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Abstract

We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents
an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity
measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and
some specific class of v-automata, and then translating the most refined classification of v-automata to the Boolean neural
network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is
obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks.
These results provide new theoretical insights to the computational and dynamical capabilities of neural networks
according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a
simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This
example shows the significance of measuring network complexity, and how our results bear new founding elements for the
understanding of the complexity of real brain circuits.
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Introduction

In neural computation, understanding the computational and

dynamical properties of biological neural networks is an issue of

central importance. In this context, much interest has been

focused on comparing the computational power of diverse

theoretical neural models with those of abstract computing

devices. Nowadays, the computational capabilities of neural

models is known to be tightly related to the nature of the

activation function of the neurons, to the nature of their synaptic

connections, to the eventual presence of noise in the model, to the

possibility for the networks to evolve over time, and to the

computational paradigm performed by the networks.

The first and seminal results in this direction were provided by

McCulloch and Pitts, Kleene, and Minsky who proved that first-

order Boolean recurrent neural networks were computationally

equivalent to classical finite state automata [1–3]. Kremer

extended these results to the class of Elman-style recurrent neural

nets [4], and Sperduti discussed the computational power of

different other architecturally constrained classes of networks [5].

Later, Siegelmann and Sontag proved that by considering

rational synaptic weights and by extending the activation functions

of the cells from Boolean to linear-sigmoid, the corresponding

neural networks have their computational power drastically

increased from finite state automata up to Turing machines [6–

8]. Kilian and Siegelmann then generalised the Turing universal-

ity of neural networks to a broader class of sigmoidal activation

functions [9]. The computational equivalence between so-called

‘‘rational recurrent neural networks’’ and Turing machines has

now become standard result in the field.

Following von Neumann considerations [10], Siegelmann and

Sontag further assumed that the variables appearing in the

underlying chemical and physical phenomena could be modelled

by continuous rather than discrete (rational) numbers, and

therefore proposed a study of the computational capabilities of

recurrent neural networks equipped with real instead of rational

synaptic weights [11]. They proved that the so-called ‘‘analog

recurrent neural networks’’ are computationally equivalent to

Turing machines with advices, hence capable of super-Turing

computational power from polynomial time of computation

already [11]. In this context, a proper internal hierarchical

classification of analog recurrent neural networks according to the

Kolmogorov complexity of their underlying real synaptic weights

was described [12].

It was also shown that the presence of arbitrarily small amount

of analog noise seriously reduces the computational capability of

both rational- and real-weighted recurrent neural networks to

those of finite automata [13]. In the presence of Gaussian or other

common analog noise distribution with sufficiently large support,

the computational power of recurrent neural networks is reduced

to even less than finite automata, namely to the recognition of

definite languages [14].

Besides, the concept of evolvability has also turned out to be

essential in the study of the computational power of circuits closer

to the biological world. The research in this context has initially

been focused almost exclusively on the application of genetic
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algorithms aimed at allowing networks with fully-connected

topology and satisfying selected fitness functions (e.g., performed

well on specific tasks) to reproduce and multiply [15–18]. This

approach aimed to optimise the connection weights that determine

the functionality of a network with fixed-topology. However, the

topology of neural networks, i.e. their structure and connectivity

patterns, greatly affects their functionality. The evolution of both

topologies and connection weights following bioinspired rules that

may also include features derived from the study of neural

development, differentiation, genetically programmed cell-death

and synaptic plasticity rules has become increasingly studied in

recent years [19–26]. Along this line, Cabessa and Siegelmann

provided a theoretical study proving that both models of rational-

weighted and analog evolving recurrent neural networks are

capable of super-Turing computational capabilities, equivalent to

those of static analog neural networks [27].

Finally, from a general perspective, the classical computa-

tional approach from Turing [28] was argued to ‘‘no longer

fully corresponds to the current notion of computing in

modern systems’’ [29] – especially when it refers to bio-

inspired complex information processing systems. In the brain

(or in organic life in general), information is rather processed in

an interactive way [30], where previous experience must affect

the perception of future inputs, and where older memories may

themselves change with response to new inputs. Following this

perspective, Cabessa and Villa described the super-Turing

computational power of analog recurrent neural networks

involved in a reactive computational framework [31]. Cabessa

and Siegelmann provided a characterisation of the Turing and

super-Turing capabilities of rational and analog recurrent

neural networks involved in a basic interactive computational

paradigm, respectively [32]. Moreover, Cabessa and Villa

proved that neural models combining the two crucial features

of evolvability and interactivity were capable of super-Turing

computational capabilities [33].

In this paper, we pursue the study of the computational power

of neural models and provide two novel refined attractor-based

complexity measurement for Boolean recurrent neural networks.

More precisely, as a first step we provide a generalisation to the

precise infinite input stream context of the classical equivalence

result between Boolean neural networks and finite state automata

[1–3]. Under some natural condition on the type specification of

their attractors, we show that Boolean recurrent neural networks

disclose the very same expressive power as deterministic Büchi

automata [34]. This equivalence allows to establish a hierarchical

classification of Boolean neural networks by translating the

Wagner classification theory from the Büchi automaton to the

neural network context [35]. The obtained classification consists of

a pre-well ordering of width 2 and height vz1 (where v denotes

the first infinite ordinal). As a second step, we show that by totally

relaxing the restrictions on the type specification of their attractors,

the Boolean neural networks significantly increase their expressive

power from deterministic Büchi automata up to Muller automata.

Hence, another more refined hierarchical classification of Boolean

neural networks is obtained by translating the Wagner classifica-

tion theory from the Muller automaton to the neural network

context. This classification consists of a pre-well ordering of width

2 and height vv. The complexity measurements induced by these

two hierarchical classifications refer to the possibility of networks’

dynamics to maximally alternate between attractors of different

types along their evolutions. They represent an assessment of the

computational power of Boolean neural networks in terms of

the significance of their attractor dynamics. Finally, an

application of this approach to a Boolean model of the basal

ganglia-thalamocortical network is provided. This practical

example shows that our automata-theoretical approach might

bear new founding elements for the understanding of the

complexity of real brain circuits.

Materials and Methods

Network Model
In this work, we focus on synchronous discrete-time first-

order recurrent neural networks made up of classical

McCulloch and Pitts cells. Such a neural network is modelled

by a general labelled directed graph. The nodes and labelled

edges of the graph respectively represent the cells and synaptic

connections of the network. At each time step, the status of

each activation cell can be of only two kinds: firing or quiet.

When firing, a cell instantaneously transmits an action

potential throughout all its outgoing connections, the intensity

of which being equal to the label of the underlying connection.

Then, a given cell is firing at time tz1 whenever the summed

intensity of all the incoming action potentials transmitted at

time t by both its afferent cells and background activity exceeds

its threshold (which we suppose without loss of generality to be

equal to 1). The definition of such a network can be formalised

as follows:

Definition 1. A first-order Boolean recurrent neural network (RNN)

consists of a tuple N~(X ,U ,a,b,c), where X~fxi : 1ƒiƒNg is

a finite set of N activation cells, U~fui : 1ƒiƒMg is a finite set

of M input units, and a[QN|N , b[QN|M , and c[QN|1 are

rational matrices describing the weighted synaptic connections

between cells, the weighted connections from the input units to the

activation cells, and the background activity, respectively.

The activation value of cells xj and input units uj at time t,

respectively denoted by xj(t) and uj(t), is a Boolean value equal to

1 if the corresponding cell is firing at time t and equal to 0
otherwise. Given the activation values xj(t) and uj(t), the value

xi(tz1) is then updated by the following equation

xi(tz1)~s
XN

j~1

ai,j
:xj(t)z

XM
j~1

bi,j
:uj(t)zci

 !
, i~1, . . . ,N ð1Þ

where s is the classical Heaviside step function, i.e. a hard-

threshold activation function defined by s(a)~1 if a§1 and

s(a)~0 otherwise.

According to Equation (1), the dynamics of the whole network

N is described by the following governing equation

~xx(tz1)~s a:~xx(t)zb:~uu(t)zcð Þ, ð2Þ

where ~xx(t)~(x1(t), . . . ,xN (t)) and ~uu(t)~(u1(t), . . . ,uM (t)) are

Boolean vectors describing the spiking configuration of the

activation cells and input units, and s denotes the Heaviside step

function applied component by component.

Such Boolean neural networks have already been proven to

reveal same computational capabilities as finite state automata [1–

3]. Furthermore, it can be observed that rational- and real-

weighted Boolean neural networks are actually computationally

equivalent.

Example 1. Consider the network N depicted in Figure 1.

The dynamics of this network is then governed by the following

system of equation:

Attractor-Based Complexity of Neural Networks
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Attractors
Neurophysiological Meaningfulness. In bio-inspired com-

plex systems, the concept of an attractor has been shown to carry

strong biological and computational implications. According to

Kauffman: ‘‘Because many complex systems harbour attractors to

which the system settle down, the attractors literally are most of

what the systems do’’ [36, p. 191]. The central hypothesis for

brain attractors is that, once activated by appropriate activity,

network behaviour is maintained by continuous reentry of activity

[37,38]. This involves strong correlations between neuronal

activities in the network and a high incidence of repeating firing

patterns therein, being generated by the underlying attractors.

Alternative attractors are commonly interpreted as alternative

memories [39–46].

Certain pathways through the network may be favoured by

preferred synaptic interactions between the neurons following

developmental and learning processes [47–49]. The plasticity of

these phenomena is likely to play a crucial role to shape the

meaningfulness of an attractor and attractors must be stable at short

time scales. Whenever the same information is presented in a

network, the same pattern of activity is evoked in a circuit of

functionally interconnected neurons, referred to as ‘‘cell assem-

bly’’. In cell assemblies interconnected in this way, some ordered

and precise neurophysiological activity referred to as preferred

firing sequences, or spatio-temporal patterns of discharges, may

recur above chance levels whenever the same information is

presented [50–52]. Recurring firing patterns may be detected

without a specific association to a stimulus in large networks of

spiking neural networks or during spontaneous activity in

electrophysiological recordings [53–55]. These patterns may be

viewed as spurious patterns generated by spurious attractors that are

associated with the underlying topology of the network rather than

with a specific signal [56]. On the other hand, several examples

exist of spatiotemporal firing patterns in behaving animals, from

rats to primates [57–61], where preferred firing sequences can be

associated to specific types of stimuli or behaviours. These can be

viewed as meaningful patterns associated with meaningful attractors.

However, meaningfulness cannot be reduced to the detection of a

behavioural correlate [62–64]. The repeating activity in a network

may also be considered meaningful if it allows the activation of

neural elements that can be associated to other attractors, thus

allowing the build-up of higher order dynamics by means of

itinerancy between attractor basins and opening the way to chaotic

neural dynamics [51,65–70].

The dynamics of rather simple Boolean recurrent neural

networks can implement an associative memory with bioinspired

features [71,72]. In the Hopfield framework, stable equilibria of

the network that do not represent any valid configuration of the

optimisation problem are referred to as spurious attractors. Spurious

modes can disappear by ‘‘unlearning’’ [71], but rational successive

memory recall can actually be implemented by triggering spurious

modes and achieving meaningful memory storage [66,73–77]. In

this paper, the notions of attractors, meaningful attractors, and

spurious attractors are reformulated in our precise Boolean

network context. Networks will then be classified according to

their ability to alternate between different types of attractive

behaviours. For this purpose, the following definitions need to be

introduced.

Formal Definitions. As preliminary notations, for any kw0,

the space of k-dimensional Boolean vectors is denoted by Bk. For

any vector ~xx[Bk and any 0viƒk, the i-th component of ~xx is

denoted by (~xx)i. Moreover, the spaces of finite and infinite

sequences of k-dimensional Boolean vectors are denoted by ½Bk��

and ½Bk�v, respectively. Any finite sequence of length n of ½Bk��

will be denoted by an expression of the form ~bb1 � � �~bbn, and any

infinite sequence of ½Bk�v by an expression of the form~bb1
~bb2
~bb3 � � �,

where each ~bbi[Bk. For any finite sequence of Boolean vectors v,

we let the expression vv denote the infinite sequence obtained by

infinitely many consecutive concatenations of v, i.e. vv~vvvv � � �.
Now, let N be some network with N activation cells and M

input units. For each time step t§0, the Boolean vectors

~xx(t)~(x1(t), . . . ,xN (t))[BN and ~uu(t)~(u1(t), . . . ,uM (t))[BM de-

scribing the spiking configurations of both the activation cells and

input units of N at time t are called the state of N at time t and the

input submitted to N at time t, respectively. An infinite input stream

s ofN is then defined as an infinite sequence of consecutive inputs,

i.e. s~ ~uu(i)ð Þi[N~~uu(0)~uu(1)~uu(2) � � � [½BM �v. Now, assuming the

initial state of the network to be ~xx(0)~~00, any infinite input

stream s~ ~uu(i)ð Þi[N~~uu(0)~uu(1)~uu(2) � � � [½BM �v induces via Equa-

tion (2) an infinite sequence of consecutive states

es~ ~xx(i)ð Þi[N~~xx(0)~xx(1)~xx(2) � � � [½BN �v called the evolution of N
induced by the input stream s.

Note that the set of all possible distinct states of a given Boolean

network N is always finite; indeed, if N possesses N activation

cells, then there are at most 2N distinct possible states of N .

Hence, any infinite evolution es of N consists of an infinite

Figure 1. A simple neural network. The network is formed by two
input units (u1,u2) and three activation cells (x1,x2,x3). In this example
the synaptic weights are all equal to 1/2, with positive sign
corresponding to an excitatory input and a negative sign corresponding
to a negative input. Notice that both cells x1 and x2 receive an
excitatory background activity weighing 1/2.
doi:10.1371/journal.pone.0094204.g001
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sequence of only finitely many distinct states. Therefore, in any

evolution es of N , there necessarily exists at least one state that

recurs infinitely many times in the infinite sequence es, irrespective

of the fact that es is periodic or not. The non-empty set of all such

states that recurs infinitely often in the evolution es will be denoted

by inf(es).

By definition, every state~xx that is visited only finitely often in es

will no longer occur in es after some time step t~xx. By taking the

maximum of these time steps t~xx, we obtain a global time step t

such that all states of es occurring after time t will necessarily

repeat infinitely often in es. Formally, there necessarily exists an

index t such that, for all i§t, one has ~xx(i)[inf(es). It is important

to note that the reoccurrence of the states belonging to inf(es) after

time step t does not necessarily occur in a periodic manner during

the evolution es. Therefore, any evolution es consists of a possibly

empty prefix of successive states that repeat only finite many times,

followed by an infinite suffix of successive states that repeat

infinitely often, yet not necessarily in a periodic way. A set of states

of the form inf(es) for some evolution es is commonly called an

attractor of N [36]. A precise definition can be given as follows:

Definition 2. Let N be some Boolean neural network with N

activation cells. A set A~f~yy0, . . . ,~yykg(BN is called an attractor

for N if there exists an input stream s such that the corresponding

evolution es satisfies inf(es)~A.

In other words, an attractor of a Boolean neural network is a set

of states such that the behaviour of the network could eventually

become forever confined to that set of states. In this sense, the

definition of an attractor requires the infinite input stream context

to be properly formulated.

In this work, we suppose that attractors can only be of two

distinct types, namely either meaningful or spurious. For instance, the

type of each attractor could be determined by its topological

features or by its neurophysiological significance with respect to

measurable observations associated with certain behaviours or

sensory discriminations (see Section ‘‘Neurophysiological Mean-

ingfulness’’ above). From this point onwards, any given network is

assumed to be provided with a corresponding classification of all of

its attractors into meaningful and spurious types. Further

discussions about the attribution of the attractors to either types

will be addressed in the forthcoming sections.

An infinite input stream s of N is called meaningful if inf(es) is a

meaningful attractor, and it is called spurious if inf(es) is a spurious

attractor. In other words, an input stream is called meaningful

(respectively spurious) if the network dynamics induced by this

input stream will eventually become confined into some mean-

ingful (respectively spurious) attractor. Then, the set of all

meaningful input streams of N is called the neural language of N
and is denoted by L(N ). Finally, an arbitrary set of input streams

L(½BM �v is said to be recognisable by some Boolean neural

network if there exists a network N such that L(N )~L.

Besides, if N denotes some Boolean neural network provided

with an additional specification of the type of each of its attractors,

then the complementary network is defined to be the same

network as N yet with a completely opposite type specification of

its attractors. Then, an attractor A is meaningful for N iff A is a

spurious attractor for and one has L( )~L . All

preceding definitions are illustrated by the next Example 2.

Example 2. Let us consider the network N described in

Example 1 and illustrated in Figure 1. Let us further assume that

the network state where the three cells x1,x2,x3 simultaneously fire

determines the meaningfulness of the attractors of N . In other

words, the meaningful attractors of N are precisely those

containing the state (1,1,1)T ; all other attractors are assumed to

be spurious.

Let us consider the periodic input stream

s~
0

0

� �
1

0

� �
0

1

� �� �v

and its corresponding evolution

es~

0

0

0

0
BB@

1
CCA

0

0

0

0
BB@

1
CCA 0

0

0
BB@

1
CCA

0
0
BB@

1
CCA

2
664

3
775

v

t~0 t~1 t~2 t~3

t~4 t~5 t~6

t~7 . . .

From time step t~1, the evolution es of N remains confined in a

cyclic visit of the states inf(es)~f(0,0,0)T ,(1,0,0)T ,(0,1,1)Tg.
Thence, the set inf(es)~f(0,0,0)T ,(1,0,0)T ,(0,1,1)Tg is an

attractor of N . Moreover, since the state (1,1,1)T does not belong

to inf(es), the attractor inf(es) is spurious. Therefore, the input

stream s is also spurious, and hence does not belong to the neural

language of N , i.e. s L(N ).

Let us consider another periodic input stream s’~
1

1

� �� �v

and

its corresponding evolution

es0~

0

0

0

0
BB@

1
CCA 0

0

0
BB@

1
CCA

0
BB@

1
CCA

0
0
BB@

1
CCA

2
664

3
775

v

t~0 t~1 t~2 t~3

t~4 :::

The set of states inf(es’)~f(0,0,0)T ,(1,0,0)T ,(1,1,1)T ,(0,1,1)Tg is

an attractor, and the evolution es’ of N is confined in inf(es’)
already from the very first time step t~0. Yet in this case, since the

Boolean vector (1,1,1)T belongs to inf(es’), the attractor inf(es’) is

meaningful. It follows that the input stream s’ is also meaningful,

and thus s’[L(N ).

v-Automata
Büchi Automata. A finite deterministic Büchi automaton [34] is a

5-tuple A~(Q,A,i,d,F ), where Q is a finite set called the set of

states, A is a finite alphabet, i is an element of Q called the initial

state, d is a partial function from Q|A into Q called the transition

function, and F is a subset of Q called the set of final states. A

finite deterministic Büchi automaton is generally represented as a

directed labelled graph whose nodes and labelled edges corre-

spond to the states and transitions of the automaton, respectively.

Given some finite deterministic Büchi automaton

A~(Q,A,i,d,F ), every triple (q,a,q’) such that d(q,a)~q’ is called

a transition of A. Then, a path in A is a sequence of consecutive

transitions r~((q0,a1,q1),(q1,a2,q2),(q2,a3,q3),:::), also denoted

by r : q0 �?
a1

q1 �?
a2

q2 �?
a3

q3 � � �. The path r is said to

successively visit the states q0,q1,q2,q3 and the word a1a2a3 � � � is

the label of r. The state q0 is called the origin of path r and r is said

to be initial if its starting state is initial, i.e. if q0~i. If r is an infinite

path, the set of states visited infinitely many times by r is denoted

by inf(r).

Attractor-Based Complexity of Neural Networks
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An infinite initial path r of A is said to be successful if it visits at

least one of the final states infinitely often, i.e. if inf(r)\F= . An

infinite word is then said to be recognised by A if it is the label of a

successful infinite path in A. The language recognised by A, denoted

by L(A), is the set of all infinite words recognised by A.

A cycle inA consists of a finite set of states c such that there exists

a finite path in A with same initial and final state and visiting

precisely all states of c. A cycle cj is said to be accessible from cycle ci

if there exists a path from some state of ci to some state of cj .

Furthermore, a cycle is called successful if it contains a state

belonging to F , and non-successful otherwise.

An alternating chain of length n[N (respectively co-alternating chain of

length n[N) is a finite sequence of nz1 distinct cycles (c0,........ ,cn)

such c0 is successful (resp. c0 is non-successful), ci is successful

iff ciz1 is non-successful, ciz1 is accessible from ci , and ci is not

accessible from ciz1, for all ivn. An alternating chain of length v is a

sequence of two cycles (c0,c1) such that c0 is successful, c1 is non-

successful, c0 is accessible from c1, and c1 is also accessible from c0

(we recall that v denotes the least infinite ordinal). In this case,

cycles c0 and c1 are said to communicate. For any aƒv, an

alternating chain of length a is said to be maximal in A if there is no

alternating chain and no co-alternating chain in A with a length

strictly larger than a. A co-alternating chain of length a is said to

be maximal in A if exactly the same condition holds.

The above definitions are illustrated by the Example S1 and

Figure S1 in File S1.

Muller Automata. A finite deterministic Muller automaton is a 5-

tuple A~(Q,A,i,d,T ), where Q, A, i, and d are defined exactly

like for deterministic Büchi automata, and T(P(Q) is a set of

states’ sets called the table of the automaton. The notions of transition

and path are defined as for deterministic Büchi automata. An

infinite initial path r ofA is now called successful if inf(r)[T . Given

a finite deterministic Muller automaton A~(Q,A,i,d,T ), a cycle

in A is called successful if it belongs to T , and non-succesful otherwise.

An infinite word is then said to be recognised by A if it is the label of

a successful infinite path in A, and the v-language recognised by A,

denoted by L(A), is defined as the set of all infinite words

recognised by A. The class of all v-languages recognisable by

some deterministic Muller automata is precisely the class of v-

rational languages [79].

It can be shown that deterministic Muller automata are strictly

more powerful than deterministic Büchi automata, but have an

equivalent expressive power as non-deterministic Büchi automata,

Rabin automata, Street automata, parity automata, and non-

deterministic Muller automata [81].

For each ordinal a such that 0vavvv, we introduce the

concept of an alternating tree of length a in a deterministic Muller

automaton A, which consists of a tree-like disposition of the

successful and non-successful cycles of A induced by the ordinal a,

as illustrated in Figure 2. In order to describe this tree-like

disposition, we first recall that any ordinal 0vavvv can uniquely

be written of the form a~vnp :mpzvnp{1 :mp{1z:::zvn0 :m0, for

some p§0, npwnp{1w . . . wn0§0, and miw0. Then, given

some deterministic Muller automata A and some strictly positive

ordinal a~vnp :mpzvnp{1 :mp{1z:::zvn0 :m0vvv, an alternating

tree (respectively co-alternating tree) of length a is a sequence of cycles

of A (C
i,j
k,l)iƒp,jv2i ,kvmi ,lƒni

such that:

(i) C0,0
0,0 is successful (respectively non-successful);

(ii) C
i,j
k,l C

i,j
k,lz1, and C

i,j
k,lz1 is successful iff C

i,j
k,l is non-

successful;

(iii) C
i,j
kz1,0 is accessible from C

i,j
k,0, and C

i,j
kz1,0 is successful iff

C
i,j
k,0 is non-successful;

(iv) C
iz1,2j
0,0 and C

iz1,2jz1
0,0 are both accessible from C

i,j
mi{1,0,

and each C
iz1,2j
0,0 is successful whereas each C

iz1,2jz1
0,0 is

non-successful.

An alternating tree of length a is said to be maximal in A if

there is no alternating or co-altenrating tree in A of length bwa. A

co-alternating tree of length a is said to be maximal in A if exactly

the same condition holds. An alternating tree of length a is

illustrated in Figure 2.

The above definitions are illustrated by the Example S2 and

Figure S2 in File S2.

Results

Hierarchical Classification of Neural Networks
Our notion of an attractor refers to a set of states such that the

behaviour of the network could forever be confined into that set of

states. In other words, an attractor corresponds to a cyclic

behaviour of the network produced by an infinite input stream.

According to these considerations, we provide a generalisation to

this precise infinite input stream context of the classical

equivalence result between Boolean neural networks and finite

state automata [1–3]. More precisely, we show that, under some

natural specific conditions on the specification of the type of their

attractors, Boolean recurrent neural networks express the very

same expressive power as deterministic Büchi automata. This

equivalence result enables us to establish a hierarchical classifica-

tion of neural networks by translating the Wagner classification

theory from the Büchi automaton to the neural network context

[35]. The obtained classification is intimately related to the

attractive properties of the neural networks, and hence provides a

new refined measurement of the computational power of Boolean

neural networks in terms of their attractive behaviours.

Boolean Recurrent Neural Networks and Büchi

Automata. We now prove that, under some natural conditions,

Boolean recurrent neural networks are computationally equivalent

to deterministic Büchi automata. Towards this purpose, we

consider that the neural networks include selected elements

belonging to an output layer. The activation of the output layer

communicates the output of the system to the environment.

Formally, let us consider a recurrent neural network

(X ,U ,a,b,c), as described in Definition 1, with N activation cells

and M input units. In addition, let us assume that M ’ cells chosen

among the N activation cells form the output layer of the neural

network, denoted by V~fxij : 1ƒjƒM ’g(X . For graphical

purpose, the activation cells of the output layer are represented as

double-circled nodes in the next figures. Thus, a recurrent neural

network is now defined by a tuple N~(X ,U ,V ,a,b,c). Let us

assume also that the specification type of the attractors of a

network N is naturally related to its output layer as follows: an

attractor A~f~yy0, . . . ,~yykg of N is considered meaningful if it

contains at least one state where some output cell is spiking, i.e. if

there exist iƒk and jƒN such that xj[V and (~yyi)j~1; the

attractor A is considered spurious otherwise. According to these

assumptions, meaningful attractors refer to the cyclic behaviours of

the network that induce some response activity of the system via its

output layer, whereas spurious attractors refer to the cyclic

behaviours of the system that do not evoke any response at all of

the output layer.

It can be stated that the expressive powers of Boolean recurrent

neural networks and deterministic Büchi automaton are equiva-

lent. As a first step towards this result, the following proposition

shows that any Boolean recurrent neural network can be simulated

by some deterministic Büchi automaton.

Attractor-Based Complexity of Neural Networks
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Proposition 1. Let N be some Boolean recurrent neural network

provided with an output layer. Then there exists a deterministic Büchi

automaton AN such that L(N )~L(AN ).

Proof. Let N be some neural network given by the tuple

(X ,U ,V ,a,b,c), with DX D~N, DU D~M, and V~fxi1 , . . . ,xiM ’g
(X . Consider the deterministic Büchi automaton AN~

(Q,A,i,d,F ), where Q~BN , A~BM , i is the N-dimensional zero

vector, F~f~xx[Q : (~xx)ik
~1 for some 1ƒkƒM ’g, and d : Q|

A?Q is the function defined by d(~xx,~uu)~~xx0 iff ~xx0~
s a:~xxzb:~uuz~ccð Þ. Note that the complexity of the transformation

is exponential, since DQD~2N and DAD~2M .

According to this construction, any infinite evolution es of N
naturally induces a corresponding infinite initial path r(es) in AN .

Moreover, by the definitions of meaningful and spurious attractors

of N , an infinite input stream s is meaningful for N iff s is

recognised by AN . In other words, s[L(N ) iff s[L(AN ), and

therefore L(N )~L(AN ).

According to the construction given in the proof of Proposition

1, any infinite evolution of the network N is naturally associated

with a corresponding infinite initial path in the automaton AN ,

and conversely, any infinite initial path in AN corresponds to some

possible infinite evolution of N . Consequently, there is a

biunivocal correspondence between the attractors of the network

N and the cycles in the graph of the corresponding Büchi

automaton AN . As a result, a procedure to compute all possible

attractors of a given network N is obtained by firstly constructing

the corresponding deterministic Büchi automaton AN and

secondly listing all cycles in the graph of AN .

As a second step towards the equivalence result, we prove now

that any deterministic Büchi automaton can be simulated by some

Boolean recurrent neural network.

Proposition 2. Let A be some deterministic Büchi automaton over the

alphabet BM , with M§1. Then there exists a Boolean recurrent neural

network NA provided with an output layer such that L(A)~L(NA).

Proof. Let A~(Q,BM ,q1,d,F ) be some deterministic Büchi

automaton over alphabet BM , with Q~fq1, . . . ,qNg, and

F~fqi1 , . . . ,qiK g(Q. Consider the network NA~(X ,U ,V ,

a,b,c) with 2MzNz1zM cells given as follows: firstly,

X~fxi : 0ƒiƒ2MzNg, where X is decomposed into a set of

2M ‘‘letter cells’’ XL~fxi : 0ƒiv2Mg, a ‘‘delay-cell’’ x2M , and a

set of N ‘‘state cells’’ XS~fxi : 2M
viƒ2MzNg; secondly, the

set of DM D ‘‘input units’’ U~fu0, . . . ,uM{1g, and thirdly, the

outptut layer V~fx2M zj : qj[Fg. The idea of the simulation is

that the ‘‘letter cells’’ and ‘‘state cells’’ of the network NA simulate

the letters and states currently read and entered by the automaton

A, respectively.

Towards this purpose, the weight matrices a, b, and c are

described as follows. Concerning the matrix b: for any xk[XL, we

consider the binary decomposition of k, namely k~
PM{1

j~0 bkj
:2j ,

with bkj[f0,1g, and for any 0ƒjvM, we set the weight

bk,j~bkj
:2jz(bkj{1); for all other k, we set bk,j~0, for any

0ƒjvM. Concerning the matrix c: for any xk[XL, we set

ck~1{k; we also set c2M ~c2Mz1~1; for all other k, we set

ck~0. Concerning the matrix a: we set a2M z1,2M ~{1, and for

any xk[XL and any x2M zi,x2Mzj[XS , we set a2Mzj,k~

a2Mzj,2Mzi~1=2 iff (qi,~bbk,qj) is a transition of A; otherwise, for

any pair of indices i1, i2[f0, ,2MzNg such that ai1,i2 has not been

set to {1 or 1=2, we set ai1,i2 ~0. This construction is illustrated in

Figure 3.

According to this construction, if we let ~bbk denote the boolean

vector whose components are the bkj ’s (for 0ƒjvM ), one has that

the ‘‘letter cell’’ xk will spike at time tz1 iff the input vector

Figure 2. An alternating tree of length a, for some ordinal 0vavvv. Illustration of the inclusion and accessibility relations between cycles
forming an alternating tree of length a.
doi:10.1371/journal.pone.0094204.g002
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~bbk[BM is received at time t. Moreover, at every time step tw0, a

unique ‘‘letter cell’’ xk[XL and ‘‘state cell’’ x2M zi[XS are spiking,

and, if A performs the transition (qi,~bbk,qj) at time t, then network

NA evokes the spiking pattern xk(t)~x2M zi(t)~x2M zj(tz1)~1.

The relation between the final states F of A and the output layer

V of NA ensures that any infinite input stream s[½BM �v is

recognised by A if and only if s is meaningful for NA. Therefore,

L(A)~L(NA).

The proof of Proposition 2 can be generalised to any network

dynamics driven by unate local transition functions

fi : BNzM?B, for i~1, ,N, rather than by the N threshold local

transition functions defined by Equation 1. Since unate functions

are a generalisation of threshold functions, this proof can be

interesting in the broader context of switching theory.

Propositions 1 and 2 yield to the following equivalence between

recurrent neural networks and deterministic Büchi automata.

Theorem 1. Let L(½Bk�v for some k§1. Then L is recognisable by

some Boolean recurrent neural network provided with an output layer iff L is

recognisable by some deterministic Büchi automaton.

Proof. Proposition 1 shows that every language recognisable by

some Boolean recurrent neural network is also recognisable by

some deterministic Büchi automaton. Conversely, Proposition 2

shows that every language recognisable by some deterministic

Büchi automaton is also recognisable by some Boolean recurrent

neural network.

The two procedures given in the proofs of propositions 1 and 2

are illustrated by the Example S3 and Figure S3 in File S3.

RNN Hierarchy. In the theory of infinite word reading

machines, abstract devices are commonly classified according to

the topological complexity of their underlying v-language (i.e., the

languages of infinite words that they recognise). Such classifica-

tions provide an interesting measurement of the expressive power

of various kinds of infinite word reading machines. In this context,

the most refined hierarchical classification of v-automata – or

equivalently, of v-rational languages – is the so-called Wagner

hierarchy [35].

Here, this classification approach is translated from the v-

automaton to the neural network context. More precisely,

according to the equivalence given by Theorem 1, the Wagner

hierarchy can naturally be translated from Büchi automata to

Boolean neural networks. As a result, a hierarchical classification

of first-order Boolean recurrent neural networks is obtained.

Interestingly, the obtained classification is tightly related to the

attractive properties of the networks, and, more precisely, refers to

the ability of the networks to switch between meaningful and

spurious attractive behaviours along their evolutions. Hence, the

obtained hierarchical classification provides a new measurement of

complexity of neural networks associated with their abilities to

switch between different types of attractors along their evolutions.

As a first step, the following facts and definitions need to be

introduced. To begin with, for any kw0, the space ½Bk�v can

Figure 3. The network NA described in the proof of Proposition 2. The network is characterised by a set of M input cells U~fu0,:::,uM{1g
reading the alphabet BM , 2M ‘‘letter cells’’ XL~fxi : 0ƒiv2Mg, a ‘‘delay-cell’’ x2M , and a set of N ‘‘state cells’’ XS~fxi : 2M

viƒ2MzNg. The idea
of the simulation is that the ‘‘letter cells’’ and ‘‘state cells’’ of the network NA simulate the letters and states currently read and entered by the
automaton A, respectively. In this illustration, we assume that the binary decomposition of k is given by k~2mz2n , so that the ‘‘letter cell’’ xk

receives synaptic connections of intensities 2m and 2n from input cells um and un , respectively, and it receives synaptic connections of intensities {1
from any other input cells. Consequently, the ‘‘letter cell’’ xk becomes active at time tz1 iff the sole input cells um and un are active at time t. The
synaptic connections to other ‘‘letter cells’’ are not illustrated. Moreover, the synaptic connections a2M zj,k~a2M zj,2M zi~ model the transition

(qi ,~bbk,qj) of automaton A. The synaptic connections modelling other transitions are not illustrated.
doi:10.1371/journal.pone.0094204.g003
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naturally be equipped with the product topology of the discrete

topology over Bk. Accordingly, one can show that the basic open

sets of ½Bk�v are the sets of infinite sequences of k-dimensional

Boolean vectors which all begin with a same prefix, or formally,

the sets of the form ~bb1 � � �~bbn½Bk�v, where ~bb1, . . . ,~bbn[Bk. An open

set is then defined as a union of basic open sets. Moreover, as

usual, a function f : ½Bk�v?½Bl �v is said to be continuous iff the

inverse image by f of every open set of ½Bl �v is an open set of

½Bk�v. Now, given two Boolean recurrent neural networks N 1 and

N 2 with M1 and M2 input units respectively, we say that N 1

reduces (or Wadge reduces or continuously reduces) to N 2, denoted by

N 1ƒWN 2, iff there exists a continuous function

f : ½BM1 �v?½BM2 �v such that, for any input stream s[½BM1 �v,

one has s[L(N 1)uf (s)[L(N 2), or equivalently, such that

L(N 1)~f {1(L(N 2)) [78]. Intuitively, N 1ƒWN 2 iff the problem

of determining whether some input stream s belongs to the neural

language of N 1 (i.e. whether s is meaningful for N 1) reduces via

some simple function f to the problem of knowing whether f (s)
belongs to the neural language of N 2 (i.e. whether s is meaningful

for N 2). The corresponding strict reduction, equivalence relation,

and incomparability relation are then naturally defined by

N 1vWN 2 iff N 1ƒWN 2 WN 1, as well as N 1:WN 2 iff

N 1ƒWN 2ƒWN 1, and N 1\WN 2 iff N 1 WN 2 WN 1. More-

over, a network N is called self-dual if N:W ; it is called non-

self-dual if N W , which can be proved to be equivalent to

saying that N\W [78]. We recall that the network , as

defined in Section ‘‘Formal Definitions’’, corresponds to the

network N whose type specification of its attractors has been

inverted. Consequently, does not correspond a priori to some

neural network provided with an output layer. By extension, an

:W -equivalence class of networks is called self-dual if all its

elements are self-dual, and non-self-dual if all its elements are non-

self-dual.

The continuous reduction relation over the class of Boolean

recurrent neural networks naturally induces a hierarchical

classification of networks formally defined as follows:

Definition 3. The collection of all Boolean recurrent neural

networks ordered by the reduction ‘‘ƒW ’’ is called the RNN

hierarchy.

We now provide a precise description of the RNN hierarchy.

The result is obtained by drawing a parallel between the RNN

hierarchy and the restriction of the Wagner hierarchy to Büchi

automata. For this purpose, let us define the DBA hierarchy to be the

collection of all deterministic Büchi automata over multidimen-

sional Boolean alphabets Bk ordered by the continuous reduction

relation ‘‘ƒW ’’. More precisely, given two deterministic Büchi

automata A1 and A2, we set A1ƒWA2 iff there exists a

continuous function f such that, for any input stream s, one has

s[L(A1)uf (s)[L(A2). The following result shows that the RNN

hierarchy and the DBA hierarchy are actually isomorphic.

Moreover, a possible isomorphism is given by the mapping

described in Proposition 1 which associates to every network N a

corresponding deterministic Büchi automaton AN .

Proposition 3. The RNN hierarchy and the DBA hierarchy are

isomorphic.

Proof. Consider the mapping described in Proposition 1 which

associates to every network N a corresponding deterministic

automaton AN . We prove that this mapping is an embedding

from the RNN hierarchy into the DBA hierarchy. Let N 1 and N 2

be any two networks, and let AN 1
and AN 2

be their corresponding

deterministic Büchi automata. Proposition 1 ensures that

L(N 1)~L(AN 1
) and L(N 2)~L(AN 2

). Hence, one has

N 1ƒWN 2 iff by definition there exists a continuous function f

such that L(N 1)~f {1(L(N 2)) iff there exists a continuous

function f such that L(AN 1
)~f {1(L(AN 2

)), iff by definition

AN 1
ƒWAN 2

. Therefore N 1ƒWN 2 iff AN 1
ƒWAN 2

. It follows

that N 1vWN 2 iff AN 1
vWAN 2

, proving that the considered

mapping is an embedding. We now show that, up to the

continuous equivalence relation ‘‘:W ’’, this mapping is also onto.

Let A be some deterministic Büchi automaton. By Proposition 2,

there exists a network M~NA such that L(A)~L(M).
Moreover, by Proposition 1, the automaton AM satisfies

L(AM)~L(M)~L(A). It follows that for any infinite input

stream s, one has s[L(AM) iff s[L(A), meaning that both

AMƒWA and AƒWAM hold, and thus AM:WA. Therefore,

for any deterministic Büchi automaton A, there exists a neural

networkM such that AM:WA, meaning precisely that up to the

continuous equivalence relation ‘‘:W ’’, the mapping N.AN
described in Proposition 1 is onto. This concludes the proof.

By Proposition 3 and the usual results of the DBA hierarchy, a

precise description of the RNN hierarchy can be given. First of all,

the RNN hierarchy is well-founded, i.e. there is no infinite strictly

descending sequence of networks N 0wWN 1wWN 2wW . . ..
Moreover, the maximal strict chains in the RNN hierarchy have

length vz1, meaning that the RNN hierarchy has a height of

vz1. (A strict chain of length a in the RNN hierarchy is a

sequence of neural networks (N k)k[a such that N ivWN j iff ivj;

a strict chain is said to be maximal if its length is at least as large as

the length of every other strict chain.) Furthermore, the maximal

antichains of the RNN hierarchy have length 2, meaning that the

RNN hierarchy has a width of 2. (An antichain of length a in the

RNN hierarchy is a sequence of neural networks (N k)k[a such that

N i\WN j for all i,j[a with i=j; an antichain is said to be maximal

if its length is at least as large as the length of every other

antichain.) More precisely, it can be shown that incomparable

networks are equivalent (for the relation :W ) up to complemen-

tation, i.e., for any two networks N 1 and N 2, one has N 1\WN 2

iffN1 and N2 are non-self-dual andN1 :W . These properties

imply that, up to equivalence and complementation, the RNN

hierarchy is actually a well-ordering. In fact, the RNN hierarchy

consists of an infinite alternating succession of pairs of non-self-

dual and single self-dual classes, overhung by an additional single

non-self-dual class at the first limit level v, as illustrated in Figure 4.

For convenience reasons, the degree of a network N in the

RNN hierarchy is defined such that the same degree is shared by

both non-self-dual networks at some level and self-dual networks

located just one level higher, as illustrated in Figure 4:

d(N )~

1 if L (N )~6 0 or ,

sup d(M)z1 :M non-self-dual and MvWNf g ifN is non-self-dual,

sup d(M) :M non-self-dual and MvWNf g if N is self-dual:

8>><
>>:

Moreover, the equivalence between the DBA and RNN hierar-

chies ensures that the RNN hierarchy is actually decidable, in the

sense that there exists an algorithmic procedure which is able to

compute the degree of any network in the RNN hierarchy. All the

above properties of the RNN hierarchy are summarised in the

following result.

Theorem 2. The RNN hierarchy is a decidable pre-well-ordering of

width 2 and height vz1.

Proof. The DBA hierarchy consists of a decidable pre-well-

ordering of width 2 and height vz1 [79]. Proposition 3 ensures

that the RNN hierarchy and the DBA hierarchy are isomorphic.
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The following result provides a detailed description of the

decidability procedure of the RNN hierarchy. More precisely, it is

shown that the degree of a network N in the RNN hierarchy

corresponds precisely to the maximal number of times that this

network might switch between visits of meaningful and spurious

attractors along some evolution.

Theorem 3. Let N be some network provided with an additional

specification of an output layer, AN be the corresponding deterministic Büchi

automaton of N , and nw0.

N If there exists in AN a maximal alternating chain of length n and no

maximal co-alternating chain of length n, then d(N )~n and N is non-

self-dual.

N Symmetrically, if there exists in AN a maximal co-alternating chain of

length n but no maximal alternating chain of length n, then also

d(N )~n and N is non-self-dual.

N If there exist in AN a maximal alternating chain of length n as well as a

maximal co-alternating chain of length n, then d(N )~n and N is self-

dual.

N If there exist in AN a maximal alternating chain of length v, then

d(N )~v and N is non-self-dual.

Proof. By Proposition 3, the degree of a network N in the RNN

hierarchy is equal to the degree of its corresponding deterministic

Büchi automaton AN in the DBA hierarchy. Moreover, the

degree of a deterministic Büchi automaton in the DBA hierarchy

corresponds precisely to the length of a maximal alternating or co-

alternating chain contained in this automaton [79].

By Theorem 3, the decidability procedure of the degree of a

neural network N in the RNN hierarchy consists firstly in

translating the network N into its corresponding deterministic

Büchi automaton AN , as described in Proposition 1, and secondly

in returning the ordinal avvz1 corresponding to the length of a

maximal alternating chain or co-alternating chain contained in

AN . Note that this procedure can clearly be achieved by some

graph analysis of the automaton AN , since the graph of AN is

always finite. Furthermore, since alternating and co-alternating

chains are defined in terms of cycles in the graph of the

automaton, then according to the biunivocal correspondence

between cycles in AN and attractors of N , it can be deduced that

the complexity of a network in the RNN hierarchy is in fact

directly related to the attractive properties of this network.

More precisely, it can be observed that the complexity

measurement provided by the RNN hierarchy actually corre-

sponds to the maximal number of times that a network might

alternate between visits of meaningful and spurious attractors

along some evolution. Indeed, the existence of a maximal

alternating or co-alternating chain (c0, ,cn) of length n in AN
means that every infinite initial path inAN might alternate at most

n times between visits of successful and non-successful cycles. Yet

this is precisely equivalent to saying that every evolution of N can

only alternate at most n times between visits of meaningful and

spurious attractors before eventually becoming trapped forever by

a last attractor. In this case, Theorem 3 ensures that the degree of

N is equal to n. Moreover, the existence of an alternating chain

(c1,c2) of length v in AN is equivalent to the existence of an

infinite initial path in AN that might alternate infinitely many

times between visits of the cycles c1 and c2. This is equivalent to

saying that there exists an evolution of N that might alternate

infinitely many times between visits of a meaningful and a spurious

attractor. By Theorem 3, the degree of N is equal to v is this case.

Therefore, the RNN hierarchy provides a new measurement of

complexity of neural networks according to their ability to

maximally alternate between different types of attractors along

their evolutions.

Finally, the decidability procedure of the RNN hierarchy is

illustrated by the Example S4 in File S4.

Refined Hierarchical Classification of Neural Networks
In this section, we show that by relaxing the restrictions on the

specification of the type of their attractors, the networks

significantly increase their expressive power from deterministic

Büchi automata up to Muller automata [80]. Hence, by

translating once again the Wagner classification theory from the

Muller automaton to the neural network context, another more

refined hierarchical classification of Boolean neural networks can

be obtained. The obtained classification is also tightly related to

the attractive properties of the networks, and hence provides once

again a new refined measurement of complexity of Boolean

recurrent neural networks in terms of their attractive behaviours.

Boolean Recurrent Neural Networks and Muller

Automata. The assumption that the networks are provided

with an additional description of an output layer, which would

subsequently influence the type specifications (meaningful/spuri-

ous) of their attractors, is not necessary anymore from this point

onwards. Instead, let us assume that, for any network, the precise

classification of its attractors into meaningful and spurious types is

known. How the meaningfulness of the attractors is determined is

an issue that is not considered here. For instance, the specification

of the type of each attractor might have been determined by its

neurophysiological significance with respect to measurable obser-

vations associated to certain behaviours or sensory discriminations.

Formally, in this section, a recurrent neural network consists of a

tuple N~(X ,U ,a,b,c), as described in Definition 1, but also

provided with an additional specification into meaningful and

spurious type for each one of its attractors.

We now prove that, by totally relaxing the restrictions on the

specification of the type of their attractors, the Boolean neural

Figure 4. The RNN hierarchy. An infinite alternating succession of pairs of non-self-dual classes of networks followed by single self-dual classes of
networks, all of them overhung by an additional single non-self-dual class at the first limit level. Circles represent the equivalence classes of networks
(with respect to the relation ‘‘:W ’’) and arrows between circles represent the strict reduction ‘‘vW ’’ between all elements of the corresponding
classes.
doi:10.1371/journal.pone.0094204.g004
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networks significantly increase their expressive powers from

deterministic Büchi automata up to Muller automata. The

following straightforward generalisation of Proposition 1 states

that any such Boolean recurrent neural network can be simulated

by some deterministic Muller automaton.

Proposition 4. Let N be some Boolean recurrent neural network

provided with a type specification of each of its attractors. Then there exists a

deterministic Muller automaton AN such that L(N )~L(AN ).

Proof. Let N be given by the tuple (X ,U ,a,b,c), with DX D~N,

DU D~M, and let the meaningful attractors of N be given by

A1, . . . ,AK , all others being spurious. Now, consider the

deterministic Muller automaton AN~(Q,A,i,d,T ), where

Q~BN , A~BM , i is the N-dimensional zero vector,

d : Q|A?Q is defined by d(~xx,~uu)~~xx’ iff ~xx’~s a:~xxzb:~uuzcð Þ,
and T~fA1, . . . ,AKg. According to this construction, any input

stream s is meaningful for N iff s is recognised by AN . In other

words, s[L(N ) iff s[L(AN ), and therefore L(N )~L(AN ).

Conversely, as a generalisation of Proposition 2, we can prove

that any deterministic Muller automaton can be simulated by

some Boolean recurrent neural network provided with a suitable

type specification of its attractors.

Proposition 5. Let Mw0 and let A be some deterministic Muller

automaton over the alphabet BM . Then there exists a Boolean recurrent neural

network NA provided with a type specification of each of its attractors such

that L(A)~L(NA).

Proof. Let A be given by the tuple (Q,A,q1,d,T ), with A~BM ,

Q~fq1, . . . ,qNg and T(P(Q). Now, consider the network

NA~(X ,U ,a,b,c) described in the proof of Proposition 2. It

remains to define which are the meaningful and spurious attractors

of NA. As mentioned in the proof of Proposition 2, at every time

step tw0, only one among the ‘‘state cells’’ fx2M z1, ,x2MzNg is

spiking. Hence, for any state ~yy of NA that might occur at some

time step tw0, let i(~yy)[f1, ,Ng be the index such that x2Mzi(~yy)

~yy. An attractor

f~yy0, . . . ,~yykg of NA is then said to be meaningful iff

fqi(~yy0), . . . ,qi(~yyk)g[T .

Consequently, for any infinite infinite sequence s[½BM �v, the

infinite path rs inA satisfies inf(rs)[T iff the evolution es inNA is

such that inf(es) is a meaningful attractor. Therefore, s is

recognised by A iff s is meaningful for NA, showing that

L(A)~L(NA).

Propositions 4 and 5 yield the following equivalence between

Boolean recurrent neural networks and deterministic Muller

automata.

Theorem 4. Let L(½Bk�v for some kw0. Then the following

conditions are equivalent:

(a) L is recognisable by some Boolean recurrent neural network provided

with a type specification of its attractors;

(b) L is recognisable by some deterministic Muller automaton;

(c) L is v-rational.

Proof. The equivalence between conditions a and b is given by

propositions 4 and 5. The equivalence between conditions b and c

is a well-known result of automata theory [79].

The two procedures described in the proofs of propositions 4

and 5 are illustrated by the Example S5 and Figure S4 in File S5.

Complete RNN Hierarchy. In this section, we prove that

the collection of Boolean recurrent neural networks ordered by the

continuous reduction corresponds to a refined hierarchical

classification of height vv. This classification is directly related

to the attractive properties of the networks, and therefore provides

a new refined measurement of complexity of neural networks

according to their attractive behaviours. This hierarchical

classification is formally defined as follows.

Definition 4. The collection of all Boolean recurrent neural networks

provided with a type specification of their attractors ordered by the continuous

reduction ‘‘ƒW ’’ is called the complete RNN hierarchy.

Like in Section ‘‘RNN Hierarchy’’, a precise characterisation of

the complete RNN hierarchy can be obtained by translating the

Wagner classification theory from the Muller automaton to the

neural network context. For this purpose, we shall consider the

collection of all deterministic Muller automata over multidimen-

sional Boolean alphabets Bk ordered by the continuous reduction

‘‘ƒW ’’. This hierarchy is commonly referred to as the Wagner

hierarchy [35]. A generalisation of Proposition 3 shows that the

complete RNN hierarchy and the Wagner hierarchy are

isomorphic, and a possible isomorphism is also given by the

mapping described in Proposition 4 which associates to every

network N a corresponding deterministic Muller automaton AN .

Proposition 6. The complete RNN hierarchy and the Wagner

hierarchy are isomorphic.

Proof. Consider the mapping described in Proposition 4 which

associates to every network N a corresponding deterministic

Muller automaton AN . A similar reasoning as the one presented

in the proof of Proposition 3 shows that this mapping is an

isomorphism between the complete RNN hierarchy and the

Wagner hierarchy.

By Proposition 6 and the usual results on the Wagner hierarchy

[35], the following precise description of the complete RNN

hierarchy can be given. First of all, like the RNN hierarchy, the

complete RNN hierarchy also consists of a pre-well ordering of

width 2, and any two networks N 1 and N 2 satisfy the

incomparability relation N 1\WN 2 iff N 1 and N 2 are non-self-

dual networks such that N 1:W 2. However, while the RNN

hierarchy has only height vz1, the complete RNN hierarchy

shows a height of vv levels. In fact, the complete RNN hierarchy

consists of an infinite alternating succession of pairs of non-self-

dual and single self-dual classes, with non-self-dual classes at each

limit level, as illustrated in Figure 5. For convenience reasons, the

degree d�(N ) of a network N in the complete RNN hierarchy is

also defined such that the same degree is shared by both non-self-

dual networks at some level and self-dual networks located just one

level higher, namely:

d�(N )~

1 if L (N )~

sup d�(M)z1 :Mnon-self-dual andMvWNf g if N is non-self-dual,

sup d�(M) :M non-self-dual andMvWNf g if N is self-dual:

0
BB@

Besides, the isomorphism between the Wagner hierarchy and the

complete RNN hierarchy ensures that the complete RNN

hierarchy is actually decidable, in the sense that there exists an

algorithmic procedure allowing to compute the degree of any

network in the complete RNN hierarchy. The following theorem

summarises the properties of the complete RNN hierarchy.

Theorem 5. The complete RNN hierarchy is a decidable pre-well-

ordering of width 2 and height vv.

Proof. The Wagner hierarchy consists of a decidable pre-well-

ordering of width 2 and height vv [35]. Proposition 6 ensures that

the complete RNN hierarchy and the Wagner hierarchy are

isomorphic.

The following result provides a detailed description of the

decidability procedure of the complete RNN hierarchy. More

precisely, it is shown that the degree of a network N in the RNN

hierarchy corresponds precisely to the largest ordinal a such that
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there exists an alternating tree or a co-alternating tree of length a
in the deterministic Muller automaton AN .

Theorem 6. Let N be some Boolean recurrent network provided with a

type specification of its attractors, AN be the corresponding deterministic

Muller automaton of N , and a be an ordinal such that 0vavvv.

N If there exists in AN a maximal alternating tree of length a and no

maximal co-alternating tree of length a, then d�(N )~a and N is non-

self-dual.

N If there exists in AN a maximal co-alternating tree of length a and no

maximal alternating tree of length a, then d�(N )~a and N is non-self-

dual.

N If there exist in AN both a maximal alternating tree as well as a maximal

co-alternating tree of length a, then d�(N )~a and N is self-dual.

Proof. By Proposition 6, the degree of a network N in the

complete RNN hierarchy is equal to the degree of its correspond-

ing deterministic Muller automaton AN in the Wagner hierarchy.

Moreover, the degree of a deterministic Muller automaton in the

Wagner hierarchy corresponds precisely to the length of a

maximal alternating or co-alternating tree contained in this

automaton [35,82].

The decidability procedure of the degree of a neural network N
in the complete RNN hierarchy thus consists in first translating the

network N into its corresponding deterministic Muller automaton

AN , as described in Proposition 4, and then returning the ordinal

avvv corresponding to the length of a maximal alternating tree,

or co-alternating tree, contained in AN . Note that this procedure

can be achieved by some graph analysis of the automaton AN ,

since the graph of AN is always finite.

By Theorem 6, the degree of a neural network N in the

complete RNN hierarchy corresponds precisely to the length of a

maximal alternating, or co-alternating, tree contained in AN .

Since alternating and co-alternating trees are defined in terms of

cycles in the graph of the Muller automaton, and according to the

biunivocal correspondence between cycles in AN and attractors of

N , it can be deduced that, like for the RNN hierarchy, the

complexity of a network in the complete RNN hierarchy is also

directly related to the attractive properties of this network. In fact,

the complexity measurement provided by the complete RNN

hierarchy refers to the maximal number of times that a network

might alternate between visits of meaningful and spurious

attractors along some evolution.

More precisely, the v first levels of the complete RNN hierarchy

provide a classification of the collection of networks that might

switch at most finitely many times between different types of

attractors along their evolutions. Indeed, by Theorem 6, for any

n[N�, a network N satisfies d�(N )~n iff AN contains a maximal

alternating, or co-alternating, tree of length n. In other words, for

any n[N�, a network N satisfies d�(N )~n iff N is able to switch

at most n times between visits of different types of attractors during

all its possible evolutions.

The levels of transfinite degrees provide a refined classification

of the collection of networks that are able to alternate infinitely

many times between different types of attractors. Indeed,

according to Theorem 6, for any ordinal a such that

vƒavvv, a network N satisfies d�(N )~a iff AN contains a

maximal alternating or co-alternating tree of length a. Since a§v,

this implies that the graph of AN necessarily contains at least two

cycles c1 and c2 such that c1 c2 and c1 is successful iff c2 is non-

successful. But since c1 c2, it follows that c1 and c2 are both

accessible one from the other in the graph of AN . By the

biunivocal correspondence between cycles and attractors, the

network N contains at least the two attractors c1 and c2, and the

accessibility between those ensures that the network is capable of

alternating infinitely often between visits of c1 and c2 along some

evolution. In fact, the collection of levels of transfinite degrees of

the complete RNN hierarchy provides a refined classification of

these potentially infinitely switching networks based on the

intricacy of their underlying attractive structures (tree-like

representation induced by the inclusion and accessibility relations

between the attractors, as illustrated in Figure 2).

It can be noticed, according to the definition of alternating and

co-alternating trees, that if some given Muller automaton contains

either an alternating or a co-alternating tree of length a in its

underlying graph, then this automaton also necessarily contains in

its graph both an alternating and a co-alternating tree of length b,

for all bva. Therefore, any network of the complete RNN

hierarchy is capable of disclosing an attractive behaviour

analogous to any other network of strictly smaller degree. In this

precise sense, a network of the complete RNN hierarchy

potentially contains in its structure all the possible attractive

behaviours of every other networks of strictly smaller degrees. In

this framework, the concept of alternation between different types

of attractors corresponds to the transient trajectories between

attractor basins, a concept referred to as ‘‘itinerancy’’ elsewhere in

the literature [51,65–67,83,84].

The decidability procedure of the complete RNN hierarchy is

illustrated by the Example S6 in File S6.

It is worth noting that the complete RNN hierarchy can actually

be seen as a proper extension of the RNN hierarchy. Indeed, the

next result shows that the networks of RNN hierarchy and the

networks of the specific initial segment of length vz1 of the

complete RNN hierarchy recognise precisely the same languages.

In this precise sense, the RNN hierarchy consists of an initial

segment of length vz1 of the complete RNN hierarchy.

Proposition 7. Let L(½Bk�v. Then L is recognisable by some

network N of the RNN hierarchy iff L is also recognisable by some network

N 0 of the complete RNN hierarchy such that either d�(N 0)vv or

d�(N 0)~v and N 0 contains a maximal co-alternating tree of length v but

no maximal alternating tree of length v.

Proof. Given any deterministic Muller automaton A, let the

degree of A in the Wagner hierarchy be denoted by dW (A). Then,

Figure 5. The complete RNN hierarchy. A transfinite alternating succession of pairs of non-self-dual classes of networks followed by single self-
dual classes of networks, with non-self-dual classes at each limit level.
doi:10.1371/journal.pone.0094204.g005
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the relationship between the DBA and the Wagner hierarchies

ensures that L is recognisable by some deterministic Büchi

automaton iff L is also recognisable by some deterministic Muller

automaton A such that either dW (A)vv or dW (A)~v and A
contains a maximal co-alternating tree of length v but no maximal

alternating tree of length v [79]. Theorems 1 and 4 together with

Proposition 6 allow to translate these results to the neural network

context, and therefore lead to the conclusion.

We recall that the RNN hierarchy consists of the classification of

networks whose attractors’ type specifications are induced by the

existence of an output layer, whereas the complete RNN hierarchy

consists of the classification of networks whose attractors’ type

specifications are a priori given without any restriction at all. For

any ordinal aƒv, the two notions of alternating chain and

alternating tree of length a coincide. Hence, by Theorem 3 and

Theorem 6, the two decidability procedures of the RNN hierarchy

and the complete RNN hierarchy reduce to the very same, and the

decidability procedures simply consist in computing the length of a

maximal alternating or co-alternating tree contained in the

underlying automata.

However, it is important to clarify the difference between the

RNN hierarchy and the complete RNN hierarchy, illustrated in

Figure 6. The restriction on the type specification of the attractors

imposed by the existence of an output layer ensures that the

networks of the RNN hierarchy will never be able to contain a

maximal alternating or co-alternating tree of length strictly larger

than v in their underlying Büchi automata. Indeed, if c1 and c2

are two cycles in a deterministic Büchi automaton such that c1 is

successful and c1(c2, then c2 is necessarily also successful (since it

visits the same final states as c1 plus potentially some other ones),

meaning that no meaningful cycle could ever be included in some

spurious cycle in a deterministic Büchi automaton; consequently,

the maximal number alternations between different type of cycles

that can be found in a deterministic Büchi automaton is bounded

by one – a spurious cycle included in a meaningful cycle – and

therefore no alternating or co-alternating trees of length strictly

larger than v1 will never exist in a deterministic Büchi automaton.

From this observation, it follows that the degree of any network of

the RNN hierarchy is bounded by v1, meaning that the length of

the RNN hierarchy cannot exceed vz1, whereas the length of the

complete RNN hierarchy climbs up to vv, as illustrated by

Figure 6.

The ‘‘basal ganglia-thalamocortical network’’
Neurobiological description. In order to illustrate the

application of our method to a case study, we have considered

one of the main systems of the brain involved in information

processing, the basal ganglia-thalamocortical network. This

network is formed by several parallel and segregated circuits

involving different areas of the cerebral cortex, striatum, pallidum,

thalamus, subthalamic nucleus and midbrain [85–94]. This

network has been investigated for many years in particular in

relation to disorders of the motor system and of the sleep-waking

cycle. The simulations were generally performed by considering

the basal ganglia-thalamocortical network as a circuit composed of

several interconnected areas, each area being modeled by a

network of spiking neurons, and were analysed using statistical

approaches based on mean-field theory [95–106].

In the basal ganglia-thalamocortical network are several types of

connections and transmitters. Based on the observation that

almost all neurons of the central nervous system can be subdivided

into projection neurons and interneurons, we consider the

connections mediated by projection neurons, both glutamatergic

excitatory projections and GABAergic inhibitory projections, as

part of an information transmitting system. The local connections

established by the interneurons, i.e. the connections remaining

confined within a small distance from the projection neurons, are

considered forming part of a regulatory system. The other

connections, mainly produced by different types of projection

neurons, i.e. the dopaminergic (including those from the substantia

nigra pars compacta like the nigrostriatal and those from the

ventromedial tegmental area), cholinergic (including those from

the basal forebrain), the noradrenergic (including those from locus

coeruleus), serotoninergic (including those from the dorsal raphe),

histaminergic (from the tuberomamillary nucleus) and orexinergic

projections (from the lateral and posterior hypothalamus) are

considered forming part of a modulatory system. The three

systems, information transmitting, regulatory and modulatory

have an extensive pattern of reciprocal interconnectivity at various

levels that is not addressed in this paper.

A characteristic of all the circuits of the basal ganglia-

thalamocortical network is a combination of ‘‘open’’ and ‘‘closed’’

loops with ascending sensory afferences reaching the thalamus and

the midbrain, and with descending motor efferences from the

midbrain (the tectospinal tract) and the cortex (the corticospinal

tract). We assume that the encoding of a large amount of the

information treated by the brain is performed by recurrent

patterns of activity circulating in the information transmitting

system. For this reason, we focus our attention on the complexity

of the dynamics that may emerge from that system. To this

purpose, we present a Boolean recurrent neural network model of

the information transmitting system of the basal ganglia-thalamo-

cortical network, illustrated by Figure 7.

The pattern of connectivity corresponds to the wealth of data

reported in the literature [85–94]. We assume that each brain area

is formed by a neural network and that the network of brain areas

corresponding to the basal ganglia-thalamocortical network can be

modeled by a Boolean neural network formed by 9 nodes: superior

colliculus (SC), Thalamus, thalamic reticular nucleus (NRT),

Cerebral Cortex, the two functional parts (striatopallidal and the

striatonigral components) of the striatum (Str), the subthalamic

nucleus (STN), the external part of the pallidum (GPe), and the

output nuclei of the basal ganglia formed by the GABAergic

Figure 6. Comparison between the RNN and the complete RNN hierarchies. The RNN hierarchy, depicted by the sequence of blacks classes,
consists of an initial segment of length vz1 of the complete RNN hierarchy, which has height vv.
doi:10.1371/journal.pone.0094204.g006
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projection neurons of the intermediate part of the pallidum and of

the substantia nigra pars reticulata (GPi/SNR).

We consider the ascending sensory pathway (IN), that reaches

SC and the Thalamus. SC does not send other projections to the

system and sends a projection outside of the system (OUT), to the

motor system. The thalamus sends excitatory connections within

the system via the thalamo-pallidal, thalamo-striatal and thalamo-

cortical projections. Notice that STN receives also an excitatory

projection from the Thalamus. NRT receives excitatory collateral

projections from both the thalamo-cortical and cortico-thalamic

projections. In turn, NRT sends an inhibitory projection to the

Thalamus. The Cerebral Cortex receives also an excitatory input

from STN and sends corticofugal projections to the basal ganglia

(striatum and STN), to the thalamus, to the midbrain and to the

motor system (OUT). The only excitatory nucleus of the basal

ganglia is STN, that sends projections to the Cerebral Cortex, to

GPe and to GPi/SNR. In the striatum (Str) the striatopallidal

neurons send inhibitory projections to GPe and the striatonigral

neurons send inhibitory projections to GPi/SNR, via the so-called

‘‘direct’’ pathway. The pallidum (GPe) plays a paramount role

because it is an inhibitory nucleus, with reciprocal connections

back to the striatum and to STN and a downstream inhibitory

projection to GPi/SNR via the so-called ‘‘indirect’’ pathway. It is

interesting to notice the presence of inhibitory projections that

inhibit the inhibitory nuclei within the basal ganglia, thus leading

to a kind of ‘‘facilitation’’, but also inhibitory projections that

inhibit RTN, that is a major nucleus in regulating the activity of

the thalamus. The connectivity of the Boolean model of the basal

ganglia-thalamocortical network is described by the adjacency

matrix of the network in Table 1.

Computation of attractor-based complexity. For sake of

simplicity, we consider that the two inputs to the basal ganglia-

thalamocortical network (Figure 7) are reduced to 1 input node

sending projections to Thalamus and SC with synaptic weight

equal to 1. We reduce our neurobiological model to a Boolean

recurrent neural network N that contains 9 activation nodes and 1

input node. Every activation node can be either active or quiet,

which means 29~512 possible states for the network N . Every

state of N is represented by a 9-dimensional Boolean vector

describing the sequence of active and quiet activation nodes. For

example, the network state (0,1,0,0,1,1,1,1) means that the nodes

#1 (SC), #3 (RTN) and #4 (GPi/SNR) are quiet, whereas every

other activation node is active.

In this section, we provide a practical illustration of our new

attractor-based complexity measurement applied to the simplified

model of the basal ganglia-thalamocortical network. Since the

behaviour of network N is not determined by any designated

output layer, the attractor-based complexity of N will be

measured with respect to the complete RNN hierarchy rather

than with respect to the RNN hierarchy, as described in Section

‘‘Complete RNN Hierarchy’’. According to these considerations,

as mentioned in Theorem 6, the attractor-based complexity of

network N relies on the graphical structure of its corresponding

deterministic Muller automaton AN . Hence, we shall now

describe the structure of the deterministic Muller automaton AN
associated to network N .

Firstly, as mentioned in the proof of Proposition 4, the states of

the Muller automaton AN correspond precisely to the states of

network N . Hence, the deterministic Muller automaton associated

to the basal ganglia-thalamocortical network contains 512 states,

numbered from 0 to 511. The numbering of the states is chosen

such that state (b1,b2, . . . ,b9) is numbered by n, where n is the

decimal representation of the 9-digit binary number b1b2 � � � b9.

For instance, state (1,1,0,1,0,0,0,0,1) is referred to as number 417,

since 417 is the decimal representation of the binary number

110100001. Secondly, also as mentioned in the proof of

Proposition 4, the transitions of the Muller automaton AN are

constructed as follows: there is a transition labelled by 0 (resp. by 1)

from state m to state n if and only if network N transits from state

m to state n when it receives input 0 (resp. 1). Hence, the

deterministic Muller automaton AN contains 1024 transitions (one

0-labelled and one 1-labelled outgoing transition from each of the

512 state), among which 512 are labelled by 0 and 512 are labelled

by 1. For instance, in the Muller automaton AN there is a

transition labelled by 1 (drawn in red in Figure 8) from state 31 to

state 417 because network N transits from state (0,0,0,0,1,1,1,1,1)
to state (1,1,0,1,0,0,0,0,1) when it receives input 1. Figure 8a

illustrates the graph of the deterministic Muller automaton

associated to the basal ganglia-thalamocortical network.

An analysis of the graph of the automaton AN reveals that it

contains only one strongly connected component C given by the

states 0, 31, 33, 63, 95, 127, 128, 159, 161, 191, 223, 255, 384,

417, 479, 511 and the transitions between those states, as

illustrated in Figure 8b (we recall that a directed graph is called

strongly connected if there is a path from every vertex of the graph

to every other vertex). This strongly connected component C
corresponds to the subgraph of AN constituted by all states

reachable from the initial state 0. In other words, any state of AN
outside the strongly connected component C cannot be reached

from the initial state 0, meaning that it can never occur in the

dynamics of network N starting from initial state 0, and hence

plays no role in the attractor-based complexity of network N . In

Figure 7. Model of the basal ganglia-thalamocortical network.
The network is constituted of 9 different interconnected brain areas,
each one represented by a single node in the Boolean neural network
model: superior colliculus (SC), Thalamus, thalamic reticular nucleus
(NRT), Cerebral Cortex, the striatopallidal and the striatonigral
components of the striatum (Str), the subthalamic nucleus (STN), the
external part of the pallidum (GPe), and the output nuclei of the basal
ganglia formed by the GABAergic projection neurons of the interme-
diate part of the pallidum and of the substantia nigra pars reticulata
(GPi/SNR). We consider also the inputs (IN) from the ascending sensory
pathway and the motor outputs (OUT). The excitatory pathways are
labeled in blue and the inhibitory ones in orange.
doi:10.1371/journal.pone.0094204.g007
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fact, the attractor-based complexity of network N will be precisely

determined by the cyclic structure of the strongly connected

component C of automaton AN .

In order to complete the description of the Muller automaton

AN , it is necessary to specify its table, or in other words, to

determine among all possible cycles of AN which ones are

successful and which ones are non-successful. Since every cycle of

AN is by definition contained in a strongly connected component

of C and since C is the only strongly connected component of AN ,

it follows that all cycles of AN are necessarily contained in C.
Therefore, the specification of the table of AN amounts to the

assignment of a type specification to every cycle of the strongly

connected component C. According to the biunivocal correspon-

dence between cycles of AN and attractors of N , this assignment

procedure consists in determining the type specification (mean-

ingful or spurious) of all possible attractors of the network N .

In order to assign a type specification to every cycle of the

strongly connected component C, we have computed the list of all

cycles starting from every state of C, and for each cycle, we have

further computed its decomposition into constitutive cycles (cycles

which do not visit the same vertex two times). The results are

summarised in Table 2.

Then, we have assigned a type specification to each cycle of C
according to the following neurobiological criteria. First, a

constitutive cycle is considered to be spurious if it is characterised

either by active SC and quiet Thalamus at the same time step or

by a quiet GPi/SNR during the majority of the duration of the

constitutive cycle. A constitutive cycle is meaningful otherwise.

Second, a non-constitutive cycle is considered to be meaningful if

it contains a majority of meaningful constitutive cycles, and

spurious if it contains a majority of spurious constitutive cycles –

and in case of it containing as much meaningful as spurious

constitutive cycles, its type specification was chosen to be

Table 1. The adjancency matrix of the Boolean model of the basal ganglia-thalamocortical network.

Source Target

Node Name SC Thalamus RTN GPi/SNr STN GPe Str-D2 Str-D1 CCortex

1 SC : 1 : : : : : : :

2 Thalamus : : 1 : 1 1 1 1 1

3 RTN : 21 : : : : : : :

4 GPi/SNr 21 21 21 : : : : : :

5 STN : : : 2 : 2 : : 2

6 GPe : : 21/2 21/2 21/2 : 21/2 21/2 :

7 Str-D2 : : : : : 21 : : :

8 Str-D1 : : : 21/2 : 21/2 : : :

9 Cer. Cortex 1/2 1/2 1/2 : 1/2 : 1/2 1/2 :

doi:10.1371/journal.pone.0094204.t001

Figure 8. Deterministic Muller automaton based on the ‘‘basal ganglia-thalamocortical’’ network of Figure 7. a. The graph of the
automatonAN associated to networkN contains 512 states and 1024 directed transitions. The colours of the transitions represent their labels: green
for label 0 and red for label 1. For sake of readability, the directions of the transitions have been removed. The states and transitions of the strongly
connected component C of AN have been pulled out of the central graph and drawn in larger font. b. The graph of the strongly connected
component C of AN . Every state and transition of AN that does not belong to C has been erased. The directions of the transitions are indicated by
the arrowheads.
doi:10.1371/journal.pone.0094204.g008
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meaningful. In order to illustrate this procedure, let us consider for

example the cycles starting from state 0. Table 2 shows that there

are overall 68 cycles and 24 constitutive cycles starting from state

0. We consider here the example of one out of the 68 cycles, e.g.

cycle c~(0,0,384,223,511,191,63,33,128,95,33,0) (Figure 9a).

This cycle can be decomposed into three constitutive cycles

(Figure 9b), namely cc1~(0,0), cc2~(0,384,223,511,191,63,33,0),
and cc3~(33,128,95,33). When state 0 receives input 0 the

network dynamics evolves into the constitutive cycle cc1 (Figure 9c),

whereas if state 0 receives input 1 the dynamics evolves into the

constitutive cycle cc2 (Figure 9d). According to the aforementioned

neurobiological criteria, the constitutive cycles cc1 and cc3 are

spurious, whereas cc2 is meaningful, and therefore cycle c is

spurious.

After the assignation of the type specification to every cycle, the

attractor-based complexity of the network N can be explicitly

computed. More precisely, according to Theorem 6, the attractor-

based degree of N is given by the length of a maximal (co-

)alternating tree contained in AN . Since AN contains only one

strongly connected component C, the maximal (co-)alternating tree

of AN is necessarily contained in C. Indeed, every cycle of AN is,

being a cycle, necessarily contained in a strongly connected

component of AN ; hence in particular, every cycle of the maximal

(co-)alternating tree is also contained in a strongly connected

component of AN ; yet since C is the only strongly connected

component of AN , every cycle of the maximal (co-)alternating tree

is contained in C, meaning that the maximal (co-)alternating tree

itself is contained in C.
After an exhaustive analysis of the strongly connected compo-

nent C and of all its cycles (Table 2) we observed no maximal

alternating trees with length above v5. Conversely, we found 3

maximal co-alternating trees of AN with length v6. For sake of

clarity, we describe one such maximal co-alternating tree: it

consists of an alternating sequence of seven cycles included one

into the other, summarised in Table 3 below and illustrated in

Figure 10. Notice that there is no alternation between C0 and C1

because both cycles C0 = (0, 0) and C1 = (0, 384, 223, 511, 63, 33,

0) are spurious. According to these results, it follows from

Theorem 6 that the attractor-based complexity of network N is

v6 and that N is non-self-dual.

Discussion

The present work revisits and extends in light of modern

automata theory the seminal studies by McCulloch and Pitts,

Minsky and Kleene concerning the computational power of

recurrent neural networks [1–3]. We present two novel attractor-

based complexity measures for Boolean neural networks, and

finally illustrate the application of our results to a model of the

basal ganglia-thalamocortical network.

More precisely, we prove two computational equivalence

between Boolean neural networks and Büchi and Muller

automata, and deduce from these results two hierarchical

classifications of Boolean recurrent neural networks based on

their attractive behaviours. The hierarchical classifications are

obtained by translating the Wagner classification theory from the

v-automaton to the neural network context. The first classification

concerns the neural networks characterised by the specification of

an output layer and the properties of the attractor dynamics

associated with the activation of that output layer. In this case, the

obtained hierarchical classification corresponds to a decidable pre-

well ordering of width 2 and height of vz1. The second

classification concerns the neural networks whose conditions on

the type specifications of their attractors have been totally relaxed.

In this case, the resulting hierarchy is significantly richer and

consists of a decidable pre-well ordering of width 2 and height of

vv. We prove that both hierarchical classifications are decidable

and provide the decidability procedures aimed at computing the

degrees of the networks in the respective hierarchies. We also show

that the shorter hierarchy corresponds to an initial segment of the

longer one in a precise sense. The notable result is the proof that

the two hierarchical classifications are directly related to the

attractive properties of the neural networks. More precisely, the

degrees of the Boolean neural networks in the hierarchies

correspond to the ability of the networks to maximally alternate

between visits of meaningful and spurious attractors along their

evolutions. The two hierarchies therefore provide two novel

complexity measurments of Boolean recurrent neural networks

according to their attractive potentialities. These complexity

measurements represents an assessment of the computational

power of Boolean neural networks in terms of the significance of

their attractor dynamics.

Attractor-Based Complexity Measurement
The degree of a neural network N in the RNN hierarchy or in

the complete RNN hierarchy corresponds precisely to the length

of a maximal alternating chain or alternating tree contained in the

graph of its corresponding automaton AN , respectively. Since

alternating chains and trees are described in terms of accessibility

and inclusion relations between cycles of AN , and according to the

biunivocal correspondence between cycles of AN and attractors of

N , it follows that the degree of a neural network N corresponds

precisely to some intricacy relation – accessibility and inclusion –

between the set of its meaningful and spurious attractors.

In order to better explain the attractor-based complexity

measurement, suppose that some network N follows the periodic

infinite evolution es~½~xx0~xx1~xx0~xx2�v, where~xx0,~xx1,~xx2 are states ofN .

It follows that N alternates infinitely often between the two cycles

of states ~xx0~xx1~xx0 and ~xx0~xx2~xx0, or equivalently, between the two

attractors A1~f~xx0,~xx1g and A2~f~xx0,~xx2g. If we suppose that A1 is

Table 2. Number of cycles and constitutive cycles found for
each starting state of the strongly connected component C.

State # cycles # constitutive cycles

0 68 24

31 47 20

33 87 24

63 93 21

95 39 21

127 21 17

128 63 24

159 77 22

161 72 20

191 52 19

223 43 21

255 53 17

384 67 24

417 35 20

479 48 16

511 84 21

doi:10.1371/journal.pone.0094204.t002
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meaningful and A2 is spurious, then N alternates infinitely often

between a meaningful and a spurious attractor along the evolution

es. However, note that N also visits infinitely often the composed

attractor A12~f~xx0,~xx1g|f~xx0,~xx2g~f~xx0,~xx1,~xx2g. Hence, if A12 is

meaningful (resp. spurious), then N not only alternates infinitely

often between a meaningful and a spurious attractor A1 and A2

respectively, but also visits infinitely often the third composed

meaningful (resp. spurious) attractor A12.

In fact, for any infinite evolution es, there always exists a unique

such maximal attractor (maximal for the inclusion relation) that is

visited infinitely often. Let us call this attractor the global attractor

associated to es. The attractor-based complexity measurement can

now be understood as follows. A network N is more complex than

a network N 0 iff for any infinite evolution es’ of N 0, there exists a

corresponding infinite evolution es of N that can be build

‘‘simultaneously’’ to es’ (in a precise sense described below) and

such that, after infinitely many time steps, the types of global

attractors visited by es and es’ are the very same. In other words, a

network N is more complex than a network N 0 iff N is able to

mimic step by step every possible infinite evolution of N 0 in order

to finally obtain a global attractor of the same type.

Figure 9. A cycle and its constitutive cycles. a. Among all cycles that can be observed starting from state 0 (indicated by the short arrow
showing the entry point), we consider here an example, i.e. the cycle (0, 0, 384, 223, 511, 191, 63, 33, 128, 95, 33, 0). b. This cycle contains three
constitutive cycles (0,0), (0, 384, 223, 511, 191, 63, 33, 0) and (33, 128, 95, 33) that were assigned with type specification spurious (dotted line),
meaningful (solid line), and spurious (dotted line), respectively. c. Sequence of states with graphical representation of the corresponding activated
nodes of the basal ganglia-thalamocortical network for the spurious constitutive cycle (0,0). d. Sequence of states and activated network areas for
the meaningful constitutive cycle (0, 384, 223, 511, 191, 63, 33, 0). e. Sequence of states and activated network areas for the spurious constitutive
cycle (33, 128, 95, 33).
doi:10.1371/journal.pone.0094204.g009
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This property can actually be precisely expressed in terms of

game-theoretic considerations. Consider the game G(N 1,N 2)

between networks N 1 and N 2 wholes rules are the following. Both

networks begin in the rest state. Network N 1 begins the game and

N 1 and N 2 play in turn during infinitely many rounds. At every

step, N 1 chooses a possible next state (accessible from its previous

one), and N 2 answers by either also choosing a possible next state

(accessible from its previous one), or by skipping its turn. However,

N 2 is obliged to chose infinitely many next states during the game.

After infinitely many time steps, N 1 and N 2 will have produced

two infinite evolutions es1
and es2

, respectively. If the types of the

global attractors of N 1 and N 2 are the same, N 2 wins the game.

Otherwise, N 1 wins the game. One can prove that the attractor

based complexity measures of N 1 and N 2 can then be expressed

as follows: the degree of N 2 is higher than that of N 1 iff N 2 has a

winning strategy in the game G(N 1,N 2).

In other words, a network N is more complex than N 0
according to our attractor-based complexity iff N is capable of

mimicking N 0 in every of its possible attractive behaviours. Two

networks N and N 0 are equivalent if both are capable of

mimicking each other in every one of its possible attractive

behaviours. Assuming that the set of all possible attractive

behaviours of a network is related to its computational power,

our attractor-based complexity degree therefore represents a

measurement of the computational power of Boolean neural

networks in terms of the significance of their attractor dynamics.

Finally, note that the degree of a neural network in the RNN

hierarchy or in the complete RNN hierarchy is intimately related

to the structure of this network, more precisely to its connectivity.

Indeed, for any neural network N that would be given without

any output layer or type specification of its attractors, it is possible

to compute, by some graph analysis, the maximal alternating

chains or alternating trees that could be contained in the graph of

Figure 10. A maximal co-alternating tree of the deterministic Muller automaton AN . Panels 0 to 7 illustrate the sequence of eight cycles
(C0,C1,C2,C3,C4,C5,C6,C7) one included into the next. Cycles C0, C1 , C3 , C5 , and C7 are spurious whereas cycles C2 , C4, and C6 are meaningful. The
sequence of cycles (C1,C2,C3,C4,C5,C6,C7) compose a maximal co-alternating tree of AN . This maximal co-alternating tree contains 6 alternations
between spurious and meaningful cycles, and thus has a length of v6 . Therefore, the attractor-based degree of N equals v6 .
doi:10.1371/journal.pone.0094204.g010

Table 3. A maximal co-alternating tree of N of length v6 referred to Figure 10.

Name State sequence Specification type

C1 (0,384,223,511,63,33,0) spurious

C2 (0,384,223,511,191,63,33,0) meaningful

C3 (0,384,223,511,191,63,33,128,95,33,0) spurious

C4 (0,384,223,511,63,161,159,511,191,63,33,128,95,33,0) meaningful

C5 (0,384,223,511,191,63,161,159,255,63,33,128,95,33,0) spurious

C6 (0,384,223,127,33,128,95,417,159,255,63,161,159,511,191,63,33,0) meaningful

C7 (0,384,223,127,33,128,95,417,159,255,63,61,31,161,159,511,191,63,33,0) spurious

doi:10.1371/journal.pone.0094204.t003
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its corresponding automaton AN , and therefore, by theorems 3

and 6, to know the maximal degree that this network could be able

to achieve in the RNN or in the complete RNN hierarchy, if the

type specification of its attractors were optimally distributed. In

other words, any neural network, according to its connectivity

structure, contains a potential maximal degree, which is achieved

only if the set of its attractors are optimally discriminated into

meaningful and spurious types. Hence, based on its connectivity, a

certain network could be characterised by a high potential

maximal degree, but in practice, due to a very limited

discrimination – i.e. non-alternation – between its spurious and

meaningful attractors, it will exhibit a low degree of network

complexity.

Significance of measuring network complexity
In an application of our network complexity measurement to a

model of a real brain circuit, we demonstrated that, under specific

assumptions of connectivity and dynamics, the basal ganglia-

thalamocortical network can be modeled by a network of degree

v6. Why is it so interesting to know this degree? What kind of

increased understanding of that network do we gain from that?

The degree of network complexity for a given network is

important to be determined if we want to assess the computational

power that can be achieved by that network. In other words, the

degree of network complexity is a functional characteristic of a

given network.

For example, a model of the basal ganglia-thalamocortical

network with a complexity of degree v6 is able to perform all

possible computations made by a model of the same network with

a complexity of degree v4 and many more computations in

addition. If we were able to associate certain functional states of

cognitive relevance (or certain pathological conditions of clinical

relevance, respectively) to an increase (or to a decrease,

respectively) in network complexity, we would certainly gain a

better insight into the role and the factors that modulate the

operations executed by certain brain circuits.

Then, how and why the network complexity of a model of the

basal ganglia-thalamocortical network could vary? The degree of

complexity of a network is upper bounded by its potential maximal

degree. In the next section, we discuss how control parameters can

affect network dynamics and eventually its complexity degree.

Control parameters of network dynamics
The central hypothesis for brain attractors is that, once

activated by appropriate activity, the network behaviour is

maintained by continuous reentry of activity, thus generating a

high incidence of repeating firing patterns associated with

underlying attractors [37,38]. The question whether the attractors

revealed by certain patterns of activity are spurious or meaningful

cannot be answered easily. Certain patterns may repeat above

chance and occur transiently during the evolution of a network

[23,55] and during the transient inactivation of part of the

newtwork, as shown experimentally with thalamic firing patterns

during reversible inactivation of the cerebral cortex [60,107]. On

the other hand, patterns and attractors per se may reveal an

epiphenomenon or a byproduct of the network dynamics, thus

being classified as spurious. However, changing conditions and

association of attractors into higher-order attractors may turn a

spurious into a meaningful type, and vice versa. For this reason, in

the present paper, we have emphasised the importance of the

specification types of the constitutive cycles and how these affect

the specification type of a cycle.

The measurements of networks complexities refer to the

possibility of networks’ dynamics to maximally alternate between

attractors of different types along their evolutions. This is

interesting for an overall assessment of the properties of a network

because it associates the computational power of that network with

the significance of their attractor dynamics.

The excitatory/inhibitory balance in a neural network is the

major factor affecting the dynamics of its activity [38,109–111].

The activity of the basal ganglia-thalamocortical network is

modulated by a complex set of brain structures, including the

dopaminergic (including those from the substantia nigra pars

compacta like the nigrostriatal and those from the ventromedial

tegmental area), cholinergic (including those from the basal

forebrain), the noradrenergic (including those from locus coer-

uleus), serotoninergic (including those from the dorsal raphe),

histaminergic (from the tuberomamillary nucleus) and orexinergic

nuclei (from the lateral and posterior hypothalamus) [103,112–

115]. These neuromodulators affect, among other parameters, the

synaptic kinetics (i.e., the decay time of the synaptic interaction)

and the cellular excitability, thus producing stable or unstable

spatiotemporally organised modes of activity and rapid state

switches [69,111,116–119]. The effect of cholinergic modulation

exerted by the basal forebrain is particularly noticeable to this

aspect [120–122].

The possible different dynamics of a given network can be

represented by an equilibrium surface where each point is

determined by a network complexity associated with two (in the

simplest abstraction) independent variables. Such a situation is

illustrated in Figure 11 by the cusp catastrophe of the Catastrophe

theory [108]. In our example, the two control parameters are the

excitability and the synaptic kinetics. Depending on the ranges of

the parameters that control the network dynamics, the network

complexity may remain identical or only slightly modified, in

which case we refer to a ‘‘smooth’’ path on the network dynamics

surface. In other cases, small changes in the parameter values may

provoke rapid state switches corresponding to ‘‘sudden’’ changes

in network complexity (e.g., see [111]).

The network dynamics surface has a singularity represented by

a fold (or Riemann-Hugoniot cusp) in it. A bifurcation set is

defined by the thresholds where sudden changes can occur,

depending on the initial conditions, by projecting the cusp onto

the control surface. The network complexity, as defined in this

study, depends on the maximal (co-)alternation between spurious

and meaningful attractors. In the network dynamics surface, the

edge toward the fold (point A, in Figure 11) is the starting point of

separation between two surfaces. One surface is the top sheet

representing network dynamics with a high degree of complexity

because of the presence of deterministic chaos enabling the

possibility to increase the (co-)alternation by mean of chaotic

itinerancy (point B, in Figure 11) [66,67,69]. The other surface is

the bottom sheet reflecting the dominance of stochastic dynamics,

hence absence of alternation (point C, in Figure 11). Hence, as the

network dynamics moves out from the edge near the fold the

dynamics is diverging and forced to move toward one of the two

opposing behaviours. The path that will be followed by the

dynamics depends on the values of the control parameters defining

the state of the neural network just prior to reaching the fold.

Sudden transitions are accounted for at the edges of the fold, for

example as the stochastic dynamics moves along the surface

toward the pleat, at some point a small change in control

parameters may cause a sudden shift such that, after a long

interval without cyclic activity, quasi-random activity develops into

quasi-attractors and long cycles may suddenly appear containing

many constitutive cycles and many alternations between spurious

Attractor-Based Complexity of Neural Networks
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and meaningful attractors, e.g. tuning thalamic activity by

corticofugal activity [123,124].

Conclusion
The present work can be extended in at least three directions.

First, it is expected to study the computational and dynamical

complexity of neural networks induced by other mathematical bio-

inspired criteria. Indeed, the approach followed in this paper

provides a hierarchical classification of neural networks according

to the topological complexity of their underlying neural languages,

and subsequently, according to the complexity of their attractive

behaviours. However, it remains to be clarified how this natural

mathematical criterion could be translated into the real biological

complexity of the networks. Other complexity measures might

bring further insights to the global understanding of brain

information processing.

Secondly, it is envisioned to describe the computational power

of more biologically oriented neuronal models. For instance, first-

order recurrent neural networks provided with some simple spike-

timing dependent plasticity (STDP) rule could be of interest

[48,125–128]. Also, neural networks equipped with more complex

activation function or dynamical equations governing the mem-

brane dynamics could be relevant [129]. Important preliminary

steps in this direction were made by providing a description of the

computational capabilities of static/evolving rational-weighted/

analog recurrent neural networks involved in a classical as well as

in a memory active and interactive paradigm of computation

[6,11,27,31–33].

The third and maybe most important extension of our study is

oriented towards the application of our new attractor-based

complexity measurement to other examples of real neural

networks, and to studying the effect of modulatory projections in

controlling the network complexity. Indeed, the parameters that

control neural dynamics (e.g., excitability and synaptic kinetics) are

driven by so-called modulatory projections, such as the cholinergic

and serotoninergic projections.

Finally, we believe that the theoretical approach to the

computational power of neural models might ultimately bring

further insight to the understanding of the intrinsic natures of both

biological as well as artificial intelligences. On the one hand, the

study of the computational and dynamical capabilities of brain-like

models might improve the understanding of the biological features

that are most relevant to brain information processing. On the

other hand, foundational approaches to alternative models of

computation might lead in the long term not only to relevant

theoretical considerations [130,131], but also to practical applica-

tions.

Supporting Information

File S1 Example S1, Description of a deterministic Büchi

automaton, and illustration of the concept of an alternating chain.

Figure S1, A deterministic Büchi automaton A. The nodes

and edges correspond to the states and transitions of A,

respectively. The node i corresponds to the initial state, as

indicated by the short input arrow. The double-circled red nodes

correspond to the final states of A. The Büchi automaton A
contains a maximal alternating chain of length 2, and a maximal

co-alternating chain of length 2 also.

(ZIP)

File S2 Example S2, Description of a deterministic Muller

automaton, and illustration of the concept of an alternating tree.

Figure S2, A Muller automaton A. The underlying alphabet

of A is fa,b,c,d,eg. The table T(P(Q) represents the set of cycles

Figure 11. Cusp catastrophe model. We consider an example of network dynamics controlled by two independent parameters, the synaptic
kinetics and the cell excitability. Divergent behaviour is accounted for since as the dynamics moves out from the edge (point A) toward the fold,
which is the starting point of separation between an upper and lower limbs, the network dynamics is forced to move towards one of the two
opposing behaviours: either point B for network dynamics dominated by deterministic chaos and chaotic itinerancy, or point C for network dynamics
dominated by stochastic activity.
doi:10.1371/journal.pone.0094204.g011
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ofA that are successful. All other cycles ofA are by definition non-

successful. The successful and non-successful cycles are denoted in

green and red, respectively. This Muller automaton A contains a

maximal alternating tree of length v1:3zv0:2.

(ZIP)

File S3 Example S3, Illustration of the translation procedures

described in Propositions 1 and 2. Figure S3, Panels a, b.
Translation from a neural network to its corresponding determin-

istic Büchi automaton. a. The neural network N of Figure 1

provided with an additional specification of an output layer

V~fx3g denoted in red and double-circled. b. The deterministic

Büchi automaton AN corresponding to the neural network N of

panel a. The final states are denoted in red and double-circled, and

the active status of the output layer, namely cell x3, is emphasised

by a bold red 1. Panels c, d. Translation from a deterministic

Büchi automaton to its corresponding neural network. c. A

deterministic Büchi automaton A with three states. The initial

state q1 is denoted with an incoming edge. The final state q3 is

emphasised in red and double-circled. d. The network NA
corresponding to the Büchi automaton A. The output layer is

represented by the cell x5, denoted in red and double-circled. The

background activities are labeled in blue.

(ZIP)

File S4 Example S4, Illustration of the decidability procedure

of the RNN hierarchy.

(ZIP)

File S5 Example S5, Illustration of the translation procedures

described in Propositions 4 and 5. Figure S4, Panels a, b.
Translation from a Boolean neural network provided with a type

specification of its attractors to its corresponding deterministic

Muller automaton. a. A neural network N provided with an

additional type specification of each of its attractors. In this case,

N contains only one meaningful attractor determined by the

following set of states f(0,0,0)T ,(1,0,0)T ,(0,1,1)Tg; all other ones

are considered as spurious. b. The deterministic Muller

automaton AN corresponding to the neural network N of panel

a. Automaton AN works over alphabet B2, contains six states, and

possesses in its table T the sole cycle f(0,0,0)T ,(1,0,0)T ,(0,1,1)Tg,
which corresponds to the sole meaningful attractor of N . Panels
c, d. Translation from a deterministic Muller automaton to its

corresponding Boolean neural network provided with a type

specification of its attractors. c. A deterministic Muller automaton

A. The automaton works over alphabet B1, has three states, and

possesses the two successful cycles fq2g and fq3g, as mentioned by

its table T~ffq2g,fq3gg. d. The neural network NA corre-

sponding to the Muller automaton A of panel c. The network NA
contains two letter cells, one delay cell, and three state cells to

simulate the two possible inputs and three states of automaton A.

It has only two meaningful attractors corresponding to the two

successful cycles of automaton A.

(ZIP)

File S6 Example S6, Illustration of the decidability procedure

of the complete RNN hierarchy.

(ZIP)
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