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Abstract: In this paper we introduce a method that offers a detailed overview of the entanglement of
an open protein chain. Further, we present a purely topological model for classifying open protein
chains by also taking into account any bridge involving the backbone. To this end, we implemented
the concepts of planar knotoids and bonded knotoids. We show that the planar knotoids technique
provides more refined information regarding the knottedness of a protein when compared to established
methods in the literature. Moreover, we demonstrate that our topological model for bonded proteins is
robust enough to distinguish all types of lassos in proteins.
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1. Introduction

Interest in knots in protein structures dates back almost 25 years [1]. The existence of knots in
a protein backbone results in kinetic and folding difficulties. As such, one may expect a bias against
the formation of knots during evolution, but this is not the case. It has been conjectured that knots
may provide structural advantages such as protection against degradation, thermal stabilization,
or formation of regions with an increased number of contacting amino acids, which is a favorable
environment for catalytic sites [2,3]. These factors, together with the belief that knowledge of the
folded state of a protein may provide insight into the folding pathways that the backbone has followed
makes the understanding of the topology of a protein chain very important.

Traditional methods of studying the entanglement of a protein implemented mathematical tools
borrowed from knot theory that required that the backbone be a closed loop. In recent works, proteins
were analyzed in terms of their global topology as open chains using the concepts of knotoids [4] and
virtual knots [5,6]. Both methods produce similar results, yet the knotoids approach appears to be
more sensitive in detecting pre-knot formations in the protein backbone [4].

Until now there has been no purely topological way to study the entanglement of an open protein
chain that takes also into account the possible bridges (e.g., disulphide bridges) that may appear in the
protein’s conformation. However, there are geometric methods that consider structures containing a
wide range of bridge types (cysteine bridges, C-N interactions, C-O interactions, etc.) and covalent
cofactor bonds [7–12]. These studies concluded that knots and links in proteins may appear by carefully
selecting closed paths found in parts of the polypeptide chain, cofactors and disulphide bridges. On the
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other hand, studies on RNA folding [13,14] produced a topological method that effectively studied
the folding of such biomolecules by interpreting folding nodes as rigid vertices and then substituting
tangles at the bonded sites.

In this paper, we first present a refinement of the methods of [4] using the concept of planar
knotoids and we show that it produces an even more detailed overview of the topology of an open
protein chain. Then, we adapt the methods found in [13] to the case of proteins with disulphide bonds
and we establish a robust, purely topological model that is able to distinguish such proteins in terms
of their topology. Finally, we apply our model to the study of lassos which are entanglement motifs
that arise in the conformations of proteins with cystine bridges and have been recently introduced
by Niemyska et al. in [9] and studied further in terms of their classification using computational
tools [10,15].

2. Knotoids

Knotoids are open-ended diagrams whose endpoints can be in different regions of the diagram,
generalizing in this way the notion of a long knot, or a 1-1 tangle, and thus providing solid foundations
for the definition of open knots (see Figure 1). Knotoids were first introduced by Turaev [16] and were
further studied by Neslihan Gügümcü and Louis Kauffman [17].

a b c

Figure 1. Various types of knotoids. A knot-type knotoid (a); a proper knotoid (b); and a non-trivial
planar knotoid (c).

In formal mathematical terminology, a knotoid diagram is defined as a generic immersion of the
unit interval in an oriented surface Σ that appears as a curve in the plane which crosses itself with
different tangent directions at each crossing point. The crossing points are endowed with the extra
information of over-/under-passing arcs. Moreover, they are finite and isolated so that we never see
more than two local segments of the curve crossing one another. The endpoints of the interval are
carried through the generic immersion to two distinct points in Σ that are called the tail and the head
of the knotoid diagram, or just endpoints of the knotoid diagram, and they are distinct from all of the
double points [16,17]. A knotoid diagram is by convention oriented from tail to head. The knotoid
notion can be extended to the notion of a multi-knotoid, which is a union of one long segment and a
finite number of loops. Such an extension can be seen as an image of the unit interval and several unit
circles S1 under a generic immersion.

Two knotoid diagrams are called isotopic if one can be deformed to the other by a finite number
of elementary moves on the diagrams called Reidemeister moves (see Figure 2a–c) that are performed
away from the endpoints, together with local isotopy moves of the diagrams that result from isotopy
deformations of the surface Σ such as stretching, shrinking and bending. Note that the sliding of
an endpoint over or under other parts of a knotoid diagram is forbidden in the theory of knotoids.
The forbidden moves are illustrated in Figure 2d. The Reidemeister moves together with local
planar isotopy moves generate an equivalence relation on the set of knotoid diagrams in Σ and the
corresponding equivalence classes are called knotoids [16]. Depending now on whether the endpoints
of the diagram lie in the same or different local region of Σ, we distinguish knotoids into two categories:
knot-type knotoids and proper knotoids (see Figure 1a,b). In a knot-type knotoid diagram, if one decides
to close the diagram with an arc, the newly introduced arc may not create any additional crossings to
the diagram.
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Figure 2. The Reidemeister moves (a–d) and the forbidden moves (e) on a knotoid diagram.

In [16,17] knotoids are mostly studied on the 2-sphere S2. In this paper, we consider knotoids
in the two-dimensional (2D)space R2. More specifically, planar knotoids are defined as equivalence
classes of knotoid diagrams in the plane R2 (see Figure 1c). Planar knotoids provide a more refined
way to classify knotoids since there are examples of knotoids that are non-trivial on the plane but
become trivial when they are considered in S2. This is because we can always take an arc of the knotoid
diagram in S2, push it towards a pole of the sphere, across it and all the way around the surface of S2

(see Figure 3) [16,17]. If we consider the same knotoid as in the previous example on a plane, we will
see that we can deform and twist the knotoid but we will never have the freedom to move arcs in a
way that will unknot the curve without violating the forbidden moves. Note from Figures 1c and 3
that knot-type knotoids in the plane can be quite different from knot-type knotoids in the sphere.

a b c

d e f

Figure 3. The planar knotoid k2.3p is trivial when considered in S2. We start by placing k2.3p in S2 (a).
Then, the lower arc is stretched (b) and pulled towards and past the south pole, around the back (c) and
finally is brought up again (d). The application of two Reidemeister I moves completes the proof (e,f).
The dotted lines indicate parts of the diagram that are on the back side of the sphere.
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As explained in [17], a knotoid diagram gives rise to a multitude of embedded open curves
in the three-dimensional (3D) space in the following way. We consider the plane of the diagram is
the horizontal plane in 3D-space. One pushes the overpasses of the diagram slightly into the upper
half-space and the underpasses into the lower half-space while keeping the endpoints attached on two
distinct lines passing through the endpoints, and are perpendicular to the plane that the diagram lies
in. In this way one obtains a series of embedded open curves in R3, all of which can be deformed to
one another with respect to those infinite lines (see Video S1).

A three-dimensional curve on the other hand corresponds to many different knotoid diagrams
since different projection directions may yield different and non-equivalent diagrams (see Video S2).
Thus, the knottedness of an embedded curve in the 3D space is a probability distribution over all of
its possible projections. Sampling the distribution allows one to approximate the dominant knotoid,
which is the knotoid that has the highest probability of appearance.

3. Results

3.1. Analyzing Open Protein Chains Using Knotoids

Proteins appear in various, quite often very complicated conformations and, as such, the study of
their topology has proven to be a challenge. In order to determine the entanglement type of a protein,
one usually considers its backbone as an open polygonal curve and then simplifies it by applying
an algorithm that preserves the underlying topology. Probably the most well-known technique in
the literature is the triangle elimination or KMT (Koniaris-Muthukumar-Taylor) algorithm [18–20].
Many suggestions have been made on how to close an open 3D curve and they fall into two large
categories [1,3,19,21–25]. First are the single closure techniques, such as the direct closure [19] and
the out of the center of mass closure [3] techniques, where the chain is closed by a single arc that
connects the endpoints. These methods are computationally fast but depending on the particular
closure recipe the same protein may end up forming different knots. The second category comprises
probabilistic methods such as the uniform closure technique [22,24,25], where the chain is first placed
inside a large enough sphere (usually a radius of twice the length of the chain will be enough) and a
simplification algorithm is applied. Each point of the sphere is now a possible closure point of the open
chain. The closure is achieved by picking a point and then extending two rays, one from each endpoint
of the chain, towards the chosen point and connecting them. The knot type, as in the case of knotoids
that was discussed above, is a probability distribution. Such methods are less biased but they are more
computationally intensive as the knot type of each closure has to be computed. Both categories have
the disadvantage of altering the geometry of the studied object.

If one now chooses to study the entanglement of the protein backbone using the concept of
knotoids, then the procedure is similar to the case of the uniform closure. Once again, the protein chain
lies into a large enough sphere, but in this case each point of the sphere corresponds to a projection
direction on a surface that lies outside the sphere. When the projection direction is determined, the two
infinite lines are introduced and a simplification algorithm is applied on the chain in a way that the
infinite lines are never crossed. The results then can be summarized on a map that identifies regions
on a sphere and each distinct region corresponds to the projection directions in spherical coordinates
that produce the same knotoid type. Moreover, each distinct region is color coded according to the
knotoid type it carries. We shall call such a map the projection globe of a protein.

Coming back to the discussion in Section 2 and considering the differences between planar and
spherical knotoids, one can further refine the projection map of an open protein chain by refraining
from pushing arcs around the surface of the sphere and considering projections of the chain on a
plane instead. This will allow projections that were previously detected as unknotted to emerge as
non-trivial planar knotoids. In this paper, we apply this approach to the protein with Protein Database
(PDB) entry 3KZN (N-acetyl-L-ornithine) [26]. This protein is known to form a trefoil knot or a k3.1◦

knot-type knotoid. Recall that knot-type knotoids have both endpoints in the same region of the
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diagram and if one decides to close the diagram with an arc, the newly introduced arc may not create
any additional crossings to the diagram. In our notation, a knotoid is represented by kX.Y, where X is
the number of crossings of the knotoid diagram in question and Y corresponds to the position of the
knotoid in our table among knotoids with the same number of crossings. Moreover, an exponent ◦

indicates a knot-type knotoid, an exponent p a planar knotoid, and an exponent − a knotoid with its
crossings inverted. Comparing now the projection globe obtained from the planar knotoids approach
to the one derived from the spherical knotoids approach, as well as to the one that is derived from
the uniform closure technique, we can see that new regions are gradually emerging as we move from
knots to spherical knotoids and then to planar knotoids (see Figure 4). The reason behind this is that
the number of classes of planar knotoids is larger than the number of classes of spherical knotoids, as
discussed in Section 2 and shown in Figure 3. The diagrams in Figure 3 show a configuration that will
simplify if the arc surrounding the endpoints could be swung all the way around a two- dimensional
sphere. This cannot be done in the plane, and thus the diagram represents a knotoid that is not trivial
in the plane but is trivial on the sphere. Figure 5 shows equirectangular projections of each projection
globe shown in Figure 4. From the above we can conclude that analyzing open protein chains as planar
knotoids reveals more details of their topology.
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Figure 4. The projection globes for (a) the uniform closure technique; (b) the spherical knotoids
technique; and (c) the planar knotoids technique.
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Figure 5. The projection maps for (a) the uniform closure technique; (b) the spherical knotoids
technique; and (c) the planar knotoids technique.

3.2. A Topological Model for Bonded Open Protein Chains

Motivated by the ideas in [13,14], in this section we introduce a purely topological model for
analyzing the topology of bonded open protein chains in terms of planar (multi-) knotoids.

A bonding site of a protein chain consists of two local strands of the chain and a bonding arc with
its ends based on these strands, as illustrated in Figure 6. We adopt the projection of a space curve
into planes resulting in knotoid diagrams, to a projection for a bonded protein chain. More precisely,
we choose a projection direction determined by two parallel (infinite) lines passing through the termini
of the chain and we project the protein chain into the plane that is orthogonal to these lines. We only
consider projection directions that give a generic diagram, in the sense that we have only finitely
many self-crossing points and that a bonding site is represented in the projection in a parallel or in
anti-parallel fashion. The information of each bond is represented with dotted segments connecting
the two ends involved. Endowing each self-intersection point with the weaving information of the
chain in the space, we obtain an open-ended knotted diagram in the projection plane with the extra
information of bonds. We call such a diagram a bonded knotoid diagram.

We consider each bonding site in a bonded knotoid diagram locally as a rigid planar formation.
As such, a bonding arc in a diagram is not subjected to any topological deformations in the plane such
as bending, shrinking or enlarging, and any twisting of the bonding arc is avoided. On the other hand,
local strands of bonding sites are topologically flexible. More precisely, we allow on bonded knotoid
diagrams the usual Reidemeister moves for knotoids away from the bonds and away from any of
the endpoints, and also we allow the bonded moves illustrated in Figure 6, each of which is realized
in bonding sites. As seen in Figure 6a–d, the first two moves, namely bonded twist moves 1 and 2,
introduce a twisting in the strands neighboring the bonds. These moves result from a 180-degree turn
of the bond, about the vertical and the horizontal axes, respectively. The bonded Reidemeister III move
allows an edge of the diagram to slide over or under a bond as a whole without any other change
in the bonded knotoid diagram. An edge may be located over or under a bonding arc. The bonded
slide moves illustrated in Figure 6e,f allow the movement of such an edge located in between the local
strands of the bonding site, so that the bonding site is free from any edges other than the bonding
arc. The above moves generate an isotopy relation for bonded knotoid diagrams and an isotopy class
of bonded knotoid diagrams is a bonded knotoid. The isotopy moves of bonded knotoid diagrams
are analogous to what is known in graph theory as rigid vertex isotopy moves [27], if one replaces a
bonding site with a rigid vertex.
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Figure 6. The bonded moves.

In order to obtain a (multi-) knotoid diagram from a bonded knotoid diagram, we substitute each
bonding site by a chosen full twist (a 360-degree twist) using the following convention. If the local
strands are directed anti-parallel then we substitute the bonding site by a full twist of the strands along
the bonding arc, as illustrated in Figure 7a,b, and the substitution is known as being of type D. If the
local strands are directed parallel then we substitute the site by a full twist of the strands, as shown
in Figure 7c,d and the substitution is known to be of type C. Note that insertions of type D make
disconnections in the diagram, while those of type C retain connectivity. Either type of full twists can
be positive (right-handed) or negative (left-handed). In this paper, all full-twist substitutions are of
a positive type. After replacing all bonding sites we end up with a planar (multi-) knotoid diagram.
Besides, the isotopy moves defined on bonded knotoid diagrams are consistent with the isotopy
moves defined on knotoid diagrams after making the twist substitutions. It follows that if two bonded
knotoid diagrams are isotopic then the corresponding (multi-) knotoid diagrams obtained by full-twist
substitutions are isotopic. This means that any topological invariant of knotoids can be used for
analyzing the topological type of a knotted bonded open protein chain modeled by a bonded knotoid.
There are mainly three types of protein bonds: sequential, nested, and pseudoknot-like type bonds,
as illustrated in Figure 7e–g. As we see in the figure, all these types of bonds are detected by type D
substitutions as compared to the same formations with the bonds ignored. This fact can be proved by
applying knotoid invariants such as the Turaev loop bracket polynomial and the arrow polynomial.
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D-

a b

e

f
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D+

sequentially

linked

chain linked

knotted

C+

c d

C-

D+

D+

D+

Figure 7. Type D (a,b), and type C (c,d) substitutions. Type D substitutions distinguish (e) sequential,
(f) nested and (g) pseudoknot-like bonds by applying to the substitution a polynomial invariant for
knotoids like the Turaev loop bracket polynomial or the arrow polynomial.

An application of our model is illustrated in Figure 8 where we consider the protein with PDB
entry 2LFK (NMR solution structure of native TdPI-short) [28]. This protein contains two cysteine
bridges that appear between residues 24 and 51 (shown as green beads), and between 52 and 69
(shown as red beads) in Figure 8a,b. For demonstrative reasons we will discuss the application of
our model on a single fixed projection, however one has to have in mind that, following Section 3.1,
several projections of the backbone have to be analyzed in order to obtain an accurate overview of
the topology of the chain. We proceed now and consider the projection of the protein chain that is
shown in Figure 8c, which is a bonded knotoid diagram with two bonding sites. Notice that in the
green bonding site an arc of the diagram crosses over the bonding arc and so an immediate application
of a full-twist is not possible at this state. However, an application of a bonded Reidemeister III move
pushes the arc to the left, allowing now the application of a type C+ full-twist since the green bonding
site is in a parallel fashion. The situation for the red bonding site is straightforward. Here, we observe
that the bonding site is in anti-parallel fashion and so a type D+ full-twist substitution is immediately
applied giving rise to a multi-knotoid diagram with two components that can be evaluated with any
invariant for knotoids such as the Turaev loop bracket polynomial or the arrow polynomial. Of course,
if one drops the bonding information, the structure becomes unknotted. We note here that the same
protein has been analyzed in [11,12] for the existence of links where the cysteine bridges are closed with
a direct line instead of a full-twist substitution. This explains the difference in the detected link type.
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a b

c

bRIII D+

C+

Figure 8. The protein 2LFK as (a) a cartoon; and (b) a polygonal curve. Same colored spheres indicate
that there is a bond between them. More precisely, the green dots correspond to the pair of residues
with indices 24 and 51, while the red to the pair 52 and 69. Below (c) is the corresponding bonded
knotoid diagram and the appropriate substitutions. In the diagram the bonds are represented by
colored dashed lines.

An Application to Complex Lassos

A lasso is formed when a disulphide bond between two amino acids of the protein backbone
creates a closed loop that is called a cysteine or covalent loop (see Figure 9). The parts of the chain that
are not involved in the spanning of the loop are the tails of the lasso and if they are short enough,
the resulting structure is unknotted. However, in general cases at least one of the tails is long enough
to pass through the loop. There is great interest in understanding the impact of the existence of lassos
on the function and stability of proteins, as well as the way these structures fold and so it is important
to be able to distinguish between different types of lassos. In other words, we would like to know
if and how many times a tail is threaded through the loop. Until now, such an analysis was achieved
using a technique called minimal surface analysis. This technique is geometrical and it determines
how many times a tail pierces the minimal surface that can be spanned by the covalent loop. In what
follows, we propose an approach that utilizes bonded knotoid diagrams and we apply it on all motifs
that are presented in [9].

The protein chain together with the bonding information, that is the indices of the residues that
form the covalent bond, is placed inside a large enough sphere and then is projected on a number of
different planes. In this way, a bonded knotoids diagram is obtained from each projection and so we
proceed with applying the method that was discussed in Section 3.2. Since the bonding site of every
lasso is in an antiparallel fashion, we apply a single positive or negative type D full-twist and then we
evaluate the resulting diagram. The sign of the full-twist substitution is determined by the sign of the
crossing of the diagram that determines the first piercing of the loop.
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Figure 9. Distinguishing the lassos (a) L0; (b) L1; (c) L2; (d) LL1,1; and (e) Ls. The crossing the
determines the first piercing of the loop is positive and so a type D+ insertion is performed on the lassos.
The slipknot in L2 is detected through progressive trimming of the C terminus of the three-dimensional
curve and evaluating each resulting diagram, while the first two lassos are distinguished immediately
by the insertion. Insertions in lassos (d,e) distinguish them from the types that were already discussed,
but not from one another. Trimming the C terminus of the 3D chain leads to different substructures
allowing, thus, their distinction.

The simplest lassos are L0 and L1 in which the tail either does not pierce the loop at all, or does so
only once. They are distinguished immediately by our method, since the twist insertion at the site of the
cysteine bond produces the non-equivalent multi-knotoids M0 and M1, respectively (see Figure 9a,b).
The cases of lassos Li, where i > 1 is the number of times that the tail is threaded through the loop,
require more attention. The amount of times that a tail pierces the loop creates slipknot-like forms in
the conformation that remain undetected by regular topological tools (knot invariants). Indeed, twist
insertion will produce a multi-knotoid diagram that is topologically equivalent to either M0 or M1,
depending on whether i is even or odd. Therefore, in order to distinguish lassos of this type, we have
to go back to the 3D chain and study all possible substructures of it that include the bonding site.
Through progressive trimming of the C terminus of the chain, by projecting, by twist insertions, and
by evaluations of the resulting diagrams we can see that for the case of L2 (see Figure 9c), the trimming
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process causes the resulting multi-knotoids to shift between types M0, Mint, and M1. During this
process, the multi-knotoid of type Mint, which corresponds to the subchain which has one endpoint
inside the loop, is achieved twice which confirms the fact that one tail of the lasso is weaved through the
loop twice. The cases of Li with larger number of piercings are totally analogous with the multi-knotoid
Mint appearing i times. Finally, the cases of lassos LL1,1 (Figure 9d) and Ls (Figure 9e) are even more
complicated, since the twist insertion produces the same diagram for both. However, the trimming
the C terminus of the 3D chain of LL1,1 soon comes to an end. Otherwise, the bonding site will be
destroyed, while for the case of Ls there is no such issue and thus the chain includes a wider spectrum
of non-trivial substructures.

The evaluation of the topological type of such multi-knotoid diagrams can be achieved by the
Turaev loop bracket polynomial. Alternatively, one may use the arrow polynomial in order to track the
placement of the endpoints of the backbone after each trimming. More precisely, the arrow polynomial
gives an estimation for the distance between the endpoints of a diagram, that is the least number of
arcs that one has to cross in order to connect the two endpoints. This distance is defined as the height
of the knotoid [16,17].

4. Discussion

In this paper we first refined our methods for studying generic protein chains without an internal
connection [4] and then we added an extra layer to the complexity of such analysis by considering
protein chains with internal connections, including lassos. For this reason, we introduced a second,
robust topological model, which is an adaptation of the topological analysis of RNA chains [13] to the
case of proteins that contain disulphide bridges in their conformation. If the bonding information is
omitted from the second model, we then revert to the model for generic protein chains. Our methods
may provide new insight to the study of knotted proteins since the geometry of the chain is preserved,
and also because the information of various bonds can be now taken into consideration. Contrary to
the case of [13], our model for bonded proteins considers individual bonds between amino acids
instead of contracting stem regions to a single vertex. Additionally, we consider the projections of the
3D chains as possibly bonded, open diagrams (knotoids) instead of closed (knots) [13]. One possible
limitation of our models is that the resolution of the results depends on the number projections, where
each projection requires a separate computation. This could be computationally demanding, especially
for larger proteins. Finally, our topological models are not restricted solely to the study of proteins and
so they can be applied to the study of other biomolecules, synthetic polymers, lattice random walks,
random open polygons, and others.

5. Materials and Methods

5.1. Construction of Projection Globes and Maps

The projection map for each protein is created as follows: First the protein structure is imported
from the Protein Database (PDB) [29]. It is converted to xyz-coordinates and its backbone is extracted
(namely, the coordinates of the Cα atoms). Once the protein chain is reconstructed, it is placed inside
a large enough sphere and it is projected to 100 different fixed directions. We consider proteins that
do not contain gaps in their conformation. The projections correspond to vectors from the origin of
the sphere that point towards vertices uniformly distributed on the surface of the enclosing sphere.
Next, the Voronoi cells that correspond to these vertices are computed and each knotoid type is
weighted by the area of the associated cell [30]. In order to perform all the above procedures
(simplifications of the protein chain, projections and polynomial evalutations of the resulting diagrams)
we have used the program Knoto-ID that was developed by Dimos Goundaroulis and Julien Dorier.
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5.2. The Turaev Loop Bracket

The Turaev loop bracket polynomial f̂K(A, v) ∈ Z[A±1, v], is a 2-variable generalization of
the Kauffman bracket for planar knotoids, with the added extra variable assigned to nested loop
components enclosing a long segment component. The loop bracket polynomial can be also seen as a
special case of the three-variable Laurent polynomial fK(A, v, u) in Z[A±1, v, u±1], which is called the
extended bracket polynomial when u = 1 [16]. The loop bracket can be defined as follows:

f̂K(A, v) = (−A3)−wr(K)〈〈K〉〉, (1)

where wr(K) is the writhe of K, and 〈〈K〉〉 is the Turaev loop bracket polynomial. It is defined by the four
rules that are illustrated in Figure 10. The diagrams involved in Figure 10a,b are identical except at one
crossing. Further, this rule provides us a recipe to smooth all crossings of the knotoid diagram. At the
end of the smoothing process we will obtain a collection of circles together with a single long segment.
The rule in Figure 10c means that whenever we have a disjointed circle in a state, we can remove it
and multiply by (−A2 − A−2). The rule in Figure 10d assigns the value vk to k copies of a circle that
contain the long segment, k > 0.

K =(- A2 - A-2) K

= A + A-1

= A-1 + A

...

k

= vk

a

b

c

d

e= 1

...

Figure 10. The Turaev loop bracket rules. (a,b) The smoothing rules; (c) the loop value; (d) the value
for nested loops enclosing a long segment; (e) the long segment value.

5.3. The Arrow Polynomial

The arrow polynomial of knotoids was first introduced in [31] and then applied to knotoids
in [17] is a Laurent polynomial with infinitely many commuting variables; A, Λ0, Λ1, Λ2, . . . , Λn, . . .
The construction of the arrow polynomial is based on the oriented state expansion of the Kauffman
bracket, given in Figure 11a. Each crossing of a knotoid diagram is smoothed first in an oriented and
then in an disoriented way. A new combinatorial structure arises in the form of a pair of cusps by each
disoriented smoothing.

= A + A-1

= A-1 + A

K =δ K,  where  δ = (- A2 - A-2)

a
Λ

1
Λ

2

b

c

Figure 11. (a) Oriented state expansion; (b) Reduction rules for the arrow polynomial; and (c) a component
with one (Λ1) and two zig-zags (Λ2), respectively.
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The circular and open components resulting from each type of smoothing of crossings are
subjected to the reduction rules given in Figure 11b, each of which arises from the topological invariance
in the plane. We keep the information of cusps appearing in states by not eliminating a state component
with cusps forming zig-zags but rather assigning a new variable to this type of components. On the
other hand, cusps pointing to the same local side in the plane are eliminated. Eventually, each
circular component of a state contributes to the polynomial as a factor (−A2 − A−2) for that state.
Additionally, each open state component with i zig-zags is assigned the variable Λi . We define
the normalized arrow polynomial as the following sum over all states S of a knotoid diagram K,
where we denote the number of components in S by ‖S‖, and Λi is the variable assigned to the long
component of S.

A[K] = (−A3)−wr(K) ∑
S

A(# of A smoothings)−(# of B smoothings)(−A2 − A−2)‖S‖−1Λi. (2)

Additional variables assigned to long state components with irreducible cusps (in zig-zag form)
make the arrow polynomial a strong invariant for understanding the height of a knotoid. As shown
in [17], the maximum Λ-degree of the arrow polynomial, that is, the maximum integer i that we see as
an index of Λi-variables in the arrow polynomials, provides a lower bound for the height of a knotoid.
See Figure 12 for an example of a calculation of an arrow polynomial obtained from an insertion to a
simple bonded knotoid.

C+

A-1

A-1
A

A
A-1

A
A-1

A

Λ1

State expansion of the

arrow polynomial

A[K] = (-A
3
)
-2
(A

2
  Λ0 + (2 +  A

-2
 δ )Λ1)

Λ1Λ1
Λ0

K

Figure 12. Computing the arrow polynomial of a simple example.

We note here that the arrow polynomial can be generalized to a loop arrow polynomial for planar
knotoids, in analogy with the Turaev loop bracket polynomial, by assigning different variables to
circular state components in a state depending on whether they enclose a long segment (with or
without irreducible cusps, respectively) or not. This polynomial will be a subject of a subsequent paper.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/9/444/s1,
Video S1: Line isotopy, Video S2: Change of projection plane.
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