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A feature of human culture is that we can learn to consume chemical compounds, 
derived from natural plants or synthetic fabrication, for their psychoactive effects. These 
drugs change the mental state and/or the behavioral performance of an individual and 
can be instrumentalized for various purposes. After the emergence of a novel psychoac-
tive substance (NPS) and a period of experimental consumption, personal and medical 
benefits and harm potential of the NPS can be estimated on evidence base. This may 
lead to a legal classification of the NPS, which may range from limited medical use, 
controlled availability up to a complete ban of the drug form publically accepted use. 
With these measures, however, a drug does not disappear, but frequently continues to 
be used, which eventually allows an even better estimate of the drug’s properties. Thus, 
only in rare cases, there is a final verdict that is no more questioned. Instead, the view on 
a drug can change from tolerable to harmful but may also involve the new establishment 
of a desired medical application to a previously harmful drug. Here, we provide a sum-
mary review on a number of NPS for which the neuropharmacological evaluation has 
made important progress in recent years. They include mitragynine (“Kratom”), synthetic 
cannabinoids (e.g., “Spice”), dimethyltryptamine and novel serotonergic hallucinogens, 
the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, 
γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only 
emerging harm potentials but also some potential medical applications.

Keywords: Kratom, synthetic cannabinoids, dimethyltryptamine, serotonergic hallucinogens, mephedrone, 
ketamine, γ-hydroxybutyrate

iNTRODUCTiON

It appears to be a human trait to constantly seek for new psychoactive substances and to explore 
potential use of them. As long as human record keeping dates back, humans consume psychoactive 
plant preparations. Since centuries they isolated single compounds yielding “natural drugs,” while 
since decades synthetic chemistry allowed the innovation of completely new compounds that are not 
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available from natural resources (1, 2). Despite the risk of being 
toxic upon single or chronic consumption, there are constantly 
new drugs that find their way into drug-taking communities (3).

Novel stimuli and novel information about the external 
world have an incentive salience and maintain seeking behavior 
in animals and in humans (4, 5). The search for novel external 
stimuli may translate to novel “mental states,” as an experience of 
new interoceptive states. Human brains generate distinct working 
modes that are subjectively perceived as mental states. This is at 
the neurobiological side believed to be organized by the sum-
matory tonic activity of modulatory transmitter systems. Mental 
states can determine how an organism perceives, processes, 
and stores external and internal information. It also affects how 
efficiently behavior is generated (6–8). Mental states change 
spontaneously or as a consequence of environmental influences, 
thereby some mental states are perceived as more pleasurable 
and useful for goal-directed behavior than others. The rewarding 
value of novelty may, thus, be expanded to novel mental states, 
which have never been incurred by natural means. Psychoactive 
substances can induce and maintain a desired mental state. Some 
of them may also provoke novel mental states. Only a few of the 
well-established psychoactive substances induce “euphoria” or a 
sense of “well-being,” which directly reinforces drug-seeking and 
consumption behaviors. Most psychoactive substances, however, 
induce mental states that are primarily useful for other purposes. 
In that, they exert complex reinforcing effects during drug instru-
mentalization (6–10). Thus, the mental state that is induced by 
a psychoactive drug and for which humans develop a memory 
(11) may facilitate other behaviors with positive or negative 
reinforcing outcome, such as the facilitation of social interaction, 
mating behavior, coping with stress, and cognitive enhancement 
(9, 12–16). When a new drug is discovered and experimentally 
used, the new user may not only judge the novelty and emotional 
impact of the newly experienced mental state but subsequently 
decide for what purposes this new mental state may serve (17, 18). 
Once a new drug is made available, an experimental consump-
tion starts that determines individual subjective effects as well as 
context and possibility of instrumentalization. This may not only 
work in humans but also for a newly experienced psychoactive 
drug in animals (19).

A major factor that fuels continuous search for new psycho-
active drugs is the need to replace existing ones in routine use. 
Once a long known drug has been criminalized and banned, 
availability of the drug becomes limited. Legal control imposes 
punishment on drug possession, trade, and use, which limits its 
instrumentalization for frequently performed behavior, such as 
coping with stress (20). If the drug was useful for this behavior, 
e.g., to better relax after stressful work, users may start looking for 
a legal replacement of the banned drug and, thus, be motivated 
for testing new drugs (21).

Novel psychoactive substances (NPSs) had been defined by 
the United Nations as new narcotic or psychotropic drugs that are 
not controlled by the United Nations’ 1961 Single Convention on 
Narcotic Drugs or by Psychotropic Substances Conventions (22). 
NPSs are by definition those psychoactive drugs used for intoxi-
cation which are not already prohibited by UN Single Convention 
on Narcotic Drugs or Misuse of Drugs Act (23), thereby “novel” 

does not necessarily mean that the drug has been developed 
completely new recently. It may also refer to substances that have 
lately become popular and/or more widely available, constituting 
a reason of current or potential public health concerns (24).

The way of a NPS in society, from its introduction, experimen-
tal use, instrumentalization, habitual abuse, up to its legal control, 
depends essentially on the relationship of adverse side effects and 
potential medical use. The adverse side effects are those effects of 
the drug that threaten the physiological integrity and behavioral 
repertoire of the whole organism, beyond the desired psychoac-
tive action. Many known psychoactive drugs are strong toxins 
and harm the user. This can occur after acute consumption or 
after chronic intake (3). Humans establish cultural rules for the 
consumption and the control of side effects of psychoactive drugs 
(25). This keeps even highly dangerous drugs, such as alcohol, 
legal and limits their harm potential when incorporated in cul-
tural activities (26). But establishing those initially “non-written” 
rules requires a certain amount of experience and a user/non-
user discourse. One result of this discourse is the possibility of 
legal control, and a “written down” law on where, when, and how 
a psychoactive substance can be used. Drugs can be labeled as 
addictive drugs and made illicit. However, many new substances 
are at the same time tested for a potential beneficial application, 
e.g., to treat pain, or even as substitutes for well-known addictive 
drugs, thereby the verdict may be that a NPS might have some 
addiction- and harm potential but also beneficial effects, which 
may actually dominate the use profile. There is occasionally also 
a reversal of the discourse decision in that addictive drugs may 
receive an additional medical application, e.g., ketamine, which 
was discussed as an abuse drug (27, 28), but is now also consid-
ered as a useful treatment for depression (29).

Newly introduced psychoactive substances do not usually 
arise from controlled pharmacodevelopment. In that, these drugs 
initially have the status of a “legal high” and virtually everybody 
is allowed to possess, distribute, and consume them. Only when 
after consumption accidents with physical- and/or behavioral 
impairments occur, or in the worst case drug fatalities, a NPS can 
be classified and legally controlled or its medical use defined (21). 
However, the drug discourse requires evidence, ideally scientific, 
arising from controlled experimentation. This evidence should 
go well beyond the accumulation of single cases. Quite naturally, 
during the information collecting period, the NPS is used, and 
thus, not brand new anymore. What is new afterward is the cer-
tainty with which sufficiently reliable statements about the drug 
can be made (30).

It has to be admitted that the legal status discourse is in prac-
tice way more complicated and also culturally selective, which 
shall not be the focus of this review that rather focuses on the 
neurobiological evidence that feeds into this discourse. In this 
article, we review the state of knowledge on a number of NPS for 
which now a considerable penetration of society has developed 
in distinct cultural or geographical regions and for which suf-
ficient evidence has been gathered to allow for evidence-based 
statements. This should provide a comprehensive overview on 
some of the currently most relevant NPS, thereby the choice of 
substances discussed was driven by the perceived progress in 
the understanding of their neuropharmacological action by the 
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authors. In that, the review does not provide a complete coverage 
of all currently available NPS.

KRATOM AND MiTRAGYNiNe

Mitragyna speciosa Korth. (M. speciosa), from the Rubiaceae 
family, is a tropical medicinal plant native to Southeast Asia (31, 
32). In Malaysia, M. speciosa leaves are known as Ketum or Biak 
(31, 32), and in Thailand as Kratom (33, 34). M. speciosa has been 
historically used in Southeast Asia as a stimulant drug and in its 
traditional context as a remedy for various symptoms (33, 34). 
Previous studies mainly described the traditional uses of Kratom 
among rural folk, peasants, and laborers in Southeast Asia (33, 
35, 36). More recently, studies on Kratom use are emerging from 
Europe and the US (37–40). They suggest that Kratom is now 
also used outside its traditional context. In the West, it is still 
considered a “safe” herbal drug with potential medicinal applica-
tion (38, 39, 41, 42).

In Southeast Asia, manual laborers commonly chew fresh 
Kratom leaves and ingest brewed Kratom tea/juice to reduce 
fatigue, promote work desire, and enhance physical tolerance to 
debilitating work (32, 33, 43, 44). Kratom leaves are also used as 
an opium substitute to treat morphine addiction in Malaysia and 
Thailand (31, 45). Because of its unique healing properties, rural 
inhabitants use Kratom leaves to treat various medical conditions 
such as cough, fever, pain, diarrhea, diabetes, and hypertension 
(32, 44, 46). However, Kratom is potentially addictive and chronic 
users find it difficult to refrain from prolonged Kratom use  
(33, 36, 43). The common side effects of long-term use include 
constipation, weight loss, hyperpigmentation, dehydration, 
fatigue, insomnia, and increased urination (33, 36, 46). The 
majority of Kratom users believe its use is not as harmful as those 
of other illicit substances, such as methamphetamine and heroin, 
and that Kratom dependence carries little or no health risks 
(45–47). So far, there have been no deleterious incidents directly 
related to Kratom use in Southeast Asia. Only one study from 
Thailand has reported Kratom poisoning cases, with palpitation, 
seizure, and nausea. However, these effects may have been arisen 
from coadministration of other illicit substances (48).

Regular users are more likely to increase the quantity and 
frequency of Kratom use over time. In Thailand, traditional users 
often chew fresh or powdered Kratom leaves (33, 44). In Malaysia, 
Kratom users commonly ingest brewed Kratom tea/juice (25, 36, 
47, 49). In the US and in Europe, Kratom is primarily used as a 
natural alternative to self-medicate for chronic pain and as an 
opioid withdrawal treatment (37, 50, 51). Kratom is marketed as a 
“legal high” and can be easily obtained in different forms, such as 
powder extracts, tablets, capsule, or liquids, through the Internet 
(38, 52). As a consequence of the rise in Kratom mortality and 
toxicity cases in the West, regulatory agencies have begun to 
view Kratom negatively (39, 53, 54). The US Drug Enforcement 
Administration intends to regulate Kratom use in the US (51). 
However, it appears that most, if not all of the Kratom-induced 
medical complications in the West were triggered by the use of 
adulterated Kratom products (53, 54).

About 40 alkaloids have been identified in M. speciosa 
leaves. The alkaloid content in the leaves varies, depending on 

geographical location and season of harvest (55). Mitragynine and 
7-hydroxymitragynine are the principal psychoactive constituents 
of M. speciosa and were shown to induce morphine-like effects in 
animal models (31, 55, 56). The synthesis of the mitragynine was 
reported by Takayama et al. (57) and later by Ma and colleagues 
(58, 59). However, a synthesis of mitragynine is with 18–23 steps 
rather laborious, time-consuming, not economical, and has only 
a low yield of 3–13% (60). Thus, direct isolation of mitragynine 
from the leaves is much more efficient and cost-effective.

A comprehensive pharmacokinetic description of mitragynine 
in rats was provided by Parthasarathy et al. (61) after intravenous 
(i.v.) and oral administration. The blood concentration peaked 
at 1.2 h with 2.3 µg/mL followed by biphasic elimination with a 
half-life of 2.9 h and a clearance of 0.09 L/h/kg after administra-
tion of 1.5 mg/kg mitragynine (i.v.). The volume of distribution 
was rather small with 0.79  L/kg, suggesting that mitragynine 
is not widely distributed into tissue compartments (62). The 
oral absorption of mitragynine was shown to be lengthy and 
incomplete, with an absolute oral bioavailability of around 3%. 
Several studies revealed that after oral application of 20–50 mg/kg 
mitragynine, a volume distribution of 37–89 L/kg and clearance 
of 1.6–7 L/h (per kg) was reached (61–63), which supports the 
low bioavailability and poor absorption of mitragynine.

Mitragynine is a lipophilic alkaloid with poor water solubility 
(64). Mitragynine has a biphasic metabolism. The first phase 
produces seven identified metabolites, thereby mitragynine 
is processed through hydrolysis of methyl ester in position 16 
and O-demethylation of the 9-methoxy- and of the 17-methoxy 
groups (65). The second phase involves further oxidation to 
carboxylic acids or reduction to alcohols and the combinations 
of some steps via the intermediate aldehydes. Four metabolites 
were additionally conjugated to glucuronides and to sulfates in 
rats and humans (65). Abuse of mitragynine and related com-
pounds can be detected through gas chromatography or liquid 
chromatography with mass spectrometry, respectively (65–67).

Mitragynine shows the highest affinity to κ-opioid receptors 
followed by μ- and δ-opioid receptors (68). It acts as a receptor 
agonist at μ-opioid receptors and possibly as an antagonist at 
κ-opioid receptors (56, 69–71). At cellular level, mitragynine 
blocks neuronal Ca2+ channels (72). It was also found to inhibit 
forskolin-stimulated cyclic adenosine monophosphate (cAMP) 
formation in vitro in an opiate receptor-dependent way (73, 74). 
A study by Fakurazi et  al. (75) showed that repeated exposure 
to mitragynine attenuated the expression of cAMP and cAMP 
response element-binding protein.

Mitragynine was extensively investigated for its antinocicep-
tive effects. A study by Reanmongkol et al. (76) found prolonged 
antinociceptive effects in the hot plate test, but not in the tail flick 
test. Another study showed prolonged antinociceptive effect in 
both tests (77). Intraperitoneal administration also yielded positive 
antinociceptive results in the hot plate, formalin-, and acetic-acid 
tests (78). Mitragynine’s antinociceptive effects were comparable 
to those of oxycodone suggesting an abuse potential (79, 80).

In animal models, mitragynine induces anxiolytic effects after 
acute treatment in several test paradigms (81). This may be medi-
ated by its effects on Fos expression in dorsal raphe nucleus (82), 
and the activation of δ-opioid receptors (83). Withdrawal from 
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chronic mitragynine induces anxiety-related behavior in rats 
(84). There have been conflicting reports of mitragynine affecting 
cognitive function. Apryani et  al. (85) found that mitragynine 
i.p. administration can impair object location memory in mice. 
Another study, however, showed no impairment of short-term 
memory in the Y-maze task. The mice, however, were given M. 
speciosa extract through oral administration (86). In rats, a study 
showed an increase in learning ability when given M. speciosa 
extract in a passive- and an active avoidance task. However, 
mitragynine alone did not have significant effects on long-term 
memory consolidation in both tasks (87). A recent study using 
a passive avoidance task showed independent impairments of 
learning, memory consolidation, as well as memory retrieval after 
acute mitragynine administration at a dose ≥10 mg/kg (i.p.) in 
rats. In parallel, mitragynine-treated rats showed a disrupted low 
frequency rhythm (delta and theta) in the electroencephalogram 
(EEG), which may account for the learning and memory impair-
ments (84).

Chronic administration of mitragynine at a dose of ≥10 mg/
kg (i.p.) may cause addiction-like behaviors in animal models 
(56, 84, 88). Mitragynine (15 mg/kg, i.p.) shows discriminative 
stimulus properties in rats. It fully substituted for a morphine 
(5 mg/kg) stimulus, and partially for a cocaine cue (10 mg/kg, i.p.) 
(89). Thus, mitragynine likely possess both opioid and psycho-
stimulant effects. Mitragynine at doses ≥10 mg/kg (i.p.) shows 
rewarding properties in rodents as measured by conditioned 
place preference. These effects are opiate receptor dependent 
and can be blocked by the opiate receptor antagonist naloxone 
(56). Subchronic administration of mitragynine increased 
the expression of dopamine transporter- and dopamine (DA) 
receptor-regulating factor mRNA in the limbic system of the 
brain (84) indicating a critical role of DA in the rewarding effects 
of mitragynine, thereby the dose of mitragynine may be crucial, 
given that addiction-like behaviors were only observed at doses 
≥10 mg/kg (i.p.) in rodents. Those are considerably higher than 
reported maximum doses of mitragynine consumed by humans, 
which are usually in the range of <3 mg/kg (p.o.) per day.

Altogether, Kratom and its main psychoactive ingredient 
mitragynine are drugs that are widely used in Southeast Asia with 
an increasing appearance in Western countries. Experimental 
studies in animals have now shown that mitragynine has an 
addictive potential, however, only at higher doses. Human users in 
countries of frequent use with a traditional context report a rather 
low daily consumption with only mild side effects. Kratom and 
mitragynine can be instrumentalized to enhance physical work 
power and endurance. A major reason for Kratom consumption 
is its reported efficacy to replace opiates in chronic users. This 
makes the Kratom plant preparation and also the isolated com-
pound mitragynine interesting options to treat opiate addiction.

SYNTHeTiC CANNABiNOiDS

The abuse of herbal preparations spiked with synthetic cannabi-
noids is still increasing. A hallmark of this consumption is the 
use of an inhomogeneous group of substances that occur on the 
market with different names, such as Spice, Spice gold, diamond-
spice, chill X, abyss, Pandora’s box, exodus, annihilation, fire, 

smoke, sence, chillX, chillys, highdi’s, earth impact, and many 
more (90, 91). Synthetic cannabinoid preparations are frequently 
mislabeled as research chemicals, herbal incenses, or as legal highs, 
including the explicit warning that it is not for human consump-
tion (92–97). The first evidence of synthetic cannabinoid use as a 
recreational drug appeared in 2004 (98). However, a wide spread 
use of synthetic cannabinoids did not emerge until 2008. In 2012, 
the lifetime prevalence for “Spice” consumption was already at 7% 
among the 15- to 18-year olds (99–101), thereby the coabuse of 
synthetic- and natural cannabinoids is common (102–109).

Research in the active ingredients of synthetic cannabinoids 
such as Spice and their neuropharmacological action has revealed 
several hundred compounds that are artificially added to a car-
rier medium of herbal origin (110). The synthetic compounds 
usually display a high affinity for cannabinoid receptors (CB-R), 
which reaches far beyond that of natural cannabinoids (100, 
111). Compared to the partial agonist, Δ9-tetrahydrocannabinol 
(THC), synthetic cannabinoids can act as agonists, neutral 
antagonists, or inverse agonists at the CB-R1 (110–112). Synthetic 
cannabinoid preparations also lack the naturally occurring can-
nabidiol, which is present in cannabis preparations and which 
is supposed to antagonize some of the psychotogenic effects of 
THC (113, 114).

A gram of herbal preparation can contain up to 200  mg of 
a synthetic cannabinoid. However, the variability in substance 
composition and amount between one package and another is 
high and largely unpredictable. Additional ingredients have been 
found and may include, e.g., clenbuterol, which may be responsi-
ble for the frequently observed sympathomimetic manifestations 
of an intoxication with synthetic cannabinoids, or tocopherol. 
The latter is usually added to blur chemical detection (113–115). 
Occasionally, some investigated herbal preparations did not 
contain any pharmacologically active synthetic cannabinoids, 
but only psychoactive compounds from plant-derived carrier 
material, such as mitragynine (116–120).

Users report that synthetic cannabinoids can cause psy-
chotropic effects that are qualitatively similar, but much more 
intense, than those of cannabis. As such, synthetic cannabinoids 
may cause THC-like effects including alterations of mood, sleep, 
perception/wakefulness, body temperature, and cardiovascular 
function (121–123). Additional diffuse effects, which are different 
from cannabis, include palpitations, tachycardia, and unspecific 
effects in the electrocardiogram (110, 124, 125). Harmful somatic 
effects comprise gastrointestinal and renal defects (91, 126–128). 
Neuropsychiatric symptoms were reported, such as psychosis, 
panic and anxiety attacks, agitation, and aggressive behavior  
(106, 107, 129, 130). A psychosis induced by synthetic cannabi-
noids manifests by delusions, acoustic and visual hallucinations, 
and paranoia. Neurological symptoms may include seizures, 
dystonia, and tremors. Other frequently reported side effects 
are nausea, vomiting, diaphoresis, and respiratory depression 
(131–141). Use of synthetic cannabinoids may have fatal con-
sequences. Reported single cases mention coronary ischemic 
events and suicide caused by an extreme anxiety attack (138, 139).

The active compound of the preparation “Spice” was 
first described in 2009, following the detection of formerly 
non-declared, synthetic CB-R1 agonists (141, 142). Synthetic 
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cannabinoids were originally developed for research purposes in 
the 1970s with the goal of better understanding the endogenous 
cannabinoid pathways and to develop pharmacotherapies for 
conditions such as cancer-associated pain (108). Synthetic can-
nabinoids may contain aminoalkyl-indoles of the JWH series, 
which was first synthesized by the chemist J. W. Huffmann. 
Major ingredients of herbal preparations in the past included 
the aminoalkyl-indoles, JWH-018, JWH-073, JWH-019, JWH-
250, and the cyclohexylphenols, CP-47,497-C6, CP-47,497, and 
CP-47,497-C8. These compounds are lipid-soluble, non-polar, 
and typically contain 20–26 carbon atoms. However, there are at 
least 100 chemically related compounds currently known (122, 
143–146). While some of them have been legally controlled on 
individual level, recent legislation in Germany now considers the 
lead structures and attempts to control whole drug classes. It is 
expected that this will make it more difficult to simply replace 
single banned compounds by their substituted analogs in the 
synthetic cannabinoid preparations (122, 147–153).

At the current stage, one may conclude that synthetic cannabi-
noids constitute dangerous psychoactive drug preparations with 
a rather chimeric nature (154). It is not a single compound, but 
draws from a plethora of already available synthetic cannabinoids 
that are unsystematically mixed and brought on a plant carrier 
material, that may even by itself have psychoactive effects. This 
strategy of drug preparation paved the way into the perception 
as a natural and perfectly “legal high” by consumers. The natural 
claim is now clearly rejected by the understanding that most 
psychoactive effects are brought about by purely synthetic com-
pounds added to a natural carrier. Given the strong cannabinoid-
like effects of synthetic cannabinoids, which are now increasingly 
understood, single substances have been legally banned. But this 
has done little damage to the unique drug design of synthetic can-
nabinoid preparations in that single disallowed compounds were 
almost immediately replaced by substituted analogs that had not 
been banned yet. The now emerging control of whole substance 
classes will most likely put an end to this strategy and help to 
reduce harm that is clearly associated with synthetic cannabinoid 
consumption.

DiMeTHYLTRYPTAMiNe

N-N-dimethyltryptamine (DMT) is an indole alkaloid found in 
plants and animals. It has been proposed that the endogenous 
DMT may act as a neurotransmitter. DMT is a natural psyche-
delic substance and has similar effects as other serotonergic hal-
lucinogens such as lysergic acid diethylamide (LSD), psilocybin, 
and mescaline. DMT is one of the ingredients used in various 
shamanic preparations, such as ayahuasca, hoasca, or yagé in 
South America and is used as a recreational drug in Europe and 
North America (155). DMT rich plants belong to genera such 
as Phalaris, Delosperma, Acacia, Desmodium, Mimosa, Virola, 
and Psychotria. When DMT is ingested at high concentrations, 
the user experiences episodic visual hallucinations (155, 156). 
The recreational use of DMT has been rising for its acclaimed 
self-perceived benefits. Capsules, known as pharmahuasca, 
became available containing DMT as a free base together with 
some monoamine oxidase inhibitors (MAOIs), such as synthetic 

harmaline, or plant-based MAOIs such as Harmala alkaloids 
(157, 158). The MAOIs inhibit the otherwise rapid metaboliza-
tion of DMT and, thus, allow for the hallucinogenic effects when 
the drug is taken orally.

Endogenous DMT can be found in the human brain and 
other tissues of the body such as blood, urine, cerebral spinal 
fluid (155, 156, 159), and the pineal gland (156, 160). Synthesis of 
endogenous DMT begins with the decarboxylation of tryptophan 
to tryptamine. N-methyltryptamine (NMT) and DMT are the 
products of methyl group additions to tryptamine by the enzyme 
indolethylamine-N-methyltransferase (160). DMT levels were 
found to increase under stress in the rodent brain and adrenal 
gland (161). This can activate trace amine-associated receptors and 
serotonin receptors (5-HT-Rs), such as the 5-HT1A-Rs, 5-HT2A-Rs, 
and the 5-HT2C-Rs (159, 162). It was suggested that endogenous 
DMT has a role in cellular protective mechanisms (155).

Exogenous DMT is metabolized by MAO and peroxidases 
leading to the metabolites NMT, 6-hydroxy-DMT, 6-OH-DMT-
N-oxide, DMT-N-oxide, and indole-3-acetic acid (160). The 
pharmacokinetics of DMT shows a rapid onset of action within 
5–30  min. This is followed by an intense modification of the 
mental state lasting for approximately 4  h (163). The routes of 
DMT administration are via smoking or snorting. For the hal-
lucinogenic or psychedelic effects to occur, an oral formulation 
must contain MAOIs to prolong the half-life of DMT in the body. 
MAOIs block the enzyme in the stomach after which DMT is able 
to be absorbed through the stomach lining into the blood stream. 
An oral dosing of DMT, e.g., via ayahuasca, produces both 
behavioral and neuroendocrinological effects, such as a decrease 
in locomotor activity, cognitive impairments, sympathomimetic 
effects, increased prolactin, and cortisol levels (164, 165). DMT 
also interacts with various ionotropic and metabotropic receptors 
in the glutamate, DA, and acetylcholine systems. The subjective 
effects of exogenous DMT are primarily mediated by 5-HT2A-Rs. 
5-HT2C-Rs play little or no role (166, 167). Glutamatergic mGluR2 
receptors might have modulatory effects in DMT action (167). 
DMT does not affect DA receptors but may alter DA levels in 
the brain with subsequent neurochemical and behavioral effects.

Chronic DMT induces tolerance for some behavioral and 
subjective effects. However, it failed to elicit tolerance to the 
disruption of responding maintained on a fixed-ratio schedule of 
food reinforcement (168, 169). DMT yields similar discriminative 
stimulus effects as the serotonergic hallucinogens 2,5-dimethoxy-
4-methylamphetamine (DOM) and LSD. Furthermore, DMT 
fully substituted in DOM-trained rats and for LSD in rats and 
pigeons (170, 171).

Beside its sought-after acute effects, DMT can cause consider-
able side effects. The ingestion of DMT may induce intense fear, 
paranoia, anxiety, grief, and depression, which may result in physi-
cal harm to the user or others (157). There have been no serious 
adverse events reported on long-term use of DMT apart from the 
acute cardiovascular effects. Single and repeated administrations 
of DMT produce marked changes in the cardiovascular system 
(172). In fact, DMT has been reported to act as neuroprotective 
agent, working via Sigma-1 receptor (Sig-1R) activation (173–177). 
Sig-1Rs activate the antioxidant response elements (176). Hence, 
DMT may function as an indirect antioxidant. Frecska et al. (177) 
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have suggested that peripheral synthesis of DMT, consumptions 
of DMT-containing plant material, or systemic administration of 
DMT can trigger endogenous central nervous system pathways 
that produce psychedelic experiences. At the same time, it may 
serve mechanisms such as neuroprotection and neuroregen-
eration. Interestingly, ayahuasca and DMT mixtures have been 
proposed as a treatment for psychiatric disorders. Symptoms of 
schizophrenia, such as delusions and hallucinations, have been 
assumed to involve activation of 5-HT2A-Rs along with changes in 
the DA system (166, 178). Endogenous DMT has been reported to 
be increased in schizophrenic patients during psychotic episodes 
(179) indicating that the endogenous DMT signaling pathway 
might be a treatment target for schizophrenia. Based on animal 
models and on clinical studies in humans, DMT has potential 
antidepressant and anxiolytic effects (180), possibly mediated by a 
5-HT1A-R agonistic action (181). Further therapeutic applications 
include the treatment of cancer and inflammations. DMT has 
been shown to increase immune system activity (165, 182). Sig-1R 
activation can reduce pro-inflammatory cytokines and enhance 
the production of the anti-inflammatory cytokine IL-10 (183).

In conclusion, DMT is a naturally occurring psychoactive 
compound found in various plants. It is now understood that its 
main psychoactive effects are mediated by 5-HT2A-R activation. 
Endogenous DMT may play a role in the immunoregulation in 
peripheral and brain tissues. Preliminary evidence now suggests 
a possible therapeutic use of DMT.

NOveL SeROTONeRGiC 
HALLUCiNOGeNS

Since thousands of years, indigene cultures in North and South 
America have used plants and mushrooms containing serotoner-
gic hallucinogens for shamanic rituals and religious ceremonies 
(184). The most famous examples are (1) Psilocybe mushrooms 
containing psilocybin, which were used as Teonanacatl (“god’s 
flesh”) by the Aztecs, (2) the cactus Lophophora williamsii enclosing 
mescaline and applied as Peyote or Peyotl by Mexican and North 
American indigene cultures, and (3) a brew of Banisteriopsis caapi 
and Psychotria viridis called Ayahuasca utilized by Amazonian 
indigene cultures containing the psychedelic ingredient DMT 
together with harmala alkaloids acting as MAOIs inhibitors and 
preventing the metabolism of DMT (185).

Classical serotonergic hallucinogens usually have either a 
tryptamine or phenylethylamine basic structure (186). Typical 
tryptamines, such as psilocybin and its psychoactive metabolite 
psilocin, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), 
and bufotenine, resemble in their structure the neurotransmitter 
5-HT, while the phenylethylamine mescaline has a similar basic 
structure as the neurotransmitter DA and as amphetamines. 
In addition, ergoline alkaloids such as the naturally occurring 
d-lysergic acid amide, also called ergine—the psychoactive com-
pound of Turbina corymbosa, Argyreia nervosa, and Ipomea tri-
color—and the semi-synthetic LSD (Delysid®), have a tryptamine 
backbone as well (186).

It was suggested that the term “hallucinogens” may be a mis-
nomer as these drugs not necessarily produce real hallucinations, 

at least when applied at typical doses, but many other emotional, 
perceptual, cognitive, and behavioral effects. It was suggested that 
“psychotomimetics” might be the more appropriate term for them 
(186). However, all 5-HT hallucinogens have in common that they 
induce altered states of consciousness (186, 187). According to 
Hollister (188), the psychoactive effects of classical serotonergic 
hallucinogens usually include (1) somatic symptoms: dizziness, 
weakness, tremors, nausea, drowsiness, paresthesia, and blurred 
vision; (2) perceptual symptoms: altered shapes and colors, dif-
ficulty in focusing on objects, sharpened sense of hearing, and 
rarely synesthesia; and (3) psychic symptoms: alterations in 
mood (happy, sad, or irritable at varying times), tension, distorted 
time sense, difficulty in expressing thoughts, depersonalization, 
dream-like feelings, and visual hallucinations.

All tryptamine- and phenylethylamine-based hallucino-
gens share the agonistic mechanism of action at postsynaptic 
5-HT2A-Rs and 5-HT2C-Rs, where they act as partial, mixed-
partial, or full agonists (186, 189). In animals and humans, 
5-HT2A-R antagonists such as ketanserin are able to block most of 
the behavioral and psychotropic effects of psilocybin, mescaline, 
DOI, and LSD, indicating that the 5-HT2A-R agonism is neces-
sary for the induction of psychedelic effects (189–194). However, 
some of these drugs show a strong affinity to 5-HT1A-Rs and other 
5-HT receptor subtypes as well as to DA D2-Rs. These additional 
mechanisms are likely to contribute to the specific psychotropic 
effects of each compound (189, 191, 195). A decade ago, it has 
been proposed that only 5-HT2A-Rs coupled to metabotropic 
mGluR2 mediate the psychotogenic effects of 5-HT hallucinogens 
(196)—a position that has been questioned recently (197). At the 
neuronal level, 5-HT hallucinogens, such as psilocin, LSD, and 
DMT, directly activate 5-HT2A-Rs located on cortical pyramidal 
neurons. In addition, they increase extracellular glutamate levels 
in the prefrontal cortex through stimulation of postsynaptic 
5-HT2A-Rs located on large glutamatergic pyramidal cells in deep 
cortical layers V and VI. This glutamate release leads to an activa-
tion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
receptors and N-methyl-d-aspartic acid (NMDA) receptors on 
cortical pyramidal neurons (187).

Historically, LSD was probably one of the first NPS of the 
hallucinogen class as it was a semi-synthetic compound whose 
psychedelic effects have only accidentally been discovered by its 
inventor Albert Hofmann in 1943 (198). The next, even though 
less accidental, producer of NPS hallucinogens was Alexander 
T. Shulgin, who synthesized hundreds of novel hallucinogenic 
tryptamines and phenylethylamines in his home laboratory. 
He described the synthesis of these compounds and also their 
psychotomimetic effects experienced in self-experiments 
in detail in his books PIHKAL and TIHKAL (199, 200). He 
created several dimethoxy-substituted phenylethylamines, 
such as DOM, 2,5-dimethoxy-4-bromoamphetamine (DOB), 
2,5-dimethoxy-4-iodoamphetamine (DOI), and 2,5-dimethoxy-
4-ethylamphetamine (DOET), which all display strong hal-
lucinogenic properties. These drugs usually have much longer 
durations of action (12–30 h) and are much more potent ago-
nists at 5-HT2A-Rs (50- to 175-fold) compared to their related 
phenylethylamine derivative mescaline (duration of action: 
4–8 h) (189, 199, 200). Also, another novel class of substituted 
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dimethoxyphenethylamines—the   “2C   psychedelics”—was 
invented by Shulgin, which mostly contains methoxy groups 
at positions 2 and 5 of a benzene ring together with lipophilic 
substituents (often halogens) at position 4. The most famous 
exponent of this class is 2,5-dimethoxy-4-bromophenethylamine 
(2C-B, “nexus,” “bromo”), which was initially marketed as a legal 
surrogate of MDMA (“ecstasy”) in the late 80s before it was finally 
scheduled by the UN Commission on Narcotic Drugs in March 
2001 (201). Dozens of 2C-B analogs, such as 2C-I, 2C-C, 2C-F, 
2C-E, and 2C-N, have later been sold as “research chemical” 
or “legal highs” via the Internet. Because their structure can be 
easily changed without losing their psychoactive properties, 2C 
drugs have, thus, often been referred as a typical class of designer 
drugs (201). 2C drugs commonly do not only act as 5-HT2A-R 
and 5-HT1A-R agonists but also as monoamine transporter 
inhibitors (195). Consequently, these compounds have not 
only hallucinogenic properties but also slight stimulating and 
empathogenic/entactogenic effects sometimes mimicking the 
effects of the prototypical empathogen MDMA (199). Shulgin 
also described novel ergolines such as N-allyl-nor-lysergic acid 
diethylamide (AL-LAD), N-ethyl-nor-lysergic acid diethylamide 
(ETH-LAD), and N-propyl-nor-lysergic acid diethylamide 
(PRO-LAD) (200). These LSD-analogs are as potent as LSD 
(potency relative to LSD in human: AL-LAD: 110%, ETH-LAD: 
140%, PRO-LAD: 90%), but AL-LAD and PRO-LAD have 
shorter duration of action (6–8 h) as ETH-LAD and LSD (both: 
8–12 h) (189, 200). Finally, Shulgin synthesized a large number 
of novel tryptamines, such as 4-hydroxy-N-methyl-N-ethyl-
tryptamine (4-HO-MET), 5-methoxy-diisopropyltryptamine 
(5-MeO-DIPT), and alpha-ethyltryptamine (alpha-ET), which 
are mostly hallucinogenic, but with some exceptions (e.g., alpha-
ET has pronounced empathogenic effects) (200). Shulgins books 
PIHKAL and TIHKAL served as cook books for a generation 
of illegal drug laboratories. His dimethoxyphenethylamines, 2C 
drugs, and novel ergolines and tryptamines are still circulating 
as NPS, although they have been created at least 20 years ago. 
However, their human toxicology and their consequences are 
still unknown as they are neither used frequently nor purely 
enough in order to systematically investigate their chronic effects 
in recreational users.

In the last decade, a substantial amount of new serotonergic 
hallucinogens appeared on the drug markets. As their number 
grows each day, it is simply not possible to list them exhaustively 
here. Thus, only some prototypical exponents of each class will 
be discussed. Again the main classes are either tryptamines and 
related ergolines or substituted phenethylamines but also some 
new classes such as benzodifurans and aminoindanes occurred 
(202–205). Novel tryptamines such as alpha-methyltryptamine 
(AMT), N,N-diallyl-5-methoxytryptamine (5-MeO-DALT) 
have multiple serotonergic actions including strong affinity 
for the 5-HT2A-R, but can also act as monoamine transporter 
substrates. They combine hallucinogenic effects with stimulant 
and empathogenic features (203, 205). Novel ergolines such as 
1-propionyl-lysergic acid diethylamide (1P-LSD) and lysergic 
acid 2,4-dimethylazetidide (LSZ) are LSD-analogs mainly 
interacting with 5-HT2A-R and 5-HT1A-R subtypes. They are 
slightly more potent as LSD and have a comparable duration 

of action. They are also mostly marketed as blotters (202, 205). 
N-2-methoxybenzyl derivatives of 2,5-dimethoxy-substituted 
phenethylamines also called NBOMe drugs, such as 25B-NBOMe, 
25C-NBOMe, 25I-NBOMe, 25T2-NBOMe, and mescaline-
NBOMe, are highly potent 5-HT2A-R full agonists. In addition, 
they show a high-binding affinity to the 5-HT1A-R, to adrenergic 
α1A and α2A, and histamine H1 receptors. Some derivatives also 
possess low-to-moderate affinity to DA D2- and D3-Rs. Several 
NBOMe drugs show higher affinity, higher activation potency, 
and higher activation efficacy at 5-HT2A-Rs than LSD. Anecdotal 
user reports consider them as very strong hallucinogens (195, 
205, 206). Benzodifurans, the so-called “fly drugs,” such as 
2C-B-FLY, 3C-Bromo-Dragonfly, and TFMFly, are a group of 
ring-substituted phenethylamines that are structurally related to 
MDMA. Unlike MDMA, benzodifurans commonly display a high 
affinity for 5-HT1A-Rs, 5-HT2A-Rs, 5-HT2B-Rs, and 5-HT2C-Rs, 
but show only little action at monoamine transporters (195, 
205). Aminoindanes, such as 5-iodo-2-aminoindane (5-IAI), are 
usually 5-HT and noradrenaline (NA) releasers that have been 
sold as a legal surrogate for MDMA (203, 205). At least 5-IAI 
was recently demonstrated to show a strong affinity for 5-HT1A-Rs 
and 5-HT2A-Rs, thus, indicating that aminoindanes can not only 
be empathogens, but they can also display hallucinogenic proper-
ties (207).

At the moment, systematic investigations on the prevalence 
of novel serotonergic hallucinogens are rare. In the global 
drug survey of 2012, 11.3% of the respondents, mainly regu-
lar drug users, reported to have used a 2C drug at least once 
during their lifetime and that 2C-B was the most common one 
(8.4%). Moreover, 2.6% of respondents reported to have used 
25B-NBOMe, 25C-NBOMe, or 25I-NBOMe at least once, while 
25I-NBOMe (2.0%) was the most popular derivate. The most 
common drug source for NBOMes was the Internet (41.7%). For 
comparison, 39.4% of the respondents in this survey had used 
LSD and 43.1% “magic mushrooms” at least once during lifetime 
(206). A recent representative survey in the US (N = 213.076) 
revealed that the lifetime prevalence of novel hallucinogenic 
drugs was generally low: NBOMes, 0.015%; 2C drugs, 0.195%; 
dimethoxyphenethylamines, 0.019%; novel tryptamines, 
1.060% (primarily DMT) (208). It should be noted that DMT 
was the only hallucinogenic NPS that was systematically asked 
for but that participants were given the opportunity to type in 
the names of NPS they used, indicating that these numbers are 
likely underestimated (208).

Data from the European Drug Emergencies Network have 
recently shown that, compared to all other investigated drugs, 
novel tryptamine users have the highest risk [odds ratio 
(OR)  =  12.4] to be treated for psychosis-like symptoms in an 
emergency care unit, while also LSD use was significantly 
associated with an increased psychosis risk (OR  =  3.1) (209). 
Overall frequencies for the development of acute psychosis 
following experimentally administered LSD range between 0.08 
and 4.6%, while patients having a psychiatric disorder before 
LSD intake displayed the highest risk (185). However, if 5-HT 
hallucinogens can also induce long-lasting psychotic disorders 
is still controversially discussed (185). Beyond acute psychotic 
reactions including hallucinations, ego impairment, and 
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paranoia, also “bad trips,” panic attacks, confusion, agitation, 
aggression, and disorientation are common acute psychiatric 
side effects of classical and novel serotonergic hallucinogens 
(185, 203, 205, 210). Moreover, also nausea and vomiting, sero-
tonin syndrome including hyperthermia, liver and kidney fail-
ures, and cardiovascular complications have been reported for 
serotonergic hallucinogens. The acute toxicity of high potency 
dimethoxyphenylethylamines, NBOMEs, and 2C drugs seems to 
be considerably increased compared to classical hallucinogens. 
High potency compounds have been associated with a number 
of life-threatening conditions, such as rhabdomyolysis, seizures, 
vasoconstriction/hypertension, tachycardia, pulmonary edema, 
and serotonin syndrome with hyperthermia and organ failures, 
sometimes with fatal outcome (210–214).

Chronic side effects of hallucinogens can include panic dis-
order and a hallucinogen persisting perception disorder (HPPD, 
“flashback”) (185). In fact, 60% of LSD users know “flashbacks” 
and 4% of users report sustained HPPD of putative clinical 
significance (215). Also, MDMA users are at risk to develop 
HPPD (216). It is highly likely that potent novel serotonergic 
hallucinogens bear a strong risk to induce HPPD too. Changes of 
5-HT2A-R function in the visual cortex were claimed to be respon-
sible for HPPD (185, 216). In general, 5-HT-Rs show consider-
able plasticity after exposure to serotonergic drugs. Accordingly, 
due to post-transcriptional mechanisms, 5-HT2A-Rs show a 
rapid and long-lasting downregulation in response to 5-HT 
agonists (217–219). Specifically, LSD, 2-bromo-LSD, and DOI 
selectively reduce 5-HT2A-R density without affecting 5-HT2C-Rs 
(220). Furthermore, hallucinogens acting at 5-HT2A-Rs show 
strong behavioral tolerance coinciding with a robust decrease 
in 5-HT2A-Rs. This might explain the strong tolerance effect of 
5-HT hallucinogens (221). Recently, it was shown that 5-HT 
hallucinogens can also reduce either 5-HT2A-R binding sites or 
glutamate-binding sites and that tolerance effects were correlated 
with changes in both binding sites (222).

High potency 5-HT hallucinogens—specifically if they have 
a long duration of action—are probably neurotoxic due to their 
sustained activation of 5-HT2A-Rs that can induce apoptosis in 
neurons (223). Neurotoxic effects have been shown not only 
for DOI (224, 225) and 5-MeO-DIPT (226) but also for chronic 
low doses of LSD (227) and repeated high doses of MDMA 
(223–225). Thus, it is likely that all long-acting dimethoxyphe-
nylethylamines, 2C drugs, NBOMes, tryptamines, and ergolines 
with strong agonistic actions at 5-HT2A-Rs have a neurotoxic 
potential.

In conclusion, beyond LSD, mescaline, and psilocybin, a vast 
amount of new serotonergic hallucinogens appeared on the drug 
market during the last decades. Their distribution has strongly 
increased and will likely further increase in the future due to their 
easy availability on the Internet. Alarmingly, little is known about 
the acute and chronic effects of novel 5-HT hallucinogenic drugs 
in human users. The neuropsychiatric long-term consequences 
of regular intake of such compounds are completely unclear. 
However, it is becoming increasingly apparent that high potency 
drugs with very strong affinities to 5-HT2A-Rs and long durations 
of action bear a considerable risk for negative health effects and 
fatalities.

MePHeDRONe AND MeTHYLONe

Dozens of research chemicals with a cathinone basic structure 
appeared as “legal highs” on the drug marked. However, an 
exhaustive discussion of all of them is not possible here due to 
space restrictions (228). Thus, in this section, the two generic 
compounds, mephedrone and methylone, are discussed as 
important examples.

Mephedrone (4-methylmethcathinone) is a substituted cathi-
none homolog of ephedrine first described in 1929 (229, 230). 
Mephedrone has a ring-substituted cathinone structure which is 
related to the phenethylamine family, to which also drugs such as 
amphetamine, MDMA, and methamphetamine belong to (231). 
As a hydrochloride salt, mephedrone is a water soluble white, yel-
low, beige, or brown powder. In the European market, it is sold 
under different names such as Meow Meow, Bubbles, Mef, MMC 
Hammer, and many more (231). Mephedrone is available on the 
Internet, or from street dealers. On Internet sources, mephedrone 
is often marketed as bath salt, plant fertilizer, or research chemical 
(232, 233).

Mephedrone was first identified as an abused drug by 
European authorities in 2007 (234, 235). By 2010, mephedrone 
use spread, and the drug was found in many European countries 
(236). The use of mephedrone increased rapidly in the club scene 
and soon reached the level MDMA and cocaine use, reaching 
a life-time use in Europe among the 15- to 24-year olds of 6% 
by 2010 (236, 237). Mephedrone is frequently used together 
with other synthetic cathinones, such as methylone, butylone, 
or ethylcathinone (236). The predominant user populations are 
teenagers and young adults (238), thereby use of new psychoac-
tive cathinones is highly correlated with binge-drinking habits in 
young adults (239).

Mephedrone can be consumed by different routes. In an 
oral preparation, mephedrone powder is rolled up in cigarette 
paper (bombing). Furthermore, intranasal, intramuscular, 
intravenous (slamming), and rectal routes of administration 
have been reported (240). Mephedrone is also mixed with other 
drugs, such as heroin, alcohol, cocaine, MDMA, or cannabis 
(235, 241). Consumption usually takes place in a social context 
at home, at rave parties, clubs, or music festivals. Mephedrone 
binge consumption has been reported to last for up to 9 h with 
a new dose all 0.5–2  h (231). Intranasal mephedrone elicits 
rapid effects within minutes. They reach a peak level in less 
than 30 min and last for up to 1 h. Orally applied mephedrone 
powder or tablets induce psychoactive effects in 45–120  min 
which may last for 2–4 h, thereby a sequence of first intranasal 
snorting followed by repeated oral ingestion has been reported, 
in order to achieve both, fast and long-lasting effects (231, 240, 
242, 243). The sought-after psychoactive effects of mephedrone 
comprise an elevated mood, the feeling of an intense euphoria, 
a sense of well-being, increased self-esteem, motor excitation, 
reduced tiredness, increased alertness and concentration, talka-
tiveness, empathy, disinhibition, and a mild sexual stimulation 
(231, 244, 245).

A high dose and/or chronic consumption of mephedrone have 
been associated with significant adverse effects. Those include 
cardiovascular, gastrointestinal, and neurological side effects 
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(233, 246). Well-described effects are also jaw clenching, reduced 
appetite, increased body temperature, increased sweating, abnor-
mal vision, dilated pupils, headaches, tachycardia, palpitations, 
hypertension, arrhythmias, chest pain, nausea, bruxism, teeth 
grinding (bruxism), rhabdomyolysis, and renal failure (247). An 
important dangerous side effect is the significant hyponatremia. 
This is similar to that shown after acute MDMA consumption. 
It is supposed to be induced by a combination of sweating, 
electrolyte loss, and antidiuretic hormone secretion (247). The 
intranasal application of mephedrone is associated with a signifi-
cant nasal irritation. Mephedrone addiction is often associated 
with intravenous drug use that is also found to be linked to an 
increased risk of using other addictive drugs (248). Intravenous 
mephedrone injections often result in vein blockages, leading to 
localized infections, blisters, abscesses, scabs, lumps, gangrenous 
tissue, blood clots, and large necroses at the injection site (249). 
Major adverse psychiatric effects associated with mephedrone 
use include agitation, anxiety, dysphoria, depression, insomnia, 
hallucinations, paranoia, delusions, aggressive behavior, as well as 
suicidal ideation and suicidal action. Cognitive impairments affect 
short-term memory and attention span (250). Psychotic effects 
predominantly occur after a high mephedrone dose, after binge 
consumption in one session, and in users with an individual vul-
nerability for psychiatric disorders (251–253). Fatalities resulting 
from mephedrone use have been reported worldwide now (254). 
They are related to hyponatremia and brain edema (255–257). 
However, the lethal dose (LD50) is not known yet (258).

Accumulating evidence suggests that mephedrone has a 
clear addiction potential (246, 259, 260). The abuse potential 
for intranasally consumed mephedrone was suggested to be 
comparable with that of cocaine or methamphetamine (246). 
Among regular users, about 50% reported an addiction to the 
drug (261) and about 25% admitted mephedrone-related craving 
(262). Mephedrone withdrawal effects include tiredness, insom-
nia, impaired concentration, irritability, tremor, temperature 
dysregulation, palpitations, headaches, depression, anxiety, and 
paranoia (235, 244, 260).

Virtually all synthetic cathinones are considered to inhibit 
the monoamine uptake in the brain, thereby mephedrone acts 
as a substrate for the transporter proteins and evokes a reverse 
neurotransmitter transport and, thus, neurotransmitters release 
(231, 244, 263).

Synthetic cathinones including mephedrone are now clas-
sified as illicit substances in many countries (231). However, 
since the legal ban of single substances came in place, various 
second-generation analogs have appeared, including 4-methyl-
N-ethylcathinone (4-MEC). The consumption may in the long 
term only effectively be limited when whole substance classes, 
i.e., with a cathinone lead structure, are legally controlled (231).

Methylone (3,4-methylenedioxymethcathinone) is a sub-
stituted cathinone methylated on the amine group of the keto-
phenethylamine backbone. It has a chemical structure similar to 
that of MDMA by a methylenedioxy ring attached to the aromatic 
ring (264). Methylone was first synthesized in 1996 as a potential 
antidepressant and anti-Parkinson agent (265), which, however, 
never made it into pharmacotherapy. Instead, it emerged on the 
street market under different names, such as Ease, Explosion, 

M1, MDMC, and bk-MDMA (231, 246). Methylone was mar-
keted initially in a liquid solution as a vanilla-scented room 
odorizer. Following its introduction in 2004, methylone could be 
purchased in the Internet and in headshops (266), where it was 
sold in powder form and as tablets (267). Methylone use has been 
reported to be high in the club scene (261) and in addicts on 
substitution therapy (267).

Similar to other cathinones, methylone can be administered 
by different routes, such as orally, intranasally, intravenously, sub-
lingually, or rectally. The most popular route is the oral admin-
istration. A common application pattern is to start with a large 
“boosting” dose and then maintain effects by smaller “bumping” 
doses (268, 269). The onset of the desired psychoactive effects 
of methylone is usually 15–60  min after oral administration. 
These effects last approximately 30–45  min (268). They have 
been described as an amphetamine-like stimulation with calm 
euphoria, happiness, thought acceleration, alertness, restlessness, 
reduced fatigue, and increased locomotor activity. They might 
also involve MDMA-like entactogenic effects with a strong 
sense of emotional openness, enhanced empathy, and reduced 
fear (270). A methylone high can be from moderate to extreme 
euphoria with tingling sensation (231, 268).

The adverse effects of methylone include anxiety and psy-
chosis with derealization, depersonalization, hallucinations, and 
suicidal ideation. Cognitive impairments affect the short-term 
memory (258). Furthermore, methylone may induce seizures 
and hyponatremia, similar to that induced by MDMA. Methylone 
may also induce a hyperthermia (271). This is believed to be a 
major cause for the fatal consequences of a methylone overdose 
(272). Other factors in fatal overdose can be cardiac events, meta-
bolic acidosis, rhabdomyolysis, acute renal failure, intravascular 
coagulation, and a serotonin syndrome (273–276).

Accumulating evidence suggests a considerable addictive 
potential of methylone (231, 277). Much like mephedrone, 
methylone acts as a monoamine reuptake blocker that leads to 
a profound hyperactivity of DA, 5-HT, and NA in the brain and 
periphery (263). In particular, dopaminergic and serotonergic 
adaptations in the brain may drive the addiction potential of 
psychostimulant drugs (278, 279). The use and abuse of the sub-
stance emerged with considerable side effects around the world 
(268). The legal ban of methylone started in 2007 with now an 
increasing number of countries controlling it (231).

KeTAMiNe AND NOveL DiSSOCiATive 
DRUGS

(±)Ketamine (±2-chlorophenyl-2-methylamino-cyclohexanone) 
is a non-competitive antagonist of the NMDA receptor (27). It has 
been widely used in clinical settings as an anesthetic agent and 
in veterinary medicine. However, ketamine is also recreation-
ally consumed in entertainment settings for its hallucinogenic, 
mood enhancing, and reinforcing properties by young club goers 
(28, 280–282). Ketamine is a derivative of phencyclidine (PCP), 
which was discovered as anesthetic in 1956 and became a popular 
street drug during 1960s (280). Ketamine is regulated in many 
countries due to its abuse potential as a psychotropic substance 
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(282). A significant number of studies have demonstrated that 
ketamine has a short-acting antidepressant effect and is increas-
ingly used to treat therapy-refractory major depression and pain 
(29, 283–285). Although ketamine is viewed as a safe substance 
in medical settings, its recreational use is reported to impose 
adverse effects on users by producing neurological and peripheral 
toxicity (286, 287).

Ketamine can be administered through intravenous, intra-
muscular, smoking, and snorting routes (288). Apparently, snort-
ing or intranasal use is the main route of ketamine consumption 
among recreational users (289). Ketamine produces dose-
dependent effects. Lower doses are associated with a feeling of 
relaxation. At higher doses, ketamine induces a dream-like state 
called a “k-hole.” This experience is akin to dissociative anesthetic 
characteristics (290, 291). Chronic ketamine use is reported to 
induce schizophrenia-like positive and negative symptoms, 
including hallucinations, detachment, delusion, auditory, and 
verbal hallucinations (292). A major concern of ketamine use is 
that people drive under the influence of the drug (293). Ketamine 
can impair cognitive functioning, such as executive and memory 
function, as well as attentional control (294, 295). Ketamine users 
are also more vulnerable to HIV infections. The use of the drug 
is reported to enhance sexual experience and predispose users to 
engage in unprotected sex (296, 297). Ketamine-related mortality 
has increased 10-fold in the UK from 1999 to 2008 (287), while 
in Australia 40% of party drug users were tested positive for 
ketamine use (281).

Some of the most common complaints of ketamine use 
include chest pain, palpitations, and tachycardia (298). However, 
these symptoms are often transient (286). Abdominal pain and 
urinary tract symptoms, such as suprapubic pain, dysuria, and 
hematuria, are common symptoms of chronic regular ketamine 
use (299–301). Findings from clinical case studies have shown 
that ketamine use can decrease bladder volume, bladder wall 
thickening, mucosal enhancement, dilation of ureter, and 
cause perivesical inflammation (302, 303). The renal toxicity of 
ketamine is due to the direct toxic action of ketamine and its 
metabolites (288).

Fatigue, poor appetite, drowsiness, craving, anxiety, sleeping 
problems, and dysphoria are common physical and psychologi-
cal side effects of ketamine use (304, 305). Currently, there is no 
specific treatment for ketamine users presenting with peripheral 
toxicity. However, it was reported that cessation from ketamine 
abuse may lead to a recovery from organ damage (28). Despite 
its abuse potential and reported side effects, ketamine has 
promising medicinal properties. Currently, it is used to treat 
therapy-refractory depression (306), although the antidepressant 
effect of a single infusion only last for some days. Despite that 
development, which moved the drug increasingly out of the 
drug abuse focus, proper prevention strategies for young club 
goers engaged in recreational ketamine use are still warranted. 
Moreover, addiction experts warned recently that psychiatrist 
should not underestimate the addictive potential of ketamine 
when treating depressive patients with the drug (307).

Dissociative anesthetics such as PCP and ketamine are non-
medically used since more than 60  years (280). Importantly, 

“dissociative anesthetics” are originally defined as substances 
inducing a general form of anesthesia characterized by analgesia, 
amnesia, and cataplexy, but with minimal effect on respiratory 
function (308). Today, the term “dissociative drugs” includes the 
family of dissociative anesthetics but is not restricted to them. 
It more generally denotes hallucinogenic drugs inducing dis-
sociative states, including sensory alterations and hallucinations 
as well as dream-like states or trance (280). More than 14 known 
derivatives of PCP have been marketed for non-medical but also 
illicit use already between the late 1960s and the 1990s. However, 
with the advent of online drug shops selling “legal highs,” novel 
dissociative drugs appeared too. Starting with the first dissocia-
tive, 4-MeO-PCP in 2008, thenceforth at least 12 novel dissocia-
tive drugs appeared on the drug marked, which were unknown 
in the scientific literature prior to their introduction to the 
drug market (280). In the meantime, the most common agents, 
methoxetamine (MXE), diphenidine, methoxphenidine (MXP), 
3-MeO-PCP, and 4-MeO-PCP, have reached widespread use in 
Europe and North America.

PCP, ketamine, and its novel derivatives belong to the chemi-
cal class of arylcyclohexylamines, which have in common that 
they act as non-competitive antagonists at the PCP-binding 
site of the NMDA receptor (280). Beyond their high affinity 
for NMDA receptors, some of the arylcyclohexylamines have 
shown agonistic actions at DA receptors (e.g., D2 receptors) 
and inhibitory effects at DA transporters, agonistic effects at 
μ-opioid and σ-1 receptors, as well as antagonistic actions at both 
nicotinic and muscarinic acetylcholine receptors. It is plausible 
that the specific receptor profile of each compound mediates its 
characteristic psychotropic effects (280). Beyond the desired 
dissociative acute effects, these drugs exert a number of severe 
and sometimes fatal side effects. Following MXE ingestion, 
users were confused, agitated, hallucinating, and unresponsive. 
The somatic and neurological adverse effects included tachy-
cardia, hypertension, ataxia, mydriasis, nystagmus, seizures, 
leukocytosis, massive rhabdomyolysis, hepatic failure, onset of 
acute renal failure, sinus bradycardia, elevated creatinine kinase, 
and hyponatremia (210). Several fatalities have been reported 
each for MXE, MXP, 3-MeO-PCP, and 4-MeO-PCP (210, 240). 
According to anecdotal reports, MXE and MXP seem to have 
stronger empathogenic and euphorigenic properties than PCP 
and ketamine (210).

Novel dissociative drugs from the arylcyclohexylamine class, 
such as MXE, have been sold as a “legal” and “bladder friendly” 
alternative to ketamine. However, animal studies have shown 
that MXE and likely all arylcyclohexylamines are in fact equally 
toxic for the bladder and the kidneys as ketamine when applied 
chronically (240). Further chronic side effects of novel arylcy-
clohexylamines have not been investigated yet, but it is likely that 
the total class might have an addictive potential similar to that 
of ketamine and PCP (309, 310). This seems to be specifically 
high in adolescents and young adults (311). Moreover, like PCP 
and ketamine, all arylcyclohexylamines with a strong action at 
the NMDA receptor may impair memory function (310) and 
induce psychotic symptoms after acute and chronic consumption  
(312, 313).
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γ-HYDROXYBUTYRATe, γ-
BUTYROLACTONe, AND 1,4-BUTANeDiOL

γ-Hydroxybutyrate (GHB, or sodium oxybate), γ-butyrolactone 
(GBL), and 1,4-butanediol (1,4-BD) are potent central depres-
sant agents with a broad spectrum of subjective, behavioral, and 
neuropharmacological effects in humans. These drugs are used 
clinically for the treatment of neuropsychiatric disorders such 
as narcolepsy, alcohol withdrawal, and fibromyalgia but also 
instrumentalized illicitly for hedonic purposes (314).

GBL and 1,4-BD are rapidly metabolized endogenously to 
GHB. The psychoactive effects of the drug result from this con-
version (315, 316). GHB is an endogenous short-chain fatty acid. 
It is biosynthetically derived from γ-aminobutyric acid (GABA) 
which occurs naturally in the mammalian brain, mainly in the 
hypothalamus and the basal ganglia (317, 318). The molecule 
binds to GABA-B receptors (319) and to specific GHB receptors 
(320). Due to the presence of endogenous GHB in the brain, spe-
cific G-protein-coupled GHB receptors, and the specificity of the 
GHB antagonist NCS-382, GHB is considered to be a neurotrans-
mitter (321). While physiological concentrations of GHB seem 
to be insufficient to stimulate GABA-B receptors, the subjective 
and behavioral effects of the exogenously applied drug, and thus 
GBL and 1,4-BD, result from direct stimulation of these recep-
tors (322). Moreover, GHB has extensive downstream effects on 
DA, 5-HT, NA, glutamate, and acetylcholine transmission (323). 
GHB, GBL, and 1,4-BD are well absorbed orally in humans. Peak 
plasma concentrations are reached within 25–60 min, with a half-
life of 20–60 min (324, 325). All compounds are metabolized to 
water and carbon dioxide through the citric acid cycle (326).

In humans, the spectrum of the subjective effects of these 
compounds ranges from euphoria, stimulation, and disinhibition 
in oral doses of 10–25 mg/kg (327–329), toward heavy sedation 
and loss of consciousness at oral doses of 35–70 mg/kg (324, 330). 
A seemingly paradoxical pattern of concomitant sedation and 
stimulation was described in several reports (327, 328).

GHB, GBL, and 1,4-BD strongly influence behaviors related 
to core autonomic functions, such as the control of food intake, 
sexual behavior, and sleep–wake regulation (314). GHB was 
reported to normalize dysfunctional food intake behavior and 
body weight in preclinical and in clinical studies (331–334). It 
was effective in the treatment of binge-eating disorder (335). 
Confirming subjective reports from illicit GHB users (336–338), 
the drug was experimentally shown to have prosocial (328), and 
prosexual effects in healthy male subjects (339). Moreover, GHB 
and its precursors have a unique effect on sleep–wake regulation 
(340). Since GHB improves sleep and daytime vigilance, it is used 
as standard treatment for disorders of the sleep–wake cycle, such 
as narcolepsy and fibromyalgia (341–343).

Neuropharmacological studies with GHB, GBL, and 1,4-
BD are scarce and were until recently limited to early EEG 
investigations. Resting state EEG studies showed a paradoxical 
EEG-behavioral dissociation with the occurrence of increased 
delta and theta oscillations, during wake states, which usually 
occur during sleep (344, 345). Moreover, increased nocturnal 
slow wave sleep under the influence of GHB was demonstrated 
(346). A recent EEG study showed increased current source 

density of theta oscillations in the posterior cingulate cortex and 
alpha oscillations in the anterior cingulate cortex (ACC) under 
20 and 35 mg/kg GHB in healthy male subjects (347). In the first 
functional neuroimaging study with GHB, 35 mg/kg of the drug 
increased regional cerebral blood perfusion in the ACC and the 
insula, both of which correlated with increased subjective rat-
ings of emotion and body awareness (348). Moreover, the drug 
increased the susceptibility of the mesolimbic reward system, 
resulting in an increased sexual arousal after the presentation of 
erotic but also neutral pictures of persons. This effect correlated 
with an increased activity in the nucleus accumbens and the 
ACC (349).

The euphoric, prosocial, and prosexual effects of GHB, GBL, 
and 1,4-BD are instrumentalized illicitly, mostly by members of 
urban subcultures (314). Internationally, GHB, GBL, and 1,4-
BD are mainly used as recreational drugs by young adults aged 
20–29 years (349, 350). Reliable prevalence data are difficult to 
obtain (351). However, the prevalence of GHB, GBL, and 1,4-BD 
seem low compared to other drugs of abuse and are estimated at 
about 4.3% in Europe (349). After GHB was used in a deadly case 
of drug-facilitated sexual assault in the USA in the year 2000, 
the drug was internationally banned (352). However, a recent 
meta-analysis showed that GHB is very infrequently used as a 
date rape drug (353).

The development of addiction after illicit use of these drugs 
was estimated for about 4–21% of illicit users (351). Both addic-
tion and withdrawal can be severe and in extreme cases lead to 
psychosis, delirium, and death (314). Interestingly, the develop-
ment of addiction after medical use of GHB is at a very low rate 
with an estimated risk of about 0.015% (351).

Internationally, GHB is approved for the treatment of narco-
lepsy with cataplexy. In a recent meta-analysis, it was confirmed 
to be effective in treating major, clinically relevant narcolepsy 
symptoms and sleep architecture impairments in patients (354). 
Another clinical indication is the treatment of alcohol withdrawal, 
for which GHB is used since two decades in Italy and Austria 
(355). Moreover, several randomized controlled trials showed 
a therapeutic effect of GHB on clinical course and life quality 
in patients suffering from fibromyalgia (343, 356–358). Other 
neuropsychiatric disorders in which GHB showed therapeutic 
effects are binge-eating disorders (335), schizophrenia (359), 
Parkinson’s disease (360), and cluster headache (361, 362), mostly 
by regulating homeostatic dysbalances, as well as improving sleep 
and pain symptoms. Because disrupted homeostatic processes 
including food intake, sexual behavior, and the sleep–wake cycle 
frequently occur in major depressive disorder, GHB was pro-
posed as an experimental therapeutic in this condition (363, 364). 
However, therapeutic use of the drug is limited by side effects, 
such as nausea, vomiting, altered consciousness, and nocturnal 
O2 desaturations (357, 365–367).

In conclusion, GHB and partially its precursors GBL and 
1,4-BD have undeniable caveats such as limiting side effects 
and abuse liability. These, however, seem to be outweighed by a 
unique spectrum of clinically relevant psychopharmacological 
effects, which warrant further studies in neuropsychiatric condi-
tions such as major depressive disorder following a personalized 
treatment paradigm (368).
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CONCLUSiON

The amount of evidence on the psychoactive drugs discussed 
shows that many of them are not really novel anymore. For most 
of them a classification in terms of their use and harm potential 
has been made. In fact, most of them are already legally controlled 
or banned in certain countries. An important feature of this 
process is that it appears socio-geographically biased. Even in 
a globalized world, new psychoactive drugs emerge and spread 
in a regionally bound way. This brings about that evidence on 
their use, instrumentalization, and abuse accumulates often only 
regionally. Also, the drug may for a long time not spread beyond 
the socio-geographic boundaries. However, this does not mean 
that it is not eventually “discovered” by other societies making 
use of the drug for a new and essentially different purpose. The 
scientific challenge is then to use locally gathered knowledge to be 
prepared for a drug that is novel in a certain culture and establish 
a judgment on its harm potential and/or medical use on a rather 
global scale. It also means to delineate future research needs 
for those drugs that are brand new as a psychoactive drug. This 

review shows that despite accumulating evidence, for many of 
those NPSs, a final classification is still in progress and gathering 
of more evidence is pivotal.
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