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Highlights 

 Alginate/ gum arabic beads (AGB) were prepared by reverse spherification. 

 Release behavior and release kinetics in an in vitro system were investigated.  

 Storage stability and release behavior of total phenolic compounds were improved. 

 AGB may serve as a potential carriers of radish by-product juice. 

 

Abstract  

Different weight ratios of alginate/gum arabic (GA) solutions were prepared to serve as the wall 

material of liquid-core hydrogel beads (LHB) that were formulated to protect the total phenolic 

compounds (TP) of radish by-product juice from degradation during storage and release in 

simulated gastrointestinal fluid. The diameter of LHB ranged from 4.63 to 5.66 mm with a 

sphericity lower than 0.05. LHB formulated with 25 % GA (AGB0.25) exhibited the highest 
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hardness (26.63 N), and those formulated with 50 % GA (AGB0.50) exhibited the highest 

loading efficiency (86.67 %). AGB0.25 was effective in preventing TP from degrading during 

storage with a decay rate (k) of 6.10×10-3 day-1 and a half-life (t1/2) of 113.63 days, it showed 

the slowest release of TP in simulated gastric fluid (k=2.25×10-6), and the release mechanism 

followed Fickian diffusion. The results suggest that GA is effective in improving the 

physicochemical properties of alginate. 

 

Abbreviations 

AGB: alginate/gun arabic bead; ANOVA: analysis of variance; AOAC: Association of Official 

Agricultural Chemists; CL: calcium lactate; G residues: -L-guluronic acid unit of SA; GA: 

gum arabic; GRAS: generally regarded as safe; USFDA: United States Food and Drug 

Administration; LCM: liquid-core material; LHB: liquid-core hydrogel beads; M residues: β-

D-mannuronic acid unit of SA; MWM: micro wet milling system; RBJ: radish by-product juice; 

RSM: response surface methodology; RVS: reverse spherification; SA: sodium alginate; SIF: 

simulated intestinal fluid; SGF: simulated gastric fluid; TP: total phenolic compounds; USP: 

United States pharmacopeia. 

 

Keywords:-radish by-product, micro wet milling, gum arabic, encapsulation, reverse 

spherification, in vitro release 

 

1. Introduction 

Much attention has been focused on hydrogel bead formed by food-grade biopolymers as a 

delivery system to protect and encapsulate some food ingredients, drugs, and bioactive 

compounds and/or control their release behavior (Gouin, 2004; Matalanis, Jones, & 

McClements, 2011).  
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Alginate is a natural linear biopolymer consisting of 1,4-linked β-D-mannuronic (M residues) 

and -L-guluronic acids (G residues) and divided into homopolymeric blocks (G- and M-blocks) 

and heteropolymeric blocks (MG-blocks) (Pawar & Edgar, 2012). Normally, it is extracted from 

brown algae; however, in order to obtain a more flexible structure and better physical properties, 

alginate has been recently shown to be able to be produced by bacterial biosynthesis (Lee & 

Mooney, 2012). Alginate is widely used in the food, medical, and pharmaceutical industries due 

to its non-toxicity, relatively low cost, simple preparation, high compatibility, and 

biodegradability (Zeeb, Saberi, Weiss, & McClements, 2015). Alginate undergoes ionotropic 

gelation and forms egg-box dimers due to the interaction between G-blocks and some cations, 

such as Cu2+, Zn2+, Ca2+, Ba2+, and Al3+. Egg-box dimers further aggregate and compose egg-

box multimers (Fang et al., 2007; Nayak, Das, & Maji, 2012). Ionotropically gelled alginate is 

a pH-sensitive polymer that shrinks in acidic conditions and swells in a high-pH environment 

(Wang, Zhang, & Wang, 2009). This characteristic makes alginate widely used for the delivery 

of proteins, drugs, and probiotics, protecting these compounds from destruction by stomach 

fluid (Cai et al., 2014; Mohy Eldin, Kamoun, Sofan, & Elbayomi, 2014). 

Reverse spherification (RVS), one of the encapsulation methods, is used for preparing liquid-

core hydrogel beads (LHB). The method is performed by dripping droplets that contain ions 

and bioactive compounds, into an ionotropic polymer solution. The most common materials are 

Ca2+ and alginate. RVS is divided into two steps, the first and secondary gelations (Fu Hsuan 

Tsai, Chuang, Kitamura, Kokawa, & Islam, 2017). The first gelation is a step of LHB formation, 

in which Ca2+ release from droplets forms a water-insoluble coating (calcium alginate). The 

thickness of the coating layer increases with time until the osmotic pressures are balanced. Next, 

these semifinished beads are transferred into a Ca2+ solution for secondary gelation, where Ca2+ 

permeates into the network of coating layer. Ca2+ fills into the G blocks that were not combined 

with Ca2+ in first gelation, and the stability and hardness of coating layer increases. Thus, 
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secondary gelation is defined as a hardening step. In our previous study, the conditions of LHB 

formulation by response surface methodology (RSM) was optimized to investigate the effects 

of first and secondary gelation on different physical properties (Fu Hsuan Tsai, Kitamura, & 

Kokawa, 2017). Our studies demonstrated that LHB prevents the DPPH-scavenging ability of 

functional compounds from decreasing during storage (F. H. Tsai, Chiang, Kitamura, Kokawa, 

& Khalid, 2016) and examined the release profiles of functional compounds in simulated 

gastrointestinal fluid (in vitro) and during thermal treatments (Fu Hsuan Tsai, Chuang, et al., 

2017). These results indicated that alginate could be used as a potential delivery method; 

however, properties such as loading efficiency, hardness, and release characteristics in gastric 

fluid could be improved for more efficient delivery. Amine et al. (2014) indicated that 

ionotropically gelled alginate has a high permeability and entrapped compounds are released 

from alginate hydrogel beads rapidly due to their hydrophilic and porous structure.  

Some studies have reported that improving physicochemical properties by adding other 

polymers as fillers, such as tapioca starch, chitosan and gum arabic (Chopra et al., 2015; 

Lozano-Vazquez et al., 2015; Mukhopadhyay, Chakraborty, Bhattacharya, Mishra, & Kundu, 

2015). Gum arabic (GA), also known as gum acacia, is a highly branched natural polymer 

formulated from the tree sap of Acacia Senegal trees. The main chain of GA consists of β-D-

galactopyranosyl units and side chains are formed of L-arabinose, L-rhamnose, D-galactose, 

and D-glucuronic acid (Chopra et al., 2015; Nayak et al., 2012). It is widely used as stabilizer, 

thickening agent, hydrocolloid emulsifier, and carrier in food, pharmaceutical, and cosmetic 

industries (Nami, Haghshenas, & Yari Khosroushahi, 2016).  

Alginate and GA are both biodegradable and biocompatible polymers as well as generally 

regarded as safe (GRAS) by the United States Food and Drug Administration (USFDA). Fang 

et al. (2011) indicated that in the case of dry alginate beads, the addition of gum arabic reduced 

the side-by-side aggregation of the egg-box structure of the alginate. Side-by-side aggregation 



5 
 

occurs when calcium alginate is dried. The egg-box junctions are drawn together due to the 

collapse of the alginate network, which results in further combining of the egg-box junctions 

by the presence of calcium ions. Side-by-side aggregation leads to a loss of the swelling 

capacity of calcium alginate. The combination of alginate and GA has attracted attention for the 

protection of probiotic bacteria and drugs during drying, storage, and in the gastric tract (Chopra 

et al., 2015; Nami et al., 2016; Nayak et al., 2012). However, to our knowledge, little or no 

information is currently available on the LHB prepared by alginate/GA matrix.  

Preparing LHB by RSV has received increased attention in recent years. Materials which have 

high functionality and are suitable for RVS processing have been searched for. This work is the 

first paper to prepare LHB from alginate combined with GA by RVS. The objective of this work 

was to investigate a delivery of vegetable extract in an attempt to protect its functional 

compounds from being destroyed in gastrointestinal tracts and during storage. The first physical 

properties that were evaluated were the diameter, sphericity, and loading efficiency of the 

alginate/GA bead (AGB). The change of hardness, total phenolic compounds (TP) release 

behavior, and release kinetics in an in vitro system were also investigated. Finally, the stability 

of stored TP, including their antioxidant ability and degradation kinetics, were examined. 

 

2. Materials and Methods 

2.1. Materials 

Radish (Raphanus sativus L.) is an important root vegetable crop worldwide because of its high 

nutritional and medicinal value. Furthermore, radish leaves have an abundance of minerals and 

the content of phenolic compounds and flavonoids in leaves are approximately 2.0-fold and 

3.9-fold that of their content in roots, which are the parts which are normally consumed 

(Goyeneche et al., 2015). Radish leaves are seldomly consumed because of their bitter taste and 

strong flavor, despite containing an abundance of nutrients.  
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Radish leaves were obtained from a local farmer. The cleaned leaves were cut and stored at -

20°C. Sodium alginate (SA), GA, chitosan 100, acetic acid, calcium lactate (CL), ethanol, 

sodium chloride (NaCl), hydrochloric acid (HCl), and sodium carbonate (Na2CO3) were 

purchased from Wako Pure Chemical Industries, Ltd. (Japan). The viscosity of a 1 % solution 

of SA was 80-120 m Pa・s at 20°C, the molecular weight was 1325 kDa, the percentage of 

guluronate content was 34.4 %, and guluronate–guluronate diad frequency was 18.9 % (Nakata, 

Kyoui, Takahashi, Kimura, & Kuda, 2016). The viscosity of 1 % GA was 3.1 mPa・s at 20°C. 

The molecular weight of chitosan 100 was approximately 1.3 × 105 Da and the degree of 

deacetylation was 78 % (Bhattarai, Bahadur K.C., Aryal, Khil, & Kim, 2007). Pepsin (1:10,000, 

from porcine stomach mucosa) and pancreatin U.S.P. were purchased from MP Biomedicals, 

Inc. (USA). Folin-Ciocalteu reagent was purchased from Merck Millipore Corporation (USA). 

, -diphenyl-β-picrylhydrazyl (DPPH) was purchased from Sigma-Aldrich (USA). All 

chemicals in the investigation were of analytical grade. 

 

2.2. Preparation of alginate/GA bead (AGB) and storage test 

AGB is a hydrogel bead that is composed of an alginate/GA outer layer and a liquid -core 

consisting of radish by-product juice (RBJ), chitosan and acetic acid. RBJ was prepared by 

mixing radish leaves and distilled water at a ratio of 1:2 in a blender at approximately 15,000 

rpm for 1 min and then feeding that mixture into a micro wet milling system (MWM) by a 

tubing pump at 10 mL/min. The MWM grinds samples by using two stacked milling stones. 

The lower milling stone was rotated by an electric motor at 30 rpm and the upper milling stone 

was fixed on the system. RBJ was ground by the shear and frictional stress between two milling 

stones, and the particle size reached micrometer scale (Koyama & Kitamura, 2014). The liquid-

core material (LCM) was formulated by mixing 2 % chitosan and 1 % acetic acid in RBJ to 

reach a final concentration of 0.12 M CL solution. Chitosan was used as a thickener to modulate 
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the viscosity and density of the LCM to prevent it from being deformed by shear stress during 

first gelation. The wall materials of AGB were prepared from 100 mL of solutions containing 

1 g of SA and different amounts of GA (0.00, 0.33, 1.00, and 3.00 g), to achieve alginate/GA 

weight ratios of 0/1, 0.25/0.75, 0.5/ 0.5, and 0.75/0.25, respectively. These different variations 

of AGB were coded as AGB0, AGB0.25, AGB0.5, and AGB0.75, respectively (Table 1).  

 

 

The preparation of AGB was separated into the two steps of gelation (Fig. 1). In the first gelation, 

LCM was extruded into different wall materials through a 20G flat-tipped hypodermic needle 

with gentle stirring for 25 min. The semifinished beads were collected and washed with distilled 

water and 95 % ethanol, and then secondary gelation was carried out. In the secondary gelation, 

semifinished beads were suspended in 0.05 M CL solution for 6 min, and then AGB was 

prepared by collecting and rinsing these beads with distilled water and 95 % ethanol again. The 

different varation of AGB were stored for 0 to 28 days at 4°C for evaluating the TP loss and 

decrease in antioxidant ability during storage. 

 

2.3. Diameter and sphericity 

Images of the AGB was recorded with a digital camera. The diameter of AGB was measured 

by ImageJ software (version 1.50i, National Institutes of Health, USA) and the sphericity was 

calculated with the following equation:  

Sphericity = (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) (𝑑𝑚𝑎𝑥 + 𝑑𝑚𝑖𝑛)⁄  

where dmax and dmin are the largest and the smallest diameters of the same bead, respectively 

(López Córdoba, Deladino, & Martino, 2013). 

 

2.4. Total phenolic content and loading efficiency 
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AGB (0.5 g) or LCM (1 mL) was added to 10 mL of 1 % acetic acid, mixed by a homogenizer 

(NS-52K, Microtec, Japan) at 10,000 rpm for 30 s, and centrifuged at 4000 rpm for 5 min. The 

amount of TP in the supernatant was determined with Folin-Ciocalteu method (Goyeneche et 

al., 2015). The supernatant (0.5 mL) was mixed with 0.5 of Folin-Ciocalteu reagent and 2 mL 

of 20 % of Na2CO3 solution. The mixture was left at room temperature for 15 min and 

entrifuged at 4000 rpm for 5 min. The absorbance of a sample was measured at 725 nm by a 

spectrophotometer (U-1900, Hitachi, Japan). Loading effieiency was calculated as follows:  

Loading efficiency (%) = TP amount in AGB TP amount in LCM⁄ × 100 

TP loss during storage was evaluated by a first-order kinetic model, 

𝑙𝑛𝑀𝑡 = 𝑙𝑛𝑀0 − 𝑘𝑡 

and the reduction rate (k) and half-life (t1/2) were calculated using, 

𝑡1/2 = 𝑙𝑛2 𝑘⁄  

where Mt and M0 are the amounts of TP at days t and 0, respectively. 

 

2.5. Antioxidant ability  

The antioxidant activity of AGB during storage was determined by DPPH assay. DPPH, a stable 

free radical, is widely used to evaluate the antioxidant abilities of phenols by capturing H atoms 

of phenols (Achat, Rakotomanomana, Madani, & Dangles, 2016). The DPPH-scavenging 

activity was determined by the method of Lai, Chou, & Chao (2001). The decrease of DPPH-

scavenging activity during storage, reduction rate (k) and half-lives (t1/2) were evaluated by 

formula in section 2.4. AGB (0.5 g) or LCM (1 mL) was blended and centrifuged as described 

in the method of section 2.4. An aliquot of 1 mL of 0.2 mM DPPH in methanol was mixed with 

1 mL of the supernatant. The mixture was mixed by vortexing and left in the dark for 30 min at 

room temperature. The absorbance of a sample (As), control (sample was replaced by distilled 

water, Ac), and blank (Ab) were measured by a spectrophotometer at 517 nm. DPPH-scavenging 
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activity was calculated with the following equation: 

DPPH − scavenging activity (%) = [1 − (𝐴𝑠 − 𝐴𝑏) 𝐴𝑐⁄ ] × 100 

 

2.6. In vitro release profile and release kinetic 

In vitro release experiments were performed by the method of Tsai, Chuang, Kitamura, Kokawa, 

& Islam (2017), using United States Pharmacopeia (USP) apparatus 2 (PJP-32N, Miyamoto 

Riken, Japan). Simulated gastric fluid (SGF) was prepared by mixing 2 g of NaCl, 3.2 g of 

pepsin, and 7 mL of HCl in 500 mL of distilled water, and adding distilled water to 1 L, 

simulated intestinal fluid (SIF) was prepared by mixing 6.8 g of NaOH, 77 mL 0.2 N of KH2PO4, 

and 10 g of pancreatin, and adding distilled water to reach 1 L. AGB (0.5 g) was left in 300 mL 

of SGF for 120 min and then transferred to SIF for 240 min at 37 °C, with a paddle rotation 

speed of 50 rpm. Aliquots of 1 mL of the medium were withdrawn at specified times and 

replaced with fresh release medium. The TP amount in the medium was measured by the 

method of section 2.4.  

The release mechanisms of TP were evaluated with the Korsmeyer-Peppas model (Korsmeyer, 

Gurny, Doelker, Buri, & Peppas, 1983):  

𝑀𝑡 𝑀∞⁄ = 𝑘𝑡𝑛 

where Mt is the amount of TP at time t, M∞ is the total amount of TP in AGB, k is the release 

kinetic constants, and n is the release exponent, indicative of the drug release mechanism. 

 

2.7. Hardness 

A compression test was carried out with a texture analyzer (EZ-SX 100N C05 KIT, Shimadzu 

Ltd. Japan) at room temperature. A 25 mm cylinder probe was used to compress the AGB with 

a test speed of 20.0 mm/min to 4 mm from the start position, when the probe stopped and 

returned to start position. The maximum force (N) of compression was represented as the 
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hardness of AGB (Belščak-Cvitanović et al., 2015). Relative hardness was calculated with the 

following equation, using AGB0 as a standard: 

Relative hardness (%) = Hardness of each variation Hardness of AGB0⁄ × 100 

 

2.8. Glass transition temperature (Tg) 

The Tg values of the beads were measured according to the method of Lupo, Maestro, Gutiérrez, 

& González (2015) with some modifications. Alginate/GA beads were dried by a freeze dryer 

(FD-1, Tokyo Rikakikai, Japan) for 12 h. Approximately 3 mg of dried alginate/GA outer layer 

was removed from AGB and sealed in an aluminum sample pan. The Tg of alginate/GA outer 

layer was determined by a differential scanning calorimetry (DSC-60, Shimadzu Corporation, 

Japan). The sample was heated from 20 °C to 300 °C at a rate of 10 °C/ min with a flow rate of 

30 mL/min of nitrogen and taking an empty aluminum pan as a reference. Moisture content, 

which was determined by AOAC method (AOAC, 2000), of the fresh out layer of AGB0, 

AGB0.25, AGB0.5, and AGB0.75 were 96.93 %, 96.84 %, 96.12 %, and 93.87%, respectively.  

 

2.9. SEM microscopy  

Dry AGB were prepared with a freeze dryer as described in the section 2.8. and then fixed on 

an stub with double-sided adhesive tape. The beads were coated with a platinum–palladium 

with a sputter coater (E-1045, Hitachi, Japan) under vacuum for 1 min. The microstructure of 

the AGB surface was observed by a scanning electron microscope (JSM-6330F, JEOL, Japan) 

with accelerating potential of 5kV. 

 

2.10. Statistical analysis 

All experiments were run at least in triplicate. The results were presented as the mean± standard 

deviation and analyzed using Statistical Analysis System software (Version 8.01, SAS Institute 
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Inc., USA). One-way analysis of variance (ANOVA), followed by Duncan’s multiple 

comparison test, was performed. Responses with p values <0.05 were considered significant. 

 

3. Results and Discussion 

3.1. Characterization of AGB 

In this section, the diameter, sphericity, and loading efficiency were used to evaluate the 

physicochemical properties of AGB (Table 2). The diameter of AGB ranged from 4.63 to 5.66 

mm. There was no significant difference between AGB0 and AGB0.25 as well as between 

AGB0 and AGB0.5 (p<0.05); however, AGB0.75 showed a relatively larger diameter. Our 

former study (F. H. Tsai et al., 2016) demonstrated that semifinished beads tended to shrink 

during secondary gelation because alginate in the outer layer of AGB were pulled together by 

calcium ions. We inferred that AGB0.75 showed a relatively higher diameter, which is similar 

to that of semifinished beads, because GA was a barrier to the combining of alginate. 

Sphericity is an efficiency factor that evaluates the roundness of hydrogel beads. A higher value 

indicates a greater degree of deformation, and a value of zero indicates a perfect sphere. A 

hydrogel bead is considered a sphere if the sphericity is lower than 0.05 because the shape 

distortion cannot be obviously distinguished by human vision (Chan, Lee, Ravindra, & Poncelet, 

2009; Chew & Nyam, 2016). AGB0 had a higher sphericity than the other variations. During 

the first gelation, which has been demonstrated to be the shape-determining step, the droplet of 

LCM is extruded from a syringe with a needle into the wall material solution. The LCM is not 

a perfect sphere and is fragile to deformation as it passes through the surface of wall material 

solution, but returns to a spherical shape during in an appropriate first gelation time. We inferred 

that the reason that AGB0 has a higher sphericity is because the conjugation of alginate without 

the interference of GA was so fast that LCM could not return to a perfect sphere before the 

shape was set. However, the sphericity of all the variations were lower than 0.05, and they could 
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thus, be considered as spheres. 

Loading efficiency was expressed as the ratio between the TP content in AGB and the TP 

content in LCM, the total amount used to prepare AGB. Low loading efficiency could lead to a 

high cost of preparation and a less valuable product (Zucker, Marcus, Barenholz, & Goldblum, 

2009). According to Table 2, AGB0.5 showed the highest loading efficiency (86.67 %), which 

was higher than that of AGB0 (83.80 %). The result showed that the addition of GA could 

improve the loading efficiency of alginate beads. The study of Chopra et al. (2015) also 

indicated that the encapsulation efficiency of alginate beads is increased by adding a proper 

concentration of GA because of the interaction between alginate and GA. Furthermore, the wall 

material of the alginate and GA mixture has a higher viscosity, preventing the TP release during 

preparation (Nayak et al., 2012). However, increasing the GA ratio greater than AGB0.5 

decreases the loading efficiency. It was attributed to GA being unable to undergo gelation by 

itself; therefore, TP leaks out from AGB that contain a high amount of GA in the wall material 

(Fang et al., 2011). 

 

Means of 3 replicates ± standard deviation. 

a-c Means within the same column of each treatment with different superscript letters are 

significantly different at p < 0.05. 

 

3.2. Degradation of total phenolic compound 

The TP amount was expressed as the amount of TP found in AGB on a specific day of storage 

relative to the total amount of TP used to prepare AGB. Fig. 2 illustrates the decrease in TP 

during a storage test. The TP amount in AGB was lower than that in LCM due to TP loss during 

preparation. After 28 days of storage, there was no significant difference between TP amounts 

of AGB0.25 (72.46 %) and LCM (72.29 %).  
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TP degradation was evaluated by the first-order kinetic model, and the kinetic parameters 

obtained are shown in Table 3. The results were well fit by the first-order kinetic model, 

indicated by the high (0.957 to 0.988) values of correlation (R2). LCM had a high TP amount 

after 28 days of storage but the relatively higher k value (1.11×10-2 day-1) showed that TP was 

easily destroyed when it was not protected by alginate or alginate/GA outlayer. LH0 showed a 

lower k value than LCM. LH0.25 showed a low k value, but the k value increased from 6.10×10-

3 to 1.03×10-2 day-1 with as the GA ratio increased. The half-life (t1/2) value indicates the days 

that were required for the TP amount to be reduced by half. The half-life of TP in LH0.25 was 

more than 100 days but the half-life of TP without alginate or alginate/GA outlayer protection 

(LCM) was only approximately 62 days. The result demonstrated that AGB were good at 

preventing TP degradation during storage. 

 

 

3.3. Antioxidant activity 

At the beginning of storage, the DPPH-scavenging ability of AGB varied between 75.37 % and 

89.56 % and was lower than LCM (96.17 %) (Fig. 3). After 28 days of storage, the DPPH-

scavenging ability of AGB0.25 and AGB0.5 were higher than 70 %, on the other hand, 

AGB0.75 showed the lowest DPPH-scavenging ability.  

 

DPPH-scavenging ability reduction was found to be fit by first-order kinetics with high 

correlation (R2) (0.929 to 0.961) (Table 3). Hydrogel beads without GA (AGB0) showed that 

their DPPH-scavenging ability decay rate was 1.01×10-1 day-1 and their half- life was 68.63 

days. AGB0.25 resulted in a slower decay rate of DPPH-scavenging ability (k= 8.00×10-3 day-

1) and a longer shelf- life (half- life of 86.64 days); however, as the ratio of GA increased, the 
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decay rate of DPPH-scavenging ability increased and the half-life decreased. Tonon, Brabet, & 

Hubinger (2010) also indicated that anthocyanins in non-encapsulated black berry juice showed 

a higher degradation rate due to a greater contact with oxygen. Oxidation is one of the causes 

of TP degradation; however, AGB could eliminate the direct contact between core materials 

and environmental factors. The trend of the DPPH-scavenging ability decrease was similar to 

the trend of the amount of TP (Error! Reference source not found.). Phenolic compounds 

play an important role in antioxidant ability; therefore, more TP resulted in a higher DPPH-

scavenging ability. We investigated the correlation between DPPH-scavenging activity and TP 

amount, and the result is shown in Fig. 4. It was found that DPPH-scavenging activity positively 

correlated with the amount of TP (R2 = 0.92).  

 

3.4. In vitro release profile and kinetics 

The release behavior of AGB was investigated by an in vitro drug release experiment. 

Alginate/GA beads were soaked in SGF (pH 1.2) for 2 h and then transferred to SIF (pH 6.8) 

for 4 h. The appropriate technologies and materials of bead preparation should be chosen to 

effect ideal release behavior. Because of its pH-sensitivity, biocompatibility, and ease of 

manipulation, alginate has been widely used for carrying environmentally sensitive bioactives 

and oral delivery systems (Burey, Bhandari, Howes, & Gidley, 2008; Gong et al., 2011; Zeeb 

et al., 2015). Some articles also report that the presence of pores in the alginate network is the 

major factor for release. The use of filler for delaying active compound release was deescribed 

(López Córdoba et al., 2013). To prevent core material from being destroying and releasing into 

stomach fluid, we tried to prepare a delivery system that can coat bioactives and protect them 

in SGF, for transport to the SIF. Bioactives were expected to be released and absorbed in the 

intestinal tract. Thus, a low amount and slow release of TP in SGF was favored for this study. 

IN constrast, a high amount and high-speed release of TP in SIF was expected. GA was used as 
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a filler in this work because of its ampholytic characteristics (Fang et al., 2011). 

The effect of the alginate to GA ratio on the TP release profile is shown in Fig. 5. Alginate tends 

to shrink and has poor water solubility in acidic pH (Sinha, Ubaidulla, Hasnain, Nayak, & Rama, 

2015), slowing the release of the compound from AGB. With the increase in GA, the amount 

of TP released from AGB in SGF decreased for 2 h and then increased. AGB0.75 showed the 

highest amount of TP release (53.15 %), which was about two times higher than that of 

AGB0.25 (27.42 %) in the same time interval. The result indicates that a proper alginate to GA 

ratio can prevent TP release because GA play a role as a barrier in the pores in alginate (Nayak 

et al., 2012). 

According to Fig. 5, the amount of TP released by AGB0.75 did not show any significant 

change after 180 min, AGB0 and AGB0.25 did not show any significant change after 300 min, 

and AGB0.5 did not show any significant change after 210 min (p<0.05). The result indicates 

that the amount of TP released for all variations reached their maxima in 6 h. AGB0 released 

approximately 89 % of its TP in 6 h. On the other hand, the amount of TP released by all 

variations of AGB was higher than 90 %. If TP are not released from hydrogel beads within 6 

h in an in vitro release system, they could form waster by exiting the body through the waste 

system. The results demonstrated that the addition of GA could modify the release behavior of 

alginate.  

 

The release profile was analyzed by fitting the results of the curve to the Korsmeyer-Peppas 

model, and the results were given in   
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Table 4. Korsmeyer-Peppas is a simple but useful formulation to evaluate release mechanisms 

(Costa & Sousa Lobo, 2001). For a sphere, the release mechanism follows Fickian release when 

the release exponent (n) is approximately 0.43, when the n values are between 0.43 and 0.85, 

the release is defined as anomalous transport, and the release mechanism is defined as case-II 

transport when n is approximately 0.85. Fickian release indicates a diffusion-controlled release, 

in which compounds release from delivery by diffusion, anomalous transport represents a non-

Fickian release, and case-II transport indicates a swelling-controlled release, in which water 

plays a role as a plasticizer (Siepmann & Peppas, 2001). The n values of all the samples ranged 

from 0.082 to 0.278, indicating that the release profile follows Fickian release. The release rate 

of TP in SGF showed an increase and then a decrease with an increasing amount of GA, while 

AGB0.25 showed the lowest release rate.  

GA is an ampholytic polymer. This characteristic makes GA attract alginate molecules, which 

are negatively charged, with electrostatic forces. Calcium ions do not only play a role as a 

crosslinker of alginate; they also react with the carboxylate groups of GA (Fang et al., 2011; 

Nayak et al., 2012).   
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Table 4 also shows that the relatively higher k values in SIF were in the range from 2.71×10-3 

to 6.09×10-3 min-1. The result demonstrates that TP were released from AGB were quicker in 

SIF than in SGF. The faster release in SIF might be due to the pKa of carboxyl groups (-COOH), 

which is 4.75, being lower than the pH of SIF (pH 6.8). Carboxyl groups deprotonate to 

carboxylate anions (-COO-) and hydrogen ions (H+). The electrostatic repulsive forces between 

carboxylate anions leads to alginate polymer swelling (Gong et al., 2011). AGB0.75 in SIF was 

fit worse by Korsmeyer-Peppas models and had the lowest R2 (0.796) among all the variations. 

The release amount of TP released by AGB0.75 was over 95 % at 180 min (Fig. 5), and there 

were no significant difference between TP release amounts from 180 min to 300 min. We 

inferred that AGB0.75 releases TP in SIF quickly, resulting in a poorer fit to the Korsmeyer-

Peppas model. 

 

3.5. Hardness 

The effect of the alginate/GA ratio on hardness in an in vitro system was evaluated by a 

compression model in this study. The results are shown in Table 2. A wide range of hardness 

could be observed by changing the ratios of alginate and GA in the formulation. The hardness 

of AGB before being soaked in SGF ranged from 6.53 N to 26.68 N, and AGB0.25 showed the 

highest hardness among all of the variation. Jost, Kobsik, Schmid, & Noller, (2014) indicated 

that even if alginate is good at holding water and controlling drug release, in addition to being 

widely used as an air barrier, the brittleness of alginate film is one of the obstacles that needs 

to be overcome. The results demonstrate that GA has an ability to improve the hardness of 

alginate beads. However, an increase of GA break the balance of interactions between GA, 

alginate, and calcium, causing the hardness of AGB to decrease (Chopra et al., 2015). We used 

the sample of AGB0 before soaking in an in vitro system as a standard, and the relative hardness 

of AGB were calculated (Fig. 6). The hardness of AGB0.75 after 90 min was too low to be 



18 
 

detected, and the hardness of other variations ranged from 8.37 to 15.87 % after 120 min. AGB0 

remained a relatively higher hardness after being suspended in SGF for 120 min. Furthermore, 

hardness of all of the variations was too low to be detected after 150 min. 

 

3.6. Characterization of the outer layer of AGB 

AGB consists of an alginate or alginate/GA outer layer and a liquid core. The Tg and 

morphology of the outer layer of AGB were analyzed in this section. The Tg is the temperature 

at which polymer transitions from the glassy state to the rubbery state occur, and the midpoint 

temperature of DSC thermogram is considered as the Tg (Mohy Eldin et al., 2014; Pei, Ying, & 

Chu, 2017). The Tg of alginate/GA outer layers were analyzed and characterized in dry form. A 

broad endothermic peak was observed between 60 to 120 °C. The Tg of alginate/GA outer layers 

ranged from 68.08 to 82.24 °C, and it was found to first increase with the increase of GA ratio 

and then decrease. The highest Tg was obtained with AGB0.25. Some studies demonstrated that 

the Tg indicates the interactions between components, a higher Tg indicates a larger interaction 

between polymer materials (Liu et al., 2012; Lupo et al., 2015). Therefore, we inferred that 

AGB0.25 has an appropriate balance between alginate and GA, and that the lower Tg of 

AGB0.75 suggested that the balance was broken by the excess GA. 

Abdorreza, Cheng, & Karim (2011) indicated that Tg decreases with the addition of a plasticizer, 

water plays a plasticizing role; therefore, the Tg decreases with an increase of water content. 

The Tg of a binary water-solid mixture can be predicted by the Fox equation:  

1 𝑇𝑔,𝑚𝑖𝑥⁄ = 𝜔1 𝑇𝑔1⁄ + 𝜔2 𝑇𝑔2⁄  

where Tg,mix, Tg1 and Tg2 (-148 °C) are the glass transition temperature of the mixture, solids, 

and water, respectively, ω1 and ω2 are the mass fraction of solid and water, respectively (Fox, 

1956; Wortmann, Rigby, & Phillips, 1984). The Tg of alginate or alginate/GA outer layers 

ranged from approximately -183 to -163 °C.  
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The microstructure of AGB was visualized by SEM (Fig. 7). These SEM photographs reveal 

some wrinkles on the surface of all variations of AGB, which may be due to the partial collapse 

of the polymer during freeze drying (Nayak, Pal, & Santra, 2016).  

AGB0 had a relatively smoother surface than other treatments (Fig. 7a). With the increase of 

GA ratio, the surface of AGB became rougher at first, and then became smooth again. The 

surface of AGB0.25 was roughest, and a ridge structure was observed (Fig. 7b). The ridge 

structure was also observed on LHB which were prepared by RVS with a high concentration of 

calcium chloride solution (Fu Hsuan Tsai, Chuang, et al., 2017). Interestingly, this study 

indicated that LHB in which the ridge structure was observed had a good controlled-release 

ability. This result is similar to that of this study: AGB0.25, in which a clear ridge structure can 

be observed, also shows a slow TP release (Fig. 5). Perhaps the ridge structure could be regarded 

as a feature of LHB indicating good controlled-release ability, although further studies are 

required for confirmation. AGB0.75 exhibited a very porous surface with some tortuous flake 

structure (Fig. 7d). The phenomenon resulted in the low loading efficiency and hardness, and a 

poor ability for slowing down the release of TP of AGB0.75. Some studies have indicated that 

alginate-based beads are characterized with a porous and collapsed structure (Belščak-

Cvitanović et al., 2015). However, this phenomenon was not observed in the most of the AGB 

except AGB0.75, which indicates that the influence of materials on the morphology of hydrogel 

beads depends on the preparation method used. 

 

4. Conclusions 

This study revealed that GA is a good material to improve the physicochemical properties of 

alginate hydrogel beads. All of the variations showed a small sphericity (lower than 0.05) and 

demonstrated that the deformation of AGB is not clearly visible by human eyes. Storage tests 

confirmed that the addition of GA can prevent TP from degradation, and the results were well 
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fit by a first-order kinetic model, with R2 ranging from 0.957 to 0.988. GA can also maintain 

antioxidant activity during storage. In vitro release experiments indicated that AGB0.25 has a 

better performance in preventing TP release in SGF. AGB0.75 showed the highest amount of 

TP release (53.15 %) in SGF, which was about two times higher than AGB0.25 (27.42 %) in 

the same time interval. AGB0.25 also shows fine results for the hardness and prolonging half-

life of TP degradation during storage, the half-life of TP decay in AGB0.25 is over than 100 

days and the hardness was 23.42 N. Thus, these results suggest that AGB can be used as 

potential carriers of radish by-product juice. 

  



21 
 

Reference 

Abdorreza, M. N., Cheng, L. H., & Karim,  a. a. (2011). Effects of plasticizers on thermal 

properties and heat sealability of sago starch films. Food Hydrocolloids, 25(1), 56–60. 

Achat, S., Rakotomanomana, N., Madani, K., & Dangles, O. (2016). Antioxidant activity of 

olive phenols and other dietary phenols in model gastric conditions: Scavenging of the free 

radical DPPH and inhibition of the haem-induced peroxidation of linoleic acid. Food 

Chemistry, 213, 135–142. 

Amine, K. M., Champagne, C. P., Salmieri, S., Britten, M., St-Gelais, D., Fustier, P., & Lacroix, 

M. (2014). Effect of palmitoylated alginate microencapsulation on viability of 

Bifidobacterium longum during freeze-drying. LWT - Food Science and Technology, 56(1), 

111–117. 

AOAC. (2000). Official methods of analysis. (17th ed.). Gaithersburg, MD: Association of 

Official Analytical Chemists. 

Belščak-Cvitanović, A., Komes, D., Karlović, S., Djaković, S., Špoljarić, I., Mršić, G., & Ježek, 

D. (2015). Improving the controlled delivery formulations of caffeine in alginate hydrogel 

beads combined with pectin, carrageenan, chitosan and psyllium. Food Chemistry, 167, 

378–386. 

Bhattarai, S. R., Bahadur K.C., R., Aryal, S., Khil, M. S., & Kim, H. Y. (2007). N-Acylated 

chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic 

modification. Carbohydrate Polymers, 69(3), 467–477. 

Burey, P., Bhandari, B. R., Howes, T., & Gidley, M. J. (2008). Hydrocolloid gel particles: 

formation, characterization, and application. Critical Reviews in Food Science and 

Nutrition, 48(789190280), 361–377. 

Cai, S., Zhao, M., Fang, Y., Nishinari, K., Phillips, G. O., & Jiang, F. (2014). 

Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via 



22 
 

emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium 

sources. Food Hydrocolloids, 39, 295–300. 

Chan, E. S., Lee, B. B., Ravindra, P., & Poncelet, D. (2009). Prediction models for shape and 

size of ca-alginate macrobeads produced through extrusion-dripping method. Journal of 

Colloid and Interface Science, 338(1), 63–72. 

Chew, S. C., & Nyam, K. L. (2016). Microencapsulation of kenaf seed oil by co-extrusion 

technology. Journal of Food Engineering, 175, 43–50. 

Chopra, M., Bernela, M., Kaur, P., Manuja, A., Kumar, B., & Thakur, R. (2015). Alginate/gum 

acacia bipolymeric nanohydrogels-Promising carrier for Zinc oxide nanoparticles. 

International Journal of Biological Macromolecules, 72, 827–833. 

Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. 

European Journal of Pharmaceutical Sciences, 13(2), 123–133. 

Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., Williams, P. a., & Li, A. 

(2007). Multiple steps and critical behaviors of the binding of calcium to alginate. Journal 

of Physical Chemistry B, 111(10), 2456–2462. 

Fang, Y., Li, L., Vreeker, R., Yao, X., Wang, J., Ma, Q., Jiang, F., & Phillips, G. O. (2011). 

Rehydration of dried alginate gel beads: Effect of the presence of gelatin and gum arabic. 

Carbohydrate Polymers, 86(3), 1145–1150. 

Fox, T. G. (1956). Influence of Diluent and of Copolymer Composition on the Glass 

Temperature of a Polymer System. Bulletin of the American Physical Society, 1, 123. 

Gong, R., Li, C., Zhu, S., Zhang, Y., Du, Y., & Jiang, J. (2011). A novel pH-sensitive hydrogel 

based on dual crosslinked alginate/N-α-glutaric acid chitosan for oral delivery of protein. 

Carbohydrate Polymers, 85(4), 869–874. 

Gouin, S. (2004). Microencapsulation: Industrial appraisal of existing technologies and trends. 

Trends in Food Science and Technology, 15(7-8), 330–347. 



23 
 

Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E., & Di 

Scala, K. (2015). Chemical characterization and antioxidant capacity of red radish 

(Raphanus sativus L.) leaves and roots. Journal of Functional Foods, 16, 256–264. 

Jost, V., Kobsik, K., Schmid, M., & Noller, K. (2014). Influence of plasticiser on the barrier, 

mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, 

110, 309–19. 

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of 

solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 

15(1), 25–35. 

Koyama, M., & Kitamura, Y. (2014). Development of a new rice beverage by improving the 

physical stability of rice slurry. Journal of Food Engineering, 131, 89–95. 

Lai, L. S., Chou, S. T., & Chao, W. W. (2001). Studies on the antioxidative activities of Hsian-

tsao (Mesona procumbens Hemsl) leaf gum. Journal of Agricultural and Food Chemistry, 

49(2), 963–968. 

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress 

in Polymer Science (Oxford), 37(1), 106–126. 

Liu, Z., Ge, X., Lu, Y., Dong, S., Zhao, Y., & Zeng, M. (2012). Effects of chitosan molecular 

weight and degree of deacetylation on the properties of gelatine-based films. Food 

Hydrocolloids, 26(1), 311–317. 

López Córdoba, A., Deladino, L., & Martino, M. (2013). Effect of starch filler on calcium-

alginate hydrogels loaded with yerba mate antioxidants. Carbohydrate Polymers, 95(1), 

315–323. 

Lozano-Vazquez, G., Lobato-Calleros, C., Escalona-Buendia, H., Chavez, G., Alvarez-

Ramirez, J., & Vernon-Carter, E. J. (2015). Effect of the weight ratio of alginate-modified 

tapioca starch on the physicochemical properties and release kinetics of chlorogenic acid 



24 
 

containing beads. Food Hydrocolloids, 48, 301–311. 

Lupo, B., Maestro, A., Gutiérrez, J. M., & González, C. (2015). Characterization of alginate 

beads with encapsulated cocoa extract to prepare functional food: Comparison of two 

gelation mechanisms. Food Hydrocolloids, 49, 25–34. 

Matalanis, A., Jones, O. G., & McClements, D. J. (2011). Structured biopolymer-based delivery 

systems for encapsulation, protection, and release of lipophilic compounds. Food 

Hydrocolloids, 25(8), 1865–1880. 

Mohy Eldin, M. S., Kamoun, E. a., Sofan, M. a., & Elbayomi, S. M. (2014). l-Arginine grafted 

alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery. 

Arabian Journal of Chemistry, 8(3), 355–365. 

Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., & Kundu, P. P. (2015). pH-

sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin 

delivery. International Journal of Biological Macromolecules, 72, 640–648. 

Nakata, T., Kyoui, D., Takahashi, H., Kimura, B., & Kuda, T. (2016). Inhibitory effects of 

laminaran and alginate on production of putrefactive compounds from soy protein by 

intestinal microbiota in vitro and in rats. Carbohydrate Polymers, 143, 61–69. 

Nami, Y., Haghshenas, B., & Yari Khosroushahi, A. (2016). Effect of psyllium and gum Arabic 

biopolymers on the survival rate and storage stability in yogurt of Enterococcus durans 

IW3 encapsulated in alginate. Food Science & Nutrition, (August), 1–10. 

Nayak, A. K., Das, B., & Maji, R. (2012). Calcium alginate/gum arabic beads containing 

glibenclamide: Development and in vitro characterization. International Journal of 

Biological Macromolecules, 51(5), 1070–1078. 

Nayak, A. K., Pal, D., & Santra, K. (2016). Swelling and drug release behavior of metformin 

HCl-loaded tamarind seed polysaccharide-alginate beads. International Journal of 

Biological Macromolecules, 82, 1023–1027. 



25 
 

Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties 

and applications. Biomaterials, 33(11), 3279–3305. 

Pei, K., Ying, Y., & Chu, C. (2017). Molecular dynamic simulations of a new family of 

synthetic biodegradable amino acid-based poly(ester amide) biomaterials: Glass transition 

temperature and adhesion behavior. Materials Today Chemistry, 4, 90–96. 

Siepmann, J., & Peppas, N. a. (2001). Modeling of drug release from delivery systems based 

on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48(2-3), 

139–157. 

Sinha, P., Ubaidulla, U., Hasnain, M. S., Nayak, A. K., & Rama, B. (2015). Alginate-okra gum 

blend beads of diclofenac sodium from aqueous template using ZnSO4 as a cross-linker. 

International Journal of Biological Macromolecules, 79, 555–563. 

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant 

activity of spray-dried a??ai (Euterpe oleracea Mart.) juice produced with different carrier 

agents. Food Research International, 43(3), 907–914. 

Tsai, F. H., Chiang, P. Y., Kitamura, Y., Kokawa, M., & Khalid, N. (2016). Preparation and 

physical property assessments of liquid-core hydrogel beads loaded with burdock leaf 

extracts. RSC Advances, 6, 91361–91369. 

Tsai, F. H., Chuang, P. Y., Kitamura, Y., Kokawa, M., & Islam, M. Z. (2017). Producing liquid-

core hydrogel beads by reverse spherification: Effect of secondary gelation on physical 

properties and release characteristics. Food Hydrocolloids, 62, 140–148. 

Tsai, F. H., Kitamura, Y., & Kokawa, M. (2017). Liquid-core alginate hydrogel beads loaded 

with functional compounds of radish by-products by reverse spherification: Optimization 

by response surface methodology. International Journal of Biological Macromolecules, 

96, 600–610. 

Wang, Q., Zhang, J., & Wang, A. (2009). Preparation and characterization of a novel pH-



26 
 

sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel 

bead for controlled release of diclofenac sodium. Carbohydrate Polymers, 78(4), 731–737. 

Wortmann, F. J., Rigby, D. G., & Phillips, D. G. (1984). Glass Transition Temperature of Wool 

as a Function of Regain. Glass Transition Temperature of Wool as a Function of Regain, 

54(1), 6–8. 

Zeeb, B., Saberi, A. H., Weiss, J., & McClements, D. J. (2015). Formation and characterization 

of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion 

retention and release. Food Hydrocolloids, 50, 27–36. 

Zucker, D., Marcus, D., Barenholz, Y., & Goldblum, A. (2009). Liposome drugs’ loading 

efficiency: A working model based on loading conditions and drug's physicochemical 

properties. Journal of Controlled Release, 139(1), 73–80. 

  



27 
 

 

 

 

 

 

 

 

 

Fig. 1 Formulation of alginate/gum arabic beads by reverse spherification. 
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Fig. 2 The amount of total phenolic compounds of alginate/gum arabic beads during storage. 
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Fig. 3 DPPH scavenging activity of alginate/gum arabic beads during storage. 2D Graph 1
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Fig. 4 The correlation between DPPH scavenging activity and the amount of total phenolic 

compound. 
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Fig. 5 Total phenolic compounds release from alginate/gum arabic beads in an in vitro system. 2D Graph 1
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Fig. 6 Hardness of alginate/gum arabic beads in an in vitro system. 
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(a)                                   (b) 

  

(c)                                  (d) 

Fig. 7 Microstructure of the outer layer of alginate/gum arabic beads. (a) AGB0; (b) AGB 0.25; 

(c) AGB 0.5; (d) AGB 0.75. 
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Table 1 The formulation of alginate/ gum arabic beads. 

Code Ratio Gum arabic (g/100mL) Alginate (g/100mL) 

AGB0 0:1 0 1 

AGB0.25 0.25:0.75 0.33 1 

AGB0.5 0.5:0.5 1 1 

AGB0.75 0.75:0.25 3 1 

 
 
 
 
 
 
 

Table 2 Physicochemical properties of alginate/gum arabic beads. 

Code Diameter (mm) Sphericity (×10-2) Loading efficiency (%) Hardness (N) 

AGB0 4.63±0.07bc 3.55±0.22a 83.80±0.87b 23.42±1.32b 

AGB0.25 4.58±0.02c 1.36±0.01b 85.65±0.52 ab 26.68±1.18a 

AGB0.5 4.82±0.09b 1.76±0.29b 86.67±1.45 a 19.30±1.34c 

AGB0.75 5.66±0.16a 1.34±0.32b 72.91±1.64c 6.53±0.54d 
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Table 3 Kinetic parameters for total phenolic compound degradation and DPPH scavenging 

ability change during storage. 

Code Total phenolic compound degradation DPPH scavenging activity 

 ka (day-1) t1/2
b (day) R2 ka (day-1) t1/2

b (day) R2 

LCM 1.11×10-2 62.45 0.988 1.26×10-2 55.01 0.961 

AGB0 8.00×10-3 86.64 0.987 1.01×10-2 68.63 0.929 

AGB0.25 6.10×10-3 113.63 0.957 8.00×10-3 86.64 0.942 

AGB0.5 7.30×10-3 94.95 0.969 8.80×10-3 78.77 0.945 

AGB0.75 1.03×10-2 67.30 0.986 1.50×10-2 46.20 0.942 

a k represents the kinetic constant of first-order kinetic model. 

b t1/2 represents the half-lives of total phenolic compound degradation or DPPH scavenging 

activity. 
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Table 4 Kinetic parameters for total phenolic compounds release from alginate/gum arabic 

beads in an in vitro system. 

Code SGF SIF 

 ka (min-n) na R2 k (min-n) n R2 

AGB0 5.31×10-6 0.162 0.972 2.71×10-3 0.189 0.992 

AGB0.25 2.25×10-6 0.155 0.981 4.09×10-3 0.229 0.988 

AGB0.5 6.03×10-5 0.221 0.964 5.61×10-3 0.144 0.939 

AGB0.75 9.15×10-4 0.278 0.991 6.09×10-3 0.082 0.796 

a k and n represents the kinetic constant and release exponent of Korsmeyer-Peppas release 

kinetics. 

 

 


