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Using first-principle total-energy calculations within the framework of density functional 

theory, we show that nanometer scale trenches excavated in GaN with (0001) and (000-1) 

surfaces cause a variable electrostatic potential difference of up to a few V, which is 

tunable by controlling the hydrogen coverage of the surfaces. A positive potential 

difference of 3.53 V is induced between clean (0001) and (000-1) surfaces in nanotrenches. 

While a negative potential difference of -5.93 V is induced in nanotrenches with fully 

hydrogenated surfaces. The value of the potential difference strongly depends on the H 

coverage of the surfaces. Nanotrenches excavated in GaN with polar surfaces can supply 

electricity for various nanoscale devices consisting of molecules, clusters, and atoms 

inserted into the trenches. 
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1. Introduction 
Wide band gap group III nitride semiconductors, such as GaN and its derivatives, have 

attracted much attention because of their excellent optical and electrical properties for 

applications as optical and high frequency electronic devices because of their high carrier 

mobility and wide direct band gap.1-5) For example, InGaN based quantum well structures 

have made it possible to realize high performance light-emitting diodes and laser diodes 

covering the violet to green wavelength regions.6) Furthermore, the introduction of 

high-density two-dimensional electron gas at the interfaces in AlGaN/GaN heterostructures 

mean that GaN-based electronic devices are promising for use in high electron mobility 

transistors operating with high voltage and low resistivity.7) GaN with (0001) or (000-1) 

polar surfaces intrinsically possesses an internal electric field due to a Wurtzite crystal 

structure consisting of different chemical species.8-10) For optical device applications, the 

spontaneous and piezoelectric polarization of GaN suppresses the device efficacy in some 

cases, because the polarization of the surfaces modulates the wave function overlap 

between electrons and holes.11) Accordingly, it is important to control the electric field of 

GaN when designing highly efficient optical devices.12, 13) 

Polarization on the surfaces of materials allows us to design functionalities that are 

applicable over wide technological areas. Polarization can control the geometric and 

electronic structures of atoms and molecules adsorbed on the surfaces and enhances the 

chemical reactivity of those adsorbates. If we are to use polar surfaces in such ways, we 

must control the surface polarization to make it possible to tune the physical properties and 

functions. Here, using the polar surfaces of GaN, we propose nanometer scale trenches 

providing an electrostatic potential difference of a few V whose polarization can be tuned 

by controlling the hydrogen coverage of the surfaces and their concentrations (Fig. 1). 

Using density functional theory with the generalized gradient approximation, we 

investigated the electronic structures of nanoscale trenches excavated in GaN with (0001) 

and (000-1) surfaces. Our calculations show that the nanotrenches cause a variable 

potential difference of up to a few V, which can be tuned by controlling the hydrogen 

coverage of the surfaces. The potential difference can induce an electric field of MV/cm 

order that is comparable to the field derived from piezoelectric polarization in several nm 

regions. The results mean that the trenches can provide the electricity supply for nanoscale 
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electronic devices consisting of atoms and molecules sandwiched between the trenches. In 

this paper, the concept of potential difference control with hydrogenation in the 

nanotrenches is shown by using ideal and reconstructed surface models.  

 

 

2. Calculation methods 
All calculations were performed based on a density functional theory framework14,15) using 

the VASP16) and STATE17) packages. To calculate the exchange-correlation potential 

among interacting electrons, we used the generalized gradient approximation (GGA) with 

the Perdew-Burke-Ernzerhof (PBE) functional form.18) For the electron-ion interaction, we 

used the potential generated by the projector augmented wave (PAW) method and an 

ultrasoft scheme for the VASP and STATE calculations, respectively. The valence wave 

functions were expanded in terms of a plane wave basis set with cutoff energies of 800 eV 

for the PAW potentials and 340 eV for the ultrasoft pseudopotentials. Integration over the 

Brillouin zone was carried out using a Monkhorst-Pack 7x7x1 k-point mesh. For the 

STATE package, we use the effective screening medium (ESM) method to simulate the 

GaN thin films under an open boundary condition normal to the slabs to exclude the 

unphysical dipole interaction with the image cells arising from the surface polarization.19) 

Structural optimization was performed until the remaining force acting on each atom was 

less than 5 mRy/Å for a lateral lattice constant of 3.249 Å corresponding to a 2x2 cell with 

GaN (0001)/(000-1) surfaces. 

 To evaluate the surface stability under the different hydrogen condition, we 

calculate the formation energy of GaN (0001)/(000-1) surfaces (ΔEf) as  

∆𝐸! = 𝐸!"! − 𝐸!"# − 𝑛!"𝜇!" − 𝑛!𝜇! − 𝑛!𝜇! (1) 

where Etot, Eref, ni and µi are the total energies of reconstructed and ideal (0001)/(000-1) 

surfaces, the number of excess atoms, and chemical potential of an element i (i = Ga, N, H) 

in the slab. The µGa and µN satisfy the condition that the surface is in equilibrium with bulk 

GaN described as 

𝜇!" + 𝜇! = 𝜇!"#!"#$ (2)  

where 𝜇!"#!"#$ is the chemical potential of bulk GaN. Generally, the following formulas 

hold: 𝜇!" ≤ 𝜇!"!"#$, 𝜇! ≤ 𝜇!"!"#$%&#$, 𝜇! ≤ 𝜇!"!"#$%&#$.  𝜇!"!"#$, 𝜇!"!"#$%&#$, 𝜇!"!"#$%&#$ are the 
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chemical potential per atom of the elements Ga, N, H in their standard states. Using above 

inequalities and eq. (2), 𝜇!"has a value in the range 𝜇!"!"#$ + ∆𝐻 ≤ 𝜇!"  ≤ 𝜇!"!"#$  i.e. 

∆𝐻 ≤ ∆𝜇!" ≤ 0 where ∆𝜇!" = 𝜇!" − 𝜇!"!"#$. Here, ΔH is the heat of formation of GaN 

and the calculated value in this work is -0.94 eV. In the same manner, ∆𝜇! = 𝜇! −

𝜇!"!"#$%&#$ ≤ 0 is true. Using Eq. (2), Eq. (1) can be expressed as 

∆𝐸! = 𝐸!"! − 𝐸!"# − 𝑛!" − 𝑛! 𝜇!"!"#$ − 𝑛!𝜇!"#!"#$ − 𝑛!𝜇!"!"#$%&#$  

− 𝑛!" − 𝑛! ∆𝜇!" − 𝑛!∆𝜇!  (3) 

where 𝐸!"!, 𝐸!"#, 𝜇!"!"#$, 𝜇!"#!"#$, and 𝜇!"!"#$%&#$are calculated by the DFT. Considering the 

experimental conditions, GaN thin film growth is usually performed N-rich environment. 

Therefore, we chose the value ∆𝜇!" = ∆𝐻 in this work. 

 

3. Results and discussion 
Figure 1 shows the plane-averaged electrostatic potential of GaN thin films consisting 

of 20 atomic layers with clean (Fig. 1 (a)) and hydrogenated surfaces (Fig. 1 (b)) by using 

the ESM method. In accordance with the use of the ESM method, we can estimate the 

electrostatic potential of (0001) and (000-1) surfaces of GaN thin films. For the 

calculations, to simulate an isolated GaN slabs, the cell boundaries are located by about 5 

A above and below the top- and the bottom-most atomic sites, respectively. The position of 

the atoms is indicated in the figure. Open, gray and black filled circles show the Ga, N and 

H atoms, respectively. The shallow and deep electrostatic potentials correspond to Ga and 

N, respectively. For a thin film with clean surfaces, the electrostatic potential just above 

the N surface ((000-1) surface) is higher than that above the Ga ((0001) surface). In 

contrast, the potential difference between the N and Ga surfaces of the hydrogenated GaN 

thin film is opposite to that of the thin film with clean surfaces. Thus, surface 

hydrogenation can tune the polarity of GaN thin films with (0001)/(000-1) surfaces. The 

inversion of polarity with hydrogenation is induced by positively and negatively charged H 

atoms attached to the N and Ga atoms, respectively. Pseudoatoms with valence electrons of 

0.75e and 1.25e are needed to saturate the valence states of surface N and Ga atoms, 

respectively.20) Therefore, the neutral H atoms on the surface induce excess and deficit 

electrons on the N and Ga surfaces, respectively, resulting in polarity opposite to that of 

the sheet with clean surfaces. The similar case of polarity control with hydrogenation for 
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BN nano-ribbon has been reported.21) 

The polarity control of GaN thin films caused by hydrogenation allows us to design a 

nanoscale electric power supply whose field direction can be tuned by controlling the 

hydrogen concentration. Here, we focus on nanometer scale trenches with GaN-(0001) (c 

plane) and (000-1) (-c plane) polar surfaces. The surfaces of the trenches are simulated 

with an ideal 2x2 atomic structure, although the surfaces possess various reconstructed 

structures.22-26) The trenches are simulated under periodic boundary condition for a-, b- and 

c-direction by a repeated slab model of GaN consisting of 20 atomic layers with clean and 

hydrogenated c and c- surfaces (Fig. 2), which are separated with a 2nm spacing. Owing to 

the model, the potential gradient or electric field emerges in the 2nm wide. To investigate 

the polarity in the trenches with respect to the hydrogen concentration, we also consider 

various hydrogenation patterns on the (0001)/(000-1) surfaces of GaN. In the figure 3, the 

schematic views of the hydrogenation patterns on the (0001) surfaces are shown. Open, 

gray and black filled circles show the Ga, N and H atoms, respectively. The large or 

mid-circle size indicate that the atoms are in the topmost or second layer.  

Figure 4 shows the plane-averaged electrostatic potential normal to the trench with 

various hydrogen concentrations ranging from 0 to 100%. Here, the same coverage is 

applied to both (0001) and (000-1) surfaces symmetrically: Fig. 4(a) is the result of the 

ideal surfaces, i.e. 0% coverage; Figs. 4(b)-(e) show the results of 25-100% covered 

surfaces for both (0001) and (000-1). First, we can see the polarity inverse in clean (0%) 

and fully hydrogenated (100%) cases. For the clean surfaces, the finite potential gradient 

arising from the electrochemical difference between the N and Ga atoms is seen between 

the surfaces of the trench. The calculated potential difference between the surfaces is 3.530 

V. When both trench surfaces are fully hydrogenated, the nature of the potential profile is 

different from that of a trench with clean surfaces. The calculated potential difference is 

-5.927 V, which is opposite to that in a trench with clean surfaces.  

Moreover, the other results indicate that the potential difference in the nanotrench 

strongly depends on the hydrogen coverage of the surfaces. The positive electrostatic 

potential difference in the trench was 1.569 V for coverage of 25 %, while the negative 

voltage was -3.354 V for coverage of 75 %. For 50 % coverage, there was a small positive 

voltage of 1.111 V.  Figure 5 shows the potential difference between the surfaces as a 
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function of their hydrogen concentration under symmetric hydrogenation. The potential 

difference decreases monotonically with increasing surface coverage. The neutrality point 

of the field is located between hydrogen concentrations of 50 and 75 %. This fact indicates 

that the potential difference between nanotrenches can be controlled by 

adsorbing/desorbing H atoms to/from the surfaces. At the neutral point, a non-polar 

condition is realized in GaN nanotrenches with c/-c surfaces, and this is expected to cause 

unusual phenomena that are not observed with bulk Ga/N surfaces. It should be noted that 

the local electrostatic potential exhibits a complex profile due to the inhomogeneity of the 

electron distribution on the surfaces of the nanotrenches. 

It is worth investigating the way in which the potential difference between the 

nanotrenches depends on asymmetric hydrogenation. Table I summarizes the potential 

difference between nanotrenches in GaN with (0001)/(000-1) surfaces caused by 

asymmetric hydrogenation. In this case, an inhomogeneous electron density on the surface 

of a trench induces a complex potential difference depending on the hydrogenation of the 

(0001) and (000-1) surfaces. For instance, for all hydrogen concentrations on (000-1) 

surfaces except clear surfaces, the potential difference reaches maximum at a (0001) 

surface coverage of 50 %. On the other hand, for all hydrogen concentrations on a (0001) 

surface, the potential difference decreases as the hydrogen concentration increases on a 

(000-1) surface. This indicates that the delicate balance of electron densities on the 

surfaces of the nanotrenches leads to an interesting variation in their polarization, which is 

applicable for controlling the physical properties of foreign materials inserted into the 

nanotrench by the variable potential difference and electric field. 

Since asymmetric hydrogenation on the surfaces affects polarization in the trenches, the 

potential difference also depends on the mutual arrangement of the hydrogenation on the 

two surfaces. Figure 6 shows the plane averaged electrostatic potentials for various 

hydrogenations on the (0001) and (000-1) surfaces of the trench with surface coverage 

ranging from 25 to 75 %. When the concentration is 25% for both surfaces, the potential 

difference depends weakly on the relative position of the H atoms attached to the Ga and N 

atoms [Fig. 6 (a)]. Slightly asymmetric hydrogenation leads to a relatively large potential 

difference than with symmetric hydrogenation. In contrast, for higher surface H 

concentrations, the electrostatic potentials in the trenches do not depend on the relative 
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arrangements of H atoms [Figs. 6 (b) and 6 (c)]. Therefore, this fact indicates that the 

potential difference induced in the nanotrenches excavated in GaN with (0001) and (000-1) 

surfaces is tunable by controlling the surface coverage.   

Since the surfaces of GaN exhibit various morphologies depending on the environmental 

conditions, it is worth to discuss the possible surface conformations with respect to the 

hydrogen chemical potential to give guiding principles to realize the trench structure.  

Figure 7 shows the formation energy of GaN thin films as a function of the H chemical 

potential ΔµH and atomic configurations of (0001) and (000-1) surfaces of GaN slabs. 

More than several dozens of structures for an orientation and every combination between 

GaN-(0001) and (000-1) surfaces are evaluated. The reported reconstructed structure22, 23) 

such as NH3+3NH2, NH3+3GaH or NadH+NH2 for GaN-(0001) surface are also considered. 

The structure NH3+3GaH-3H, which correspond to the structures NH3+3GaH and 3H for 

(0001) and (000-1) respectively, appears in the window of energy diagram in Fig. 7, which 

is energetically favorable under H poor condition. Note that the energy of the structure 

NH3+3NH2-3H is out of the range of the figure.  

Among representative structures, four structures, ideal-3H, NH2-3H, NadH+NH2-3H and 

NH3+3GaH-3H, are thermodynamically favorable. For the (0001) surface, the coverage of 

the topmost hydrogen decreases with decreasing the chemical potential of H, from 

NH3+3GaH-3H (100%), NadH+NH2 (50%), NH2 (25%) to ideal (0%). The structures with 

75% coverage are not thermodynamically favorable. On the other hand, for (000-1) surface, 

the 3H structure is a stable conformation throughout the chemical potential, indicating that 

the surface coverage is insensitive to the environmental condition because the dangling 

bonds are fully saturated by hydrogen termination. Thus, four possible combinations of the 

surface conformations of nanotrenches are expected. The potential difference for these 

three nanotrenches are -2.994, -1.899, -2.183 and -1.298 V for ideal-3H, NH2-3H 

NadH+NH2-3H and NH3+3GaH-3H respectively (Table II). Under the condition, although 

the polarity inversion does not occur, the potential difference sensitively depends on the 

surface morphologies of trenches. Therefore, the nanotrench can act as a variable voltage 

supply by controlling the chemical potential of H which reflects the thermodynamic 

condition. Remind that further arbitrary potential difference control can be realized by 

changing the chemical functional group adsorbed on the surfaces. 
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4. Conclusions 
Using first-principle total-energy calculations within the framework of density functional 

theory, we showed that nanotrenches excavated in GaN with (0001) and (000-1) surfaces 

caused a variable potential difference of up to a few V, which could be tuned by 

controlling the hydrogen coverage of the surfaces. A positive potential difference of 2.82 

V/nm between the (0001) and (000-1) surfaces was induced in nanotrenches with clean 

surfaces. In contrast, a potential difference of -5.08 V was induced in nanotrenches with 

fully hydrogenated surfaces. The value of the potential difference depended strongly on the 

H coverage of the surfaces. The neutrality point of the voltage was located between 50 and 

75 % coverage for symmetric hydrogenation. Although the potential difference depended 

on the number of H atoms on each surface, the voltage was insensitive to the respective 

arrangement of the H atoms adsorbed on the two surfaces. Additionally, by changing the 

surface coverage and the reconstruction according to the chemical potential, it was shown 

that the potential difference could be changed experimentally. This fact implied that the 

nanotrenches excavated in GaN with polar surfaces supplied a potential difference and 

induced an external electric field in nanoscale electronic, mechanical, sensing, and energy 

devices to control their functions by controlling the electronic and geometric structures of 

molecules, clusters, and atoms inserted into the trenches.  
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Figure Captions 

Fig. 1. (Black and white) Plane averaged electrostatic potential of GaN slab 

model (a) clean (coverage 0%) and (b) hydrogenated surfaces (coverage 100%) 

calculated by using ESM method. Large open and small filled circles denote the 

Ga and N atoms, respectively.  

 

Fig. 2. (Color online) A geometric structure of a hydrogenated nanotrench in GaN with 

(0001) and (000-1) surfaces. Large, medium, and small circles denote Ga, N, and H atoms, 

respectively.  

 

Fig. 3. (Black and white) Schematic views of the surface morphologies of hydrogenated 

GaN-(0001) and (000-1) surfaces for the hydrogen coverage from 0 to 100%. The open, 

pale shaded, and solid circles denote Ga, N, and H atoms, respectively.  

 

Fig. 4. (Black and white) Plane averaged electrostatic potential of nanotrenches with 

symmetric hydrogen coverage of (a) 0 (clean surfaces), (b) 25, (c) 50, (d) 75, and (e) 100% 

(fully hydrogenated surfaces) calculated under periodic boundary conditions. Open and 

filled circles denote the topmost atoms of (0001) and (000-1) surfaces without and with 

hydrogen atom, respectively. 
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Fig. 5. (Black and white) Potential difference in the nanotrenches as a function of 

hydrogen coverage. 

 

Fig. 6. (Black and white) Plane averaged electrostatic potential of nanotrenches with 

asymmetric surface coverage of (a) 25, (b) 50, and (c) 75 % hydrogen concentrations 

calculated under periodic boundary conditions. The values of potential difference are noted 

together. Open and filled circles denote the topmost atoms of (0001) and (000-1) surfaces 

without and with hydrogen atom, respectively. 

 

 

Fig. 7. (Black and white) Surface formation energy depending on the chemical potential of 

H (ΔµH) and the schematic views of atomic structure of the topmost and the second 

subsurface atoms of (0001) and (000-1) surfaces for three stable structures. The open, pale 

shaded, and solid circles denote Ga, N, and H atoms, respectively. 
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Table I.  Potential difference in the nanotrenchs with the hydrogenated 
GaN-(0001) and (000-1) surfaces for various coverages. 

 
 Potential difference [V] 
  Hydrogen coverage on (0001) plane [%] 

Hydrogen 
coverage 

on (000-1) 
plane [%] 

 

0 25 50 75 100 

0  3.530  2.256  2.798  -0.389  -0.651  
25  1.169  1.569  1.955  -1.219  -2.147  
50  0.471  0.624  1.111  -2.113  -2.814  
75  -2.994  -3.007  -2.280  -3.354  -3.869  

100  -3.364  -2.874  -2.775  -3.499  -5.927  
 
 

Table II.  Potential difference in the nanotrenchs with the hydrogenated 
GaN-(0001) and (000-1) surfaces considering the reconstructions. The values for 
stable three reconstructed structures are listed which are shown in the energy 
diagram (Fig. 7). There are no data for 75% coverage because these structures are 
not thermodynamically favorable. 
 

 Potential difference [V] 
  Hydrogen coverage on (0001) plane [%] 

(000-1) 
plane  0 

(ideal) 
25 

(NH
2
) 

50 
(NadH+NH2) 

75 
 

100 
(NH3+3GaH) 

75% (3H) 	
  -2.994  -1.899 -2.183  -  -1.298 
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Fig.1.  

 
 

 

Fig.2 (Color Online) 
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Fig.3 
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Fig. 4 
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Fig. 5 

 

 

 
 

Fig. 6 
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Fig. 7 

 


