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Fukui functions have been calculated for large numbers of organic molecules, and were found to
always be positive. Numeric and algebraic considerations allowed the identification of several
boundary conditions for negative values for Fukui functions. Negative Fukui functions are found to
be very unlikely, except when very short interatomic distances are present. Recent hypotheses
concerning the occurrence of negative Fukui functions are strongly supported by the present
approach. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542875#
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I. INTRODUCTION

In Fukui’s Frontier Molecular Orbital Theory,1,2 chemi-
cal reactivity toward nucleophiles or electrophiles is int
preted in terms of the HOMO or LUMO electron density. F
an electrophilic reaction, the reaction will take place the
where the HOMO electron density is the largest in the m
ecule. Likewise, for a nucleophilic reaction, the LUMO in
dicates the preferred site in the molecule.

Within the context of density functional theory~DFT!,
so-called Fukui functions are introduced,3 which are advo-
cated as reactivity descriptors in order to identify the m
reactive sites for electrophilic or nucleophilic reactio
within a molecule. The most common expression for
Fukui functions is3

f ~r !5S ]r~r !

]Ne
D

Vext

. ~1!

They reflect the change in electron density at a pointr with
respect to a change in the number of electronsNe , under
constant external potentialVext. The latter requirement often
simply translates in freezing the molecular geometry. Oft
one prefers to associate molecular properties like chem
reactivity with atomic entities in the molecule and not with
certain point in space. This means one needs to some
identify an atom in the molecule. Since there has not
been defined an operator, which, acting on the wave func
or electron density, performs such a division of space
atomic basins, there is no unique definition of an atom i
molecule. Despite this fundamental problem, Fukui functio
are often condensed to atomic resolution.

a!Electronic mail: Patrick.Bultinck@rug.ac.be; fax:132/9/264.49.83.
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These condensed Fukui functions are, according to Ay
et al. in the context of a variational approach to chemic
reactivity,4–6 even more instructive indicators of molecul
site reactivity than the actual Fukui function, as introduced
Eq. ~1!. Atom condensed Fukui functions were first intr
duced by Yanget al.,7 using the Mulliken population analy
sis ~MPA!. The Fukui function on an atoma is then calcu-
lated as the change of the atomic MPA charge with respec
a change in the total number of electrons in the molecule

f a52S ]qa

]Ne
D

Vext

. ~2!

These condensed Fukui functions are usually evaluated u
a finite difference~FD! methodology considering discret
numbers of electrons. One thus performs calculations for
neutral molecule and for the cationic and anionic spec
with the same molecular geometry. In FD calculations, th
types of Fukui functions are introduced, depending on
species involved, so the following forms are defined:

f a
15qNe

2qNe1DNe
,

f a
25qNe2DNe

2qNe
, ~3!

f a
05 1

2 ~qNe2DNe
2qNe1DNe

!,

which correspond to approximations to the actual derivati
from the left and the right, respectively. The Fukui functio
f a

1 and f a
2 describe the ability of an atoma to accommodate

an extra electron or to cope with the loss of an electron.f a
0 is

then considered as an indicator for radical reactivity. In
above-mentioned calculational scheme, many different er
may be introduced, possibly having an important impact
the resulting values. Among these errors one has in the
9 © 2003 American Institute of Physics
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place the mathematical problem of using the finite differen
approximation withDNe51 in Eq. ~3!. This is quite a crude
approximation for the calculation of the derivative. It
claimed that within DFT nonintegral numbers of electro
may be considered. This introduces a number of extra q
tions of a philosophical nature, like considering obsolete
indivisibility of particles intervening in chemical phenom
ena. Next to these problems, another crude assumption is
the method used for the neutral molecule is equally well
for the cationic and anionic species. The DFT functional a
basis set should be equally accurate for the neutral molec
which is often a singlet state, as for charged molecu
which often are doublet states. One further needs to add
the way how atoms were defined within the molecule. U
ally this directs the problem toward the method used
population analysis.

Several methods have been devised to calculate F
functions without using the finite difference approximatio
Such approaches include methods based on the calculati
derivatives of the MO coefficients with respect to the num
of electrons8 and a variational approach proposed
Chattarajet al.9 and implemented by De Proftet al.10 using a
simple approximation for the hardness kernels. In the pre
study, the electronegativity equalization method~EEM!, as
introduced by Mortieret al.,11,12 is used to calculate atom
condensed Fukui functions. In EEM, conceptual DFT qu
tities, like atom condensed Fukui functions, may be cal
lated employing separate systems of matrix equations a
troduced by Baekelandtet al.13 and by Bultincket al.14 An
alternative method exists in using algebraic relations
tween these quantities and the molecular hardness matr15

A complete discussion of EEM is well outside the sco
of the present article, and the reader is referred to the w
by Mortier et al.11,12 and subsequent work by Bultinc
et al.14–18 In short, EEM allows the calculation of atomi
charges from the hardness matrix. This hardness ma
within Mortiers EEM, is given for anN-atom molecule by

E05F 2h1* r 12
21

¯ r 1N
21

r 21
21 2h2* ¯ r 2N

21

] ] ¯ ]

r N1
21 r N2

21
¯ 2hN*

G . ~4!

The symbolh i* refers to the so-called effective hardness
atom i. r i j refers to the interatomic distance between atomi
and j. The elements of this hardness matrix are, with
Mortiers EEM, in fact, the hardness kernels.3 It was shown
by Bultinck et al. that atomic charges can be calculated fro
this hardness matrix as15

uq&5@^E0
21&21~E0

2110E0
21!2E0

21#ux&1Q^E0
21&21E0

21u1&.
~5!

In this equation,Q denotes the total molecular charge, a
ux& is a column vector holding the effective electronegati
ties for all elements. The notation^E0

21& in Eq. ~5!, as intro-
duced by Carbo´-Dorca et al.,19–21 refers to the sum of al
elements of the hardness matrix inverse. Fukui functio
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and many other conceptual DFT quantities can be obtai
from EEM. Atom condensed Fukui functions are then giv
by15

uf&5^E0
21&21E0

21u1&, ~6!

whereu1& is the unity vector,22 a column vector containingN
elements equal to 1.

It must be noted here that only one Fukui function
calculated, instead of the three that arise in finite differen
approximations. Unfortunately, the effective hardness a
electronegativity parameters cannot be obtained direc
They are atoms-in-molecules properties, and were obta
previously from calibration against a large set of molecu
representing a wide range of medicinal chemistry.17,18 Once
these parameters are available, Fukui functions can be ca
lated directly from Eq.~6! at the very high speed of sever
millions of molecules/hour on an average PC.

One of the often-cited ‘‘problems’’ with Fukui functions
and their atom condensed versions, is that of nega
values.23–26 A negative Fukui function value means th
when adding an electron to the molecule, in some spots
electron density is reduced, alternatively when removing
electron from the molecule, in some spots the electron d
sity grows larger. This is counterintuitive. Whether such b
havior is physically correct is not easily shown, and the o
firm requirement consists in that they should sum to one,
is, Fukui functions have to be normalized.3 For atom con-
densed Fukui functions, this last property means that

^uf&&5 (
a51

N

f a51. ~7!

Fuentealbaet al. have given a number of interesting arg
ments concerning the non-negativity property, but they a
admit the impossibility to truly exclude negative Fuk
functions.25,26 On the other hand, there are numerical indic
tions that the Hirshfeld charge scheme,27 based on a stock
holder idea, yields only positive Fukui functions.4–6,23,24,28

Negative values in other studies are then usually attribute
the characteristics of the population analysis partit
scheme used. As was shown previously by Bultincket al.16

for general hardness kernel matrices, even infinite atom c
densed Fukui functions are possible when the diagonal do
nance of the hardness kernel matrix is lost.

Our previous studies have shown that Fukui functio
derived explicitly through EEM via the matrix equations14 or
using the algebraically derived equations,15 are never nega-
tive. These tests involved several hundreds of molecu
representing a wide range of medicinal chemistry repres
tative molecular structures. In the present study, the poss
ity of negative Fukui functions from EEM will be investi
gated. Starting from the hardness matrix, as given in Eq.~4!,
numerical tests are performed to observe when Fukui fu
tions are negative, and algebraic derivations will be p
sented to identify when, for a general polyatomic molecu
negative or even infinite Fukui functions may arise. Al
addressed is the question of whether negative Fukui fu
tions are the consequence of using MPA or natural pop
tion analysis29 ~NPA!. A recent and interesting study b
Ayers et al.6 provides the hypothesis stating that diagon
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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dominance of the hardness matrix is sufficient to obtain p
tive Fukui functions. A general proof of this hypothesis w
presented previously by Bultincket al.16 In Mortier’s EEM,
the hardness kernelshab(Þa) are equal tor ab

21, and so the
diagonal dominance character of the hardness matrix ca
manipulated by changing the molecular structure. This
lows us to test numerically the importance of diagonal do
nance to obtain positive Fukui functions, and to derive n
algebraic expressions to identify when Fukui functions
unlikely to be physically meaningful.

II. RESULTS AND DISCUSSION

First, several examples and worked-out matrix equati
will be presented, whereas in the second section, a se
general, algebraic derivations will be developed, illustrat
in a general context when Fukui functions may get negat
As will be shown, negative Fukui functions are not the on
counterintuitive events that may occur. Even more coun
intuitive is the possibility of infinite Fukui functions tha
arises as a result of the same theoretical development.

A. Numerical examples and matrix considerations
for negative and infinite Fukui functions
in small molecules

In this section several examples will be presented, ill
trating the presence of possible discontinuities in the Fu
functions. The first example involves a simple diatomic m
ecule; the second addresses triatomic molecules. In
cases the EEM matrix equations are worked out explici
and those situations where discontinuities are found are
amined. In the numerical examples effective hardness par
eters are taken from Bultincket al.17,18 These are base
on calibrations from MPA. It should, however, be stress
that other population analysis methods, such as NPA29 or
Hirshfeld charges,27 produce the same conclusions. Furth
more, the algebraic developments do not make any assu
tion on the method used to obtain these parameters.

1. Diatomic molecules

Diatomic molecules are the most tractable case for
study of Fukui function behavior. The hardness matrix in t
case, is given by the following formula:

E5F2h1* r 12
21

r 21
21 2h2*

G . ~8!

From previous algebraic results,15 it was found that the Fuku
function vector is given by

uf&5^E21&21E21u1&52hME21u1&, ~9!

wherehM is the global molecular hardness. It is seen that
the Fukui function evaluation, the hardness inverse matri
required. For simple molecules it remains tractable to do
in an explicit way:

E215F2h1* r 12
21

r 21
21 2h2*

G21

5
1

D F 2h2* 2r 12
21

2r 21
21 2h1*

G , ~10!

where D denotes the determinant of the hardness mat
Equation~9! becomes
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uf&5^E21&21E21u1&

5@2~h1* 1h2* 2r 12
21!#21F2h2* 2r 12

21

2h1* 2r 21
21G . ~11!

Consider as a special case any homonuclear diatomic m
ecule, that is,h1* 5h2* . In this case the Fukui functions wil
be independent of the interatomic distance, and the solu
will always bef 15 f 25 1

2, as easily predicted from symmetr
considerations. A more interesting case is found when stu
ing heteronuclear diatomic molecules. In this case, a disc
tinuity is expected when

~h1* 1h2* 2r 12
21!50. ~12!

Taking as an example the CO molecule, and using the c
brated values for the effective hardness for C and O,17,18 it is
easily predicted that a discontinuity should arise near 0.60
Doing the EEM calculations using the algebraic expressi
given previously, this discontinuity is indeed found. Also, t
negative Fukui functions for C and O are both found ne
this discontinuity. It is interesting to note that Fig. 1 show
that this discontinuity and the area where negative Fu
functions are found, occurs at quite small interatomic d
tances. As the further algebraic development will show, th
interatomic distance limits can be obtained from the hardn
matrix in a general way. For all distance ranges chemica
more common, only positive Fukui functions are found. Th
fact agrees well with the tests performed by Bultincket al.
for a large set of medicinal molecules, where no negat
Fukui functions were found employing EEM,14 contrary to
the many instances where negative Fukui functions h
been found when employing finite difference DFT calcu
tions. In none of the molecules in that study, nor in any of
138 molecules used in the calibrations of EEM paramet
negative Fukui functions have been found. None of th
molecules contained any extraordinarily short interatom
distances either.

FIG. 1. ~Color! Behavior of Fukui functions in CO as a function of C–O
interatomic distance~in Å!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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It is interesting to note that Fig. 1 is in fine agreeme
with the hypothesis by Ayerset al.6 and the proof by
Bultinck et al.16 that diagonal dominance in the hardness m
trix yields positive Fukui functions. It is easily checked th
diagonal dominance in the present EEM scheme, only oc
starting from C–O distances of 0.8 Å. The fact that there
also the possibility of positive Fukui functions below th
limit is a consequence of numerical aspects, but they sho
be regarded with skepticism. In those regions the hardn
matrix has also lost its positive definite nature, and it is
easy predicting the behavior of the Fukui functions, in ge
eral, for a polyatomic molecule below the limit of diagon
dominance. It is worth noting that the Fukui function r
mains defined within EEM for all distances, but that a d
continuity may arise at some point. Fukui functions rem
single valued, and normalization is considered explicitly
including the normalization requirement in the previous
derived algebraic relations.15

2. Triatomic molecules

Triatomic molecules are slightly more involved to deri
direct formulas, and, for example, applications; only a nu
ber of special cases will be considered in detail. The ha
ness matrix is given by

E5F 2h1* r 12
21 r 13

21

r 21
21 2h2* r 23

21

r 31
21 r 32

21 2h3*
G . ~13!

Calculating the inverse explicitly is a straightforward but
dious task. The formulas obtained in the general triatom
case are also relatively little instructive, except in a few si
plified cases.

The first of such cases is a simple equilateral triangu
molecular geometry, as in cyclopropane with hydrogen
oms omitted. ThisD3h structure has the special features co
sisting in thath1* 5h2* 5h3* and r 125r 235r 13. Intuitively,
all atoms should have an equal value for the Fukui functi
and since Fukui functions sum up to one, the Fukui functio
should possess values equal to one-third. Working out
~13! for this special case, one indeed finds this result. Mo
in general, for all molecules under the special conditio
h1* 5h2* 5¯5hN* and all interatomic distances equal, o
finds that Fukui functions are equal and have values equ
1/N, independent of the interatomic distances.

Now consider CO2 as a typical linear triatomic mol
ecule. This has the special features consisting ofh1* 5h3*
Þh2* using an atom numbering as O1– C2– O3, and that the
following distance relationships hold:r 125r 235

1
2r 13. In this

case the Fukui functions are found to be given by

uf&5^E21&21E21u1&

5~8h1* h2* 1~2h1* !222~4h1* 1h2* !r 12
211 7

42 r 12
22!21

3F 4h1* h2* 2~2h1* 1h2* !r 12
211 1

2 r 12
22

~2h1* !224h1* r 12
211 3

4 r 12
22

4h1* h2* 2~2h1* 1h2* !r 12
211 1

2 r 12
22
G . ~14!
loaded 30 Nov 2010 to 84.88.138.106. Redistribution subject to AIP licens
t

-
t
rs
s

ld
ss
t
-

-
n
y

-
-

-
ic
-

r
t-
-

,
s
q.
,

s

to

Again discontinuities will arise if the denominator in Eq
~14! becomes zero. This yields a quadratic equation in te
of the distancer 12, and in the specific case of CO2, one of
the discontinuities is expected near a C–O distance of
proximately 0.76 Å. This is also found numerically, as show
in Fig. 2.

The negative Fukui functions are found near the disc
tinuities only, cases where it is also impossible to obt
Fukui functions with good precision. Note that again the d
continuity arises as a consequence of a geometry, where
interatomic distances between carbon and oxygen are sig
cantly smaller than the equilibrium distance, which is a
proximately 1.17 Å. Again, from the moment that diagon
dominance is recovered, the Fukui functions become p
tive, which agrees with the hypothesis of Ayerset al.6 and
the proof of Bultincket al.16 The last special case that
easily considered with explicit formulas is found for tr
atomic molecules whereh1* 5h3* Þh2* , and r 125r 23; and
the angle1–2–3 differs from 180°. A typical example is a
C2V ABA structure like H2O. Denoting the ABA valence
angle asa, one has

r 135r 12A2~12cos~a!!5ar12. ~15!

The Fukui functions then are given by

uf&5^E21&21E21u1&

5„8h1* h2* 1~2h1* !224~2h1* 1h2* a21!r 12
21

1~4a212a22!r 12
22

…

21

3F 4h1* h2* 2~2h1* 12h2* /a!r 12
211a21r 12

22

~2h1* !224h1* r 12
211~2a212a22!r 12

22

4h1* h2* 2~2h1* 12h2* /a!r 12
211a21r 12

22
G . ~16!

Then one can solve this equation for different O–H bo
lengths and anglesa. Experimental and calculated data fo
H2O give bond distances around 0.97 Å and the HOH
lence angle around 105°. Investigating the behavior of
Fukui function as a function of the O–H distance under
fixed anglea5105°, a discontinuity is found at very sma

FIG. 2. ~Color! Fukui functions in CO2 as a function of C–O distance
~in Å!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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H–O bond lengths~0.52 Å!. When looking at thea depen-
dence under a fixed O–H bond length of 0.97 Å, intere
ingly enough no discontinuities were found, except for t
trivial one neara50°. Over the entire, chemically reasonab
range of valence angles the Fukui functions are always p
tive, with only minor variation. It is thus found that for ge
ometries that are chemically meaningful, that is, when th
are no atoms very close to each other, Fukui functions
obtained through EEM are positive. For H2O, discontinuities
can, however, also appear again in uncommon molecular
ometries. As an example, Fig. 3 shows the Fukui functio
and molecular hardness as a function ofa, for a fixed O–H
distance of 0.5 Å. In such heavily distorted geometri
Fukui functions can hardly be obtained accurately, and la
regions exist where they are negative. Such geometries
very unlikely to be present in most molecules, since they
probably only be realized at a very high energetic cost. Fr
three-dimensional plots of the Fukui functions against
O–H distance andH–O–H valence angle, it was found tha
all discontinuities and negative Fukui functions are found
areas that unlikely represent structural features that may
cur in actual ground state molecular structures.

The examples presented up to now indicate that Fu
functions may show negative values or even infinite valu
but that within chemically meaningful geometries, no su
situations are likely to occur. They also indicate that whe
ever the hardness matrix shows diagonal dominance,
Fukui functions are positive. Working out the actual boun
aries for a general polyatomic molecule is, however, a v
tedious job, so it is well worth seeking a general, algebr
derivation allowing us to identify possible problems wi
Fukui function discontinuities.

B. General algebraic considerations for negative
and infinite Fukui functions

As the examples above have shown, there are not o
instances where Fukui functions may be negative, but a

FIG. 3. ~Color! Fukui functions as a function of theH–O–H valence angle
~in degrees! in H2O.
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there are discontinuities where Fukui functions may beco
infinite. In the following section derivations concerning su
behavior will be presented. These derivations are somew
similar to the proof of the diagonal dominanc
requirement,16 but are specifically aimed at Mortier’
EEM.11,12

The hardness matrix in EEM is defined as follows:

E5D1R, ~17!

with

D5Diag$2h I* %∧R5$d~ IÞJ!r IJ
21%, ~18!

$2h I* % being the effective hardness elements,d(IÞJ) a logi-
cal Kronecker delta21,30–34andr IJ

21 the inverses of the inter
atomic distances. Let us first consider the case of a N a
molecule, with hardness matrixE0, given explicitly by Eq.
~4!. When adding an extra atom, the hardness matrix may
written as

E5F E0 ur &

^r u 2hN11* G ; ~19!

ur & is the column vector holding the elementsr i (N11)
21 ( i

51,...,N), representing the reciprocals of the distance
tween the N atoms on the one hand and the added atom
the other hand.hN11* is the effective hardness of the adde
atom.

Fukui functions for the N atom molecule are given alg
braically by Eq.~6!. For theN11 molecule one then has

uf&5^E21&21E21F u1&
1 G52hME21F u1&

1 G , ~20!

wherehM is the global molecular hardness. Thus, the ha
ness matrix is a matrix with positive definite elements a
the molecular hardness is a positive scalar as well. The Fu
function vector has to fulfill the additional property consis
ing in that the sum of its elements shall be equal to one,
is,

^uf&&5 (
I 51

N11

f I51. ~21!

Then, it is not an out of context conjecture to suppose t
the Fukui function vector elements, also become posit
definite, once the system~20! is solved. Numerical tests ove
a large set of molecules behave according to this posi
definite trend for the elements of the Fukui function vecto14

On the other hand, unfortunately, nothing proves that
above conjecture is always fulfilled. There also seems to
no clues about the possibility of knowing when any Fuk
function element becomes zero or negative. This is so,
cause from the direct solution of Eq.~20! there is no indica-
tion that can provide a proof for this property, as the solv
equation by means of the inverse of the hardness ma
E215$EIJ

(21)%, only proves that the Fukui function vecto
elements can be, in general, expressed as sums of the
ness inverse matrix elements,

f I52hM (
J51

N11

EIJ
~21! , ~22!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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and, from this algorithm, nothing can tell that the Fuk
function values are positive definite in any case, as the
verse hardness elements can be negative and the sum
perhaps add up to a negative as well.

Suppose now that Eq.~6! has been previously solved
and thusE0

21 is known. Also suppose that the Fukui fun
tions of this system are all positive. One can then cons
when the discontinuities will arise after adding the ex
atom. It is clear that to solve for the Fukui functions in t
N11 atom molecule, the inverse of the hardness matrix
to be found in the same way that the previous inverse ha
be known to solve Eq.~20!. The inverse of the symmetri
matrix E in Eq. ~19! may be written by means of

E215F E0 ur &

^r u 2hN11* G21

, ~23!

which, given the symmetric nature ofE, may be written as

E215F E0
@21# ue@21#&

^e@21#u e@21# G . ~24!

In order to obtain the inverse, one needs to solve

F E0
@21# ue@21#&

^e@21#u e@21# G F E0 ur &

^r u 2hN11
G5F I 0 u0&

^0u 1 G , ~25!

where u0& and ^0u are N-dimensional column and row zer
vectors. The inverse columnue@21#& and row ^e@21#u are
N-dimensional vectors, related by transposition.e@21# is sim-
ply a scalar. Note the important difference betweenE0

@21#

andE0
21, which, respectively, are the (N3N) matrix block

in the partitioned matrix, Eq.~24!, and the inverse of the
hardness matrixE0. Working out Eq.~25!, the following four
equations are obtained:

E0
@21#E01ue@21#&^r u5I0 , ~26!

E0
@21#ur &12hN11* ue@21#&5u0&, ~27!

^e@21#uE01e@21#^r u5^0u, ~28!

^e@21#ur &1e@21#2hN11* 51. ~29!

Equation~28! is readily worked out, and introducing

a5^r uE0
À1ur &22hN11* , ~30!

one finds by substitution in Eq.~29!,

e@21#52a21. ~31!

This result, back-substituted in Eq.~28!, gives an expression
for ^e@21#u,

^e@21#u5a21^r uE0
À1. ~32!

An application of these results in Eq.~26! provides an algo-
rithm to compute the inverse elementE0

@21# ,

E0
@21#5E0

À12a21~E0
À1ur &^r uE0

À1!. ~33!

Finally, one finds for the inverse matrixEÀ1,

EÀ15a21FaE0
À12E0

À1ur &^r uE0
À1 E0

À1ur

^r uE0
À1 21 G . ~34!
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Using the previously derived algebraic relations for t
Fukui functions,15 one can also readily write

uf&52hME21F u1&
1 G , ~35!

wherehM is the global molecular hardness. Shifting the m
lecular hardness to the left side of the equation, one
equally consider the softness vector, defined as

us&5E21F u1&
1 G . ~36!

Let us now investigate when discontinuities will occur in t
Fukui functions or in the local softnesses. Using Eq.~34! in
Eq. ~35!, one finds

uf&52hMa21F ~aE0
À12E0

À1ur &^r uE0
À1!u1&1E0

À1ur &

^r uE0
À1u1&21

G .

~37!

Discontinuities will now arise when the following conditio
is met:

a5^r uE0
À1ur &22hN11* 50, ~38!

which identifies the point of the discontinuity as

^r uE0
À1ur &52hN11* , ~39!

or, working out the matrix products,

(
I 51

N

(
J51

N

r ~N11!I
21 E0;IJ

~21!r J~N11!
21 52hN11* . ~40!

Near this point, Fukui functions are very unlikely to be o
tained with good precision, and negative values may arise
we consider as an example again the case of CO, the be
ior as in the worked-out example, given above, is rep
duced. Formula~40! is, however, a general equation, allow
ing also identifying those cases where in any polyatom
molecule, discontinuities and negative Fukui functions
likely to arise.

Further support for Eq.~40! as a criterion for disconti-
nuities in Fukui functions is found by Cholesk
decomposition35 of the hardness matricesE0 andE. Suppose
that the hardness matrix is positive definite in the usual m
trix algebra sense:36

E.0→;ux&Þ0:^xuEux&.0. ~41!

That the definition~41! holds for the hardness matrix can b
easily seen, when one considers the nature of the matrR
entering definition~17!, as constructed in Eq.~18!. Indeed,
inverse distances behave as cosines,37,38 and cosines can be
considered just as normalized scalar products. Thus,
hardness matrix can be considered, in full, as representi
positive definite metric, provided that the distance partR
corresponds to reasonable interatomic distance values
course, this situation can be distorted, and such a devia
will be discussed next and used to examine the nature of
Fukui function vector.

Admitting, as a suitable work hypothesis, the positi
definite nature of the hardness matrixE, then any partition of
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the matrix, like in Eq.~19! provides a positive definite sub
matrix: E0 . Then there exists the following Cholesky tria
gular decomposition:35

E05T0
TT0 , ~42!

T0 being the so-called Cholesky decomposition matr
which is defined as an upper triangular matrix, whose n
null elements can be computed in terms of those of the or
nal matrix E0 , being T0

T the lower triangular transpose o
T0 . The hardness submatrix is in this manner nonsingu
and the inverse is readily computed as

E0
215T0

21T0
2T . ~43!

Moreover, the inverse of a given triangular matrix is al
computed by a simple algorithm. Both processes, the tr
gular matrix decomposition and inversion, are related b
recursive algorithm too,39 which can be applied to the aug
mented row hardness matrix. That is, one can write

E5TTT→T5S T0 ut&

^0u t D , ~44!

and a similar structure can be specified for the inve
process,

E215T21T2T→T215S T0
À1 ut~21!&

^0u t21 D , ~45!

with the easily deducible definitions

ut&5T0
ÀTur &,

~46!
t252hN11* 2^tut&52hN11* 2^r uE0

21ur &,

for the Cholesky decomposition matrix and the followin
algorithm:

ut~21!&52t21T0
21ut&, ~47!

giving the inverse element to be computed. In the deduc
of the above expressions it is supposed that the Chole
decomposition and its inverse are already known for the p
vious recursive step involving the hardness submatrixE0 .

After this, and taking into account the initial hardne
matrix partition, the following expression for the full hard
ness inverse can be found:

EÀ15S E0
211ut~21!&^t~21!u t21ut~21!

t21^t~21!u t22 D ; ~48!

so, it is a matter of algebraic manipulation to construct
Fukui vector in terms of the hardness inverse matrix, as
pressed above:

uf&52hMS (E0
211ut~21!&^t~21!u)u1&1t21ut~21!&

t21^t~21!u1&1t22 D , ~49!

f N1152hMt21~^t~21!u1&1t21!. ~50!

Using Eqs.~46! and ~47!, the Fukui function for atomN
11 is also given by the equation

f 52hMa21~^r uE0
21u1&21!

52hM~^r uE0
21u1&21!~^r uE0

21ur &22hN11* !21, ~51!
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which indicates again the same condition for the disconti
ity, namely ^r uE0

21ur &22hN11* 50. For not too heavily dis-
torted geometries, one may conclude from the present
cases and present and previous16 algebraic findings that as
long as the molecular geometries are not too heavily d
torted, only positive Fukui functions are found. This aga
can be connected with the recent results by Ayerset al.6

These authors found, independently of the present study,
a requirement for obtaining positive Fukui functions consi
in that the hardness matrix should be diagonally domina
Now consider Eq.~4! or ~19!, in the present EEM contex
such positive dominance is always ensured as long as
interatomic distances grow too small. Also, when diago
dominance is present, then such a fact only emphasizes
the eigenvalues of the hardness matrix will become posi
definite, and this is only a proof in turn of the matrix becom
ing positive definite too, and in this way avoiding discon
nuities and, so, negative values are finally avoided as w
These findings are also supported by a more general proo
the necessity for diagonal dominance of the hardn
matrix.16

Ayerset al. also point out the role of using the Hirshfel
population analysis, based on a stockholder division of
electron density. The fact that, when using the Hirshf
population analysis, no negative Fukui functions are fou
has been confirmed on several occasions.23,24,28 It is worth
noting that, despite the negative results reported sev
times concerning the use of Mulliken or NPA charges for t
calculation of finite difference Fukui functions, when usin
the present EEM scheme one always finds positive Fu
functions for not too heavily distorted geometries. This w
found to be independent of the kind of charges used for
calibration of the effective electronegativity and hardness
rameters. In using the finite difference approach, ma
sources of problems may arise, such as relaxation or
accuracy of the functional and basis set used for singlet
doublet spin multiplicities, as it was commented on befo
More research is obviously needed to examine whether
justified to state that one of the sources of negative Fu
functions obtained by finite difference approaches is rea
the nature of the population analysis used. An exception
MPA, for which it has been described that, employing an
lytical considerations, nothing can be predicted about
sign of the MPA Fukui functions.40

III. CONCLUSION

The occurrence of negative values for Fukui functio
was studied through the electronegativity equalizat
method. Using algebraic relations between Fukui functio
and different other conceptual DFT quantities on the o
hand and the hardness matrix on the other hand, express
were obtained for Fukui functions for several archetypi
small molecules. It was found that not only negative Fuk
functions are possible, but even that discontinuities m
arise. However, both counterintuitive cases are found onl
quite uncommon molecular structures, where atoms ten
come very close to each other. Based on EEM calculati
for large molecular sets, no negative Fukui functions w
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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found, allowing us to hypothesize that EEM-based Fu
functions are positive, except when very distorted geomet
occur.

Algebraic derivations based on matrix inversion a
Cholesky decomposition permit us to deduce general r
tions to identify cases where Fukui functions may show d
continuities. A simple formula has been found, permitting
to express when the addition of an extra atom results in
continuities. The present derivations arrive to the same c
clusion as recent studies, namely that diagonal dominanc
the hardness matrix results in positive Fukui functions. In
present EEM case, this means that no atoms should appr
each other too closely.
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