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Abstract

A copula de�nes the probability that observations from two time

series lie below given quantiles. It is proposed that stationarity tests

constructed from indicator variables be used to test against the hy-

pothesis that the copula is changing over time. Tests associated with

di¤erent quantiles may point to changes in di¤erent parts of the cop-

ula, with the lower quantiles being of particular interest in �nancial

applications concerned with risk. Tests located at the median provide

an overall test of a changing relationship. The properties of vari-
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ous tests are compared and it is shown that they are still e¤ective if

pre-�ltering is carried out to correct for changing volatility or, more

generally, changing quantiles. Applying the tests to daily stock return

indices in Korea and Thailand over the period 1995-9 indicates that

the relationship between them is not constant over time.

KEYWORDS: Concordance; quantile; rank correlation; stationar-

ity test; tail dependence.
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1 Introduction

Understanding and measuring the relationship between movements in di¤er-

ent assets plays a key role in designing a portfolio. The multivariate normal

distribution may not be suitable for this task for two reasons: asset returns

are not normally distributed and their comovements are not adequately cap-

tured by correlation coe¢ cients.

A more general description of dependence is given by the proportion of

cases in which the observation on one series is below (above) a given quantile,

given that the observation on the other series is below (above) a given quan-

tile. Looking at di¤erent quantiles allows us to focus on di¤erent aspects of
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the relationship. The underlying probabilities are given by the copula, which

is a joint distribution function with uniform marginals.

The copula may change over time. Evidence that this might happen is

provided by Van Der Goorbergha, Genest and Werker (2005) and Patton

(2006). Rodriguez (2007), in his study of Asian and Latin American stock

indices, �nds evidence of changing dependence during periods of turmoil and

concludes as follows. �Changes in tail dependence should be taken into ac-

count in the design of any sound asset allocation strategy. Failing to do so

can be expensive, as recent theoretical literature has demonstrated. More-

over, it is important to note that these changes are not necessarily captured

by correlation shifts.� Das and Upal (2004) highlight the costs of ignoring

regime shifts for asset allocation. Cherubini et al (2004, p 73-4) discuss the

relevance for the value at risk (VaR) of a portfolio.

The aim of this paper is to develop tests for changes in di¤erent parts of

the copula, as well as overall tests for changing dependence. These tests do

not require a model for the copula and they can be regarded as an extension

of the stationarity tests for time-varying quantiles proposed in Busetti and

Harvey (2007). The test statistics are constructed from time series of indi-

cator variables and their asymptotic distributions under the null hypothesis
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come from the family of Cramér-von Mises distributions. Most of the tests in

the literature, for example in studies of contagion, have been concerned with

tests of changes at known breakpoints. The tests proposed here have power

against breaks at unknown points as well as against gradual, but persistent,

changes.

Section 2 of the paper reviews the tests proposed in Busetti and Harvey

(2007) for individual series. The tests proposed for a changing copula are

described in section 3. Section 4 reports Monte Carlo experiments. Section 5

notes that the tests will be a¤ected if the marginal distributions change over

time. A set of Monte Carlo experiments investigate the performance of the

tests when pre-�ltering is carried out to allow for changing volatility in the

individual series. More generally we discuss how to correct for time-variation

in the quantiles of the individual series. However, the preferred overall test

for changing dependence is based on medians and if these are constant the

test is not a¤ected by movements in other parts of the distribution. The

application is in section 6, while section 7 concludes.
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2 Quantiles and Quantics

Let �(�) denote the � � th quantile. The probability that an observation

is less than �(�) is � ; where 0 < � < 1: Given a set of T observations,

yt; t = 1; ::; T , the sample quantile, e�(�); can be obtained by sorting the
observations in ascending order. Since several observations may coincide

with a sample quantile, a general de�nition of a sample ��quantile is a point

such that the number of observations smaller is no more than [T� ] while the

number greater is no more than [T (1� �)]:

The residuals associated with a quantile may be coded as indicators. The

��quantile indicator is

IQ(yt � �(�)) =

8>><>>:
� � 1; if yt < �(�)

� ; if yt > �(�)

; t = 1; :::; T (1)

Note that IQ(0) is not determined but we will constrain it to lie in the range

[� � 1; � ]:

A test of the null hypothesis that a quantile is constant may be based on

the sample ��quantile indicators, or ��quantics, that is IQ(yt � e�(�)); t =
1; :::; T . If the alternative hypothesis is that the ��quantile follows a random
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walk, a modi�ed version of the basic stationarity test of Nyblom and Mäkeläi-

nen (1983) is appropriate. The test statistic of Nyblom and Mäkeläinen uses

residuals from a sample mean and its asymptotic distribution is a Cramér-

von Mises (CvM) distribution; the 1%, 5% and 10% critical values are 0.743,

0.461 and 0.347 respectively. Nyblom and Harvey (2001) show that the test

has high power against an integrated random walk, which when �tted yields

a curve close to a cubic spline, while Harvey and Streibel (1998) show that it

also has a locally best invariant interpretation as a test of constancy against

a highly persistent stationary �rst-order autoregressive process. Note also

that, as shown in Nyblom (1989), the test has power against a break, or

breaks, in an otherwise stationary time series.

Busetti and Harvey (2007) show that under the null hypothesis that the

observations are IID and �(�) is the unique population ��quantile and y has

a continuous positive density in the neighborhood of �(�), the asymptotic

distribution of the quantic-based stationarity test statistic

�� (Q) =
1

T 2�(1� �)

TX
t=1

 
tX
i=1

IQ(yi � e�(�))!2 (2)

is the CvM distribution. The proof extends the one in De Jong, Amsler and
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Schmidt (2007) for � = 0:5. As in that paper, allowance can be made for

serial correlation by replacing �(1� �) by a nonparametric estimator of the

spectrum at zero frequency.

A joint test to see if a group ofN quantiles show evidence of changing over

time can be based on a generalization of (2). Under the null hypothesis of

IID observations, the limiting distribution of this multivariate test statistic is

Cramér-von Mises with N degrees of freedom.

Linton and Whang (2007) suggest that correlograms be constructed from

quantics. They call these quantilograms and suggest that Box-Ljung tests

be carried out for serial correlation.

3 Bivariate series

Consider a bivariate series, y1t and y2t, t = 1; :::; T: By converting to ranks

we can obtain the sample quantiles and the empirical copula. The empirical

copula yields the proportion of cases in which both observations in a pair are

less than, or equal to, particular quantiles, e�(� 1) and e�(� 2). This proportion
will be denoted as CT (� 1; � 2):

The tests in Busetti and Harvey (2007) were designed to detect move-
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ments in the quantiles of the distributions of univariate series. If there are

two series and their marginal distributions are constant, we can move on

to address the question of whether their copula is changing over time. As

with univariate series, the tests are based on indicators, but we now have to

consider combinations of quantiles from the two series. To simplify matters,

we will set � 1 = � 2 = � ; 0 < � < 1; and explore the possibility of movements

in C(� ; �); the probability that both observations lie below their respective

��quantiles. However, since there are four quadrants associated with a given

� ; some attention needs to be paid to the other three. The probability that

both observations lie above their respective ��quantiles is known as the

survival function, and denoted C(� ; �): It is equal to 1 � 2� + C(� ; �); see

Embrechts et al (2003) or Cherubini et al (2004, p75). The probabilities of

being in the other two quadrants are the same, namely � � C(� ; �): Similar

relationships hold for the corresponding sample proportions.

3.1 Copulas and concordance

The value of C(� ; �) indicates the strength of dependence at � :With perfect

concordance, C(� ; �) = � and C(� ; �) = 1�� ; while with perfect discordance

both these probabilities are zero. For independent series, C(� ; �) = � 2; while
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C(� ; �) = (1��)2; and the probabilities of being in one of the other quadrants

are both �(1 � �): Summing C(� ; �) and C(� ; �) gives a simple measure of

what Kruskal (1958, p 818) calls quadrant association.

As an illustration, the Clayton copula is de�ned in terms of standard

uniform variates, u1 and u2; as

C(u1; u2) = (u
��
1 + u��2 � 1)�1=�; � 2 [�1;1) (3)

For � = 1 and a small � ; C(� ; �) ' �=2: The Clayton copula is asymmetric

in that the upper tail probability for 1 � � ; that is the survival copula,

C(1� � ; 1� �); is not the same as C(� ; �): The relationship is

C(1� � ; 1� �) = 2� � 1 + (1� �)(2� (1� �)�)�1=�

For � = 1; C(1 � � ; 1 � �) is .018 for � = :1; while for � = :05; it is .0048.

These probabilities are much smaller than those for the lower tail.

The coe¢ cients of tail dependence are measures of pairwise dependence

that depend on the copula; see McNeil et al (2005, p208). The coe¢ cient of

lower tail dependence is lim�!0C(� ; �)=� ; while the coe¢ cient of upper tail

dependence is lim�!1C(� ; �)=(1��): If two variables have a bivariate normal
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distribution, they are asymptotically independent in the tails as the coe¢ -

cients of tail dependence are both zero. On the other hand, a t-copula does

exhibit tail dependence. For � > 0; the Clayton copula exhibits lower tail

dependence, that is lim�!0C(� ; �)=� = 2
�1=�; and as � !1; this coe¢ cient

tends to one.

3.2 Bivariate quantics

We will de�ne the bivariate ��quantic - or ��bi-quantic - as

BIQ(y1t � e�1(�); y2t � e�2(�)) (4)

= CT (� ; �)� I(y1t � e�1(�); y2t � e�2(�)); t = 1; :::; T

where I(y1t � e�1(�); y2t � e�2(�)) denotes I(y1t � e�1(�)):I(y2t � e�2(�) with
I(:) being the indicator function. By construction BIQ(y1t � e�1(�); y2t �
e�2(�)) has a mean of zero, since I(y1t � e�1(�); y2t � e�2(�))=T = CT (� ; �);

and a variance of CT (� ; �)(1 � CT (� ; �)). When the bivariate observations,

(y1t; y2t); are1 independently and identically distributed (IID), the corre-

sponding bivariate ��quantile indicator, BIQ(y1t � �1(�); y2t � �2(�)); has

1See the assumption in appendix A.
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a mean of zero and a variance of C(� ; �)(1 � C(� ; �)): When there is no

ambiguity we will abbreviate BIQ(y1t � e�1(�); y2t � e�2(�) to BIQ(�):
Associated with BIQ(�) are three complementary bivariate ��quantics.

The �rst is

BIQ(y1t > e�1(�); y2t > e�2(�)) = CT (� ; �)� I(y1t > e�1(�); y2t > e�2(�)) (5)

We call this the survival ��quantic and use the shorthand notation BIQ(�):

Remember that CT (� ; �) = 1 � 2� + CT (� ; �): The variance of BIQ(�) is

CT (� ; �)(1� CT (� ; �)): The other two complementary ��bi-quantics are

BIQ(y1t � e�1(�); y2t > e�2(�)) = C�T (� ; �)� I(y1t � e�1(�); y2t > e�2(�)) (6)

and

BIQ(y1t > e�1(�); y2t � e�2(�)) = C�T (� ; �)� I(y1t > e�1(�); y2t � e�2(�)) (7)

where C
�
T (� ; �) = � � CT (� ; �):

Note the identities that relate ��bi-quantics to the � -quantics in the
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individual series:

BIQ(y1t � e�1(�); y2t � e�2(�))+BIQ(y1t � e�1(�); y2t > e�2(�)) = IQ(y1t � e�1(�))
and

BIQ(y1t � e�1(�); y2t � e�2(�))+BIQ(y1t > e�1(�); y2t � e�2(�)) = IQ(y2t � e�2(�))
Expressions for the correlations between the four bivariate ��quantile

indicators can be obtained when the bivariate series is IID; see appendix

A. For example, the correlation between BIQ(y1t � �1(�); y2t � �2(�)) and

BIQ(y1t > �1(�); y2t > �2(�)) is

�
p
C(� ; �)

p
1� 2� + C(� ; �)p

1� C(� ; �)
p
2� � C(� ; �)

(8)

If the original series are independent of each other, then C(� ; �) = � 2 and

(8) becomes �
p
�(1� �)=

p
(2� �)(1 + �): Thus for � = 0:5 the correlation

is �1=3:

12



3.3 Tests

We now consider tests of the null hypothesis that C(� ; �) is constant. Sta-

tionarity test statistics can be formed from the bi-quantics in the same way

as for the quantics. Thus, for a given � ;

�� (BQ;BB) =
1

T 2CT (� ; �)(1� CT (� ; �))

TX
t=1

 
tX
i=1

BIQ(�)

!2
(9)

where BB signi�es that the indicator is unity when both observations are

below their respective quantiles. The asymptotic distribution of this station-

arity test statistic when the bivariate series is IID is Cramér von Mises. The

proof is given in appendix B. A non-parametric correction for serial corre-

lation may be made, as in De Jong et al (2007), by replacing CT (� ; �)(1 �

CT (� ; �)) with a long-run variance estimator for BIQ(�). The asymptotic

distribution continues to be Cramér von Mises for bivariate observations that

are jointly strictly stationary. A correction for serial correlation is not needed

if the test is being used to detect any kind of time-variation, but permanent

changes have more serious consequences. Since there are limits on the range

of C(� ; �) the alternative hypothesis is best thought of as one in which C(� ; �)
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is slowly changing, or subject to breaks, rather than being a random walk.

Tests statistics for the other bi-quantics may be formed in a similar way.

The test statistic constructed using the survival bi-quantics will be denoted

AA (for above), while the other two are BA and AB. These individual

quadrant tests might point to movements in some parts of the copula but

not in others. For example it may be interesting to contrast lower and upper

tail movements from �� (BQ;BB) and �1�� (BQ;AA):

A combined test can be constructed from any three bi-quantics, provided

that CT (� ; �) < �: The statistic is

�� (BQ; 3) = T
�2

TX
t=1

"
tX
i=1

BIQi

#0 e
�1 " tX
i=1

BIQi

#
; (10)

where the elements of the 3 � 1 vector BIQi are chosen from (4), (5), (6)

and (7), and e
 is their sample covariance matrix. Under the null hypothesis
of serially independent observations with a constant copula, the limiting dis-

tribution of �� (BQ; 3) is Cramér-von Mises with three degrees of freedom.

(The proof is straightforward given the proof for tests based on a single bi-

quantic). The 1%, 5% and 10% critical values are 1.359, 1.000 and 0.841

respectively
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A second test is based on noting that, even if the copula changes, there is

a symmetry between the �o¤-diagonal�quadrants in that pairs of observations

always fall in them with equal probability. Thus (6) and (7) could be added

together to make a new series and a test statistic formed from two of the three

series. Since the choice of series does not matter, the easiest way to proceed

is to construct the test statistic, �� (BQ; 2); from BIQ(�) and BIQ(�); in

a similar way to (10). Its limiting distribution under the null hypothesis is

Cramér-von Mises with 2 degrees of freedom.

Finally we can add BIQ(�)and BIQ(�) to give

BIQ(�) +BIQ(�) =

1� 2� + 2CT (� ; �)� I(y1t � e�1(�)):I(y2t � e�2(�))� I(y1t > e�1(�)):I(y2t > e�2(�)):
A test statistic formed from this series will be denoted �� (BQ+BQ): Since

it is based on the sum of CT (� ; �) and CT (� ; �), we will call it the quad-

rant association test. Its limiting distribution under the null hypothesis is

Cramér-von Mises with one degree of freedom.
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3.4 Single comprehensive tests of changing dependence

If a single overall test for changing dependence is required, it may be based on

the combined or quadrant association tests for � = 0:5: The choice of � = 0:5

seems eminently reasonable and is supported by the Monte Carlo simulations.

We might compare the power of these tests with a stationarity test based

on the series (y1t � y1)(y2t � y2); t = 1; :::; T: We call this the changing

correlation test. The limiting distribution of the changing correlation test

statistic is Cramér-von Mises with one degree of freedom under the null

hypothesis that y1t and y2t are serially independent with a constant, �nite,

positive de�nite, covariance matrix. The usual conditions on the existence of

moments have to be carried over to y1ty2t: A non-parametric correction for

serial correlation may be made, as in Kwiatkowski et al (1992), and the proof

correspondingly extended to deal with a null hypothesis of joint stationarity.

The performance of the changing correlation test statistic will depend on the

whole joint distribution, not just the copula, and it may be quite sensitive

to extreme observations.

While the tests at di¤erent � may provide information on changes in

di¤erent parts of the copula, a combination of them may be e¤ective as an

overall test. For example, a multivariate quadrant association test statistic
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may be constructed from BIQ(�) + BIQ(�) for � = 0:25; 0:5 and 0:75:

Another possibility is to combine BIQ(0:5)+BIQ(0:5) with BIQ(0:25) and

BIQ(0:75):

3.5 Changing contrasts

A joint test of changes in the upper and lower tails can be based on BIQ(�)+

BIQ(1 � �): A test of changing asymmetry can be based on BIQ(�) �

BIQ(1��): The limiting distribution of the both (stationarity) test statistics

is Cramér-von Mises with one degree of freedom under the null hypothesis

that the underlying probabilities do not change.

3.6 Bi-quantilogram

The pattern of serial correlation can be captured by computing the correlo-

grams of the bivariate ��quantics. These might be called bi-quantilograms.

They are not the same as the cross-quantilograms of Linton and Whang

(2007), though these may also be useful. Box-Ljung Q-statistics may be

formed from the bi-quantilograms and used as an alternative to stationarity

tests for assessing change in the copula.
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4 Monte Carlo

We consider three cases of data generating processes, denoted by A,B,C;

the �rst two are based on a time-varying Gaussian copula while the third is

characterized by a Clayton copula, with lower tail dependence. In general

the two degree of freedom test was dominated by the others and so we do

not report the results for it. All tests are at the 5% signi�cance level and are

based on 20,000 replications. The program were written in Ox and made use

of the routines in SSFpack; see Doornik (1999) and Koopman et al (1999).

The speed of convergence to the asymptotic distribution may be slow

when � is close to zero or one. In an extreme case, a proportion such as

CT (� ; �) may even be zero or one when the sample size is small. The simu-

lation experiments therefore do not include � = 0.05.

(A) The observations are generated from a bivariate Gaussian distribution

with time varying correlation

�t =
1� e�t
1 + e�t

; t = 1; :::; T; (11)

where �t is a random walk process obtained from Gaussian innovations with

mean zero and variance equal to q2: The logistic transform guarantees that
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�t 2 (�1; 1): We consider samples of T = 200 and 400 observations, with q

taking values 0; :1; :25; :5:

The upper part of Table 1 contains the rejection frequencies of the bi-

quantic stationarity tests and the Box-Ljung bi-quantilogram Q-tests for the

four quadrants BB;AA;BA;AB: The column q = 0 provides the empirical

size of the tests; this appears to be already well under control in a sample of

T = 200 observations. As regards power (provided by the simulated rejection

frequencies for q > 0); this is a maximum at � = :5; where it appears to be

the same in all quadrants: The lower quadrant test, BB; is more powerful for

� < 0:5, that is in the lower tail of the distribution, while the upper quadrant

test, AA; is more powerful in the upper tail (� > 0:5): Furthermore the power

for BB at � is the same as the power for AA at 1� � ; this is a re�ection of

the symmetry properties of the Gaussian distribution.

The table shows that the bi-quantic tests are signi�cantly more powerful

than the Box-Ljung bi-quantilogram Q-tests. The latter have been computed

with m = 5 autocorrelation coe¢ cients, but power would not increase much

if m = 10 (while it would considerably reduce for m = 1 or 2). For both

tests power is considerably higher for T = 400 as opposed to T = 200;

thereby providing an indication of the consistency of the tests against this
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data generating process.

The lower part of the table contains the results for the combined test,

�� (BQ; 3), the quadrant association test, �� (BQ + BQ); and the test of

changing correlation. All of them appear to be more powerful than the

single quadrant bi-quantic tests. The quadrant association test appears to

be more powerful than the combined test for � = 0:50: For small values of

q the maximum power is attained by the test of changing correlation, which

is not unexpected reasonable since correlation is an appropriate measure of

dependence for Gaussian observations. However, the quadrant association

test is better for q = 0:25 and above.

(B) The observations are generated from a bivariate Gaussian distribution

with a structural break in the correlation coe¢ cient. We set �t = :75 in

the �rst half of the sample and �t = :75; :50; :25; 0 in the second half. For

brevity we only report rejection frequencies for a sample size of T = 300.

Furthermore, given that the same symmetry properties hold as in case (A),

we do not provide results for the AA and AB quadrants. Table 2 contains all

the relevant results. Again the copula bi-quantic tests are signi�cantly more

powerful than those based on the bi-quantilogram, but the di¤erences appear

to be even greater. Overall, the test of changing correlation appears to display
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the highest power, although when �t = :5 in the second half of the sample the

quadrant association test rejects the null hypothesis most frequently. Broadly

speaking, these results for a structural break in correlation are qualitatively

the same as those obtained in case (A).

(C) Table 3 presents the results for the case of a Clayton copula with

structural break in the dependence parameter. In order to simulate from a

bivariate Clayton copula we make independent draws from a uniform (0,1)

distribution to give u1t and vt; and then set

u2t = ((v
��=(1+�)
t � 1)u��1t + 1)�1=�; t = 1; :::; T ;

see Embrechts et al (2003, p9). We consider sample sizes of T = 200 and 400

observations, setting � = 1 in the �rst half of the sample and � = 1; 2:5; 7:5; 15

in the second half. Since Kendall�s Tau is �=(�+2); there is more dependence

after the break.

The results show that there is no longer a symmetry in the BB and AA

tests, though the BA and AB tests do, as before, have similar power. In

fact these tests are now more powerful than the the BB and AA tests. As in

the previous cases the bi-quantilogram tests are signi�cantly less powerful.
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The quadrant association test appears to be the most powerful test overall,

performing signi�cantly better than the combined bi-quantic tests. The test

of changing correlation has very low power. Di¤erent marginals would give

di¤erent results for the changing correlation test, but unless the joint dis-

tribution is bivariate normal, it seems that a good performance cannot be

guaranteed.

Taking all three sets of results together, the quadrant association test at

� = 0:5 is clearly the one to be recommended for detecting overall changes

in dependence. It also seems to be the preferred test for other values of � :

5 Correcting for time variation in the indi-

vidual series

If the quantiles in the individual series change slowly over time, the tests will

tend to reject even if the copula is constant. A nonparametric correction for

serial correlation will not be e¤ective even for stationary movements if they

are highly persistent.

If the movements in quantiles are due solely to changes in volatility, the

series may be adjusted by dividing by a measure of dispersion. A stochastic
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volatility (SV) model can be �tted to each of the series and the resulting

(two sided) smoothed estimates of the standard deviations used to rescale

the observations; Patton (2006, p536-7) and van den Goorbergha, Genest

and Werkerc (2005) use GARCH, a one-sided �lter. Note that if the esti-

mation of the SV model is based on quasi-maximum likelihood (QML), the

e¤ect of heavy-tails is mitigated by the taking of logarithms (of the squared

observations); see Harvey et al. (1994).

For tests based only on bi�quantics at � = 0:5; there is no need to pre-

�lter if the medians are constant. Indeed if the long-run variance correction

is employed, the medians can be time-varying provided they are stationary.

The assumption of constant medians is plausible for exchange rate returns,

but less so for stock returns.

We provide Monte Carlo simulation results for a bivariate SV data gener-

ating process, estimated by QML. Bivariate Gaussian series were �rst gener-

ated, as was done for constructing tables 1, 2 and 3, and then each series was

multiplied by a time-varying standard deviation obtained from independent

SV models.

Tables 4a,b and c reports the simulated rejection frequencies for the cop-

ula based tests and the changing correlation test, run at 5% signi�cance
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level, for a sample size of T = 400 or T = 200: For brevity we only present

results for the case �� = 0:025. The left hand panel of the table reports

the rejection frequencies of the tests applied to the raw series, y1t and y2t.

The right hand panel of the table show the results after rescaling the se-

ries by estimates of the unobserved time-varying standard deviation, that is

yit= exp(0:5bhit); t = 1; ::; T; i = 1; 2. The bh0its are obtained by applying the
state space smoother to the log of squared observations (for each series in

turn), with parameters obtained by QML estimation of a random walk plus

noise model.

As expected, for � = 0:5 there is no need to estimate volatility; on the

other hand no power loss is induced by estimation. For the other values of

� ; ignoring time-varying volatility makes the tests oversized. The volatility

correction brings the empirical size very close to the nominal level of 5%; the

power properties of the tests are qualitatively very similar to those observed

in tables 1, 2 and 3.

Tests for changing correlation will be a¤ected by changes in the distri-

bution. Pre�ltering to remove changing volatility may not be su¢ cient to

ensure that the sizes of the tests are close to the nominal if there are other

movements in the marginal distributions, for example in kurtosis. In this
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case the time-varying ��quantiles must be estimated directly, possibly as in

Yu and Jones (1998), De Rossi and Harvey (2006, 2008) or Harvey (2008),

and the bi-quantics formed from them.

6 Application to �nancial contagion

As an illustration, we apply our tests to the daily returns of stock market

indices of two East Asian countries, Korea and Thailand, over the period

1995-1999. The sample includes the �nancial turmoil period of summer-

autumn 1997 (the "Asian crisis") characterized by huge losses in the Asian

markets. In the 4 months period August-November, the Korean and Thai

stock indices fell by over 40%. There were few repercussions in the United

States and Europe.

The �nancial contagion issue is whether market interdependence becomes

more acute in times of �nancial turmoils. In particular, do negative shocks

from one area transmit more intensely to the other markets ? This is some-

times called "correlation breakdown", denoting a statistically signi�cant in-

crease in correlation during the crisis period. Forbes and Rigobon (2002)

pointed out that volatility increases during crises and argued that this should
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be taken into account when computing the tests of �nancial contagion. After

adjusting for heteroskedasticity they found no evidence of correlation break-

down during the Asian crisis. However, Rodriguez (2007) analysed contagion

by estimating time-varying ("switching") volatilities and copulas across mar-

kets and found evidence of changing dependence structures (including tail

dependence) during periods of �nancial turmoil. The most notable example

was the Korea-Thailand case.

The test statistics were computed for � = 0:25; 0:50 and 0:75; with band-

width set to m = 8, obtained from a bandwidth rule of m = 4(T=100)1=4.

To account for changing volatility, the observations were standardized by

dividing by smoothed standard deviations from stochastic volatility models

estimated by QML. The stationarity test statistics for � = 0:25; 0:50 and

0:75 were, respectively, .24, .26 and .21 for Thailand and .19, .43 and .57 for

Korea. Thus there is some evidence that the volatility correction has not

been completely successful for Korea as the test statistic for � = 0:75 is sta-

tistically signi�cant at the 5% level. The quadrant association and combined

bi-quantic tests for � = 0:5 gave rejections at the 1% level of signi�cance,

taking values of 1.67 and 2.37 respectively. The combined tests for � = 0:25

and 0:75 also rejected at the 1% level of signi�cance, with values of 1.04
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and 1.42. Lower and upper tail statistics, �0:25(BQ;BB) and �0:75(BQ;AA);

were 0.68 and 1.19 respectively, the former signi�cant at the 1% level of sig-

ni�cance, the latter at the 5% level. The idea of using single tail tests was

to isolate movements in each tail in the event of asymmetry.

7 Conclusion

The proposed indicator stationarity tests appear to have good power prop-

erties against slowly changing dependence and sudden breaks. The preferred

test is the quadrant association test. Simulations indicate that the tests are

still e¤ective if pre-�ltering is carried out to correct for changing volatility

or, more generally, changing quantiles. Tests based on medians seem to have

the highest power overall and if the medians can be assumed constant, or

even stationary, no pre-�ltering is necessary.2

The tests were applied to daily returns of stock market indices in Korea

and Thailand over the period 1995-1999. The hypothesis of a constant copula

is strongly rejected by tests at the median and at the two quartiles.

Unstable relationships between assets has serious consequences for port-

2Note, however, that while the means of stock prices can usually be taken to be con-
stant, the null hypothesis of a stationary median is often rejected.
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folio selection. If time variation is found in the relationship between variables

then we might try to model it. This seems to be a topic on which more work

could be done. It is also worth investigating if and how a relationship might

change in di¤erent parts of the copula and how the individual quadrant tests

might detect such changes.

APPENDICES

A Correlations between bivariate quantile in-

dicators

Assumption Suppose the two time series, y1t; y2t; are serially independent

with a time-invariant joint distribution (ie y1t; y2t are independently and iden-

tically distributed), such that the marginal distributions are continuous and

positive.

To �nd the covariance between the bivariate ��quantile indicators the ap-

propriate products and probabilities must be evaluated. Thus for BIQ(y1t �

�1(�); y2t � �2(�)) and BIQ(y1t > �1(�); y2t > �2(�)) we have the following:

(i) when y1t � �1(� 1) and y2t � �2(� 2), the product (C(� ; �) � 1)(1 � 2�+

C(� ; �)) is weighted by C(� ; �); (ii) when y1t > �1(� 1) and y2t > �2(� 2),
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the product C(� ; �)(C(� ; �)� 2�) is weighted by 1� 2�+ C(� ; �);and when

y1t > �1(� 1) and y2t � �2(� 2), or y1t � �1(� 1) and y2t > �2(� 2); the product

C(� ; �)(1 � 2� + C(� ; �)) is weighted by C(� ; �) � � : On collecting terms

we �nd that the covariance between BIQ(y1t � �1(�); y2t � �2(�)) and

BIQ(y1t > �1(�); y2t > �2(�)) is

�C(� ; �)(1� 2� + C(� ; �)): (12)

The correlation in (8) is found by dividing by the two standard deviations.

B Asymptotic distribution

Suppose assumption in appendix A holds and that the copula has continuous

partial derivatives. Then

�� (BQ)
d!
Z 1

0

(W (r)� rW (1))2 dr � CvM; (13)

where �� (BQ) is the test statistic in (9) and W (r) is a standard Wiener

process.

PROOF:
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Rewrite the bivariate � -quantic, (4), as

BIQt(�) = �
�
At;T +Bt;T + C

y
T (� ; �)� CT (� ; �)

�

where

At;T = 1(y1t � �1(�); y2t � �2(�))� C
y
T (� ; �);

Bt;T = 1(y1t � e�1(�); y2t � e�2(�)) � 1(y1t � �1(�); y2t � �2(�));

CyT (� ; �) =
1

T

TX
t=1

1(y1t � �1(�); y2t � �2(�));

CT (� ; �) =
1

T

TX
t=1

1(y1t � e�1(�); y2t � e�2(�)):
Consider �rst the termAt;T :Under the i.i.d. hypothesis, 1(y1t � �1(�); y2t �

�2(�)) is a sequence of independent Bernoulli random variables with mean

C(� ; �); the true copula evaluated at � ; � ; and variance V = C(� ; �)(1 �

C(� ; �)); the quantity CyT (� ; �) is the sample mean. Therefore the invariance

principle holds and so, for r 2 [0; 1];

V �
1
2T�

1
2

[Tr]X
t=1

At;T ) W (r)� rW (1);
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a standard Brownian bridge, where ) denotes �converges weakly�.

The second step is to show that, after taking scaled partial sums, the

two terms Bt;T and C
y
T (� ; �) � CT (� ; �) converge both to zero in proba-

bility. Under continuity of the marginals and continuous partial deriva-

tives of the copula, Fermanian et al. (2004) establish weak convergence

of the empirical copula process
p
T (CT (:; :)� C(:; :)) ; which implies sto-

chastic equicontinuity. Thus, as e�i(�) p! �i(�); i = 1; 2; we have that

p
T
�
CyT (� ; �)� CT (� ; �)

�
= op(1); see also van der Vaart and Wellner (1996,

p.389). Similarly,

1p
T

[Tr]X
t=1

Bt;T =
p
r
1p
Tr

[Tr]X
t=1

�
1(y1t � e�1(�); y2t � e�2(�))� 1(y1t � �1(�); y2t � �2(�)) �

=
p
r
[Tr]p
Tr

�
C[Tr](� ; �)� Cy[Tr](� ; �)

�
= op(1):

Therefore, by an application of the continuous mapping theorem, the Cramér-

von Mises distribution in (13) is obtained.
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Table 1: Gaussian Copula with time-varying correlation: simulated rejection frequencies of the tests

q 0 0.1 0.25 0.5 0 0.1 0.25 0.5
tau

Bi-quantic test
0.10 .02 .06 .13 .17 .04 .18 .30 .36
0.25 .05 .18 .35 .42 .05 .42 .60 .63

        BB 0.50 .05 .18 .41 .56 .05 .41 .68 .76
0.75 .05 .08 .15 .20 .05 .16 .28 .34
0.90 .05 .06 .08 .09 .05 .08 .12 .15
0.10 .05 .06 .08 .10 .05 .08 .13 .15
0.25 .05 .08 .15 .20 .05 .16 .28 .35

        AA 0.50 .05 .18 .42 .56 .05 .41 .68 .76
0.75 .05 .19 .35 .42 .05 .42 .60 .63
0.90 .03 .06 .13 .17 .04 .18 .30 .36
0.10 .05 .07 .13 .19 .05 .11 .25 .33
0.25 .05 .11 .25 .36 .05 .24 .45 .55

        BA 0.50 .05 .18 .42 .56 .05 .41 .68 .76
0.75 .05 .11 .25 .36 .05 .24 .44 .55
0.90 .05 .07 .13 .19 .05 .12 .25 .33
0.10 .05 .07 .13 .19 .05 .12 .25 .33
0.25 .05 .11 .25 .36 .05 .24 .44 .55

        AB 0.50 .05 .18 .42 .56 .05 .41 .68 .76
0.75 .05 .11 .25 .36 .05 .24 .45 .55
0.90 .05 .07 .13 .19 .05 .11 .25 .33

Bi-quantilogram test
0.10 .07 .09 .11 .14 .09 .11 .16 .20
0.25 .05 .10 .18 .26 .05 .15 .32 .45

        BB 0.50 .05 .06 .15 .34 .05 .10 .37 .61
0.75 .05 .05 .06 .07 .05 .06 .07 .10
0.90 .05 .05 .05 .05 .05 .05 .05 .06
0.10 .05 .05 .05 .05 .05 .05 .06 .06
0.25 .05 .05 .06 .07 .05 .05 .07 .10

        AA 0.50 .05 .06 .16 .34 .05 .10 .37 .61
0.75 .05 .10 .18 .27 .05 .16 .33 .46
0.90 .07 .09 .11 .14 .10 .11 .16 .21
0.10 .05 .05 .08 .12 .05 .06 .11 .17
0.25 .05 .06 .11 .20 .05 .07 .20 .36

        BA 0.50 .05 .06 .15 .34 .05 .10 .37 .61
0.75 .05 .05 .10 .19 .05 .08 .20 .36
0.90 .04 .05 .08 .11 .05 .06 .11 .17
0.10 .05 .05 .07 .12 .05 .06 .10 .17
0.25 .05 .06 .10 .20 .05 .07 .19 .36

        AB 0.50 .05 .06 .15 .34 .05 .10 .37 .61
0.75 .05 .05 .10 .20 .05 .07 .20 .35
0.90 .05 .05 .08 .12 .05 .06 .11 .18

Combined bi-quantic test 0.10 .04 .07 .19 .28 .04 .19 .39 .51
0.25 .05 .20 .43 .56 .05 .46 .69 .76
0.50 .05 .29 .64 .80 .05 .59 .87 .95
0.75 .05 .20 .43 .55 .05 .46 .69 .76
0.90 .04 .07 .19 .29 .05 .20 .39 .51

Quadrant association test 0.10 .05 .09 .20 .30 .05 .17 .36 .47
0.25 .05 .20 .41 .54 .05 .41 .62 .70
0.50 .05 .38 .73 .87 .05 .68 .92 .97
0.75 .05 .20 .41 .54 .05 .41 .62 .70
0.90 .05 .09 .20 .30 .05 .18 .36 .48

Changing correlation test .05 .50 .67 .67 .05 .77 .82 .77

T=200 T=400



Table 2: Gaussian Copula with structural breaks in correlation: simulated rejection frequencies (T=300)

rho (0.75, 0.75) (0.75, 0.50) (0.75, 0.25) (0.75, 0)
tau

Bi-quantic test
0.10 .05 .10 .26 .46
0.25 .05 .14 .38 .68

        BB 0.50 .05 .13 .34 .62
0.75 .05 .10 .21 .35
0.90 .05 .07 .11 .14
0.10 .05 .09 .16 .23
0.25 .05 .15 .36 .58

        BA 0.50 .05 .20 .51 .78
0.75 .05 .16 .37 .58
0.90 .05 .10 .17 .24

Bi-quantilogram test
0.10 .06 .07 .11 .15
0.25 .05 .05 .07 .13

        BB 0.50 .05 .05 .07 .09
0.75 .05 .06 .06 .06
0.90 .04 .05 .05 .05
0.10 .06 .06 .06 .07
0.25 .05 .05 .07 .10

        BA 0.50 .05 .05 .08 .15
0.75 .05 .05 .07 .11
0.90 .06 .06 .06 .07

Combined bi-quantic test 0.10 .05 .12 .32 .54
0.25 .05 .22 .62 .91
0.50 .05 .28 .76 .97
0.75 .05 .22 .63 .91
0.90 .05 .13 .31 .54

Quadrant association test 0.10 .05 .14 .31 .45
0.25 .05 .29 .71 .93
0.50 .05 .42 .89 .99
0.75 .05 .31 .72 .93
0.90 .05 .15 .31 .46

Changing correlation test .05 .37 .93 1.00



Table 3: Clayton Copula with a structural break in dependence: simulated rejection frequencies of the tests

theta (1,1) (1,2.5) (1,7.5) (1,15) (1,1) (1,2.5) (1,7.5) (1,15)
tau

Bi-quantic test
0.10 .05 .08 .14 .16 .05 .13 .25 .29
0.25 .05 .12 .27 .32 .05 .20 .49 .57

        BB 0.50 .05 .12 .35 .45 .05 .19 .60 .75
0.75 .05 .08 .22 .34 .05 .10 .38 .58
0.90 .05 .06 .08 .13 .05 .06 .11 .21
0.10 .05 .07 .10 .11 .05 .09 .17 .20
0.25 .05 .09 .20 .24 .05 .15 .37 .45

        AA 0.50 .05 .12 .35 .44 .05 .20 .60 .75
0.75 .05 .10 .35 .51 .05 .17 .63 .82
0.90 .04 .06 .16 .29 .04 .08 .33 .58
0.10 .05 .11 .27 .34 .05 .19 .55 .68
0.25 .05 .19 .60 .73 .05 .34 .88 .95

        BA 0.50 .05 .19 .72 .88 .05 .35 .95 .99
0.75 .05 .10 .46 .73 .05 .15 .75 .95
0.90 .05 .06 .13 .25 .05 .06 .20 .45
0.10 .05 .11 .27 .34 .05 .20 .55 .68
0.25 .05 .18 .59 .73 .05 .34 .88 .95

        AB 0.50 .05 .19 .72 .88 .05 .34 .95 .99
0.75 .05 .10 .46 .73 .05 .15 .74 .95
0.90 .05 .05 .12 .24 .05 .06 .20 .44

Bi-quantilogram test
0.10 .06 .06 .06 .07 .06 .06 .06 .07
0.25 .05 .05 .07 .07 .05 .06 .07 .08

        BB 0.50 .05 .05 .07 .08 .05 .05 .07 .10
0.75 .06 .05 .06 .06 .05 .05 .06 .07
0.90 .05 .05 .06 .05 .05 .05 .05 .06
0.10 .05 .05 .05 .05 .04 .05 .05 .05
0.25 .05 .05 .05 .06 .05 .06 .06 .07

        AA 0.50 .05 .05 .07 .07 .05 .06 .08 .11
0.75 .05 .05 .08 .10 .04 .05 .10 .14
0.90 .12 .13 .13 .14 .09 .09 .11 .14
0.10 .07 .10 .18 .21 .06 .09 .17 .21
0.25 .05 .07 .17 .23 .05 .08 .24 .34

        BA 0.50 .05 .06 .19 .32 .05 .06 .28 .50
0.75 .05 .05 .11 .21 .05 .06 .14 .30
0.90 .04 .05 .06 .09 .04 .05 .06 .10
0.10 .06 .10 .17 .20 .06 .09 .17 .20
0.25 .04 .06 .16 .22 .05 .08 .24 .34

        AB 0.50 .05 .06 .19 .32 .05 .06 .28 .50
0.75 .04 .05 .11 .21 .05 .05 .14 .30
0.90 .05 .05 .06 .09 .04 .05 .06 .10

Combined bi-quantic test 0.10 .04 .13 .37 .46 .05 .26 .79 .91
0.25 .05 .25 .82 .94 .05 .51 .99 1.00
0.50 .05 .26 .93 .99 .05 .50 1.00 1.00
0.75 .05 .13 .70 .95 .05 .24 .96 1.00
0.90 .05 .06 .20 .44 .05 .08 .41 .81

Quadrant association test 0.10 .05 .18 .51 .62 .05 .35 .86 .95
0.25 .05 .36 .91 .97 .05 .64 1.00 1.00
0.50 .05 .39 .98 1.00 .05 .67 1.00 1.00
0.75 .05 .18 .80 .98 .05 .30 .98 1.00
0.90 .05 .06 .21 .46 .05 .08 .37 .76

Changing correlation test .05 .08 .14 .15 .05 .12 .25 .28

T=200 T=400



Table 4a: Time varying gaussian copula, with stochastic volatility. Simulated rejection frequencies of the tests: T=400

q 0 0.1 0.25 0.5 0 0.1 0.25 0.5
tau

Single bi-quantic test
0.10 .13 .22 .32 .36 .05 .17 .28 .34
0.25 .16 .44 .59 .63 .04 .40 .59 .61

          BB 0.50 .05 .39 .67 .75 .05 .39 .67 .75
0.75 .27 .35 .41 .45 .04 .14 .25 .30
0.90 .44 .44 .44 .44 .07 .09 .12 .14
0.10 .45 .47 .51 .56 .08 .14 .24 .29
0.25 .26 .38 .52 .59 .04 .22 .43 .52

          BA 0.50 .05 .41 .68 .76 .05 .41 .68 .76
0.75 .25 .38 .52 .61 .04 .23 .43 .52
0.90 .44 .45 .51 .56 .07 .13 .24 .30

Combined bi-quantic test 0.10 .62 .69 .77 .81 .07 .22 .39 .48
0.25 .39 .70 .83 .87 .03 .44 .67 .73
0.50 .05 .59 .87 .94 .05 .59 .87 .94
0.75 .40 .70 .83 .87 .04 .44 .67 .73
0.90 .62 .69 .77 .82 .07 .21 .40 .48

Quadrant association test 0.10 .41 .43 .48 .51 .07 .18 .33 .41
0.25 .17 .46 .66 .73 .05 .39 .60 .67
0.50 .05 .68 .92 .97 .05 .68 .92 .97
0.75 .16 .46 .66 .72 .04 .39 .60 .67
0.90 .40 .43 .49 .52 .07 .18 .33 .42

Changing correlation test .06 .75 .85 .85 .05 .76 .81 .76

NO ESTIMATION OF VOLATILITY QMLE ESTIMATION OF VOLATILITY



Table 4b: Structural break in correlation, with stochastic volatility. Simulated rejection frequencies of the tests: T=300

rho (0.75, 0.75) (0.75, 0.50) (0.75, 0.25) (0.75, 0) (0.75, 0.75) (0.75, 0.50) (0.75, 0.25) (0.75, 0)
tau

Single bi-quantic test
0.10 .11 .16 .28 .45 .04 .10 .24 .45
0.25 .09 .18 .39 .66 .03 .12 .37 .69

          BB 0.50 .05 .13 .34 .62 .05 .13 .34 .62
0.75 .10 .15 .25 .37 .04 .09 .19 .33
0.90 .16 .18 .22 .26 .04 .06 .10 .13
0.10 .30 .33 .37 .40 .08 .12 .19 .25
0.25 .17 .26 .42 .57 .05 .15 .37 .58

          BA 0.50 .05 .21 .52 .78 .05 .21 .52 .78
0.75 .11 .20 .38 .57 .04 .15 .36 .59
0.90 .11 .13 .19 .24 .06 .10 .16 .23

Combined bi-quantic test 0.10 .29 .35 .51 .67 .07 .14 .31 .53
0.25 .19 .35 .70 .93 .04 .20 .61 .90
0.50 .05 .29 .77 .98 .05 .29 .77 .97
0.75 .18 .34 .70 .93 .04 .20 .60 .90
0.90 .29 .35 .50 .68 .07 .14 .32 .54

Quadrant association test 0.10 .08 .19 .33 .45 .05 .14 .30 .43
0.25 .05 .30 .69 .91 .05 .30 .70 .92
0.50 .05 .43 .89 .99 .05 .43 .89 .99
0.75 .06 .30 .69 .91 .05 .30 .71 .92
0.90 .08 .19 .33 .45 .05 .14 .30 .44

Changing correlation test .26 .44 .86 1.00 .02 .35 .95 1.00

NO ESTIMATION OF VOLATILITY QMLE ESTIMATION OF VOLATILITY



Table 4c: Clayton copula with structural break and stochastic volatility (gaussian marginals). Simulated rejection frequencies of the tests: T=200

theta (1,1) (1,2.5) (1,7.5) (1,15) (1,1) (1,2.5) (1,7.5) (1,15)
tau

Single bi-quantic test
0.10 .10 .13 .17 .18 .04 .07 .12 .13
0.25 .07 .15 .27 .30 .04 .10 .24 .28

          BB 0.50 .05 .12 .34 .44 .05 .12 .34 .44
0.75 .10 .12 .24 .34 .05 .07 .20 .31
0.90 .18 .17 .18 .20 .07 .07 .09 .12
0.10 .21 .28 .36 .38 .09 .16 .27 .30
0.25 .13 .27 .55 .63 .05 .19 .56 .68

          BA 0.50 .05 .20 .72 .88 .05 .19 .72 .88
0.75 .11 .16 .46 .66 .04 .09 .44 .72
0.90 .18 .18 .24 .33 .06 .07 .13 .24

Combined bi-quantic test 0.10 .27 .39 .53 .56 .09 .18 .35 .39
0.25 .16 .38 .84 .93 .05 .25 .78 .90
0.50 .05 .26 .92 .99 .05 .26 .92 .99
0.75 .14 .24 .76 .96 .04 .11 .68 .94
0.90 .23 .25 .39 .59 .06 .07 .21 .44

Quadrant association test 0.10 .10 .17 .31 .34 .05 .16 .37 .43
0.25 .07 .34 .84 .91 .06 .36 .88 .95
0.50 .05 .39 .98 1.00 .05 .39 .98 1.00
0.75 .06 .17 .77 .96 .05 .17 .79 .97
0.90 .14 .13 .23 .40 .06 .07 .20 .42

Changing correlation test .14 .34 .57 .61 .03 .22 .58 .67

NO ESTIMATION OF VOLATILITY QMLE ESTIMATION OF VOLATILITY


