acquired to define anatomical ROIs.

The fMRI data were subjected to 3D motion correction and were then aligned with the T1 structural image 
using SPM8. The fMRI signals of each voxel were shifted by 4 s to compensate for hemodynamic delays. The 
amplitudes of the signals were normalized by the mean amplitude of the first 20-s rest period in each run to 
minimize the baseline difference across runs. The temporal pattern of the fMRI signals underwent linear trend 
removal within each run. To define anatomical ROIs for each participant, the T1 structural image was trans-
formed to Talairach coordinates and also converted to a flattened cortical surface using the Freesurfer software36. 
The voxels in the ROIs were transformed back into the original coordinates of the EPI images. The EPI voxels 
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of each volume in each ROI was z-transformed to minimize the magnitude of activation between the different 
postural conditions.

MRI Compatible Force Sensor. The two-degree-of-freedom (2DOF) MRI-compatible force sensor was 
constructed of a non-magnetic elastic material (acetal polyoxymethylene), an optical strain gauge composed of a 
digital fiber sensor (FS-N10; Keyence corp.) and a limited-reflective fiber unit (FU-38; Keyence corp.). The com-
patibility was confirmed by a measurement with a phantom brain in advance of the fMRI experiment. The wrist 
forces were recorded at 500 Hz. Movement directions were determined using the force trajectories derived from 
more than 50% of the maximum force of each movement.

Intramuscular electromyogram (iEMG) Experiment. We performed an EMG experiment outside of 
the MRI scanner to evaluate the human muscle coordinate frame. The experiment was conducted at the Tokyo 
Metropolitan Institute of Medical Science and the protocol was approved by the Ethical Committee of the Tokyo 
Metropolitan Institute of Medical Science. We adopted the intramuscular EMG to measure each wrist muscle 
precisely, avoiding the contamination of the other muscle activities. Pairs of single-stranded stainless steel wires 
were inserted transcutaneously into four wrist muscles (ECRL, ECU, FCU and FCR) for one participant, and two 
extensor wrist muscles (ECR and ECU) for the other participant. We identified each muscle by observing the 
twitch of the muscle from an electrical stimulation (10 pulses at 200 Hz, 60–600 µA). EMG signals were recorded 
at 1000 Hz and band-pass filtered from 3–150 Hz. EMG data were normalized by data obtained during the rest 
period before movement onset (1 s). The participants lay on a bed in the supine position and performed isometric 
wrist movements in eight directions with a force of 5 N in the Pro and Mid postural conditions. The participants 
maintained a force of 5 N for 5 s in each direction and conducted this movement 10 times in each direction with 
each posture.

The preferred direction (PD) of each muscle was calculated by averaging the EMG of 1 s after the muscle force 
became stable at 5 N. The average amplitudes were fitted by a cosine function20,

θ θ= − µ +f k b( ) cos( ) , (2)

and the peak direction μ was estimated as the PD of the muscle. A circular mean and 95% CI across the 6 muscles’ 
PDs as a muscle-like coordinate frame were estimated using the MATLAB Toolbox for Circular Statistics37.

ROI Selection. Eight anatomical ROIs (left hemisphere) were defined using anatomical landmarks38,39 on the 
flattened cortical surface with Freesurfer36. M1 voxels were selected from the anterior wall of the central sulcus 
and the posterior bank of the precentral gyrus. S1 voxels were selected from the posterior wall of the central gyrus 
and the anterior bank of the postcentral gyrus. The premotor cortex (PMd and PMv) was defined on the precen-
tral sulcus and the anterior bank of the precentral gyrus, and PMd and PMv were separated at z = 50 in Talairach 
coordinates40–42. SMA and pre-SMA were defined on the medial wall extended from y = −20 to y = 20 43 and the 
border of SMA and pre-SMA was set at y = 0 44,45. PPC was defined as the superior parietal lobule where the most 
anterior border is the postcentral sulcus, the most posterior border is the parieto-occipital sulcus and the interior 
border is the intraparietal sulcus (IPS). SOG voxels were selected from the superior occipital gyrus with reference 
to a recent fMRI study46. V1 voxels were selected from the calcarine sulcus22 as a control region.

Decoding of Target Label. To analyze the alternation in multi-voxel activity pattern during the task which 
was provoked by the changes in aiming direction and posture, we used the linear SVM and examined the alterna-
tion in the fraction of predicted labels regarding aiming directions. The multi-voxel activity patterns of each vol-
ume (TR = 2) of each ROI was used. The fraction of predicted labels with the confidence interval was computed 
with leave-one-run-out cross-validation.

Estimation of Coordinate Frame. To identify the coordinate index of each ROI, the aiming direction as a 
continuous value was decoded from the multi-voxel activity pattern as the two-dimensional vector using linear 
regression. The estimation of the common decoder ŵ was given by the sparse linear regression47 with changing 
Δθ with 5° step between 40° to 315°. Among all pairs of ŵ and Δθ, we chose optimal parameters ŵ and θ̂∆  with 
which the prediction error of the aiming vector was minimum. The performance of the common decoder ŵ with 
the best estimate θ̂∆  was evaluated using the nested cross validation.
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