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Abstract

This paper considers forecast averaging when the same model is used
but estimation is carried out over different estimation windows. It
develops theoretical results for random walks when their drift and/or
volatility are subject to one or more structural breaks. It is shown
that compared to using forecasts based on a single estimation win-
dow, averaging over estimation windows leads to a lower bias and to
a lower root mean square forecast error for all but the smallest of
breaks. Similar results are also obtained when observations are ex-
ponentially down-weighted, although in this case the performance of
forecasts based on exponential down-weighting critically depends on
the choice of the weighting coefficient. The forecasting techniques are
applied to monthly inflation series of 21 OECD countries and it is
found that average forecasting methods in general perform better than
using forecasts based on a single estimation window.
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1 Introduction

There now exists a sizeable literature on the possible merits of combining
forecasts obtained from different models, reviewed by Clemen (1989), Stock
and Watson (2004), and more recently by Timmermann (2006). Bayesian
and equal weighted forecast combinations are being used increasingly in
macroeconomics and finance to good effects. In this literature, the different
forecasts are typically obtained by estimating a number of alternative models
over the same sample period. Pesaran and Timmermann (2007) argue that
the forecast averaging procedure can be extended to deal with other types
of model uncertainty, such as the uncertainty over the size of the estimation
window, and propose the idea of averaging forecasts from the same model but
obtained over different estimation windows. Using Monte Carlo experiments
these authors show that this type of forecast averaging reduces the mean
square forecast error (MSFE) in many cases when the underlying economic
relations are subject to structural breaks.

The idea of forecast averaging over estimation windows has been fruit-
fully applied in macro economic forecasting. Assenmacher-Wesche and Pe-
saran (2007) average forecasts based on different VARX* models of the Swiss
economy estimated over different estimation windows and observe that av-
eraging forecasts across windows result in further improvements over aver-
aging of forecasts across models. Similar results are obtained by Pesaran,
Schuermann and Smith (2007) who apply the forecast averaging ideas to
global VARs composed of 26 individual country/region VARX* models. It
is therefore of interest to see if some theoretical insights can be gained in
support of these empirical findings.

In this paper we begin by deriving theoretical results for the average
windows (AveW) forecast procedure in the case of random walk models
subject to breaks. The most interesting case is when the break occurs in
the drift term, but we shall also consider other cases when the volatility of
the random walk undergoes changes, and when the breaks in the drift and
the volatility of the random walk model occur simultaneously. We consider
both the case of a single break as well as when there are a multiplicity of
breaks.

We also compare the AveW forecasting procedure with an alternative
method sometimes employed in the literature where the past observations
are down-weighted exponentially such that the most recent observations
carry the largest weight in the estimation and forecasting, see Gardner
(2006) for a review. We refer to this as the exponential down-weighted
(ExpW) forecast. This approach is related to the random coefficient model
and its performance in practice crucially depends on the parameter, γ, used
to down-weight the past observations. To allow for the uncertainty of γ, we
shall also consider a mixed procedure where ExpW(γ) forecasts obtained for
different values of γ are also averaged to give a new average forecast, which
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we refer to as AveExpW.
Restricting attention to random walk models allows us to simplify the

problem and attain exact theoretical results that shed light on the properties
of these forecasting methods. In particular, we show that in the presence of
breaks AveW and ExpW forecasts always have a lower bias than forecasts
based on a single estimation window. The forecast variance depends on the
size and the time of the break. For all but the smallest break sizes, however,
the MSFE of the AveW and ExpW forecasts are also smaller than those of
the single window forecasts.

An attractive feature of these methods is that no exact information about
the structural break is necessary. This contrasts with the conventional ap-
proach of estimating the break point using methods such as those of Bai
and Perron (1998, 2003) before incorporating them into the modeling pro-
cess or incorporate the break process into the estimation procedure using
methods such as that of Hamilton (1989); see Clements and Hendry (2006)
for a review of the recent literature. As argued in Pesaran and Timmermann
(2007), to optimally exploit break information in forecasting one needs to
know the point as well as the size of the break(s). Even if the point of the
break can be estimated with some degree of confidence, it is unlikely that
the size of the break can be estimated accurately, since it involves estimating
the model over the pre- as well as the post-break periods. If the distance
to break (measured from the date at which forecasts are made) is short the
post-break parameters are likely to be rather poorly estimated relative to
the ones obtained using pre-break data. If the pre- and post-break samples
are both relatively large, it might be possible to estimate the size of the
break reasonably accurately, but in such cases the break information might
not be all that important.

Clark and McCracken (2006) argue that averaging over different models
can improve forecasts in the presence of model instability, and our approach
is complementary to this. More closely related to our approach is the sugges-
tion by Clark and McCracken (2004) that averaging expanding and rolling
windows can be useful for forecasting when faced with structural breaks.
This can be seen as a limited version of AveW forecasts where only two
different windows are combined.

A further reason for considering the random walk model with drift and
volatility instability is that it is generally thought to describe the stochastic
properties of many macroeconomic and financial time series. In this pa-
per we apply the AveW, ExpW, and AveExpW procedures to forecasting
monthly inflation series in a number of OECD countries.

The rest of the paper is organized as follows: Section 2 sets out the model
and develops the AveW forecasting procedure and its properties. Section 3
considers the ExpW and AveExpW forecast procedures. Section 4 reports
the results of the applications to inflation forecasting. Section 5 draws some
conclusions.
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2 Average Window Forecasts

2.1 Basic model and notations

Consider the following random walk model with drift

xt = xt−1 + µt + εt, εt ∼ i.i.d.
(

0, σ2
t

)

.

Define yt = xt − xt−1, then we have the model

yt = µt + εt, (1)

which is defined over the sample period t = 1, 2, . . . , T, and where it is
believed that its drift coefficient, µt, and its volatility, σt, have been subject
to a single break at time t = Tb (1 < Tb < T )

µt =

{

µ1, ∀ t ≤ Tb

µ2, ∀ t > Tb
,

σt =

{

σ1, ∀ t ≤ Tb

σ2, ∀ t > Tb
.

The aim is to forecast xT+1, or yT+1 based on the observations, y1, y2, ...., yT .
In the case where it is known with certainty that the random walk model has
not been subject to any breaks, the sample mean, ȳT = T−1ΣT

t=1yt yields
the most efficient forecast in the mean squared error sense. However, when
the process is subject to break(s) more efficient forecasts could be obtained.
As shown in Pesaran and Timmermann (2007) there is typically a trade off
between bias and variance of forecasts. For example, when there is a break
in the drift term the use of the full sample will yield a biased forecast but
will continue to have the least variance. On the other hand a forecast based
on the sub-sample {yTi

, yTi+1, . . . , yT }, where Ti > 1 is likely to have a lower
bias but could be inefficient due to a higher variance as compared to ȳT .
Knowing the point of the break helps but cannot be exploited optimally
unless a reliable estimate of the size of the break, |µ2 − µ1| /σ, can also be
obtained. Often this is not possible since in most applications of interest
breaks might be quite recent and T − Tb too small for a reliable estimation
of µ2.

In the absence of reliable information on the point and the size of the
break(s) in µt and σt, a forecasting procedure which is reasonably robust
to such breaks will be of interest. One approach considered in Pesaran
and Timmermann (2007) is to use different sub-windows to forecast and
then average the outcomes, either by means of cross-validated weights or by
simply using equal weights.

To this end consider the sample {yTi
, yTi+1, . . . , yT } with Ti > 1, which

yields an observation window of size T − Ti + 1. It proves convenient to
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denote this observation window by wi = (T − Ti + 1)/T , which represents
the fraction wi of the single window (from the point of the forecast) used
in estimation. The estimation process could start with a minimum window
{yTmin

, yTmin+1, . . . , yT } of size wmin = (T − Tmin + 1)/T . From wmin other
larger windows can be considered with Ti = Tmin, Tmin − 1, . . . , Tmin − m,
where m = Tmin−1, thus yielding m+1 separate estimation windows. More
specifically

wi = wmin +
i

T
, for i = 0, 1, ...,m, (2)

with
w0 = wmin, and wm = 1,

so that
m = T (1 − wmin). (3)

Clearly, wm = 1 corresponds to the full sample.
The one-step ahead forecast based on a given window wi is

ŷT+1(wi) = µ̂T+1(wi), (4)

where

µ̂T+1(wi) =
1

Twi

T
∑

t=Ti

yt =
1

Twi

T
∑

t=T (1−wi)+1

yt.

The AveW forecast is defined by the simple forecast combination rule

ŷT+1(AveW) =
1

m + 1

m
∑

i=0





1

Twi

T
∑

t=T (1−wi)+1

yt



 , (5)

where forecasts from all windows are given equal weights.
The object of interest in this paper is to compare the single-window and

the AveW forecasts, ŷT+1(wi) and ŷT+1(AveW), respectively, in the mean
squared error sense. In the case of the single window forecast we focus on the
most frequently encountered case where all observations in a given sample
is used, namely we consider µ̂T+1(1) = ȳT . In recursive estimation these
alternative forecasts can be considered both under expanding and rolling
windows. The AveW procedure is not an alternative to rolling forecasts and
can be used irrespective of whether a rolling or an expanding window is used
in recursive forecasting.

2.2 Break in drift only

In the first instance assume that a single break occurs in the drift of the
process at date 1 < Tb < T , whereas the error variance is constant, that
is, µ1 6= µ2 but σ1 = σ2 = σ. The distance to the break is defined by

5



d = (T − Tb)/T . In this case the one-step ahead forecast of yT+1 based on
a given window of size wT (from t = T ) is given by

ŷT+1(w) = µ2 [1 − I (w − d)]+I (w − d)

[

d µ2 + (w − d)µ1

w

]

+
1

Tw

T
∑

t=T (1−w)+1

εt,

where I(c) is an indicator function which is unity if c > 0 and zero otherwise.
It is clear that if w ≤ d the forecast will have mean µ2 and will be unbiased.
There is, however, a bias when w > d > 0. The associated forecast error,
eT+1(w) = yT+1 − ŷT+1(w), can then be written as

eT+1(w) = (µ2 − µ1)

(

w − d

w

)

I (w − d) + εT+1 −
1

Twi

T
∑

t=T (1−w)+1

εt. (6)

Hence, the forecast bias is

E [eT+1(w)] = (µ2 − µ1)

(

w − d

w

)

I (w − d) , (7)

and since (w − d) I (w − d) > 0, the direction of the bias depends on the sign
of (µ2 − µ1).

Scaling the forecast error by σ, we have the decomposition

σ−1eT+1(w) = uT+1 + BT+1(w) −
1

Tw

T
∑

t=T (1−w)+1

ut, (8)

where

BT+1(w) = λ

(

w − d

w

)

I (w − d) (9)

λ = (µ2 − µ1)/σ, and ut = εt/σ. The first term, uT+1 represents the future
uncertainty which is given and unavoidable, the second term is the ‘bias’
that depends on the size of the break, λ, and the distance to break, d, and
the last term represents the estimation uncertainty and depends on Tw.
The (scaled) mean squared forecast error (MSFE) for a window of size w is
given

MSFE(w) = 1 + B2
T+1(w) +

1

Tw
. (10)

Consider now the AveW forecast based on m + 1 successive windows of
sizes from the smallest window fraction wmin to the largest possible one,
wm = 1. While we need enough observations in the first window, w0 > 0,
we will assume that wmin is chosen to be sufficiently small so that wmin ≤ d.
The AveW forecast constructed from these windows is then given by

ŷT+1(AveW) =
1

m + 1

m
∑

i=0

ŷT+1(wi).
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The (scaled) one step ahead forecast error associated with the above average
forecast is

σ−1eT+1(AveW) = uT+1 +
λ

m + 1

m
∑

i=0

(

wi − d

wi

)

I (wi − d)

−
1

m + 1

m
∑

i=0

1

Twi

T
∑

t=T (1−wi)+1

ut.

Hence, the bias of the AveW forecast is given by

BT+1(AveW) =
λ

m + 1

m
∑

i=0

(

wi − d

wi

)

I (wi − d) , (11)

and as before the sign of the bias depends on the sign of (µ2 − µ1). In this
case the computation of the variance of the forecast error is complicated due
to the cross correlation of forecasts from the different windows. Let

νT (wi) =
1

Twi

T
∑

t=T (1−wi)+1

ut,

and note that

Cov [νT (wi), νT (wj)] =
min(wi, wj)

Twiwj
, for all i, j = 0, 1, ...,m.

As a result it is easily verified that

Var [ŷT+1(AveW)] = 1 +

(

1

T

)(

1

m + 1

)2
[

m
∑

i=0

1

wi
+ 2

m
∑

i=0

i

wi

]

. (12)

Therefore, the scaled MSFE in this case is given by

MSFE(AveW) = 1 + B2
T+1(AveW) + Var [ŷT+1(AveW)] , (13)

with BT+1(AveW) and Var [ŷT+1(AveW)] as defined above.
The difference between the scaled MSFE of the single window forecast

(10) and that of the AveW Forecast (13) is

MSFE(wa;λ, d) − MSFE(m,wmin;λ, d) =

λ2

(

wa − d

wa

)2

I(wa − d) +
1

Twa
(14)

−

[

λ

m + 1

m
∑

i=0

wi − d

wi
I(wi − d)

]2

−
1

(m + 1)2

m
∑

i=0

1 + 2i

Twi
,
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Since m = T (1 − wmin), for fixed values of wmin and d, as T becomes
sufficiently large the bias and variance terms of the AveW forecast can be
approximated by means of the Riemann integral. Using (2) and (3) we first
note that

T = m/(1 − wmin),

i = T (wi − wmin) = m(wi − wmin)/(1 − wmin).

The bias term in (11) can be approximated using

1

T

m
∑

i=0

(

wi − d

wi

)

I(wi − d)
T→∞
−→

∫ 1

d

(

x − d

x

)

dx,

= (1 − d) + d ln(d) ≥ 0,

where the lower boundary of the intregral, d, is due to the fact that the
indicator function I(wi − d) implies that values of the expression below d
are zero.

Using the results in (12) we have

1

T

m
∑

i=0

1 + 2i

wi
=

1

T

m
∑

i=0

1 + 2T (wi − wmin)

wi
,

=
1

T

m
∑

i=0

1

wi
+

2T

T

m
∑

i=0

(wi − wmin)

wi
,

which can be approximated using

1

T

m
∑

i=0

1

wi

T→∞
−→

∫ 1

wmin

1

x
dx = − ln(wmin),

and

1

T

m
∑

i=0

(wi − wmin)

wi

T→∞
−→

∫ 1

wmin

x − wmin

x
dx,

= 1 − wmin + wmin ln wmin.

Therefore, using the above results as T → ∞ for a fixed wmin < d ≤ 1 and
recalling that T = m/(1 − wmin) we have

MSFE(m,wmin;λ, d) ≈
m2

(m + 1)2
λ2

(1 − wmin)2
[(1 − d) + d ln(d)]2 (15)

−
ln(wmin)

(m + 1)2
+

2m [1 − wmin + wmin ln(wmin)]

(1 − wmin)(m + 1)2
+ 1.

The first term is asymptotic bias due to the break, the next two terms
capture the sampling effects of the variances and the covariances of the
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forecast errors across the different windows, and the final term is the error
variance of the forecast period. For m sufficiently large only the bias term
remains. Note that the size of the break only enters the bias term and that
the dominant term of the sampling error part only depends on wmin, which
is a choice parameter. This term, [1 − wmin + wmin ln(wmin)] /(1 − wmin),
is monotonically declining over the range (0, 1), and since wmin ≤ d by
assumption, then the optimal choice of wmin is to set it equal to the distance
to break. In practice, since d is unknown one needs to select wmin so that it
is sufficiently large, but not too large so that wmin ≤ d is not violated.

Comparing the two scaled MSFEs (10) and (15) we have

MSFE(w;λ, d) − MSFE(m,wmin;λ, d) (16)

≈ λ2

(

wa − d

wa

)2

I(wa − d) +
1 − wa

mwa

−
m2

(m + 1)2
λ2

(1 − wmin)2
[(1 − d) + d ln(d)]2

−
2m (1 − wmin + wmin ln(wmin))

(1 − wmin)(m + 1)2
+

ln(wmin)

(m + 1)2

The difference depends on the length of the single window forecast, wa,
the number of windows used for averaging, m, and the minimum window
(fraction), wmin, which are chosen by the forecaster, and the properties of
the DGP, which are the size and the distance to the break, λ and d.

In the absence any reliable knowledge of the break it would be of interest
to compare the AveW forecast with the one based on the full estimation
window, namely when w is set to unity. For this comparison it is readily
seen that the AveW forecast is the one with the lower bias, since for large
m

(1 − d) −
[(1 − d) + d ln(d)]

1 − wmin
≥ 0

implies that

wmin ≤
−d ln(d)

1 − d
,

and since wmin ≤ d this condition can be rewritten as

1 ≤ d − ln(d),

which is true for any d > 0. The two forecasts have the same bias only if
d = 1, namely if there has not been a break.

Next consider the difference in variances (up to order m−1) for values of
wmin in the range (0, 1), which is proportional to

ξ(wmin) =
2 (1 − wmin + wmin ln wmin)

1 − wmin
− (1 − wmin)
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Figure 1: Asymptotic difference in variance of AveW and single window
forecast, ξ(wmin)
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Figure 1 plots this function, which is monotonically declining.
Therefore, a trade-off exists between the lower bias and the higher vari-

ance of the AveW forecast relative to the singe window forecast. When
λ = 0, that is, there is no break in the sample, using the entire sample is
most efficient estimator. As λ increases the smaller bias of the AveW fore-
cast will start to dominate the lower variance of the single window forecast.
The degree of trade-off depends on the magnitudes of λ, d, T and wmin. The
figures below shed light on the extent of these trade-offs.

Figure 2 plots the exact and the asymptotic (approximate) differences in
MSFE of the two forecast procedures in (14) and (16) for T = 1000, where
the triangular shape of the surface is due to the fact that wi ≤ d. It can
be seen that the asymptotic MSFE in the right column of Figure 2 and the
exact MSFE in the left column of Figure 2 are very similar. Furthermore,
for breaks as small as λ = 0.05 the MSFE of the AveW forecast is smaller
than that of the single window forecast of size w = 1 for most of values of d
and wmin.

Figure 3 plots the differences in the exact MSFE (14) for T = 100. It
is clear that even for this smaller sample size the difference between the
RMFEs of the two procedures becomes positive even for relatively small
values of λ, and the difference rises rapidly with λ.
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Figure 2: Exact and asymptotic difference in MSFE with T = 1000
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The two plots on the left show the exact difference in MSFE in (14)
and the two plots on the right show the asymptotic difference in MSFE
in (16). The arrows in the top plots point to the zero-isoquant; the
surfaces in the plots in the second row are always positive.

2.3 A generalization to multiple breaks in drift

Consider the following random walk model where the drift term is subject
to n different breaks. Denote the break points by di, i = 1, 2, ..., n, such that
d1 > d2 > ... > dn, and let the means of the process over these segments be
µ1, µ2,...and µn+1. Specifically,

yt = µt + εt, for t = 1, 2, ..., T,
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Figure 3: Exact difference in MSFE with T = 100
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The plots show the exact difference in MSFE in (14). The arrow in the
left upper plot points to the zero-isoquant; the surfaces in the other
plots are always positive

such that if the sample period is mapped to the unit interval the mean from
t = 1 to t = d1T is given by µ1, and the mean from t = d1T + 1 to t = d2T
is µ2, and so forth.

To simplify the analysis to begin with assume that n = 2, and note that
the one step ahead forecast of yT+1 based on the window of size wT (from
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t = T ) is given by

ŷT+1(w) = [1 − I(w − d1)] µ3 +

I(w − d1)[1 − I(w − d2)]

[

d2µ3 + (w − d2)µ2

w

]

+I(w − d2)

[

d1µ3 + (d1 − d2)µ2 + (w − d1)µ1

w

]

+
1

wT

T
∑

t=T−wT+1

εt.

The one-step ahead forecast error is

eT+1(w) = yT+1 − ŷT+1(w)

= µ3 + εT+1 − ŷT+1(w),

which after some algebra, and noting that I(w − d1)I(w − d2) = I(w − d1),
can be written as

eT+1(w)/σ = BT+1(w) + εT+1/σ −
1

wT

T
∑

t=T−wT+1

εt/σ,

where

BT+1(w) = λ1I(w − d1)

(

w − d1

w

)

+ λ2I(w − d2)

(

w − d2

w

)

,

with
λ1 = (µ2 − µ1) /σ, λ2 = (µ3 − µ2) /σ.

From the above results, it is clear that for the case of n breaks we have

BT+1(w) =

n
∑

i=1

λiI(w − di)

(

w − di

w

)

,

where

λi = (µi+1 − µi) /σ, i = 1, 2, ..., n

n−1
n
∑

i=1

λi = (µn+1 − µ1) /nσ.

For a single window estimation with w = 1, the forecast bias per break will
be

BF (n) = BT+1(1)/n = n−1
n
∑

i=1

λiI(1 − di) (1 − di) = n−1
n
∑

i=1

λi (1 − di) .

For AveW forecast the bias per break will be

BAveW(n) = n−1
n
∑

i=1

m

m + 1

λi

1 − wmin
[(1 − di) + di ln(di)].
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The variance term is unaffected by the possibility of multiple breaks in the
mean.

In the case where λ1, λ2, ..., λn are distributed independently of the break
points, d1, d2, ..., dn, the bias terms can be approximated for n large as

lim
n→∞

BF (n) = BF = E(λi)(1 − E(di))

lim
n→∞

BAveW(n) = BAveW =
m

m + 1

E(λi)

1 − wmin
{1 − E(di) + E [di ln(di)]} ,

and

lim
n→∞

[

B2
F (n) − B2

AveW(n)
]

=

= [E(λi)]
2

{

(1 − E(di))
2

[

1 −

(

m

m + 1

)2( 1

1 − wmin

)2
]

−

(

m

m + 1

)2( 1

1 − wmin

)2

E [di ln(di)] {2 − 2E(di) + E [di ln(di)]}

}

.

Since as n → ∞ then wmin → 0, for large m we have

lim
n→∞

[

B2
F (n) − B2

AveW(n)
]

= −E [di ln(di)] {2 − 2E(di) + E [di ln(di)]}

Furthermore, as di ln(di) ≤ 0 for all di ∈ (0, 1), then −E [di ln(di)] ≥ 0.1

Also it is easily established that

f(di) = 2 − 2di + di ln(di) > 0 for all di ∈ (0, 1),

and hence for all distributions of break points over the unit interval it must
be that

2 − 2E(di) + E [di ln(di)] > 0.

Hence,
lim

n→∞

[

B2
F (n) − B2

AveW(n)
]

≥ 0.

The strict equality holds only if E(λi) = 0.
The magnitude of limn→∞

[

B2
F (n) − B2

AveW(n)
]

depends on the distribu-
tion of the break points di. For example, if we assume that di is distributed
uniformly over di ∈ (0, 1), then E(di) = 1/2,

E [di ln(di)] =

1
∫

0

x ln(x)dx =

[

−
1

4
x2 +

1

2
x2 ln(x)

]1

0

= −1/4,

and
2 − 2E(di) + E [di ln(di)] = 1 − 1/4 = 3/4 > 0.

1di = 0 is ruled out by assumption, and di = 1 refers to the case of no breaks.
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Hence, we have

lim
n→∞

[

B2
F (n) − B2

AveW(n)
]

=
3

16
[E(λi)]

2 ≥ 0.

Strict equality holds only if E(λi) = 0.

2.4 Break in drift and volatility

Here we assume that there is only one break point, but now also allow the
volatility to change, that is, in model (1) we consider the case where σ1 6= σ2

and µ1 6= µ2. Note that the bias terms in the MSFE of the single window
forecast and the AveW forecast are independent of the variance terms and
will be identical to the case of the break in drift only. We can therefore
initially proceed by analysing the effect of a structural break in volatility
only, and in a second step combine the result with that of the break in drift
analysed above. For simplicity of exposition assume that the drift and the
volatility break at the same time. Due to the separability of the MSFE the
extension to different break dates is straightforward.

Initially ignoring the effect of a break in drift, the one-step ahead forecast
error for a window of size w is given by

eT+1(w) = εT+1 −
1

Tw

T
∑

t=T (1−w)+1

εt.

The scaled MSFE for the single window forecast is

MSFE(w;κ, d) = E
[

σ−2
2 eT+1|T (w)2

]

=
(w − d)

Tw2
I(w − d) κ2 +

min(w, d)

Tw2
+ 1 (17)

where κ = σ1/σ2.
The forecast error for the AveW forecast is

eT+1(AveW) = εT+1 −
1

m + 1

m
∑

i=0





1

Twi

T
∑

t=Twmin−i

εt



 ,

and the scaled MSFE of the AveW forecast is

MSFE(m,wmin;κ, d) = E
(

σ−2
2 [eT+1(AveW)]2

)

=
1

(m + 1)2

(

κ2
m
∑

i=0

wi − d

Tw2
i

I(wi − d) +
m
∑

i=0

min(wi, d)

Tw2
i

+2κ2
m−1
∑

i=0

wi − d

wi

I(wi − d)
m
∑

j=i+1

1

Twj

+2

m−1
∑

i=0

min(wi, d)

wi

m
∑

j=i+1

1

Twj



+ 1. (18)
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For m sufficiently large the scaled MSFE in (18) can be approximated
similarly to the break in drift case considered above. The asymptotic scaled
MSFE of the AveW forecast is

MSFE(m,wmin;κ, d)
T→∞
−→

1

(m + 1)2
{

κ2[− ln(d) + d − 1] (19)

+ ln(d) − ln(wmin) + 1 − d}

+
2m

(1 − wmin)(m + 1)2

{

κ2

[

1 + d ln(d) − d −
d

2
ln(d)2

]

+ wmin ln(wmin) − wmin − d ln(d) + d +
d

2
ln(d)2

}

.

The derivation and some further results are provided in Appendix A.
We can now combine these results with those of the break in drift to

obtain the scaled MSFE for the single window forecast

E
(

σ−2
2 eT+1(w)2

)

=

(

w − d

w

)2

λ2I(w − d)

+
w − d

Tw2
I(w − d) κ2 +

min(w, d)

Tw2
+ 1, (20)

where λ = |µ2 − µ1| /σ2.
For the AveW forecasts over m + 1 windows, the scaled MSFE is

E
(

σ−2
2 eT+1(AveW)2

)

=
1

(m + 1)2











∑

Ti∈T(d)

(

wi − d

wi

)

λI(wi − d)





2

+κ2
m
∑

i=0

wi − d

Tw2
i

I(wi − d) +

m
∑

i=0

min(wi, d)

Tw2
i

+2κ2
m−1
∑

i=0

wi − d

wi
I(wi − d)

m
∑

j=i+1

1

Twj

+2
m
∑

i=0

min(wi, d)

wi

m
∑

j=i+1

1

Twj







+ 1. (21)
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The difference between (20) and (21) is

MSFE (w;λ, d) − MSFE (m, s,wmin;λ, d) =

= λ2

(

w − d

w

)2

I(w − d) −

[

λ

m + 1

m
∑

i=0

wi − d

wi
I(wi − d)

]2

+
w − d

Tw2
I(w − d) κ2 +

min(w, d)

Tw2

−
1

(m + 1)2

[

κ2
m
∑

i=0

wi − d

Tw2
i

I(wi − d) +
m
∑

i=0

min(wi, d)

Tw2
i

+2κ2
m−1
∑

i=0

wi − d

wi

I(wi − d)
m
∑

j=i+1

1

Twj

+2

m−1
∑

i=0

min(wi, d)

wi

m
∑

j=i+1

1

Twj



 , (22)

which can be approximated by

MSFE(w;λ, κ, d) − MSFE(m,wmin;λ, κ, d)

T→∞
−→ λ2

(

w − d

w

)2

I(w − d) +
1 − wmin

m

[

w − d

w2
I(w − d) κ2 +

min(w, d)

w2

]

−
m2

(m + 1)2
λ2

(1 − wmin)2
[1 − d + d ln(d)]2

−
1

(m + 1)2
{

σ2
1 [− ln(d) + d − 1] + ln(d) − ln(wmin) + 1 − d}

−
2m

(1 − wmin)(m + 1)2

{

σ2
1

[

1 + d ln(d) − d −
d

2
ln(d)2

]

+ wmin ln(wmin) − wmin − d ln(d) + d +
d

2
ln(d)2

}

, (23)

where it has been established above that the bias part is always positive and
the variance component is only positive for large values of κ.

Figure 4 plots the exact differences in scaled MSFEs of the forecast
procedures. When comparing the plots to those for the break in drift only
in Figure 3, it becomes obvious that the break in volatility tilts the surface
downwards as d is increased and wmin remains small. However, when the
break in drift increases it quickly dominates the break in volatility and the
difference in scaled MSFEs become positive over the whole range of d and
wmin.
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Figure 4: Exact difference in MSFE for a break in drift and volatility with
T = 100
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The plots show the exact different in MSFE in (22). The arrows point
to the zero-isoquants.

3 Recursive Forecasts for Time-varying Parame-

ter Models

As an alternative to averaging forecasts over estimation windows we consider
time varying parameter models. A number of time-varying parameter mod-
els have been considered in the forecasting literature in which the unknown
parameters are assumed to follow random walks, see, for example, Harvey
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(1989). Recently, Branch and Evans (2006) consider a number of variations
on this class of models and show that a particularly simple form, known as
the ‘constant gain least squares’, works reasonably well in forecasting US
inflation and GDP growth.

The time varying parameter regression model is defined by

yt = β′
txt−1 + εt, εt ∼ i.i.d.

(

0, σ2
t

)

,

βt = βt−1 + vt,

where it is assumed that εt and vt are mutually and serially independent
with zero means and variances, σ2

t and Ωt, respectively. For given values of
these variances the optimal one-step ahead forecast of yT+1, formed at time
T using Kalman Filters is given by

ŷT+1(KF ) = β̂′
TxT ,

where
β̂T = β̂T−1 + GT (yT − β̂T−1xT−1),

GT = (σ2
T + x

′
T−1PT xT−1)

−1
PTxT−1,

and

PT = PT−1 − (σ2
T + x

′
T−1PT−1xT−1)

−1(PT−1xT−1x
′
T−1PT−1) + ΩT .

Many different estimators proposed in the literature are special cases of
the above recursive expressions for different choices of σ2

T and ΩT , and the
initialization of Pt, t = 1, 2, ..., T .

In what follows we focus on a very simple application where xt = 1,
and only consider the constant gain least squares, which is equivalent to
discounting past observations at a geometric rate, γ, see Branch and Evans
(2006, p.160). We denote this forecast by

ŷT+1(ExpW, γ) = ŷT+1(γ) =

(

1 − γ

1 − γT

) T
∑

j=1

γT−jyj .

It is clear that for γ = 1, ŷT+1(1) = T−1
∑T

j=1 yj = ȳT .
Consider now the case where the mean of yt is subject to a single break

in mean at date 1 < Tb < T , with µ1 6= µ2 but σ1 = σ2 = σ. The error of
the one-step ahead forecast in this case is given by

eT+1(γ) = yT+1 −

(

1 − γ

1 − γT

) T
∑

j=1

γT−jyj

= εT+1 −

(

1 − γ

1 − γT

) T
∑

j=1

γT−jεj + µ2

−

(

1 − γ

1 − γT

) Tb−1
∑

j=1

γT−jµ1 −

(

1 − γ

1 − γT

) T
∑

j=Tb

γT−jµ2.
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But

Tb−1
∑

j=1

γT−jµ1 = µ1

(

γT−Tb+1 − γT

1 − γ

)

T
∑

j=Tb

γT−jµ2 = µ2

(

1 − γT−Tb+1

1 − γ

)

,

and hence

Bias [ŷT+1(ExpW, γ)] = (µ2 − µ1)

(

γT−Tb+1 − γT

1 − γT

)

.

Since, 0 < γ < 1, the sign of the forecast bias is the same as the sign of
(µ2 − µ1). The forecast error variance is given by

Var [eT+1(γ)] = σ2

[

1 +

(

1 − γ

1 − γT

)2(1 − γ2T

1 − γ2

)

]

.

It is interesting to note that for all values of 0 < γ < 1 the sampling
variance of the forecast - the second part in the [ ], does not vanish even
for T sufficiently large. Therefore, the exponential decay-weighting of the
past observations would work only through bias reduction. As before, let
d = (T − Tb)/T denote the distance to the beak, and note that the scaled
one-step ahead MSFE in this case is given by

MSFE [ŷT+1(ExpW, γ)] = f(γ) (24)

= 1 + λ2

(

γ1+T d − γT

1 − γT

)2

+

(

1 − γ

1 − γT

)2(1 − γ2T

1 − γ2

)

,

and as before, λ = |µ2 − µ1| /σ.
Figure 5 compares the MSFE of the single window forecast with w = 1

to that of the ExpW forecast given in (24) for different values of γ. It can
be seen that for small values of λ the ExpW forecast has a higher MSFE
but that as the size of the break increases the MSFE of single w = 1 window
forecast increases above that of the ExpW forecast. The ExpW procedure
begins to dominate the single window forecasts when λ is increased to 0.4
for all values of d and γ.

For large T and small d, f(γ) can be approximated by

f(γ) = 1 + λ2γ2+2T d +
1 − γ

1 + γ
+ O(γT ).
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Figure 5: Exact difference of MSFEs of single window and ExpW for T = 100
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The graphs plot the exact difference between the single win-
dow and ExpW forecasts, that is, [MSFE(Single window) −

MSFE(ExpW(γ; λ, d))]/σ2.

It is easily seen that

1

2
f ′(γ) = λ2(1 + Td)γ1+2Td −

1

(1 + γ)2
+ O(γT ),

and

1

2
f ′′(γ) = λ2(1 + Td) (1 + 2Td) γ2Td +

2

(1 + γ)3
+ O(γT ) > 0
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Figure 6: Exact difference of MSFEs of AveW and ExpW for T = 100
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The graphs plot the exact difference between the AveW and ExpW fore-
casts, that is, [MSFE(AveW(wmin; λ, d)) − MSFE(ExpW(γ; λ, d))]/σ2.
The arrows point to the zero-isoquant.

for all 0 < γ < 1. Hence, f(γ) = 0 has a unique solution in terms of d and
λ for a sufficiently large T .

Figures 6–8 compare the AveW forecast with the ExpW forecasts for
different values of T, d, and λ, and for different choices of γ. Figure 6 plots
the difference in MSFE between the AveW and the ExpW forecasts for
T = 100 for different values of λ and d. The difference across values of λ
dominates that of different values of d and depends crucially on the choice
of γ. While the ExpW forecasts have a smaller MSFE for γ = 0.95 except
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Figure 7: Exact difference of MSFEs of AveW and ExpW for T = 1000
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See footnote to Figure 6.

for small λ, this is reversed for γ = 0.99, where the AveW forecasts have a
smaller MSFE for most values of λ.

In the case of T = 1000, which is plotted in Figure 7, the choice of γ
is less important. The ExpW forecasts have a smaller MSFE except for
relatively small values of λ and large values of d.

Figure 8 plots the difference in MSFE between the AveW and ExpW
forecasts for fixed break points D = dT and fixed minimum windows Twmin.
The region where ExpW has a smaller MSFE depends on T , the size of the
break, λ, and the decay parameter γ. While for T = 100 and large values of
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Figure 8: Difference in MSFEs between AveW and ExpW forecasts with
fixed break point
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See footnote to Figure 6. Here, however, the break point D = dT and
the minimum window Twmin are fixed and not fractions of T .

γ the difference becomes increasingly negative with λ, the difference grows
in λ for values of 0.96 or less. For T = 1000 the difference is negative only
for small values of λ.

In order to gain additional insight into the differences between the AveW
and ExpW procedures, we plot the weights attached to the observations in
a sample of T = 100 observations in Figure 9. It can be seen that AveW
gives equal weights to the observations in the minimum window whereas
the weights of these observations decline in the ExpW forecasts. Another
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Figure 9: Weights attached to the observations in the AveW and ExpW
forecasts for T = 100
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interesting observation is that the AveW weights do not differ as much as
those of ExpW between the different weighting schemes. This suggests that
ExpW forecasts will depend considerably more on the choice of γ than AveW
forecasts depend on the choice of wmin.

3.1 A Mixed Approach – AveExpW Forecasts

It is clear that the optimal choice of γ critically depends on the relative
values of λ, d and T . For T sufficiently large the bias term vanishes if γ is
not too close to unity - but the variance will then tend to (1 − γ)/(1 + γ)
which does not vanish. This suggests using a value of γ between 0.95 and
0.99. One possibility would be to compute the ExpW forecasts for different
values of γ in the range 0.95 − 1, say, and then combine these forecasts by
simple averaging.

4 Applications to Forecasting Inflation

In this section we will apply the AveW, the ExpW and AveExpW procedures
to forecast monthly inflation of 21 OECD countries using CPI data from
1985M1 to 2007M10. Details of the data sources are given in Appendix B.
By using (1) we assume that inflation is a stationary variable with breaks
in its mean, which reflects the recent findings in the literature, for example
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Burdekin and Siklos (1999) and Robalo Marques (2004).
We recursively compute one-step ahead forecasts using rolling windows

of 8 years, which leads to 177 forecasts for each time series, where the first
forecast is for 1993M2. We also computed two-step ahead forecasts, which
give similar results. In order to save space we don’t report these results here.

The baseline forecasts are based on eight-years rolling regressions. We
compare these forecasts with AveW rolling forecasts based on the same eight-
year window. Recursive forecasts are then obtained by rolling the eight year
window forward by one month and then repeating the forecasting exercise
for the next month and so on. We compute AveW forecasts for two choices
of the minimum window, wmin = 0.1 and 0.2. Additionally, we compute
ExpW forecasts using γ = 0.95 and 0.98, and the AveExpW forecasts where
the different ExpW(γ) forecasts are averaged over two set of values, namely
γ ∈ {0.95, 0.952, 0.954, . . . , 1} and γ ∈ {0.98, 0.982, 0.984, . . . , 1}.

We report the bias, the root mean square forecast error (RMSFE) and
the tests for predictive performance proposed by Diebold and Mariano (1995)
(DM). We has also computed the test for predictive ability by Harvey, Ley-
bourne and Newbold (1997). The results turned out to be very similar and
therefore only the DM test statistics are reported. More precisely, assume
that we want to forecast yt+h, and the forecast is based on the observations
up to t, that is, yt+h|t. Then the h-step ahead forecast error is defined as

et,h = 1
h
(yt+h − yt+h|t). The RMSFE is then computed as

RMSFE =

√

√

√

√

1

N

N
∑

t=1

e2
t,h.

We report the RMSFE and the relative RMSFE, that is for, say, the AveW
forecast we report

RMSFE(AveW)

RMSFE(SW)
,

where here and in the tables SW denotes the forecast from the single rolling
window. Values smaller than one therefore imply that the single window
forecast has a larger RMSFE than the AveW forecast. The test for predictive
ability are calculated for the loss differential

lt(A,B) = e2
tA − e2

tB ,

where etA and etB are the forecast error for forecast methods A and B.
The results are reported in Tables 1 to 6. The relative RMSFEs are

smaller than one in 86% of the cases. However, not in all those cases is
the difference significant. Using the test of Diebold and Mariano (1995) we
find that the single window produces a significantly (at the 5% level) worse
forecast in 43% of forecasts and, importantly, it is not significantly better
in forecasting inflation in any of the 21 countries considered.

26



Table 1: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

Austria

Bias 0.0255 0.0177 0.0194 0.0131 0.0203 0.0191 0.0230
RMSFE 0.2990 0.2981 0.2983 0.2991 0.2980 0.2980 0.2983

SW 1.000 0.3070 0.2671 −0.0347 0.4763 0.4464 0.6821
AveW(0.1) 0.9970 −0.3981 −0.8091 0.0841 0.1573 −0.0918
AveW(0.2) 0.9976 −0.5406 0.2998 0.3699 −0.0075
ExpW(0.95) 1.0005 0.5559 0.6693 0.2950
ExpW(0.98) 0.9968 0.1255 −0.2516
AveExpW(0.95, 1) 0.9967 −0.2333
AveExpW(0.98, 1) 0.9976

Belgium

Bias 0.0153 0.0107 0.0117 0.0078 0.0122 0.0115 0.0138
RMSFE 0.2717 0.2722 0.2720 0.2741 0.2720 0.2723 0.2717

SW 1.000 −0.2843 −0.2237 −0.9533 −0.2454 −0.4185 −0.0103
AveW(0.1) 1.0019 0.3978 −2.0418 0.3614 −0.1514 0.4293
AveW(0.2) 1.0013 −1.5985 0.1314 −0.4434 0.3566
ExpW(0.95) 1.0087 1.5155 1.5583 1.2349
ExpW(0.98) 1.0011 −1.2110 0.4918
AveExpW(0.95, 1) 1.0021 0.7365
AveExpW(0.98, 1) 1.0000

Canada

Bias 0.0384 0.0175 0.0194 0.0108 0.0242 0.0225 0.0311
RMSFE 0.3265 0.3198 0.3200 0.3197 0.3212 0.3207 0.3234

SW 1.000 2.0371 2.3003 1.4190 2.3801 2.1992 2.7831
AveW(0.1) 0.9794 −0.3390 0.0639 −1.2929 −1.2844 −1.6405
AveW(0.2) 0.9801 0.1383 −1.7674 −1.3062 −1.9648
ExpW(0.95) 0.9791 −0.5669 −0.4692 −0.9892
ExpW(0.98) 0.9837 1.0535 −1.9627
AveExpW(0.95, 1) 0.9823 −1.7413
AveExpW(0.98, 1) 0.9904

Switzerland

Bias 0.0650 0.0383 0.0425 0.0260 0.0470 0.0438 0.0560
RMSFE 0.3394 0.3326 0.3334 0.3321 0.3340 0.3334 0.3362

SW 1.000 2.4362 2.3338 1.9219 2.7532 2.7404 3.0940
AveW(0.1) 0.9801 −1.3173 0.3656 −1.6546 −1.1482 −2.0245
AveW(0.2) 0.9823 0.6406 −0.8890 −0.0417 −1.8081
ExpW(0.95) 0.9785 −0.9291 −0.7586 −1.4177
ExpW(0.98) 0.9843 1.6249 −2.3461
AveExpW(0.95, 1) 0.9824 −2.3226
AveExpW(0.98, 1) 0.9907

See note of Table 6.
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Table 2: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

Germany

Bias 0.0275 0.0221 0.0239 0.0179 0.0240 0.0228 0.0259
RMSFE 0.2018 0.1968 0.1978 0.1959 0.1974 0.1967 0.1991

SW 1.000 1.3647 1.1986 1.1899 1.7524 1.8106 2.1088
AveW(0.1) 0.9750 −2.0878 0.5734 −0.5122 0.0978 −0.9489
AveW(0.2) 0.9800 0.9668 0.4404 1.4691 −0.6159
ExpW(0.95) 0.9709 −0.5696 −0.3378 −0.8422
ExpW(0.98) 0.9780 1.9345 −1.3626
AveExpW(0.95, 1) 0.9746 −1.5333
AveExpW(0.98, 1) 0.9864

Denmark

Bias 0.0210 0.0052 0.0063 0.0010 0.0102 0.0091 0.0154
RMSFE 0.3185 0.3200 0.3193 0.3230 0.3193 0.3199 0.3187

SW 1.000 −0.6774 −0.4170 −1.3892 −0.5368 −0.7610 −0.2390
AveW(0.1) 1.0046 1.8402 −2.4394 0.9874 0.2780 0.9164
AveW(0.2) 1.0025 −2.3431 −0.0142 −1.1110 0.5311
ExpW(0.95) 1.0140 2.0605 2.0922 1.7243
ExpW(0.98) 1.0026 −1.8190 0.8431
AveExpW(0.95, 1) 1.0042 1.1540
AveExpW(0.98, 1) 1.0006

Spain

Bias 0.0590 0.0303 0.0336 0.0201 0.0395 0.0369 0.0490
RMSFE 0.3959 0.3903 0.3903 0.3916 0.3917 0.3916 0.3934

SW 1.000 2.4339 2.7981 1.3281 2.6725 2.3622 3.1053
AveW(0.1) 0.9859 0.0419 −1.1292 −1.8579 −2.3618 −2.0472
AveW(0.2) 0.9858 −0.8701 −2.8266 −2.8130 −2.5591
ExpW(0.95) 0.9891 −0.0254 0.0102 −0.7070
ExpW(0.98) 0.9892 0.2051 −2.1973
AveExpW(0.95, 1) 0.9891 −1.7206
AveExpW(0.98, 1) 0.9935

Finland

Bias 0.0641 0.0274 0.0308 0.0154 0.0391 0.0361 0.0513
RMSFE 0.3208 0.3076 0.3095 0.3042 0.3106 0.3091 0.3151

SW 1.000 3.0124 2.9291 2.6552 3.3687 3.3707 3.7030
AveW(0.1) 0.9587 −2.5439 1.5637 −2.1859 −1.5134 −2.6112
AveW(0.2) 0.9645 1.8270 −1.2540 0.4823 −2.3946
ExpW(0.95) 0.9482 −1.8831 −1.6822 −2.2569
ExpW(0.98) 0.9682 2.8459 −2.9941
AveExpW(0.95, 1) 0.9632 −3.0453
AveExpW(0.98, 1) 0.9821

See note of Table 6.
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Table 3: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

France

Bias 0.0229 0.0108 0.0123 0.0065 0.0148 0.0136 0.0187
RMSFE 0.2281 0.2253 0.2254 0.2261 0.2260 0.2259 0.2268

SW 1.000 1.3923 1.4622 0.7198 1.5545 1.4167 1.8480
AveW(0.1) 0.9879 −0.3065 −0.9074 −1.0301 −1.2095 −1.1401
AveW(0.2) 0.9884 −0.6055 −1.0858 −1.0293 −1.2154
ExpW(0.95) 0.9915 0.1177 0.1805 −0.3189
ExpW(0.98) 0.9908 0.2283 −1.2383
AveExpW(0.95, 1) 0.9906 −1.0323
AveExpW(0.98, 1) 0.9944

U.K.

Bias 0.0647 0.0284 0.0326 0.0151 0.0401 0.0367 0.0522
RMSFE 0.3745 0.3675 0.3678 0.3686 0.3692 0.3689 0.3714

SW 1.000 1.7058 1.8064 1.0582 1.9110 1.7877 2.2135
AveW(0.1) 0.9813 −0.3831 −0.5537 −1.2569 −1.3588 −1.4242
AveW(0.2) 0.9820 −0.3048 −1.3856 −1.1407 −1.5450
ExpW(0.95) 0.9840 −0.2092 −0.1253 −0.6484
ExpW(0.98) 0.9857 0.6307 −1.5820
AveExpW(0.95, 1) 0.9849 −1.3997
AveExpW(0.98, 1) 0.9915

Greece

Bias 0.2817 0.1548 0.1701 0.1082 0.1956 0.1837 0.2377
RMSFE 1.1505 1.1298 1.1302 1.1323 1.1346 1.1338 1.1411

SW 1.000 1.6476 1.8107 1.0454 1.8515 1.7070 2.1439
AveW(0.1) 0.9821 −0.2700 −0.4652 −1.1971 −1.4024 −1.3758
AveW(0.2) 0.9824 −0.2962 −1.6272 −1.9425 −1.5905
ExpW(0.95) 0.9842 −0.2561 −0.1972 −0.6694
ExpW(0.98) 0.9862 0.6070 −1.5415
AveExpW(0.95, 1) 0.9855 −1.3410
AveExpW(0.98, 1) 0.9918

Ireland

Bias −0.0163 −0.0134 −0.0139 −0.0122 −0.0142 −0.0140 −0.0152
RMSFE 0.3882 0.3871 0.3878 0.3879 0.3873 0.3870 0.3875

SW 1.000 0.3037 0.1371 0.0579 0.4010 0.4220 0.5635
AveW(0.1) 0.9973 −0.8184 −0.3814 −0.1031 0.1226 −0.1706
AveW(0.2) 0.9989 −0.0435 0.6212 0.8242 0.1312
ExpW(0.95) 0.9992 0.2169 0.3508 0.0901
ExpW(0.98) 0.9976 0.4290 −0.2360
AveExpW(0.95, 1) 0.9971 −0.3092
AveExpW(0.98, 1) 0.9983

See note of Table 6.
29



Table 4: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

Iceland

Bias 0.1418 0.0353 0.0410 0.0120 0.0688 0.0631 0.1036
RMSFE 0.5517 0.4398 0.4470 0.4202 0.4663 0.4583 0.5038

SW 1.000 6.2457 6.3165 5.8937 6.6289 6.5514 6.9455
AveW(0.1) 0.7971 −4.3076 3.7804 −5.0595 −4.7755 −5.7090
AveW(0.2) 0.8102 3.9557 −4.9750 −4.1499 −5.7783
ExpW(0.95) 0.7618 −4.5576 −4.3946 −5.2689
ExpW(0.98) 0.8453 5.2903 −6.1995
AveExpW(0.95, 1) 0.8307 −6.0906
AveExpW(0.98, 1) 0.9132

Italy

Bias 0.0770 0.0428 0.0471 0.0297 0.0538 0.0505 0.0652
RMSFE 0.1709 0.1519 0.1545 0.1464 0.1568 0.1548 0.1632

SW 1.000 5.3741 5.3271 5.0522 5.7915 5.7647 6.1509
AveW(0.1) 0.8888 −4.4759 3.7438 −4.3593 −3.7082 −4.9010
AveW(0.2) 0.9042 3.9958 −3.2236 −0.5456 −4.7032
ExpW(0.95) 0.8566 −4.1280 −3.9352 −4.5863
ExpW(0.98) 0.9176 5.0055 −5.3768
AveExpW(0.95, 1) 0.9059 −5.3859
AveExpW(0.98, 1) 0.9549

Japan

Bias 0.0453 0.0239 0.0267 0.0153 0.0308 0.0286 0.0380
RMSFE 0.2370 0.2343 0.2349 0.2340 0.2348 0.2344 0.2357

SW 1.000 0.7879 0.6430 0.6989 0.9416 1.0239 1.0877
AveW(0.1) 0.9888 −1.3861 0.2457 −0.4430 −0.0924 −0.6161
AveW(0.2) 0.9912 0.5452 0.0974 0.5044 −0.3762
ExpW(0.95) 0.9875 −0.3731 −0.2141 −0.5284
ExpW(0.98) 0.9908 1.2406 −0.7780
AveExpW(0.95, 1) 0.9891 −0.9434
AveExpW(0.98, 1) 0.9944

Korea

Bias 0.0775 0.0428 0.0481 0.0272 0.0542 0.0501 0.0658
RMSFE 0.5024 0.5024 0.5018 0.5045 0.5018 0.5021 0.5018

SW 1.000 0.0046 0.1472 −0.3552 0.2047 0.1048 0.4008
AveW(0.1) 1.0000 0.6235 −0.8555 0.4169 0.2623 0.2126
AveW(0.2) 0.9988 −0.8113 0.0142 −0.1618 0.0119
ExpW(0.95) 1.0042 0.8148 0.8808 0.5941
ExpW(0.98) 0.9988 −0.4371 0.0081
AveExpW(0.95, 1) 0.9993 0.1468
AveExpW(0.98, 1) 0.9988

See note of Table 6.
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Table 5: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

Netherlands

Bias 0.0052 0.0091 0.0104 0.0064 0.0081 0.0073 0.0070
RMSFE 0.4259 0.4286 0.4278 0.4318 0.4276 0.4282 0.4266

SW 1.000 −1.0534 −0.8134 −1.6955 −0.9883 −1.1669 −0.7893
AveW(0.1) 1.0063 1.7405 −2.6327 1.1805 0.6103 1.1905
AveW(0.2) 1.0045 −2.4487 0.2886 −0.5437 0.8235
ExpW(0.95) 1.0140 2.2349 2.2872 1.9549
ExpW(0.98) 1.0041 −1.8272 1.1922
AveExpW(0.95, 1) 1.0054 1.4456
AveExpW(0.98, 1) 1.0017

Norway

Bias 0.0588 0.0255 0.0279 0.0169 0.0360 0.0339 0.0469
RMSFE 0.3188 0.3098 0.3095 0.3099 0.3114 0.3111 0.3143

SW 1.000 2.7356 3.0947 1.9518 3.1267 2.8949 3.5583
AveW(0.1) 0.9715 0.5778 −0.1202 −1.6829 −1.8423 −2.2079
AveW(0.2) 0.9707 −0.2336 −2.6348 −2.5301 −2.7303
ExpW(0.95) 0.9721 −0.6253 −0.5869 −1.3043
ExpW(0.98) 0.9766 0.8243 −2.6218
AveExpW(0.95, 1) 0.9757 −2.2639
AveExpW(0.98, 1) 0.9859

Portugal

Bias 0.1646 0.0875 0.0964 0.0596 0.1123 0.1052 0.1379
RMSFE 0.4170 0.3725 0.3771 0.3620 0.3840 0.3799 0.3989

SW 1.000 5.3822 5.4219 4.8761 5.7681 5.7041 6.1331
AveW(0.1) 0.8932 −4.0649 3.0787 −4.4178 −3.9992 −4.9096
AveW(0.2) 0.9043 3.3423 −3.9941 −2.1986 −4.8981
ExpW(0.95) 0.8681 −3.7657 −3.5852 −4.3331
ExpW(0.98) 0.9208 4.6398 −5.3348
AveExpW(0.95, 1) 0.9109 −5.2666
AveExpW(0.98, 1) 0.9564

Sweden

Bias 0.1076 0.0552 0.0611 0.0358 0.0722 0.0671 0.0896
RMSFE 0.4185 0.3947 0.3972 0.3895 0.4006 0.3983 0.4085

SW 1.000 3.6392 3.5282 3.3615 3.9337 4.0011 4.1985
AveW(0.1) 0.9431 −3.0959 2.0109 −2.9173 −2.2729 −3.2899
AveW(0.2) 0.9491 2.2972 −2.1662 −0.7898 −3.0675
ExpW(0.95) 0.9307 −2.5575 −2.3515 −2.9675
ExpW(0.98) 0.9572 3.5469 −3.6169
AveExpW(0.95, 1) 0.9517 −3.7519
AveExpW(0.98, 1) 0.9761

See note of Table 6.
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Table 6: Relative performance in forecasting inflation, h = 1

SW AveW ExpW AveExpW
0.1 0.2 0.95 0.98 (0.95, 1) (0.98, 1)

U.S.A.

Bias 0.0253 0.0109 0.0122 0.0064 0.0155 0.0144 0.0203
RMSFE 0.2261 0.2232 0.2235 0.2236 0.2239 0.2237 0.2248

SW 1.000 1.6033 1.7892 0.8253 1.8023 1.5595 2.1888
AveW(0.1) 0.9873 −0.6251 −0.2806 −1.1361 −1.4731 −1.2894
AveW(0.2) 0.9886 −0.0526 −1.1046 −0.4866 −1.4698
ExpW(0.95) 0.9890 −0.1442 −0.0732 −0.4701
ExpW(0.98) 0.9902 0.4750 −1.4122
AveExpW(0.95, 1) 0.9895 −1.1169
AveExpW(0.98, 1) 0.9941

SW denotes the single window forecast, AveW(0.1) and AveW(0.2) the AveW forecasts with
wmin = 0.1 and 0.2, ExpW(0.95) and ExpW(0.98) the ExpW forecasts with γ = 0.95 and 0.98,
and AveExpW(0.95,1) and AveExpW(0.98,1) the AveExpW forecasts with γ ranging from 0.95 to
1 and 0.98 to 1 with steps of 0.002. On the diagonals of rows three to nine are the root mean square
forecast error (RMSFE) as ratios where the RMSFE of the single window is in the denominator. In
the upper triangle of rows three to nine are the statistics for the test of predictive ability of Diebold
and Mariano (1995), where a positive value indicates that the method given in the top row has
better predictive ability.

For the AveW forecasts the choice of wmin = 0.1 leads to six significantly
better forecasts compared to wmin = 0.2, whereas the wmin = 0.2 does not
produce a significantly better forecast compared to wmin = 0.1. Therefore,
there is a preference for wmin = 0.1

For ExpW, the choice of γ = 0.95 improves the forecast significantly over
the choice of γ = 0.98 in 4 forecasts, while the reverse is true in two cases.
The AveExpW with γ ∈ (0.95, 1) forecasts are significantly worse than the
ExpW forecasts with γ = 0.95 in five cases and better in only one case,
but better that the ExpW forecasts with γ = 0.98 in five cases and never
worse. AveExpW with γ ∈ (0.98, 1) in contrast is never better than any of
the AveW, ExpW, or AveExpW forecasts but often worse.

Overall it therefore appears that AveW with wmin = 0.1 and ExpW
with γ = 0.95 are the best choices for forecasting inflation. The difference
between them is small: AveW is significantly better in three cases and ExpW
in four cases. This suggests that the shorter memory implied by the shorter
minimum window and the smaller decay parameter lead to better forecasts
of inflation.

5 Conclusion

In this paper we have shown that AveW and ExpW forecasts always have
a lower bias than full sample forecasts. The forecast variance of the AveW

32



and ExpW forecasts depends, however, on the size and time of the break
in the sample. For all but the smallest breaks, however, also the MSFE of
the AveW and ExpW forecasts are smaller than those of the single window
forecasts.

A comparison of the AveW and ExpW forecasts suggest that their rel-
ative performances depend on the size and timing of the break as well as
the size of the sample. It emerges that when the break is relatively small—
roughly less than a quarter of the variance of the disturbance term—the
AveW forecast has a lower MSFE. Otherwise ExpW will dominate if the
sample size is small and the downweighting parameter, γ, is set below ap-
proximately 0.96, or when the sample size is large.

Applying these techniques to international inflation data demonstrates
that the AveW, ExpW and AveExpW forecasts have a lower MSFE than the
single window forecast for most inflation series and that these improvements
are often statistically significant. Importantly, the single window never fore-
casts inflation significantly better.

Extensions of the results in the paper to more general set ups is possible
but analytical derivations might not be easy to achieve. This is particularly
the case if we consider dynamic models with breaks. However, Monte Carlo
simulations for AveW forecasts for AR(1) models, not reported here but
available from the authors, suggest that the main findings of this paper are
likely to hold more generally.
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Appendix A: Mathematical details

This appendix gives the mathematical details for the AveW forecast with a
break in volatility.

We have that
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and, finally,
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This results in the MSFE in (19).
The difference between the scaled MSFE of the single window forecast

and that of the AveW forecast is
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Figure 10: Minimum κ2 for a positive difference in asymptotic MSFE
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The graph shows the contours of (26), that is, the minimum values of
κ2 that are required for the AveW forecast to have a lower MSFE than
the single window forecast.

From this we can establish the values of κ for which the difference in MSFE
is positive, which is

κ2 >
2
{

wmin[ln(wmin) − 1] + d[1 − ln(d)] + d
2 ln(d)2

}

− (1 − wmin)
2d

(1 − wmin)2(1 − d) − 2
[

1 + d ln(d) − d − d
2 ln(d)2

] (26)

if the denominator is positive; if the denominator is negative the inequality
is reversed.

The contours of the function on the right hand side of (26) are plotted
in Figure 10, where the negative of (26) is plotted if the denominator is
negative so that κ2 needs to exceed the values of the contour everywhere.
It emerges that the function is highly nonlinear and fairly large values of κ
are necessary to obtain a positive difference in scaled MSFEs.
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Appendix B: Data

The data on CPI inflation are obtained from the OECD Main Economic
Indicators data base and Datastream. The series are:

• Austria: OECD MEI; code: AUT.CPALTT01.IXOB

• Belgium: OECD MEI; code: BEL.CPALTT01.IXOB

• Canada: OECD MEI; code: CAN.CPALTT01.IXOB

• Switzerland: OECD MEI; code: CHE.CPALTT01.IXOB

• Germany: Datastream; code: BDCONPRCE

• Denmark: OECD MEI; code: DNK.CPALTT01.IXOB

• Spain: OECD MEI; code: ESP.CPALTT01.IXOB

• Finland: OECD MEI; code: FIN.CPALTT01.IXOB

• France: OECD MEI; code: FRA.CPALTT01.IXOB

• UK: OECD MEI; code: GBR.CPALTT01.IXOB

• Greece: OECD MEI; code: GRC.CPALTT01.IXOB

• Ireland: OECD MEI; code: IRL.CPALTT01.IXOB

• Iceland: OECD MEI; code: ISL.CPALTT01.IXOB

• Italy: OECD MEI; code: ITA.CPALTT01.IXOB

• Japan: OECD MEI; code: JPN.CPALTT01.IXOBSA

• Korea: OECD MEI; code: KOR.CPALTT01.IXOB

• Netherlands: OECD MEI; code: NLD.CPALTT01.IXOB

• Norway: Datastream; code: NWCONPRCE

• Portugal: OECD MEI; code: PRT.CPALTT01.IXOB

• Sweden: OECD MEI; code: SWE.CPALTT01.IXOB

• USA: OECD MEI; code: USA.CPALTT01.IXOBSA
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For reasons of comparability we use time series of equal length and there-
fore start the series in 1985M1 and end in 2007M10. A number of series are
not seasonally adjusted. While we do not expect price data from developed
countries to exhibit a strong seasonal pattern, it could be accounted for by
using only data of the same month for the forecasting process. This would,
however, entail a significant loss of power due to the reduced sample size,
and we do not attempt this here.

For each series we calculate the month-on-month inflation rate

πt = 100[log(CPIt) − log(CPIt−1)].
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