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Abstract

This paper characterizes the asymptotic behaviour, as the number
of assets gets arbitrarily large, of the portfolio weights for the class
of tangency portfolios belonging to the Markowitz paradigm. It is as-
sumed that the joint distribution of asset returns is characterized by a
general factor model, with possibly heteroskedastic components. Un-
der these conditions, we establish that a set of appealing properties,
so far unnoticed, characterize traditional Markowitz portfolio trading
strategies. First, we show that the tangency portfolios fully diversify
the risk associated with the factor component of asset return innova-
tions. Second, with respect to determination of the portfolio weights,
the conditional distribution of the factors is of second-order impor-
tance as compared to the distribution of the factor loadings and that
of the idiosyncratic components. Third, although of crucial impor-
tance in forecasting asset returns, current and lagged factors do not
enter the limit portfolio returns. Our theoretical results also shed light
on a number of issues discussed in the literature regarding the limiting
properties of portfolio weights such as the diversifiability property and
the number of dominant factors.

JEL Classifications: C32, C52, C53, G11
Key Words: Asset allocation, Large Porftolios, Factor models, Di-
versification.
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1 Introduction

Factor models represent a parsimonious, yet flexible way of modelling the
conditional joint probability distribution of asset returns when there are a
large number of assets under consideration. Prominent use of factor models
initially focused on parameterizing the conditional mean, following the highly
influential capital asset pricing model of Sharpe (1964) and Lintner (1965),
and the arbitrage pricing theory of Ross (1976). In fact parsimony plays an
even a more important role when modeling conditional covariance matrix of
a large number of asset returns.

Given that the main ‘rationale’ for using factor models is to deal with
portfolios with a large number of assets, this paper characterizes the distri-
bution of portfolio weights, as the number of assets, N , increases without
bounds, in the case of the commonly used mean-variance efficient portfolios
(hereafter MV). Our analysis is confined to ‘myopic’ asset allocation rules,
all particular cases of Markowitz (1952) theory, which are optimal only for a
constant investment opportunity set. Focusing on myopic trading strategies
is justified from a practical perspective in the case of large portfolios where
application of dynamic asset allocation strategies can be prohibitive and is
rarely tried in practice. The literature on dynamic asset allocation is often
confined to a few broad asset classes, such as Treasury Bills, long term bonds
and equities (see, for example, Campbell and Viceira (2002)).

A number of papers have already examined the limiting behavior of MV
efficient portfolios when there are a countably infinite number of primitive
assets under consideration. Chamberlain (1983) and Chamberlain and Roth-
schild (1983) studied the implications of no arbitrage for the MV efficient
frontier as N tends to infinity. They then considered factor models and
extended the arbitrage pricing theory (APT) result of Ross (1976) to the
case where asset returns follow an approximate factor structure. The lat-
ter extends the exact factor model by permitting certain (limited) degree of
correlation across the idiosyncratic component of asset returns. Hansen and
Richard (1987) extended the static framework of Chamberlain (1983) and
Chamberlain and Rothschild (1983), but did not focus on factor structures.
Subsequently, Green and Hollifield (1992) clarified the relationships that ex-
ist between diversification and MV efficiency in a general setting. Employing
a factor structure, these authors provided a further generalization showing
that even the approximate factor structure is too stringent for the APT to
hold. Whereas Chamberlain (1983) characterize diversifiability by looking at
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the rate at which the square norm of the portfolio weights converge to zero as
N tends to infinity, Green and Hollifield (1992) characterize diversifiability
in terms of sup-norm criteria. Sentana (2004) compares the statistical prop-
erties of static and dynamic factor representing portfolios, using a dynamic
version of the APT.

By and large all of the above papers focused on various aspects and gen-
eralizations of the APT, under the maintained assumption of an underlying
factor structure as N → ∞. However, once one abstracts from the APT, a
number of other interesting issues arise that have hitherto been neglected in
the literature. For instance, the precise behavior of the MV portfolio weights
as N →∞ has been surprisingly overlooked. Likewise, to our knowledge the
statistical properties of the limit portfolio return have not been spelled out.
It turns out that interesting, and in fact, somewhat counter-intuitive results
arises from these investigations, in particular regarding the role played by the
conditional distribution of the factors. In this paper we do not make use of
no-arbitrage assumption and, therefore, do not investigate any implications
for the APT, unlike Hubermann (1982), Chamberlain (1983), Chamberlain
and Rothschild (1983), Stambaugh (1983), Connor (1984), Ingersoll (1984),
Grinblatt and Titman (1987), Green and Hollifield (1992), Sentana (2004)
among others.

We make the maintained hypothesis that the vector of asset returns is
distributed according to a dynamic factor model, with a specification of the
conditional variance matrix of the idiosyncratic components which is more
general than the approximate factor structure of Chamberlain and Rothschild
(1983). Under this assumption, the paper establishes three main results:

(a) In the limit the MV portfolios fully diversify the innovations in the
common factor components of asset returns. It is well known that MV port-
folios do fully diversify the idiosyncratic component of asset returns inno-
vations, but to our knowledge it is not recognized that the same applies to
the factor innovations. This is an important feature of MV portfolios with
practical implications which we discuss below.

(b) The limit MV portfolio weights (the first-order limit approximation
for large N of the MV portfolio weights) are functionally independent of the
conditional distribution of the factors. Notice that this does not imply that
the factors themselves are not important but only that their (conditional)
moments are not relevant insofar the calculation of the MV portfolio weights
is concerned. For example, estimation of the factors and their loadings are
required for a consistent estimation of the idiosyncratic components.
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(c) In the limit the MV portfolio returns are functionally independent of
the current and lagged values of the common factors. The factors could play
a central role for forecasting asset returns but, as N gets larger, their role
vanishes in terms of their contribution to the limit portfolio returns. In other
words, at any point in time in the limit as N → ∞, the conditional distri-
bution of the limit returns on MV portfolios are functionally independent of
the conditional distribution of the common factor component.

Neither of the above findings strictly implies the other and are all of
independent interest. Initially these results seem rather counter intuitive
since it is generally believed that the factor components, being dominant,
are likely to be more important in the determination of asset returns. But
MV portfolios are functions of the inverse of the variance matrix of asset re-
turns, and the common factor part of asset returns that generate strong cross
return dependence will become turn into weak cross dependence when the in-
verse of the variance matrix is considered. By comparison, the idiosyncratic
components of asset returns that exhibit weak cross section dependence will
begin to play a central role in determination of MV portfolios as N starts to
become sufficiently large. Concepts of weak and strong cross section depen-
dence are developed in Pesaran and Tosetti (2007). In particular the concept
of weak cross section dependence allows the maximum eigenvalue of the co-
variance matrix of the idiosyncratic component of asset returns to rise like
o(N). Formally, our results follows from a form of asymptotic orthogonality
between the inverse of the conditional covariance matrix of asset returns and
the matrix of factor loadings, newly established in this paper.

The above findings also have a number of further implications of interest
that we summarize below:

(d-i) The limit MV portfolios are time-invariant unless, depending on
the trading strategies, the risk free rate is time-varying and the
idiosyncratic component features time-varying conditional het-
eroskedasticity.

(d-ii) The limit MV portfolio weights are invariant to any orthogonal
rotation of the factors.

(d-iii) Primitive conditions required for full-diversification in the sup-
norm sense of Green and Hollifield (1992) are established.

(d-iv) Analytical characterizations of the occurrence of negative port-
folio weights and of the related issue of factor dominance, in the
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sense of Green and Hollifield (1992) and Jagannathan and Ma
(2003), are provided.

The remainder of the paper is organized as follows. Section 2 introduces
the concepts, sets out the dynamic factor model, and discusses its prop-
erties. Section 3 presents the main results with respect to the commonly
used trading strategies: the global minimum-variance and the maximum ex-
pected quadratic utility portfolios. Section 4 elaborates and discusses the
implications of the theoretical results. The main findings are illustrated, as
an example, with respect to a single factor model in Section 5. Section 6
extends the results to two other tangency portfolios, namely the minimum-
variance and the maximum expected return portfolios. Section 7 concludes.
Mathematical proofs are collected in an appendix.

2 Factor model: definitions and assumptions

We assume the N -dimensional vector rt = (r1t, r2t, ..., rNt)
′ of asset returns

can be characterized by the following linear dynamic factor model

rt = αt−1 + Bf t + εt, (1)

where ft is the k×1 vector of possibly latent common factors, B = (β1, ..., βN)′

is an N × k matrix of factor loadings, εt is an N × 1 vector of idiosyncratic
components, and the N×1 vector αt−1 represents the part of the conditional
mean of the rt that does not depend on the common factors. Throughout
it will be assumed that k remains fixed as N → ∞. We identify the factor
model by means of the following assumptions:

Assumption 1 (conditional mean returns) The vector of latent factors ft
can be decomposed into its predictable component, µf,t−1, and the remainder
ut as

ft = µf,t−1 + ut, (2)

where µf,t−1 = E(ft | Zt−1), with Zt−1 being the sigma-algebra induced by a
N × g matrix of observed variates {Zt−s, s > 0}.

αt−1 = E(rt −Bf t | Zt−1), (3)

5



αt, us are independently distributed for all t, s. (4)

Under this assumption the conditional mean of asset returns is given by

E(rt | Zt−1,B) ≡ µt−1 = αt−1 + Bµf,t−1, (5)

and the innovations in the common components, ut is a martingale difference
process with respect to Zt−1.

It is worth noting that the decomposition in Assumption 1 can also be
defined with respect to the sigma-algebra spanned by the unobserved infor-
mation set ft−s, s > 0. This will not affect our main conclusions, but will
raise a number of additional difficulties with respect to the empirical imple-
mentation of the model.

Also Assumption 1 rules out a dynamic factor representation of asset
returns (see Forni, Hallin, Lippi, and Reichlin (2000)) such as rit = αi,t−1 +
βi(1 − ciL)−1ut + εit, where L is a lag operator and ci differs across i. This
does not seem a particularly important limitation in the case of asset pricing
models where the returns are only tenuously serially correlated.

In practice, specification and estimation of µt−1 could be a major empir-
ical undertaking, particularly in the case of large portfolios. But given the
focus of our analysis, in what follows we take the specification of µt−1, espe-
cially its αt−1 component, as given. It is important, nevertheless, to separate
αt−1 from µf,t since the latter, as we shall see, does not enter the limit MV
portfolios as N gets large.

Conditions (2), (3) and (4) together imply

rt = µt−1 + But + εt. (6)

Hereafter, we shall refer to (6) as the factor model with ut being the k × 1
vector of factor innovations without further reference to ft.

Regarding the factor loadings, we consider the case where the elements
of B are random variates satisfying the following limit condition:

Assumption 2 (factor loadings) As N →∞
B′e
N

→p β̄ 6= 0, (7)
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where e = (1, ..., 1)′ is an N × 1 vector of ones, and →p denotes convergence
in probability.

From (7) it follows that β̄ represents the mean vector E(βi). Assumption
2 is an ergodicity assumption over the cross section. It is much weaker
than the i.i.d. assumption typically made when considering random factor
loadings. For instance, a strong sufficient condition for (7) to hold is when the
factor loadings have finite second-order moments and absolutely summable
cross covariances but, in fact, Assumption 2 is compatible with a much more
substantial degree of (cross-sectional) dependence among the elements of βi.
The results presented in this paper can be generalized further to the case of
heterogeneous yet non-random βi.

Assumption 3 (innovations) At any given point in time t

ut | Zt−1 ∼ (0,Ωt−1), εt | Zt−1 ∼ (0,Ht−1), (8)

εt and ut are mutually independent, (9)

where Ωt−1 and Ht−1 are positive definite matrices, respectively, of dimension
k × k and N ×N for a fixed k and any finite N .

The results that follow do not depend on a particular specification of the
volatility model characterizing the asset returns. Moreover, the factors can
either be observable or non-observable. As a consequence, Ωt−1 and Ht−1

could belong to the multivariate stochastic volatility class as well as to the
generalized autoregressive conditional heteroskedasticity class of volatility
models. Particular examples, to which Assumption 3 applies, are discussed
below.

To derive the limiting behavior (as N → ∞) of the various tangency
portfolio weights to be considered below, we further require the following
assumption:

Assumption 4 (mixed limit conditions) At any given point in time t as
N →∞

(B− eβ̄′)′H−1
t (B− eβ̄′)

N
→p At > 0, (10)

B′H−1
t H−1

t B

N
→p Ct ≥ 0, (11)
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and

e′H−1
t e

N
→p at > 0, (12)

e′H−1
t αt

N
→p ct, (13)

α′tH
−1
t αt

N
→p dt > 0, (14)

where hereafter > 0 and ≥ 0 means, respectively, positive definitive and pos-
itive semi-definite.

Moreover at, ct, dt,At,Ct are Op(1) (element by element) such that

dtat − c2
t > 0 almost surely (15)

and

B is independently distributed from both Ht, αt.
(16)

The common feature of the limits presented in Assumption 4 is that they
involve, possibly weighted, averages of the elements of H−1

t . In particular,
they impose implicitly an upper bound on the speed with which the max-
imum eigenvalue of H−1

t could diverge to infinity. (Recall that the largest
eigenvalue of H−1

t coincide with the smallest eigenvalue of Ht, by construc-
tion.) This is clearly seen from condition (12): assuming for illustrative
purposes that H−1

t is diagonal, with h−1
ii,t in the (i, i)th entry, then (12) al-

lows max1≤i≤Nh−1
ii,t = op(N). Condition (11) requires a further constraint on

the speed of divergence of max1≤i≤Nh−1
ii,t which can now be at most op(N

1
2 ).

Even this case is much weaker than max1≤i≤Nh−1
ii,t ≤ C < ∞, for some

constant C, implied by the definition of approximate factor structure (see
Chamberlain and Rothschild (1983)). Green and Hollyfield (1992) were the
first to note that, insofar as optimal asset allocation is concerned, a degree
of cross-sectional dependence stronger than the one implied by the approxi-
mate factor structure is permitted. When H−1

t is non-diagonal, the previous
discussion applies to its largest eigenvalues.

Conditions (10) and (11) require the existence of the second-order mo-
ments of the factor loadings and impose certain constraints on the degree of
cross-sectional dependence of the βi. Note that when (7), (12) and (16) hold,
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then (10) is equivalent to saying that N−1B′H−1
t B has a positive definite

limit. When βi are i.i.d. and Ht is diagonal then At = atcov(βi). Con-
cerning (16), note that Ht and αt need not be, and in general will not be,
mutually independent. Conditions (13) and (14) also require the elements of
αt not to grow, if any, too fast as compared with N . The limit ct in condition
(13) is bounded, in absolute value, by (at dt)

1
2 . The limit dt in condition (14)

is finite whenever (12) holds and α′tαt/N has a finite limit. Condition (15) is
not needed in the case where αt is a non-degenerate random variable.

For some results, in particular to derive the limit distribution of the MV
portfolio weights, a stronger version of Assumption 4 is needed as set out
below:

Assumption 5 (further mixed limit conditions)
For any i and at any given point in time t, as N →∞

B′H−1
t e

(N)
i →p ξ1it, (17)

e′H−1
t e

(N)
i →p ξ2it, (18)

α′tH
−1
t e

(N)
i →p ξ3it, (19)

with ‖ξjit ‖= Op(1), for j=1,2,3, where e
(N)
i is the ith column of the identity

matrix IN and ‖·‖ denotes the Euclidean norm.

N
1
2




N−1vech(B′H−1
t B) − vech(At + atβ̄β̄

′
)

N−1B′H−1
t e − atβ̄

N−1B′H−1
t αt − ctβ̄

N−1e′H−1
t e − at



→d N(0,Vt), (20)

for some positive semi-definite matrix Vt, where →d denotes convergence in
distribution and vech(A) stacks the diverse elements of a symmetric matrix
A into a column vector.

Conditions (17)-(18)-(19), impose a finite upper bound to each of the
columns of H−1

t and are therefore much stronger than (10)-(12)-(13) that are
expressed in terms of averages. In particular, (18) is satisfied by an approx-
imate factor structure. Condition (20) is somewhat weaker than the other
parts of Assumption 5 although, again, it allows for a smaller degree of cross-
sectional dependence than the one permitted by Assumption 4. In particular,
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note that (20) rules out that αt contains a common factor structure. This
can be relaxed without a substantial impact on our results.

In view of (8), the factor structure (6) implies the well-known form of the
asset return conditional variance-covariance matrix:

E ((rt − µt−1)(rt − µt−1)
′ | Zt−1,B) = Σt−1 = BΩt−1B

′ + Ht−1. (21)

Thus model (6) nests the various factor models with time-varying condi-
tional second moment proposed in the econometrics literature (see among
many others Diebold and Nerlove (1989), King, Sentana, and Wadhwani
(1994), Chib, Nardari, and Shephard (2002), Fiorentini, Sentana, and Shep-
hard (2004), Connor, Korajczyk, and Linton (2006)). These papers, which
focus on estimation of volatility factor models, in particular when ut is not
observable, all assume constant conditional first-order moments. On the
other hand, the finance literature dealing with factor models-based asset al-
location assumes homoskedastic factors whereby Ωt−1 = Ω, often normalized
to be equal to the identity matrix (see among many others Pesaran and Tim-
mermann (1995) and Kandel and Stambaugh (1996)). A few contributions
analyze asset allocation problems allowing for volatility dynamics but im-
pose constant conditional means (see for instance Aguilar and West (2000)
and Fleming, Kirby, and Ostdiek (2001)). Only recently, a limited number
of asset allocation exercises have considered time variations in both the first
and second conditional moments of asset returns (see for instance Johannes,
Polson, and Stroud (2002) and Han (2006)). Model (6) nests all of the above
specifications although with some abuse of notation, as particular cases of
our set-up we have also referred to stochastic volatility models whereby the
conditional moments of ut are not functions of observed information.

3 Efficient portfolios

We start with characterizing the limiting behavior of the global minimum-
variance (gmv) portfolio weights, wgmv

t = (wgmv
1t , ..., wgmv

Nt )′, defined by the
optimization problem

wgmv
t−1 = argmaxw (w′Σt−1w) , such that w′e = 1,

that yields

wgmv
t−1 =

Σ−1
t−1e

e′Σ−1
t−1e

. (22)
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We refer to wgmv
t−1 as the gmv portfolio. It is well known that this portfolio

does not belong to the efficient frontier, except when the conditional expected
returns µi,t−1 are the same across i but, with some abuse of notation, we will
view it as belonging to the set of MV trading strategies. Nevertheless, this
portfolio is still of interest since its implementation does not require the
estimation of expected returns. Jagannathan and Ma (2003) show that, in
terms of asset allocation, its out-of-sample performance is comparable with
the performance of other tangency portfolios.

In the theorems that follows we suppose that rt is generated according
to the factor model (6), Assumptions 1,2 and 3 hold, and all the limits are
taken for each t and as N →∞.

Theorem 1 (global minimum-variance portfolio)
(i) Let

ẘgmv
it = N−1e

(N)′
i H−1

t

at

[
e + at(eβ̄

′ −B)A−1
t β̄

]
, (23)

and recall that e
(N)′
i is a N × 1 row vector of zeros except for its ith element

which is unity. When Assumptions (7), (10), (12) and (16)

N (wgmv
it − ẘgmv

it ) →p 0. (24)

(ii) When, in addition to the assumptions made in (i), (17)-(18)-(20) hold

wgmv
it = ẘgmv

it + N−3/2zgmv
it + (25)

N−2bt

[
e

(N)′
i H−1

t B
(
At + atβ̄β̄

′)−1

Ω−1
t

(
At + atβ̄β̄

′)−1

β̄

]
+ op(N

−2),

in which
bt = (1 + atβ̄

′A−1
t β̄), (26)

and zgmv
it is a mixture of normally distributed random variables that are only

functions of B and Ht.
(iii) When, in addition to the assumptions made under (i), relations (11)
and (13) hold:

ρgmv
t = r′tw

gmv
t−1 → p

ct−1

at−1

, (27)

N− 1
2

(
µgmv

ρ,t−1

σgmv
ρ,t−1

)
→ p

ct−1√
at−1

, (28)

where µgmv
ρ,t−1 = E(ρgmv

t | Zt−1), and σgmv
ρ,t−1 =

√
var(ρgmv

t | Zt−1).
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Remark 1(a) The gmv portfolio weight of the ith asset is, asymptotically in
N , equivalent to ẘgmv

it . Inspecting (23) it emerges that ẘgmv
it is functionally

independent from the factors covariance matrix, Ωt. Instead, it is a function
of the factor loadings B, of their first moments β̄, of the mixed moment At

and of the (inverse of the) idiosyncratic component covariance matrix, Ht.
Remark 1(b) From (25) it is also easily seen that the effect of Ωt on the
dispersion of the wgmv

it around ẘgmv
it vanishes at a sufficiently rapid rate such

that even the asymptotic distribution of wgmv
it does not depend on Ωt as N

tends to infinity.
Remark 1(c) The gmv portfolio becomes fully diversified with respect to
the idiosyncratic as well as the factor components of asset return innovations
as N → ∞. Moreover, the limit portfolio return is Zt−1-adapted as well
as independent of the factor component of asset returns conditional mean
µf,t−1.
Remark 1(d) The ex ante Sharpe ratio, defined by µgmv

ρ,t−1/σ
gmv
ρ,t−1, diverges

at the rate of N
1
2 , unless ct−1 = 0. But it is not guaranteed that the ex ante

Sharpe ratio in the case of gmv will diverge to plus infinity. The outcome
depends on sign of ct−1 which is not guaranteed to be positive. This arises
since gmv portfolio does not make use of expected mean returns.

Suppose now that besides the N risky assets, investors can also allocate
their funds to a risk free asset with a time-varying rate of return, r0t, which
is known at the start of trading day t. We now consider a tangency portfolio,
namely the maximum expected utility (henceforth meu) portfolio based on a
mean-variance utility function.

The meu portfolio weights wmeu
t = (wmeu

1t , ..., wmeu
Nt )′ are defined by

wmeu
t−1 = argmaxw

(
w′µt−1 + (1−w′e)r0,t−1 − γt−1

2
w′Σt−1w

)
,

where 0 < γt−1 < ∞ is the parameter of risk aversion (possibly time-varying),
implying

wmeu
t−1 =

1

γt−1

Σ−1
t−1(µt−1 − er0,t−1). (29)

Theorem 2 (maximum expected utility portfolio)
(i) Let

ẘmeu
it =

e
(N)′
i H−1

t

γtbt

{
(αt − er0t) + [at(αt − er0t)β̄

′ − (ct − atr0t)B]A−1
t β̄

}
.

(30)

12



When conditions (7), (10), (11), (12), (13), (16), (17) and (19) hold:

wmeu
it − ẘmeu

it →p 0. (31)

(ii) When, in addition to the conditions in (i), (20) also holds:

wmeu
it = ẘmeu

it + N−1/2zmeu
it + (32)

N−1

{
γ−1

t e
(N)′
i H−1

t B
(
At + atβ̄β̄

′)−1

Ω−1
t−1

[
µft +

(
At + atβ̄β̄

′)−1

β̄(ct − atr0t)

]}

+op(N
−1),

where zmeu
it is a mixture of normally distributed random variables that are

only functions of γt, r0t, αt, B, and Ht.
(iii) When, in addition to the conditions in (i), (14)also holds

ρmeu
t = r′tw

meu
t−1 + (1− e′wmeu

t−1 )r0,t−1,

satisfies

N−1ρmeu
t →p

et−1

γt−1bt−1

, (33)

N− 1
2

(
µmeu

ρ,t−1 − r0,t−1

σmeu
ρ,t−1

)
→p

√
et−1, (34)

where µmeu
ρ,t−1 = E(ρmeu

t | Zt−1), σmeu
ρ,t−1 =

√
var(ρmeu

t | Zt−1),

et = dt − 2r0,tct + atr
2
0,t + (atdt − c2

t )β̄
′A−1

t β̄, (35)

and et−1 > 0 almost surely.

Remark 2(a) At a given point in time t, the meu portfolio weight of the
ith asset is asymptotically equivalent to ẘmeu

it and does not converge to zero.
Moreover, ẘmeu

it is functionally independent from the factors covariance ma-
trix, Ωt, as well as from the factors conditional mean, µft.
Remark 2(b) There is no contribution from either Ωt and µft to the asymp-
totic distribution of wmeu

it around ẘmeu
it .

Remark 2(c) The meu portfolio does not achieve complete diversification
of the idiosyncratic and the factors component of asset return innovations.
Moreover, the part of the portfolio return involving the factors component is
of the same order of magnitude, in N , as the part involving the idiosyncratic
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component. Diversification of both components is achieved if one considers
N−1wmeu

it . For the same reasons, convergence of the portfolio return ρmeu
t is

achieved when normalizing by N and its limit is Zt−1-adapted. In particular,
the limiting value of N−1ρmeu

t will be a function of αt−1, but not of µf,t−1.

Remark 2(d) The ex ante Sharpe ratio diverges at the rate N
1
2 , and the

limit is always positive. Note that limit of the normalized Sharpe ratio is
independent of the coefficient of risk aversion, γt−1.

Analog results can be derived for the minimum-variance (mv) and the
mean expected (me) portfolios, as discussed in Section 6.

4 Discussion of results

4.1 Contribution of factors to portfolio return

Part (iii) of the above theorems establish the limit portfolio return, normal-
ized with a suitable scaling factor, for various MV trading strategies. In
particular, ρgmv

t has a well defined limit whereas ρmeu
t requires the scaling

factor N−1. The scaling factor is necessary since the meu portfolio weights
do not converge to zero but are in fact Op(1).

Inspecting the results, it is evident that the limit MV portfolio returns
are Zt−1-adapted, that is they are neither functions of the idiosyncratic inno-
vations, εt, nor the common innovations, ut. The first result is well known,
namely that the contribution of the idiosyncratic innovations to the portfo-
lio return vanishes in mean square as N → ∞. One of the novel results of
this paper is to show that MV trading strategies also succeed in diversifying
the effects of the common innovations, ut. This result is driven by the fact
that the MV trading strategies make use of the inverse of the conditional
covariance matrix Σt−1 in a convenient way. In particular, the MV portfo-
lio weights have the form Σ−1

t−1pt−1, for some N × 1 vector pt−1 function of
Zt−1, the exact form of which depends on the type of trading strategy under
consideration. As a consequence, the portfolio return can be decomposed as:

p′t−1Σ
−1
t−1rt = p′t−1Σ

−1
t−1αt−1 + p′t−1Σ

−1
t−1Bµf,t−1 + p′t−1Σ

−1
t−1But + p′t−1Σ

−1
t−1εt.

Lemma A in the appendix establishes that ‖ Σ−1
t−1B ‖2= Op(N

−1), so
that Σ−1

t−1 and B are asymptotically orthogonal, and therefore the contribu-
tion of the common factor innovation, p′t−1Σ

−1
t−1But, to the return portfolio

p′t−1Σ
−1
t−1rt is of smaller order than the mean term p′t−1Σ

−1
t−1αt−1, as N gets

14



large. Obviously, The contribution of the idiosyncratic term, p′t−1Σ
−1
t−1εt, is

also of smaller order. Therefore

p′t−1Σ
−1
t−1rt = p′t−1Σ

−1
t−1αt−1(1 + op(1)) as N →∞.

This implies that, subject to a suitable normalization, the contributions of
ut and εt to the limit portfolio return converges to zero, the only difference
between the two being that convergence occurs in first mean in the case of
the terms involving ut, and in mean square in the case of the terms in εt.

Given the asymptotic orthogonality of Σ−1
t−1 and B it also happens that

the contribution of the factors to the returns conditional mean, namely
p′t−1Σ

−1
t−1B µf,t−1, typically involving lagged factors fs, s < t, is also of

smaller order. Therefore the limit portfolio return will be given simply by
the limit of p′t−1Σ

−1
t−1αt−1, where this limit is Z t−1-adapted.

We have seen that different MV trading strategies implies different rates
at which the corresponding portfolio weights converge, if any, to zero. How-
ever, the defined for a given MV strategy s by

µs
ρ,t−1 − r0,t−1

σs
ρ,t−1

all diverge as N tends to infinity, and at the same rate N
1
2 . However, this

is not true of the ex ante Sharpe ratio of the gmv strategy, which could
divergence towards minus infinity! This partly reflects the sub-optimal nature
of the gmv strategy that does not make use of the expected means, µt−1.

4.2 Contribution of factors to portfolio weights

The conditional distribution of the factors, ft, is irrelevant, as far as the
form of the limiting MV portfolio weights ws

t is concerned. In fact, the
factors conditional mean µf,t−1 and conditional covariance matrix Ωt−1 do
not appear in the first-order limit approximations set out in (23) and (30).
This outcome is a direct consequence of lemma A proved in the Appendix.
An immediate implication is that when evaluating the MV portfolio weights
empirically one can avoid specifying, let alone estimating, the conditional
mean and the conditional covariance matrix of the common factors. For a
finite N , this clearly would involve an approximation error since the finite-N
expression of the MV weights will necessarily be a function of Ωt−1, µf,t−1.
However, such approximation error decreases to zero as N increases and, at
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the same time, using the limit portfolio formulae permits avoiding modeling
and estimation risk related to the common factors - namely the consequences
of incorrectly specifying or poorly estimating Ωt−1 and µf,t−1.

Part (i) of Theorems 1 and 2 can be interpreted as a consistency re-
sult, showing the form of the limit approximations, as N → ∞, of the MV
portfolio weights. Part (ii) of these theorems considers if the conditional
distribution of ft plays a role with respect to the dispersion of the finite-N
portfolios around their limit approximation. Under suitable regularity con-
ditions, the MV portfolio weights have an asymptotic distribution, centered
around the limit portfolio weights, which is distributed independently of the
conditional moments of ft. In other words, the contribution of these moments
to the (finite-N) MV portfolio weights vanishes at a suitably fast rate, faster
than the rate required to obtain the asymptotic distribution of the portfolio
weights.

The result in part (i) of the above theorems hold not only point-wise for
each i = 1, 2, ..., N but also jointly for the entire vector of portfolio weights. In
fact, it can be shown that ‖ wgmv

t −ẘgmv
t ‖= op(N

−1) and ‖ wmeu
t −ẘmeu

t ‖=
op(1).

Another important consequence of part (i) of these theorems is that the
limiting portfolio weights will not be time-varying unless Ht is, that is only
if the idiosyncratic component εt features dynamic conditional heteroskedas-
ticity. The mean-variance portfolio meu will be time-varying both due to
possible time variation in Ht, and in the risk-free rate r0t. If we relax our
assumptions, say allowing B to be time-varying Bt, then for instance the
gmv portfolio weights (23) become, under regularity conditions similar to the
ones spelled out in Theorem 1,

N wgmv
it − 1

at

e
(N)′
i Ht

[
e + at(eβ̄′t −Bt)A

−1
t β̄t

] →p 0 as N →∞.

For this case to be genuinely interesting, Bt needs to be independent from the

factors ft though. This rules out the case Bt = BΩ
1
2
t , which, as far as the dy-

namics of rt is concerned, is observationally equivalent to (1). If instead one
alternatively assumes the parameter-free form Ωt = Ik, our result continues
to apply since the limit portfolios continue to be functionally independent of
any parametric aspect of Ωt.

Factor models are inherently undetermined since (6) yields the same vec-
tor rt given a non-singular k × k matrix C and replacing B and ut by BC
and C−1ut, respectively. Determination of C is crucial for identification and
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estimation of model (6). This is particularly relevant in our context since
besides the factor loadings, the matrix C induces also a rotation of Ωt and
µf,t and, due to their time-variation, the risk of possible lack of identification
is even more pronounced. However, this issue is of second-order importance
since the limit portfolio weights do not dependent on the conditional mean
and covariance matrix of ft. One can easily verify this by replacing B, A−1

t

and β̄ with BC, C−1A−1
t C′−1, and C′β̄, respectively into (23) and (30).

4.3 Portfolio diversification

Under our assumptions

wgmv
it − ẘgmv

it →p 0 as N →∞,

where Nẘgmv
it = Op(1), for given i and t, and are different from zero almost

surely. Therefore, the gmv portfolio is diversified in the sense that each
coefficient wgmv

it becomes arbitrarily small as N grows.
More formally, if sup1≤i≤N | wgmv

it |= op(1) for each t, then we achieve full
diversification in the sup-norm sense of Green and Hollifield (1992). Using
the limit approximation ẘgmv

it it turns out to be much easier to find sufficient
conditions for full diversification. For instance, using results of Theorem 1,
one obtains

sup
1≤i≤N

(
|h′(i)te | +

k∑
j=1

|h′(i)tβ(j) |
)

= op(N) (36)

where β(j) = Be
(k)
j and h(i)t = H−1

t e
(N)
i . If full diversification at rate N−1

is required, the left hand side of the previous expression must be Op(1). In
turn this is satisfied whenever sup1≤i≤N sup1≤j≤k | βij |= Op(1) and | h′(i)te |=
Op(1).

In contrast, the meu portfolio is not fully diversifiable in the sense that
its weights do not converge to zero and instead ẘmeu

it = Op(1). Therefore,
as a consequence, the limit portfolio ρmeu

t requires the normalization N−1 in
order to obtain a well-defined limit.

Thus, the common practice of building (optimal) portfolios imposing the
restriction that the portfolio weights are smaller than a given predetermined
quantity, appears justified for the meu portfolio. In fact, there is no guarantee
that the weights will be smaller the larger the number of assets under con-
sideration. On the other hand, under conditions such as (36) or variations
of, the gmv portfolio weights gets arbitrarily small, for a sufficiently large N .
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The definition of complete diversifiability of Chamberlain and Rothschild
(1983) instead requires, for the s trading strategy,

∑N
i=1(ẘ

s
it)

2 = op(N
2) for

each t, and sufficient conditions can be easily derived. For instance, for the
gmv portfolio it is required

e′H−1
t H−1

t e = op(N
2), B′H−1

t H−1
t B = op(N

2).

Notice that the second condition is implied by (11). This definition of com-
plete diversifiability requires stronger conditions than the notion based on
the sup-norm discussed earlier.

4.4 Short-selling and factor dominance

When Ht is diagonal, it easily follows that At = atΣβ, where Σβ is the
covariance matrix of the βi, yielding for the gmv portfolio weights

Nwgmv
it →p

h−1
ii,t

at

[
1− β̄′Σ−1

β (βi − β̄)
]
. (37)

Moreover, if Σβ is diagonal, with σβj being its (j, j)th entry, (37) simplifies
further to

Nwgmv
it →p

h−1
ii,t

at

[
1−

(
β̄1

σβ1

)2 (
βi1 − β̄1

β̄1

)
− ....−

(
β̄k

σβk

)2 (
βik − β̄k

β̄k

)]
,

(38)
where β̄j and βij are the jth element of β̄ = (β̄1, ...., β̄k)

′ and βi = (βi1, ...., βik)
′,

respectively.
Green and Hollifield (1992) argue that the possibility of short-selling, in

the sense of a repeated finding of negative optimal portfolio weights, is related
to the presence of one dominant factor. Our result sheds some light on this.
One can see from (38) that the limit portfolio weights only depend on factor
loadings if the mean of these laodings is non-zero (i.e. if β̄i 6= 0). Such factors
are regarded as ‘dominant’ by Jagannathan and Ma (2003)

More generally, a negative weight can arise whenever the factor loading
assumes values smaller than their cross-sectional average. This effect is mag-
nified, the larger is the ‘Sharpe ratio’ of the factor loading, defined by β̄j/σβj.
A large dispersion implies a smaller chance of finding negative weights, cor-
roborating the findings based on simulations reported by Jagannathan and
Ma (2003). On the other hand, note also that the larger the number of
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dominant factors under consideration (in the sense of Jagannathan and Ma
(2003)), the less likely it is that a negative weight would be encountered.
Similar outcomes obtain for non-diagonal Ht. This reinforces Green and
Hollifield (1992)’s conjecture about the presence of a single dominant factor
whenever large negative weights are observed.

Under the same conditions as above, for the meu portfolio weights one
obtains

wmeu
it →p

h−1
ii,t

γt

[
αit − r0t +

(
β̄1

σβ1

)2 (
(αit − r0t)− (ct − atr0t)

βi1

atβ̄1

)
...

+

(
β̄k

σβk

)2 (
(αit − r0t)− (ct − atr0t)

βik

atβ̄k

)]
(39)

Therefore, as with the gmv portfolio weights one can see that a negative
weight is more likely for the asset for which αit − r0t < 0.

Assuming ct > atr0t, a negative weight is more likely to arise whenever the
factor loading assumes values smaller than their cross-sectional average and
this effect is magnified, the larger is the ‘Sharpe ratio’ of the factor loading.
Finally, the larger the number of dominant factors under consideration, the
less likely that a negative weight would be encountered.

5 An illustrative example: a single factor

model

Here we illustrate our results using a single factor model (k = 1) where (6)
becomes

rt = µt−1 + βut + εt, (40)

where Assumptions 1, 2 and 3 hold. Therefore now ut is a scalar martingale
difference process with conditional variance ωt−1 > 0, and β is a N×1 vector
of factor loadings with mean β̄e 6= 0, and the variance matrix σ2

βIN > 0,

where β̄ is a scalar. For simplicity, let us also assume that the idiosyncratic
errors εit are cross-sectionally uncorrelated, implying a diagonal Ht, with
conditional variances hii,t−1. The conditional covariance matrix of rt will
then be

Σt−1 = ωt−1 ββ′ + Ht−1.
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By part (i) of Theorem 1 we have

N wgmv
it − h−1

ii,t

at

(
1− β̄

σ2
β

(βi − β̄)

)
→p 0 as N →∞, (41)

where N−1
∑N

i=1 h−1
ii,t →p at. Result (41) shows that the limit gmv portfolio

weights are functionally independent from the factor conditional variance ωt.
The limit gmv portfolio weights will be time-varying only if hii,t−1 are time-
varying. Moreover, it is well known that any factor model is undetermined
only up to a non-singular transformation. This implies that (40) is unchanged
if we substitute ft by cft, for a non-zero constant c, and β by c−1β. However,
the limit gmv portfolio weights (41) are identified and do not depend on c,
since (

1− c−1β̄

c−2σ2
β

(c−1βi − c−1β̄)

)
=

(
1− β̄

σ2
β

(βi − β̄)

)
,

for any c 6= 0. Part (ii) of Theorem 1 now yields

wgmv
it =

1

N

h−1
ii,t

at

[
1− β̄

σ2
β

(βi − β̄)

]
+

zgmv
it

N
3
2

+
1

N2

ω−1
t h−1

ii,t

a2
t σ

2
β

+ op(
1

N2
).

This shows how the gmv portfolio weights are a function of ωt, for a finite
N , but that this term is of a smaller order, decreasing to zero at rate N−2.
Concerning the limit portfolio return ρgmv

t = r′tw
gmv
t−1 , part (iii) of Theorem 1

yields

ρgmv
t = r′tw

gmv
t−1 →p

ct−1

at−1

as N →∞,

where N−1
∑N

i=1 αi,th
−1
ii,t →p ct.

A similar discussion applies to the meu trading strategy. For instance,
part (i) of Theorem 2 yields

wmeu
it − h−1

ii,t

γtbt

{
(αit − r0t) +

β̄2

σ2
β

[(αit − r0t)− (
ct

at

− r0t)
βi

β̄
]

}
.

Consider now the issue of diversification. (41) shows clearly that for
each i the weight wgmv

it decays to zero at rate of N−1. However, full diver-
sification in the sup-norm sense of Green and Hollifield (1992) requires the
stronger condition sup1≤i≤N | βi/hii,t |= op(N) for each t. Finally, if the
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even stronger requirement of diversification at the exact rate 1/N is desired,
then sup1≤i≤N |βi/hii,t| = Op(1) is needed. A sufficient condition for this is
boundedness of the factor loadings, sup1≤i≤N |βi| = O(1) and hii,t ≥ δ > 0
almost surely for any i and t.
Regarding short-selling and factor dominance, from (41), one can see that
short-selling for the ith asset (wgmv

it < 0) arises, whenever the ith factor load-
ing, βi, is greater than its (cross-sectional) mean, β̄, by a certain amount
which is a function of β and σ2

β. This holds assuming a positive factor load-

ing mean β̄. Short-selling is more likely to occur, the smaller is the factor
loading variance, σ2

β, and the larger is β̄.

We have derive (41) assuming β̄ 6= 0, but this is not required. When
β̄ = 0 we have

N wgmv
it − h−1

ii,t

at

→p 0, as N →∞. (42)

It turns out that the same result also holds irrespective of whether σ2
β = 0

or not. This result does not follow directly from (41), but one needs to start
from the definition of the gmv portfolio for a given N , set σ2

β = 0, and then
take the limit.

6 Other optimization strategies

We now present results for two other MV tangency portfolios considered in
the literature, namely the minimum variance and the maximum expected
return portfolios. We present two corresponding theorems without proof,
and comment on the results afterwards.

The mv portfolio weights wmv
t = (wmv

1t , ..., wmv
Nt )

′ are defined by

wmv
t−1 = argminw (w′Σt−1w) , such that w′µt−1 + (1−w′e)r0,t−1 = µρ,

where µρ is the targeted expected portfolio return assumed to exceed r0,t−1

(µρ > r0,t−1), yielding

wmv
t−1 =

µρ − r0,t−1

(µt−1 − er0,t−1)′Σ−1
t−1(µt−1 − er0,t−1)

Σ−1
t−1(µt−1 − er0,t−1). (43)

Theorem 3 (minimum variance portfolio)
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(i) Let

ẘmv
it = N−1 (µρ − r0t)

et

e′iH
−1
t

{
(αt − er0t) + [at(αt − er0t)β̄

′ − (ct − atr0t)B]A−1
t β̄

}
.

(44)
When conditions (7), (10), (11), (12), (13), (14), (16), (17) and (19)

hold:
N(wmv

it − ẘmv
it ) →p 0.

(ii) When, in addition to the conditions in (i), (20) holds:

wmv
it = ẘmv

it + N−3/2zmv
it

+N−2

{(
µρ − r0t

et

)
e

(N)′
i H−1

t B
(
At + atβ̄β̄

′)−1

Ω−1
t ×

[
µft +

(
At + atβ̄β̄

′)−1

β̄(ct − atr0t)

]}

+op(N
−2)

where zmv
it is a mixture of normally distributed random variables that are only

functions of µρ, r0t, αt, B, andHt.
(iii) When the conditions in (i) hold

ρmv
t = r′tw

mv
t−1 + (1− e′wmv

t−1)r0,t−1,

satisfies

ρmv
t →p µρ, (45)

N− 1
2

(
µmv

ρ,t−1

σmv
ρ,t−1 − r0,t−1

)
→p

√
et−1, (46)

setting µmv
ρ,t−1 = E(ρmv

t | Zt−1) and σmv
ρ,t−1 =

√
var(ρmv

t | Zt−1).

For the maximum expected return portfolio, wme
t = (wme

1t , ..., wme
Nt )

′, we
have

wme
t−1 = argmaxww′µt−1 + (1−w′e)r0,t−1, such that w′Σt−1w = σ2

ρ,

where σ2
ρ is the targeted portfolio variance, yielding the maximum expected

return portfolio

wme
t−1 =

[
σ2

ρ

(µt−1 − er0,t−1)′Σ−1
t−1(µt−1 − er0,t−1)

] 1
2

Σ−1
t−1(µt−1 − er0,t−1).
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Theorem 4 (maximum expected return portfolio)
(i) Let

ẘme
it = N− 1

2
σρ√
et

e
(N)′
i H−1

t

{
(αt − er0t) + [at(αt − er0t)β̄

′ − (ct − atr0t)B]A−1
t β̄

}
.

(47)
When conditions (7), (10), (11), (12), (13), (14), (16), (17) and (5.2due)
hold:

N
1
2 (wme

it − ẘme
it ) →p 0.

(ii) When, in addition to the conditions in (i), (20) hold:

wme
it = ẘme

it + N−1zme
it (48)

+N−3/2 σρ√
et

e
(N)′
i H−1

t B
(
At + atβ̄β̄

′)−1

Ω−1
t

[
µf,t +

(
At + atβ̄β̄

′)
β̄(ct − atr0t)

]

+op(N
− 3

2 ),

where zme
it is a mixture of normally distributed random variables, function of

σ2
ρ, r0t, αt, B, and Ht, only.

(iii) When the conditions in (i) hold:

ρme
t = r′tw

me
t−1 + (1− e′wme

t−1)r0,t−1,

satisfies

N− 1
2 ρme

t →p σρ
√

et−1, (49)

N− 1
2

(
µme

ρ,t−1 − r0,t−1

σme
ρ,t−1

)
→p

√
et−1, (50)

where µme
ρ,t−1 = E(ρme

t | Zt−1), and σme
ρ,t−1 =

√
var(ρme

t | Zt−1).

Remark 3-4(a) The mv and me portfolio weights of the ith asset are, asymp-
totically in N , equivalent to ẘmv

it and ẘme
it , respectively. Moreover, the latter

are functionally independent of Ωt and µf,t.
Remark 3-4(b) The asymptotic distributions of wmv

it and wme
it , respectively

around ẘmv
it and ẘmv

it , do not depend on Ωt and/or µft.
Remark 3-4(c) The mv and me portfolios achieve full diversification of both
the idiosyncratic and common factor components of asset return innovations,
the latter when normalized by N

1
2 . Under the same conditions, the corre-

sponding limit portfolio returns are Zt−1-adapted.
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Remark 3-4(d) The ex ante Sharpe ratio diverges to plus infinity at rate

N
1
2 . The limit of the normalized Sharpe ratio is independent of µρ and of σ2

ρ

for mv and me trading strategies, respectively. In particular, once normalized
by N− 1

2 , the limit is the same and coincide with the one obtained for the
meu portfolio return. This follows since all the three MV tangency portfolio
weights are proportional to one another. This important propert is not shared
by the the gmv portfolio.
Remark 3-4(e) Part (i) of the above theorems hold also jointly for the
entire vector of portfolio weights, that is ‖ wmv

t − ẘmv
t ‖= op(N

−1) and

‖ wme
t − ẘme

t ‖= op(N
− 1

2 ).
Remark 3-4(f) As for the other optimization strategies, both (44) and (47)
do not depend on any particular rotation of the factors and factor loadings.
Remark 3-4(g) Both the mv and the me portfolios are fully diversifiable,
although at different rates of N−1 and N−1/2, respectively, achieved whenever
sup1≤i≤N |h′(i)tαt |= Op(1) and the left hand side of (36) is Op(1).

7 Final remarks

In this paper we have provided a number of theoretical results for the MV
tangency portfolios as the number of assets in the portfolio gets large. Under
fairly general conditions we have shown that to a first order approximation
the portfolio weights and the associated ex ante Sharpe ratios do not depend
on the means and the variance-covariances of the common factors. This re-
sult has a number of important practical implications. It is well know that
under the assumption of correct model specification, factor model-based op-
timal portfolios weights leads to more efficient estimates of the corresponding
portfolio variance, as compared to the familiar sample moment estimates (see
Fan, Fan, and Lv (2007)). However, the asymptotic independence of optimal
portfolio weights from the common factors, established in this paper, sug-
gests that in the case of large portfolios it might be prudent to side-step the
tasks of specification and estimation of the conditional distribution of the
factors and instead use the formulae for the limit portfolio weights advanced
in this paper. In this way it might be possible to avoid the adverse effects of
model and parameter uncertainties that surround the specification of the un-
observed common factor models. But before this issue can be examined one
also needs to consider the extent to which the properties of the limit port-
folios are still valid when the remaining unknown parameters are replaced
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by their estimates. An extensive Monte-Carlo exercise might be required to
complement the asymptotic results provided in this paper. These issues will
be addressed in a subsequent work by the authors.

Appendix A: mathematical proofs

We start with a Lemma where we show that for a given t and as N →∞,
Σ−1

t−1 and B are asymptotically orthogonal. This result turns out to be critical
for characterizing the behavior of optimal portfolios as N gets large.

Lemma A Let Pt be a sequence of random positive definitive matrices such
that

B′H−1
t B

N
→p Pt > 0 as N →∞. (51)

Recalling that e
(N)
i is the ith column of the identity matrix IN , then for any

t,i and j
e

(N)′
i Σ−1

t β(j) →p 0 as N →∞, 1 ≤ j ≤ k, (52)

where β(j) denotes the jth column of B = (β(1) . . . β(k)).
Under (51) and

B′H−1
t H−1

t B

N
→p Qt ≥ 0, (53)

where Qt denotes a sequence of random positive semi-definitive matrices, for
any t

‖ Σ−1
t β(j) ‖2= Op(N

−1), 1 ≤ j ≤ k, as N →∞. (54)

Proof of Lemma A. The results follow from the identity

Σ−1
t = H−1

t −H−1
t B(N−1Ω−1

t + N−1B′H−1
t B)−1N−1B′H−1

t . (55)

Pre-multiplying both sides by e
(N)′
i and post-multiplying both sides by β(j)

yields (52).

We deal with (54) more explicitly. First note that (e
(k)
j denotes the jth

column of the identity Ik matrix)

(N−1Ω−1
t + N−1B′H−1

t B)−1N−1B′H−1
t β(j) − e

(k)
j

= (N−1Ω−1
t + N−1B′H−1

t B)−1N−1B′H−1
t β(j) − (N−1B′H−1

t B)−1N−1B′H−1
t β(j)

= N−1
[−(N−1Ω−1

t + N−1B′H−1
t B)−1Ω−1

t (N−1B′H−1
t B)−1N−1B′H−1

t β(j)
]

≡ N−1g
(j)
t ,
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where notice that g
(j)
t is a k × 1 vector with a finite norm.

Therefore, substituting the latter expression into (55) and recalling that

Be
(k)
j = β(j) it follows that

Σ−1
t β(j) = H−1

t β(j) −H−1
t B(e

(k)
j + N−1g

(j)
t ),

yielding

‖ Σ−1
t β(j) ‖2= β(j)′H−1

t H−1
t β(j) + N−1g

(j)′
t B′H−1

t H−1
t β(j) − β(j)′H−1

t H−1
t β(j)

−N−1g
(j)
t
′B′H−1

t H−1
t β(j) −N−1β(j)′H−1

t H−1
t Bg

(j)
t −N−2g

(j)
t
′B′H−1

t H−1
t Bg

(j)
t

−β(j)′H−1
t H−1

t β(j) + β(j)′H−1
t H−1

t β(j) + N−1β(j)′H−1
t H−1

t Bg
(j)
t

= −N−1g
(j)
t
′ (N−1B′H−1

t H−1
t B

)
g

(j)
t = Op(N

−1g
(j)
t
′Qtg

(j)
t ). 2

Proof of Theorem 1 All the limits below are based on N →∞.
(i) For N < ∞, set wgmv

t = Ct,N/Dt,N where

Ct,N = H−1
t e−H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t e,

and
Dt,N = e′H−1

t e− e′H−1
t B(Ω−1

t + B′H−1
t B)−1B′H−1

t e,

which easily follow from the identity (55).
For B̃ = B− eβ̄′

N−1B′H−1
t B = N−1β̄β̄

′
e′H−1

t e + N−1B̃′H−1
t B̃ +

N−1β̄e′H−1
t B̃ + N−1B̃′H−1

t eβ̄
′
,

so that collecting terms

N−1B′H−1
t B →p At + atβ̄β̄

′
,

since N−1B̃′H−1
t e →p 0 by E(β̃i) = 0′. Similarly

N−1B′H−1
t e →p atβ̄.

Hence, using the identity

(At + atβ̄β̄′)−1 =

(
A−1

t − at

(1 + atβ̄′A−1
t β̄)

A−1
t β̄β̄

′
A−1

t

)
,
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which yields β̄′(At + atβ̄β̄′)−1β̄ = β̄′A−1
t β̄/bt, by Slutsky’s theorem,

N−1Dt,N →p at

(
1− atβ̄

′(A−1
t − atA

−1
t β̄β̄

′
A−1

t

(1 + atβ̄′A−1
t β̄)

)β̄

)

but the right hand side simplifies yielding

N−1Dt,N →p atb
−1
t

By the same arguments, since (At + atβ̄β̄′)−1β̄at = atb
−1
t A−1

t β̄, then

e
(N)′
i Ct,N = b−1

t e
(N)′
i H−1

t

(
e + at(eβ̄

′ −B)A−1
t β̄

)
+ op(1).

(ii) For (25)

Ct,N = H−1
t e−H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t e =

H−1
t e−H−1

t B(B′H−1
t B)−1B′H−1

t e

+H−1
t B(B′H−1

t B)−1B′H−1
t e−H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t e

= H−1
t e−H−1

t B(B′H−1
t B)−1B′H−1

t e (56)

+H−1
t B(B′H−1

t B)−1Ω−1
t (Ω−1

t + B′H−1
t B)−1B′H−1

t e. (57)

In relation to (56), we seek the asymptotic distribution of

N
1
2 (Nwgmv

it −Nẘgmv
it )

where

wgmv
it =

1

N

(
Ci,t,N

N−1Dt,N

)
=

1

N

(
e

(N)′
i H−1

t e− e
(N)′
i H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t e

N−1Dt,N

)
,

ẘgmv
it =

1

N

b−1
t e

(N)′
i H−1

t

(
e + at(eβ̄

′ −B)A−1
t β̄

)

atb
−1
t

=
1

N

(
e

(N)′
i H−1

t e− e
(N)′
i H−1

t B(At + atβ̄β̄
′
)−1atβ̄

atb
−1
t

)
.

By the continuous mapping theorem

N
1
2

(
(B′H−1

t B)−1B′H−1
t e

N−1Dt,N

− (At + atβ̄β̄)′−1atβ̄

atb
−1
t

)
→d ζgmv

1t ,

N
1
2

(
1

N−1Dt,N

− 1

atb
−1
t

)
→d ζgmv

2t ,
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where ζgmv
1t , ζgmv

2t are a k × 1 and a scalar normally distributed random vari-
able, respectively, with zero mean. Therefore by standard results

N
1
2 (Nwgmv

it −Nẘgmv
it ) →d ξ′1i,tζ

gmv
1t − ξ2i,tζ

gmv
2t = zgmv

i,t ,

which is a mixture of normal random variables, unless ξ1i,t, ξ2i,t are both
non-random.

Concerning term (57) that involves Ωt

e′iH
−1
t B(B′H−1

t B)−1Ω−1
t (Ω−1

t + B′H−1
t B)−1B′H−1

t e

= ate
′
iH

−1
t B(At + atβ̄β̄

′
)−1Ω

−1
t

N
(At + atβ̄β̄

′
)−1β̄(1 + op(1)).

(iii) To establish (27), since:

wgmv
t−1

′rt =
1

e′Σ−1
t−1e

[
e′Σ−1

t−1B(µf,t−1 + ut) + e′Σ−1
t−1(αt−1 + εt)

]
,

then by Lemma A the first term on the right hand side satisfies

1

e′Σ−1
t−1e

e′Σ−1
t−1B(µf,t−1 + ut) = Op(N

−1).

The covariance matrix of the term involving εt is

(e′Σ−1
t−1e)−2e′Σ−1

t−1Ht−1Σ
−1
t−1e = Op(N

−1),

since by easy calculations

e′Σ−1
t−1Ht−1Σ

−1
t−1e

N
− e′Σ−1

t−1e

N
→p 0,

yielding ε′tw
gmv
t−1 = Op(N

− 1
2 ). Therefore, collecting terms

ρgmv
t =

N−1e′Σ−1
t−1αt−1

N−1e′Σ−1
t−1e

+ Op(N
− 1

2 ),

which is asymptotically equivalent, by part (i) of this proof, to

1

Nat−1

(
e′H−1

t−1αt−1 + at−1β̄
′A−1

t−1(B
′ − β̄e

′
)H−1

t−1αt−1

)
→p

ct−1

at−1

.
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(28) follows easily since σgmv 2
ρ,t−1 = (e′Σ−1

t−1e)−1 and where the limit of ρgmv
t ,

just established, coincide with the limit of its conditional mean µgmv
ρ,t−1.

2

Proof of Theorem 2. All the limits below are based on N →∞.
(i) By identity (55)

wmeu
t =

1

γt

Σ−1
t (µt − er0t)

=
1

γt

(
H−1

t (µt − er0t)−H−1
t B(Ω−1

t + B′H−1
t B)−1B′H−1

t (µt − er0t)
)
,

for N < ∞. Since

e
(N)′
i Σ−1

t (µt − er0t) = e
(N)′
i Σ−1

t αt − e
(N)′
i Σ−1

t er0t + e
(N)′
i Σ−1

t Bµf,t,

we just need to determine the behavior of the first term on the right hand
side. In fact, the second term can be written as −e

(N)′
i Ct,Nr0t with Ct,N

defined in the proof of Theorem 1 and the third term, e
(N)′
i Σ−1

t Bµf,t, goes to
0′ by Lemma A. Thus, using the same arguments used in proof of Theorem
1,

e
(N)′
i Σ−1

t αt = e
(N)′
i H−1

t αt − e
(N)′
i H−1

t B(At + atβ̄β̄′)−1β̄ct + op(1),

since (At + atβ̄β̄′)−1β̄ct = ctb
−1
t A−1

t β̄, straightforward manipulation yields

e
(N)′
i Σ−1

t αt =
1

bt

e
(N)′
i H−1

t

(
αt + (atαtβ̄

′ −Bct)A
−1
t β̄

)
+ op(1). 2

(ii) For (32)

wmeu
t = H−1

t (µt − er0t)−H−1
t B(B′H−1

t B)−1B′H−1
t (µt − er0t)

+H−1
t B(B′H−1

t B)−1B′H−1
t (µt − er0t)−H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t (µt − er0t)

= H−1
t (IN −B(B′H−1

t B)−1B′H−1
t )(µt − er0t) (58)

+H−1
t B(B′H−1

t B)−1Ω−1
t (Ω−1

t + B′H−1
t B)−1B′H−1

t (µt − er0t). (59)

In relation to (58), we seek the asymptotic distribution of

N
1
2 (wmeu

it − ẘmeu
it )
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where

wmeu
it =

1

γt

(
e

(N)′
i H−1

t (µt − er0,t)− e
(N)′
i H−1

t B(Ω−1
t + B′H−1

t B)−1B′H−1
t (µt − er0,t)

)
,

ẘmeu
it =

1

γt

(
e

(N)′
i H−1

t (αt − er0,t)− e
(N)′
i H−1

t B(At + atβ̄β̄′)−1(ct − atr0,t)β̄
)

.

By the continuous mapping theorem

N
1
2

(
(B′H−1

t B)−1B′H−1
t (αt − er0,t)− (At + atβ̄β̄′)−1(ct − atr0,t)β̄

) →d ζmeu
t ,

where ζmeu
t is a k × 1 normally distributed random vector with zero mean

yielding
N

1
2 (wmeu

it − ẘmeu
it ) →d γ−1

t ξ′1i,tζ
meu
t = zmeu

i,t ,

which is a mixture of normal random variables, unless ξ1i,t is non-random.
Concerning term (59) that involves Ωt and µf,t, by Lemma A,

e′iH
−1
t B(B′H−1

t B)−1Ω−1
t (Ω−1

t + B′H−1
t B)−1B′H−1

t (µt − er0t)

= e′iH
−1
t B(At + atβ̄β̄

′
)−1

(
N−1Ω−1

t

) [
µf,t + (At + atβ̄β̄

′
)−1β̄(ct − atr0,t)

]
(1 + op(1)).

(iii) By Lemma A

wmeu ′
t−1 rt = γ−1

t

[
(αt−1 − er0t−1)

′Σ−1
t−1(αt−1 + εt)

]
(1 + Op(1)).

By part (i)

N−1(αt−1−er0t)
′Σ−1

t−1αt−1 =
1

bt−1

[
dt−1 + (at−1dt−1 − c2

t−1)β̄
′A−1

t−1β̄ − r0t−1ct−1

]
+op(1),

and since

N−1(αt−1 − ert)
′Σ−1

t−1(αt−1 − ert) = et−1/bt−1 + op(1),

where et is defined in (35), one gets

N−1(αt−1 − er0t−1)
′Σ−1

t−1εt

= Op

(
N−1((αt−1 − er0t−1)

′Σ−1
t−1Ht−1Σ

−1
t−1(αt−1 − er0t−1))

1
2

)
= Op(N

− 1
2 (et−1/bt−1)

1
2 ),

the last equality being obtained by Lemma A since Ht = Σt − BΩtB
′.

Similarly,
N−1wmeu ′

t−1 e = γ−1
t (ct−1 − at−1r0,t−1)(1 + op(1)).
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It is easy to see that et > 0 almost surely. In fact et is given by the sum
of dt − 2r0,tct + atr

2
0,t and (atdt − c2

t )β̄
′A−1

t β̄. The latter term is positive
since atdt > c2

t by our assumption and At is positive definite. The first term
dt − 2r0,tct + atr

2
0,t is certainly non-negative since it equals the probability

limit of the quadratic form N−1(αt − r0,te)′H−1
t (αt − r0,te). Finally, (34)

follows since µmeu
ρ,t−1 = (r0,t−1 + γ−1

t−1(µt−1 − r0,t−1 e)′Σ−1
t−1(µt−1 − r0,t−1e)) and

σmeu 2
ρ,t−1 = γ−2

t−1(µt−1 − r0,t−1e)′Σ−1
t−1(µt−1 − r0,t−1e) .
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