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1 Introduction

1.1 Summary

One of the most important concepts to have risen out of the econometric time series literature

has been the concept of Granger causality, first suggested by Wiener (1956) and later devel-

oped by Granger (1969). The literature has grown considerably since then, with extensions

to multivariate series, larger information sets, longer horizons,. . . etc. (see Geweke (1984),

Hamilton (1994), or Lütkepohl (2006)). Yet problems of interpretation have plagued it since

its inception (see e.g. Hamilton (1994)) and some have argued that it fails to capture what is

actually meant by causality (see Hoover (2001) or Pearl (2000)). Against this backdrop, the

purpose of this paper is to demonstrate that Granger causality is a much deeper concept than

previously thought, going to the heart of many other concepts in time series analysis. We

do this without taking any particular stance on the philosophical or empirical applicability of

Granger causality per se; when “cause” or any other word to that effect occurs in this paper

it is to be understood in the purely mathematical sense of Definition 3.2.

This paper proposes two extensions to Dufour & Renault (1998) – henceforth DR: (i) we

take into account the subspaces of non–causality and (ii) we consider the long run properties

of causality. To motivate the first extension, suppose that X and Y are vector processes and

Y Granger–causes X. Now it may be that variations in X along some directions cannot be

attributed to Y . Likewise, it may be that certain linear combinations of Y do not help predict

X. Thus standard Granger causality tests may not give the full picture of the dependence

structure. To motivate the second extension, suppose Y consists of nominal variables while

X consists of real variables. Standard economic theory says that Y should have no long run

effect on X. Existing time–domain theory allow us to check whether Y fails to cause X in the

long run if they can be modeled by cointegrated VARMA models (see e.g. Bruneau & Jondeau

(1999) and Yamamoto & Kurozumi (2006)); it would be useful to obtain criteria for long run

non–causality for a wider class of processes.

Based on the aforementioned extensions we are able to show: (i) stability and cotrendedness

(a generalization of cointegration) for a wider range of processes can be reformulated in terms

of long run non–causality and (ii) controllability can be reformulated in terms of non–causality

at all horizons.
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Now causality has been known to be associated with cointegration and controllability at

least since Granger (1988b) and Granger (1988a). However the association with cointegration

was known to hold only in the context of bivariate models; on the other hand, the association

with controllability was only shown in rather extreme forms of optimal control, where the

policymaker puts infinite weight on a single variable in the model. The two extensions proposed

in this paper allow us to flesh out and develop the association in its full generality. We find

that subspace non–causality subsumes wider phenomena that stability and cointegration as

well as the linear systems concept of controllability (see e.g. Kailath (1980)). Along the way

we will extend various results by DR to full generality.

The theoretical framework of this study is based on linear projections on Hilbert spaces,

which was introduced by Kolmogorov (1941). This framework, which is widely used in time

series analysis, is particularly well–suited to the study of linear processes due to its simplicity

and geometric appeal. However, other frameworks for studying causality are possible; Engle

et al. (1983) study non–causality in terms of independence of probability distributions, while

Florens & Mouchart (1982) study non–causality in terms of the orthogonality properties of σ–

algebras. The results of this paper map easily to these other perspectives although, possibly,

at a cost – for example, the condition in Theorem 4.1 is sufficient in the Florens & Mouchart

(1982) framework but for necessity one needs stronger assumptions (e.g. normality).

A number of papers have recently built on DR. Eichler (2007) uses DR’s results to conduct

a graph–theoretic analysis in light of recent advances in the artificial intelligence literature

on causality (see e.g. Pearl (2000)). Hill (2007) develops DR’s results into a procedure for

finding the exact horizon at which fluctuations in one variable anticipate changes in another

variable when the model is trivariate. There is also a strand of literature which has considered

dependence along subspaces in time series analysis. Brillinger (2001) considers the problem

of approximating a time series X by a filter of Y where the filter is of reduced rank and

both series are stationary; his analysis could be adapted to identify UXYHh with H = sp{1} if

we replace Y by X lagged h periods.1 Velu et al. (1986) consider the problem of identifying

UXXH1 with H as before when X is a stationary VAR of finite order. Finally, Otter (1990) and

Otter (1991) consider the use of canonical correlations in forecasting and causality analysis

assuming normality, stationarity, and finite information sets; in particular, the results of Otter

1UXY H
h is the subspace along which Y fails to cause X at horizon h given information set H – see Definition 3.4.
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(1991) can be used to characterize UXYH1 . The results of this paper generalize the previous

as they require neither stationarity, nor normality, nor finite information sets.

The paper proceeds as follows. Section 2 overviews the main ideas from Hilbert space

theory that we will need. Section 3 develops the concept of non–causality along subspaces as

an extension to DR, providing the basic definitions and results at the most general level of

analysis. Section 4 specializes the theory to linear invertible processes. Section 5 specializes

again to invertible VARMA processes. Necessary and sufficient conditions for non–causality

are provided at each step of the specialization of the theory. Section 6 considers the connection

to controllability. Section 7 concludes and section 8 is an appendix.

2 Some Concepts from Hilbert Space Theory

Here we lay out the main background from Hilbert space theory that we will need. Excellent

overviews of the applications of Hilbert space theory to time series analysis can be found in

Brockwell & Davis (1991) and Pourahmadi (2001).

Let L2 be the Hilbert space of random variables on probability space (Ω,F ,P) having finite

second moments and let E be the expectations operator in this space. We define the inner

product be 〈X,Y 〉 = E(XY ) for all X,Y ∈ L2 and the norm to be ‖X‖2 = 〈X,X〉 for all

X ∈ L2. We will say that a random vector is in L2 if all its elements are in L2. If H and G

are subspaces of L2 then we define H + G = sp{H,G}, the closure of the span of all linear

combinations of the elements of G and H; the subspace H −G is defined as sp{H ∩G⊥}.2

The time indexing set will be (ω,∞) ⊆ Z for ω ∈ {−∞} ∪ Z for all processes in this

paper; the case ω ∈ Z will be necessary in order to take into account some non–stationary

time series. The information or history at time t ∈ Z is denoted by I(t); we consider it to

be a closed subspace of L2 satisfying the nesting property, ω < t ≤ t′ ⇒ I(t) ⊆ I(t′). If

X is an n dimensional stochastic process in L2 then for ω < t < t′ we define, X(t, t′] =

sp{Xis : t < s ≤ t′, 1 ≤ i ≤ n}; for ω < t ≤ t′, X[t, t′] is defined in a similar fashion. Then

X(ω, t] is the information collected about X up to time t and we will say that information

set I is conformable with X if X(ω, t] ⊆ I(t) for all t > ω. The most frequently encountered

2The statistical literature uses “+” to refer to the linear span. However, DR use “+” to signify the closed linear

span and we follow their notation. The two are not equivalent as demonstrated in example 9.6 of Pourahmadi (2001).
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information sets in this paper are of the form, I(t) = H + X(ω, t] for all t > ω for some L2

random vector process X, where H ⊆ L2 is the information available in every period, thus it

contains deterministic term when H is the trivial subspace sp{1} but it may be larger allowing

for random initial conditions.

If X ∈ L2 and H is a subspace of L2 then the orthogonal projection of X onto H (or the

best linear predictor of X given H) is denoted by P (X|H). If X is vector of n variables in L2

then P (X|H) = (P (X1|H), . . . , P (Xn|H))′.

3 Cartesian Causality and Subspace Causality

In this section we will operate under the following assumption.

Assumption 1. For ω ∈ {−∞} ∪ Z, X = {X(t) : ω < t <∞} and Y = {Y (t) : ω < t <∞}

are discrete–time stochastic processes in L2, of dimensions nX and nY respectively. We also

take I to be an information set.

We will be interested in studying the causal links between X and Y in the context of

information set I. Typically, I is assumed to include all the variables that may be causally

related to X including X and excluding Y ; thus the totality of information in I and Y

consists of everything that may be causally related to X – Hoover (2001) refers to this larger

information set as the “causal field” of X. DR typically take I to include an auxiliary process

Z through which there may be indirect effects of Y on X (see DR for further motivation and

background). It is important to note that as far as Assumption 1 and the results derived from

it are concerned, X and Y need not be distinct and in discussing the causal effects of a time

series on its future evolution, we will be interested in the case Y = X.

The following definition, which appears in Granger (1980), is the main building block of

Granger causality.

Definition 3.1 (Prediction Variation). Under Assumption 1 with h ≥ 1 we have,

∆XY I
h (t) = P (X(t+ h)|I(t) + Y (ω, t])− P (X(t+ h)|I(t)), t > ω

is the time–t prediction variation of X at horizon h due to Y when I is given.

The prediction variation ∆XY I
h (t) is the modification to the h–period–ahead forecast of X

based on information set I(t), when the forecast is made on additional information on Y . By
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Theorem 9.18(c) of Pourahmadi (2001), ∆XY I
h (t) = P (X(t+ h)|(I(t) + Y (ω, t])− I(t)).3 The

idea of Granger causality is that if Y causes X, Y should be helpful for predicting X over and

above the information in I. If not then ∆XY I
h (t) = 0 for all t > ω and the best linear predictor

of X at horizon h is independent of the history of Y when the information set I is specified;

in this case, the causal channels from I mitigate the influence of Y on X at horizon h.4 Note

that by definition, P (∆XY I
h (t)|I(t)) = 0 for all t > ω; therefore the prediction variation is

linear in Y (t), Y (t− 1), . . . and orthogonal to I.

Definition 3.2 (Cartesian Non–causality). Under Assumption 1 with 1 ≤ h < ∞, we have

the following definitions,

(i) Y does not cause X given I at horizon h if ∆XY I
h (t) = 0 for all t > ω. We denote this

by Y 9h X [ I ].

(ii) Y does not cause X given I in the long run if ∆XY I
j (t)→ 0 in L2 as j →∞ for all t > ω.

We denote this by Y 9∞ X [ I ].

(iii) Y does not cause X given I up to horizon h if Y 9j X [ I ] for all 1 ≤ j ≤ h. We denote

this by Y 9(h) X [ I ].

(iv) Y does not cause X given I at any horizon if Y 9j X [ I ] for all j ≥ 1. We denote this

by Y 9(∞) X [ I ].

When it is clear from the context and there is no danger of confusion we drop the “given I”

phrase in the above definitions.

When h < ∞ and Y 9h X [ I ], ∆XY I
h (t) = 0 for all t > ω and there is no effect of

Y on X at horizon h. When Y 9∞ X [ I ], the effect dissipates in the long run; this does

not, however, rule out the possible effect of Y on X in the short run.5 (i), (iii), and (iv)

are due to DR although they require I to be conformable with X, which we do not. (ii)

generalizes Bruneau & Jondeau (1999) and Yamamoto & Kurozumi (2006) as they require

limh→∞ P (X(t + h)|I(t) + Y (ω, t]) = limh→∞ P (X(t + h)|I(t)), where as we do not require

3Note that generally, (I(t) + Y (ω, t])− I(t) 6= Y (ω, t] although (I(t) + Y (ω, t])− I(t) = Y (ω, t]− I(t).
4This is similar to the idea of “screening off” that Hoover (2001) and Pearl (2000) utilize.
5We define the long run in terms of L2 limits as this form of convergence is the most natural one for working in

L2. In the Engle et al. (1983) framework, convergence in distribution seems more suitable; on the other hand, almost

sure or L1 convergence would be more appropriate for generalizing the Florens & Mouchart (1982) framework.
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these limits to exist. (iii) and (iv) are derived from (i) and describe non–causality over several

periods and over all periods respectively; thus (iii) and (iv) will inherit some of the properties

of (i). Being effectively the “primitives” of our definition, (i) and (ii) will capture most of our

attention in this paper.

We refer to the notions of non–causality in Definition 3.2 as cartesian non–causality be-

cause they concern the cartesian components of W . Unfortunately, cartesian causality cannot

capture the full range of dependence between X and Y . If X is causally related to Y , it may

be that X varies only along limited directions in response to Y or that variations in Y along

certain directions have no effect on X. In order to analyze these cases rigorously, we define

some new concepts.

Definition 3.3 (Subspace Non–causality). Under Assumption 1, with 1 ≤ h <∞, subspaces

U ⊆ RnX and V ⊆ RnY , and orthogonal projection matrices PU and PV (onto U and V

respectively), we have the following definitions,

(i) Y along V does not cause X along U given I at horizon h if PVY 9h PUX [ I ]. We

denote this by, Y |V 9h X|U [ I ].

(ii) Y along V does not cause X along U given I in the long run if PVY 9∞ PUX [ I ]. We

denote this by, Y |V 9∞ X|U [ I ].

(iii) Y along V does not cause X along U given I up to horizon h if PVY 9(h) PUX [ I ]. We

denote this by, Y |V 9(h) X|U [ I ].

(iv) Y along V does not cause X along U given I at all horizons if PVY 9(∞) PUX [ I ]. We

denote this by, Y |V 9(∞) X|U [ I ].

When U = RnX we will drop any reference to U (e.g. we will write Y |V 9h X [ I ] instead

of Y |V 9h X|RnX [ I ]). Similarly, when V = RnY we write Y 9h X|U [ I ] instead of

Y |RnY 9h X|U [ I ]. Finally, as in Definition 3.2, we will drop the “given I” phrase in the

above definitions when there is no danger of confusion .

Thus, subspace non–causality merely augments the definition of cartesian non–causality

with projections of X and Y along certain subspaces. An alternative, and equivalent, way of

defining subspace non–causality would have been to consider those linear combinations of X

and Y that are not causally related as demonstrated in the following lemma.
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Lemma 3.1 (The Matrix Characterization of Subspace Non–causality). Under Assumption

1 with 1 ≤ h ≤ ∞, Y |V 9h X|U [ I ] if and only if V ′Y 9h U
′X [ I ], where the columns of U

are an orthonormal basis for U and the columns of V are an orthonormal basis for V.

Thus, Y |V 9h X|U [ I ] if and only if the linear combinations V ′Y fail to help forecast

the linear combinations U ′X at horizon h. We are now ready to consider the properties of

subspace non–causality.

Lemma 3.2. Under Assumption 1 with 1 ≤ h ≤ ∞ and arbitrary indexing set J ,

(i) (Cause Monotonicity) Y |V 9h X|U [ I ] if and only if Y |W 9h X|U [ I ] for all W ⊆ V.

(ii) (Effect Monotonicity) Y |V 9h X|U [ I ] if and only if Y |V 9h X|W [ I ] for all W ⊆ U .

(iii) (Cause Additivity) If Y |Vj 9h X|U [ I ] for all j ∈ J then Y |∑
j∈J Vj

9h X|U [ I ].

(iv) (Effect Additivity) If Y |V 9h X|Uj [ I ] for all j ∈ J then Y |V 9h X|∑j∈J Uj
[ I ].

An identical set of results hold for up–to–horizon–h non–causality.

Lemma 3.2 generalizes DR’s Proposition 2.1 in three directions: first, it considers all

subspaces along which X and Y vary where DR consider only the cartesian components;

second, it considers long run non–causality where DR consider only finite horizons; third, DR

require I to be conformable with PUX, which we do not . (i) and (ii) imply that if Y fails

to cause X then the non–causality also exists along all linear combinations of the two vector

processes; in other words, non–causality is invariant to linear transformations. (iii) and (iv)

state that non–causal channels can be aggregated in any linear fashion; thus, non–causality

is invariant to linear aggregation. It is crucial in Lemma 3.2 that J be arbitrary as we will

require a countably infinite J to prove the existence part of Lemma 3.3.

Now in general if Y |V 9h X|U [ I ], the subspaces U and V may be parts of larger subspaces

along which non–causality occurs. We would like to define what we mean by “the subspaces of

non–causality at horizon h between X and Y .” Unfortunately, the linear additivity properties

in Lemma 3.2 hold only when keeping one side of the non–causality relationship fixed. So we

can talk about “the subspace of RnX along which X fails to respond to PVY at horizon h” or

we can talk about “the subspace of RnY along which Y fails to affect PUX at horizon h,” but

to leave both U and V unspecified risks running into inconsistencies. For a given V we could

define the former to be the maximal subspace U along which Y |V 9h X|U [ I ] in the sense that
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such a U is not properly contained in any other subspace along which non–causality occurs

(and similarly when holding U fixed); however, we need to prove existence and uniqueness

first.

Lemma 3.3. For 1 ≤ h ≤ ∞ and subspace V, the maximal subspace U along which Y |V 9h

X|U [ I ] exists and is unique. Similarly, holding subspace U fixed, the maximal subspace V

along which Y |V 9h X|U [ I ] also exists and is unique. The identical result holds as well for

up–to–horizon–h non–causality.

To simplify notation, we will consider these maximal subspaces of non–causality either in

the context of fixing U = RnX or in the context of fixing V = RnY . In fact, this involves no

loss in generality as X and Y can always be linearly transformed to suite arbitrary U and V.

Definition 3.4 (Subspace of Non–causality at Horizon h). The maximal subspace U such

that Y 9h X|U [ I ] (resp. Y 9(h) X|U [ I ]) is denoted by UXY Ih (resp. UXY I(h) ); its orthogonal

complement is denoted by CXY Ih (resp. CXY I(h) ). We define, UXY Ih (resp. UXY I(h) ) to be a matrix

of orthonormal columns which span UXY Ih (resp. UXY I(h) ). Similarly, we define, CXY Ih (resp.

CXY I(h) ) to be a matrix of orthonormal columns which span CXY Ih (resp. CXY I(h) ).

Likewise, the maximal subspace V such that Y |V 9h X [ I ] (resp. Y |V 9(h) X [ I ]) is

denoted by VXY Ih (resp. VXY I(h) ); its orthogonal complement is denoted by DXY Ih (resp. DXY I(h) ).

We define, V XY I
h (resp. V XY I

(h) ) to be a matrix of orthonormal columns which span VXY Ih (resp.

VXY I(h) ). Finally, we define, DXY I
h (resp. DXY I

(h) ) to be a matrix of orthonormal columns which

span DXY Ih (resp. DXY I(h) ).

The subspace UXY Ih specifies along which directions variations in X at horizon h cannot

be attributed to variations in Y ; the subspace CXY Ih then specifies the directions of variations

in X attributable to variations in Y . Likewise, the subspace VXY Ih specifies in what directions

variations in Y produce no variations in X at horizon h; the subspace DXY Ih then specifies the

directions of variations in Y that have an effect on X. The columns of UXY Ih are the linear

combinations of the X’s that are unaffected by Y at horizon h, while the columns of CXY Ih

are the linear combinations of the X’s that are affected by Y . Likewise, the columns of V XY I
h

are the linear combinations of the Y ’s that have no effect on X, while the columns of DXY I
h

are the linear combinations of the Y ’s that have an effect on X. Note that these and the other

matrices listed in Definition 3.4 are unique modulo left multiplication by orthogonal matrices.
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The following proposition lists some additional useful properties of the above subspaces.

Proposition 3.1. Under Assumption 1, information set I, and 1 ≤ h ≤ ∞,

(i) UXY Ih =
∑
{U :Y9hX|U [ I ]} U . (vii) VXY Ih =

∑
{V:Y |V9hX [ I ]} V.

(ii) UXY I(h) =
∑
{U :Y9(h)X|U [ I ]} U . (viii) VXY I(h) =

∑
{V:Y |V9(h)X [ I ]} V.

(iii) UXY I(h) =
⋂h
j=1 UXY Ij . (ix) VXY I(h) =

⋂h
j=1 VXY Ij .

(iv) UXY I(∞) ⊆ U
XY I
∞ . (x) VXY I(∞) ⊆ V

XY I
∞ .

(v)
∑
{1≤j≤h} CXY Ij = CXY I(h) . (xi)

∑
{1≤j≤h}DXY Ij = DXY I(h) .

(vi) CXY I(h) ⊆ CXY I(h+1). (xii) DXY I(h) ⊆ D
XY I
(h+1).

We will discuss only (i) – (vi) as similar, if not identical, observations can be made about

(vii) – (xii). It follows from (i) (resp. (ii)) that there exists no subspace W ⊆ CXY Ih (resp.

W ⊆ CXY I(h) ) such that Y 9h X|W [ I ] (resp. Y 9(h) X|W [ I ]). In other words, as far as Y is

concerned UXY Ih (resp. UXY I(h) ) accounts for all non–causal directions at (resp. up to) horizon h.

This does not imply that there are no impediments to variations along CXY Ih (resp. CXY I(h) ) as

there may be non–linear ways of combining the X variables that make Y useless for prediction

over and above I. This suggests, thinking of CXY Ih (resp. CXY I(h) ) as the space reachable by X

at (resp. up to) horizon h for suitable variations in Y when controlling for I; we discuss the

relationship between reachability and causality in greater detail in section 6. (iii) and (iv) are

trivial applications of Definitions 3.3 and 3.4. (v) says that what is reachable up to horizon h

is reachable at some horizon between 1 and h. Finally, (vi) says that the reachable subspace

grows across horizons.

Finally, we close this section with a discussion of the causal effects of a series on itself.

Because nothing in our construction so far depends on X and Y being distinct, it is perfectly

consistent to have Y = X and so the causal properties of X on its future values is well defined.

We will be particularly interested in this section in the long run effect of a series on itself. If

the long run behavior of a series depends on its history at a particular point, any disturbances

in its history never dissipate and the causal effects of this history are permanent. If on the

other hand, the long run behavior of the series is independent of all its histories, the process

is in a sense stable. This suggests the following notion of stability.

Definition 3.5 (L2 Stability). Under Assumption 1, define Hω(X) =
⋂
t>ωX(ω, t] and

MX
∞ = UXXHω(X)

∞ . We say that X is L2 stable if MX
∞ = RnX , L2 unstable if MX

∞ = {0},

and cotrending if {0} 6=MX
∞ 6= RnX . The subspace MX

∞ is referred to as the subspace of L2
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stability of X. Clearly, X is L2 stable along any subspaceM⊆MX
∞ andMX

∞ is the maximal

subspace along which X is L2 stable.

In general Hω(X) consists of all the uncertainty surrounding X that is resolved at the

“start” of the process; typically this consists of non–random trends, random initial conditions,

or trends which depend on a random component that is constant through time. Definition 3.5

says that an L2 process X is L2 stable along some subspace if and only if its forecasts along

that subspace revert to the “mean” in the L2 norm in the long run. To illustrate what we

mean by the “mean” suppose we have a second order stationary process X; if the deterministic

component of its Wold decomposition (see e.g. Brockwell & Davis (1991), p. 187) is constant

then Hω(X) = sp{1} and so its mean is simply E(X(t)); if instead the deterministic component

is an L2 random variable ξ then Hω(X) = sp{ξ} and the mean is P (X(t)|sp{ξ}). Note that

the Wold decomposition also shows that every second–order stationary process is L2 stable.

Now it is clear that if any linear combination of X is long–run–caused by any other linear

combination of X with respect to Hω(X) then X cannot be L2 stable. We may now decompose

any L2 process X uniquely into an L2 stable process, PMX
∞
X and an L2 unstable process,

(InX − PMX
∞

)X. If X is cotrending then neither component will be zero; (CXXHω(X)
∞ )′X can

then be interpreted as common trends while UXXHω(X)
∞ may be interpreted as equilibrium

relationships between the X variables.6

Now Granger (1988b) shows that in a cointegrated bivariate model, at least one of the

variables must cause the other. The generalization to multivariate processes in L2 is that if

X is cotrending at least one of its components must cause another of its components in the

long run.

Theorem 3.1 (Long run Subspace Causality in Cotrending Time Series). Under Assumption

1, if X is cotrending then there exists subspaces M1 ⊆ RnX and M2 ⊆ (MX
∞)⊥ such that

X|M1 9∞ X|M2 [Hω(X) ] fails to hold.

4 Subspace Causality in Linear Invertible Processes

We now change our notation slightly to suite the analysis of linear processes.

6Cotrending processes are defined analogously to cointegrating processes; in fact the concept of cointegration is

subsumed by cotrendedness as we will see in greater detail in section 5.
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Assumption 2. W = {W (t) = (X ′(t), Y ′(t), Z ′(t))′ : t ∈ Z} is a stochastic processes in L2 of

dimension n; the dimensions of the components X, Y , and Z are nX , nY , and nZ respectively.

W has the autoregressive representation,

W (t) = µ(t) +
∞∑
j=1

πjW (t− j) + a(t), t > $, (4.1)

µ(t) ∈ H−∞(W ) =
⋂
t∈ZW (−∞, t] for all t > $. {a(t) : t > $} is a sequence of uncorrelated

random vectors in L2, with E(a(t)) = 0 and E(a(t)a′(t)) = Ω(t) > 0 for all t > $. Moreover

a(t) is uncorrelated with W (−∞, t − 1] for all t > $. The innovations process is partitioned

conformably with W as, a = (a′X , a
′
Y , a

′
Z)′. We also assume that

∑∞
j=1 πjW (t− j) converges

in L2 for all t > $. If $ = ω = −∞, W has an autoregressive representation (4.1) for all

t ∈ Z; on the other hand, if $ ∈ Z we set W (t) for t ≤ $ to any sequence of initial random

vectors in H−∞(W ) that will guarantee convergence of (4.1); thus the process is assumed to

start after time $ and all uncertainty in H−∞(W ) is resolved at time $. We will be concerned

with the following information sets:

(i) Causal channels between X and Y . Here we will assume that the subspaces, U ⊆ RnX

and V ⊆ RnY are given along with the information set, I(t) = H−∞(W ) + X(−∞, t] +

PV⊥Y (−∞, t] + Z(−∞, t] for t ∈ Z, which consists of all available information at time

t ∈ Z excluding the contribution of variations in Y along the given V; it may also be

written as I(t) = H−∞(W ) + (W (−∞, t]− PVY ($, t]) for t ∈ Z.7

(ii) Causal channels between W and itself. Here we will assume that the subspaces U ,V ⊆ Rn

are given and work with the information set I(t) = H−∞(W ) +PV⊥W (−∞, t] for t ∈ Z.

Thus I(t) includes all available information excluding the variation of W along V; it may

also be written as I(t) = H−∞(W ) + (W (−∞, t]− PVW ($, t]) for t ∈ Z.

Finally, it will be convenient to consider the demeaned process of W , which we denote by

Ŵ = {Ŵ (t) = W (t)−P (W (t)|H−∞(W )) : t ∈ Z}. This will allow us to simplify the notation

by eliminating µ(t) from equation (4.1),

Ŵ (t) =


∑t−$

j=1 πjŴ (t− j) + a(t), for t > $,

0, for t ≤ $,
(4.2)

7Because the process the process (4.1) includes the deterministic term µ(t) ∈ H−∞(W ) for t > $, we are forced

to include H−∞(W ) into the information set. We do this in the interest of maintaining continuity with previous

literature despite the fact that excluding µ (i.e. setting H−∞(W ) = {0}) makes for much more elegant theory.
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Note that if sp{1} ⊆ H−∞(W ), then EŴ (t) = 0 for all t ∈ Z. The demeaned process is

partitioned conformably with W as Ŵ = (X̂ ′, Ŷ ′, Ẑ ′)′.

The class of processes in Assumption 2 includes invertible VARMA (see e.g. Lütkepohl

(2006)) and long–memory processes (see e.g. section 13.2 of Brockwell & Davis (1991)); lemma

6.4 of Pourahmadi (2001) provides a full characterization of the stationary class of processes

(4.1). The difference between this formulation and the class of processes considered by DR is

that we require Ω(t) to be positive definite.

The working paper version of DR (Dufour & Renault, 1995) shows that under Assumption

2, the h–period forecasts of W are of the form,

P (W (t+ h)|W (−∞, t]) =
h−1∑
k=0

π
(k)
1 µ(t+ h− k) +

∞∑
j=1

π
(h)
j W (t+ 1− j), t > $, h ≥ 1,

where the coefficients are defined by,

π
(1)
j = πj , π

(h+1)
j = πj+h +

h∑
l=1

πh−l+1π
(l)
j , j, h ≥ 1 (4.3)

= π
(h)
j+1 + π

(h)
1 πj , j, h ≥ 1 (4.4)

Equation (4.3) follows from direct substitution, while equation (4.4) is easily obtained from

the VAR(1) representation of W .

Definition 4.1 (Projection Matrices and Impulse Responses). The matrices {π(h)
j }∞j=1 are

termed the projection matrices at horizon h. If we set π(h)(z) =
∑∞

j=1 π
(h)
j zj , with π(z) =

π(1)(z), then the impulse response operator is defined by, In + ψ(w) = (In − π(w))−1, where

ψ(w) =
∑∞

h=1 ψhw
h.

Dufour & Renault (1995) demonstrate that the impulse response operator ψ(z) is retriev-

able from the projection matrices at horizon h via the formula,

ψ(w) =
∞∑
j=1

π
(h)
1 wh, (4.5)

Assumption 3. The projection matrices are partitioned conformably with W as,

π
(h)
j =


π

(h)
XXj π

(h)
XY j π

(h)
XZj

π
(h)
Y Xj π

(h)
Y Y j π

(h)
Y Zj

π
(h)
ZXj π

(h)
ZY j π

(h)
ZZj

 ,
for all j, h ≥ 1. The projection matrix operators π(h)(z) are partitioned similarly.
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Given Assumptions 2 and 3, the projection variation for the effect of Y on X is given by,

∆PUXPVY I
h (t) =


∑t−$

j=1 PUπ
(h)
XY jPV{Y (t+ 1− j)− P (Y (t+ 1− j)|I(t))}, t > $

0, t ≤ $
(4.6)

Equation (4.6) makes clear that the existence of causal channels between X and Y will hinge

on the properties of the matrices {PUπ(h)
XY jPV}h,j≥1.

Theorem 4.1 (Characterization of Subspace Non-causality at Horizon h < ∞). Under As-

sumptions 2 and 3 and for 1 ≤ h <∞, Y |V 9h X|U [ I ] if and only if, PUπ
(h)
XY jPV = 0 for all

j ≥ 1.

Theorem 4.1 states that the generalization from cartesian non–causality to subspace non–

causality involves nothing more than linear restrictions on the projection matrices {π(h)
XY j}∞j=1.

When U and V are known, we simply test the restrictions,

U ′π
(h)
XY jV = 0, for all j ≥ 1, (4.7)

where U and V are as in Lemma 3.1. If one of them is unknown – recall that we must specify

at least one them – then we have a reduced rank regression à la Anderson (1951) and (4.7)

can be imposed as a rank restriction. The case where we are interested in finding VXY I1 by

imposing rank restrictions of the form πXY jV = 0 for all j ≥ 1 can be seen as a variant of

the problem considered by Sargent & Sims (1977), which is concerned with finding indices

summarizing the information of a large set of variables Y ; in this case, the indices are exactly

(DXY I
1 )′Y .

Now because of the linearity of the process, the subspaces of (non)causality are easily

characterized in terms of the projection matrices as we see in the following corollary.

Corollary 4.1. Under Assumptions 2 and 3 and for 1 ≤ h <∞,

(i) UXY Ih =
⋂
{j≥1} ker(π(h)

XY j

′
), for h <∞. (iii) VXY Ih =

⋂
{j≥1} ker(π(h)

XY j), for h <∞.

(ii) CXY Ih =
∑
{j≥1} im(π(h)

XY j), for h <∞. (iv) DXY Ih =
∑
{j≥1} im(π(h)

XY j

′
), for h <∞.

Long run non–causality is more subtle to deal with than its finite horizon counterpart.

Assumptions 2 and 3 allow us to obtain necessary conditions for long run non–causality but

sufficiency requires stronger assumptions.

Theorem 4.2 (Characterization of Long Run Subspace Non–causality). Under Assumptions

2 and 3, Y |V 9∞ X|U [ I ] implies that limh→∞ PUπ
(h)
XY jPV = 0 for all j ≥ 1. Conversely, if
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limh→∞
∑t−$

j=1 ‖PUπ
(h)
XY jPV‖ = 0 and sup$<s≤t E‖PV Ŷ (s)‖2 < ∞ for all t ∈ Z then Y |V 9∞

X|U [ I ].

Thus when $ ∈ Z, Y |V 9∞ X|U [ I ] if and only if limh→∞ PUπ
(h)
XY jPV = 0 for all j ≥ 1.

However, when $ = −∞ stronger conditions are required; PUπ
(h)
XY jPV must converge to zero

uniformly and the demeaned series {PV Ŷ (s)}$<s≤t must be bounded in L2.8 Fortunately,

however, the sufficiency conditions in Theorem 4.2 will be satisfied by most processes of interest

as we will see below.9 Note that Y |V 9∞ X|U [ I ] implies that limh→∞ PUψXY hPV = 0, thus

the impulse response of X along U with respect to Y along V must diminish through time;

however, this will not be sufficient for long run non–causality as we will see in the case of

VARMA processes (see the proof of Theorem 5.1 (ii)).

Now equation (4.4) implies that,

PUπ
(h+1)
XY j PV =PUπ

(h)
XY j+1PV + PUπ

(h)
XX1PUπXY jPV + PUπ

(h)
XX1PU⊥πXY jPV+

PUπ
(h)
XY 1PVπY Y jPV + PUπ

(h)
XY 1PV⊥πY Y jPV + PUπ

(h)
XZ1πZY jPV ,

and so we have that if Y |V 9(h) X|U [ I ] with h <∞ then PUπ
(h+1)
XY j PV = PUπ

(h)
XX1PU⊥πXY jPV+

PUπ
(h)
XY 1PV⊥πY Y jPV + PUπ

(h)
XZ1πZY jPV . That is, if Y along V fails to cause X along U up to

horizon h, it may still have an effect at horizon h + 1 through one of three indirect causal

channels: either through X itself if the direct effect of PVY on PU⊥X persists for h periods,

through Y if the direct effect of PVY on PV⊥Y persists for h periods, or through Z if Z causes

X along U at horizon h. Following this line of reasons allows us to prove the following theorem

characterizing subspace non–causality up to horizon h.

Theorem 4.3 (Characterization of Subspace Non-causality up to Horizon h). Under Assump-

tions 2 and 3 and for h ≥ 2,

(i) PUπXY jPV = 0 for all j ≥ 1.

8The reason why we require stronger assumptions is evident from equation (4.6) once we recall that convergence

in probability does not imply convergence in Lp and one must resort to assumptions of dominance, monotonicity, or

uniform integrability to obtain Lp convergence (see e.g. section 4.5 of Chung (1974)).
9It is perhaps worth mentioning that the so–called “long run effect” of Y on X in the dynamic multiplier literature

(see e.g. Lütkepohl (2006) p. 392) bears no relation to long run causality. Long run causality, as we have seen in the

last section, cannot occur in L2 stable processes, thus they cannot occur in stationary processes; on the other hand,

the “long run effect” of Y on X is πXY (1), which may be non–zero in a stationary process.
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(ii) PUπ
(k)
XX1PU⊥πXY jPV +PUπ

(k)
XY 1PV⊥πY Y jPV +PUπ

(k)
XZ1πZY jPV = 0 for all j ≥ 1, 1 ≤ k <

h.

are necessary and sufficient for Y |V 9(h) X|U [ I ].

Theorems 4.1 and 4.3 are extensions of results by DR. However, a judicious choice of

coordinates and information set yields that they are in fact equivalent to DR’s results; this

is shown in section 8.1. In fact, a much more general formulation of Theorems 4.1–4.3 is

possible as we summarize in the following theorem. The results are given without proof as

they involves minimal modification of the proofs of DR along the same lines as the discussion

in section 8.1.

Theorem 4.4 (The Causal Effects of a Series on Itself). Under Assumption 2 for 1 ≤ h <∞,

(i) W |V 9h W |U [ I ] if and only if, PUπ
(h)
j PV = 0 for all j ≥ 1.

(ii) W |V 9∞ W |U [ I ] implies that limh→∞ PUπ
(h)
j PV = 0 for all j ≥ 1. Conversely, W |V 9∞

W |U [ I ] if limh→∞
∑t−$

j=1 ‖PUπ
(h)
j PV‖ = 0 and sup$<s≤t E‖PVŴ (s)‖2 <∞ for all t ∈ Z.

(iii) The necessary and sufficient conditions for W |V 9(h) W |U [ I ] are,

(a) PUπjPV = 0 for all j ≥ 1.

(b) PUπ
(k)
1 PU⊥πjPV = 0 for all j ≥ 1, 1 ≤ k < h.

These results reduce to the earlier theorems by making the following substitutions,

U → U ×
nX+nZ︷ ︸︸ ︷

{0} × · · · × {0} V →
nX︷ ︸︸ ︷

{0} × · · · × {0}×V ×
nZ︷ ︸︸ ︷

{0} × · · · × {0}

The case h = 1 in Theorem 4.4(i) has been studied by Box & Tiao (1977) and Velu et al.

(1986) in the context of stationary VARs for the purpose of model reduction and improving

forecasts at horizon h = 1; here (CWWI
1 )′W is predictable by current and past values of W but

(UWWI
1 )′W is not. The other results are straightforward generalizations following the same

line of logic as before. The following corollary is immediate.

Corollary 4.2. Under Assumption 2 and for 1 ≤ h <∞,

(i) UWWI
h =

⋂
{j≥1} ker(π(h)

j

′
), for h <∞. (iii) VWWI

h =
⋂
{j≥1} ker(π(h)

j ), for h <∞.

(ii) CWWI
h =

∑
{j≥1} im(π(h)

j ), for h <∞. (iv) DWWI
h =

∑
{j≥1} im(π(h)

j

′
), for h <∞.
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5 Subspace Causality in VARMA Processes

To operationalize the theory of the last section, we must simplify the structure of the projection

operator π(z). One way to do this is to assume that π(z) is rational; from linear system theory

(see e.g. Sontag (1998)), this implies that the projection matrices are recursively and finitely

generated, what will allow us to find truncation rules useful for empirical testing of non–

causality along subspaces.

Assumption 4. In − π(z) = θ−1(z)φ(z), where φ(z) = In −
∑p

j=1 φjz
j and θ(z) = In +∑q

j=1 θjz
j are assumed identified. We also assume that Ω(t) = Ω for all t > $.

Under Assumptions 2 and 4, Ŵ is a VARMA process and the zeros of θ(z) lie outside the

unit circle. We may now state the following truncation theorems.

Theorem 5.1 (Truncation Rules for Subspace Non–causality in VARMA Processes). Under

Assumptions 2-4 and for 1 ≤ h <∞,

(i) Y |V 9h X|U [ I ] if and only if PUπ
(h)
XY jPV = 0 for all 1 ≤ j ≤ p+ (n− 1)q.

(ii) Y |V 9∞ X|U [ I ] if and only if limh→∞ PUπ
(h)
XY jPV = 0 for all 1 ≤ j ≤ (n−dim(V))nq+

dim(V)(p+ (n− 1)q).

(iii) Y |V 9(∞) X|U [ I ] if and only if PUπ
(h)
XY jPV = 0 for all 1 ≤ j ≤ p + (n − 1)q and

1 ≤ h ≤ (p+ (n− 1)q)(n− dim(U)− dim(V)) + 1.

Theorem 5.1 can be used for empirical tests of subspace non–causality in VARMA pro-

cesses. (i) and (iii) reduce to DR’s Proposition 4.5 when U = RnX , V = RnY , and q = 0

– i.e. when considering cartesian non–causality in VARs. (ii) specializes Theorem 4.2 to the

VARMA case; note that it is equivalent to limh→∞ PUπ
(h)
XY jPV = 0 for all j ≥ 1.

The next result specializes Corollary 4.1 as well as Proposition 3.1 (v) and (xi) to VARMA’s.

Corollary 5.1. Under Assumptions 2-4, for 1 ≤ h <∞ and m1 = nXnq + nY (p+ (n− 1)q)

and m2 = nXnp+ nY ((n− 1)p+ q),

(i) UXY Ih =
⋂
{1≤j≤m1} ker(π(h)

XY j

′
). (iv) VXY Ih =

⋂
{1≤j≤m1} ker(π(h)

XY j), h <∞.

(ii) CXY Ih =
∑
{1≤j≤m1} im(π(h)

XY j). (v) DXY Ih =
∑
{1≤j≤m1} im(π(h)

XY j

′
), h <∞.

(iii) CXY I(∞) = CXY I(m2) . (vi) DXY I(∞) = DXY I(m2) .

It follows from Corollary 5.1 that in the context of VARMA processes we do not need an

infinite number of projection matrices in order to construct the subspaces of (non)causality.
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For example, [CXY Ih UXY Ih ] can be obtained as the orthogonal matrix in the QR decomposition

of [π(h)
XY 1 π

(h)
XY 2 · · · π

(h)
XYm1

]; a similar construction gives us [DXY I
h V XY I

h ].

There are also truncation rules for the effect of W on itself. We summarize them in the

next two result, which are – again – given without proof.

Theorem 5.2 (Truncation Rules for Subspace Non–causality in VARMA Processes). Under

Assumptions 2-4 and for 1 ≤ h <∞,

(i) W |V 9h W |U [ I ] if and only if PUπ
(h)
j PV = 0 for all 1 ≤ j ≤ p+ (n− 1)q.

(ii) W |V 9∞ W |U [ I ] if and only if limh→∞ PUπ
(h)
j PV = 0 for all 1 ≤ j ≤ (n− dim(V))nq+

dim(V)(p+ (n− 1)q).

(iii) W |V 9(∞) W |U [ I ] if and only if PUπ
(h)
j PV = 0 for all 1 ≤ j ≤ p + (n − 1)q and

1 ≤ h ≤ (p+ (n− 1)q)(n− dim(U)− dim(V)) + 1.

Corollary 5.2. Under Assumptions 2-4, for 1 ≤ h < ∞ and m1 = n(2nq + p + −q) and

m2 = n(2np− p+ q),

(i) UWWI
h =

⋂
{1≤j≤m1} ker(π(h)

j

′
). (iv) VWWI

h =
⋂
{1≤j≤m1} ker(π(h)

j ), h <∞.

(ii) CWWI
h =

∑
{1≤j≤m1} im(π(h)

j ). (v) DWWI
h =

∑
{1≤j≤m1} im(π(h)

j

′
), h <∞.

(iii) CWWI
(∞) = CWWI

(m2) . (vi) DWWI
(∞) = DWWI

(m2) .

Now a linearly transformed VARMA is itself a VARMA (see Lütkepohl (1984)); thus the

projection of Ŵ onto any non–zero subspace is itself a VARMA, which may be described as

being stable or unstable depending on whether the roots of its autoregressive part lie outside

the unit circle or not (see e.g. Lütkepohl (2006)). The next result proves that VARMA stability

is equivalent to L2 stability; in particular, MW
∞ is the maximal subspace M such that PMW

is a stable VARMA.

Theorem 5.3 (Stability and Long run Subspace Non–causality in VARMA Processes). Under

Assumptions 2 and 4, with subspace M⊆ Rn, the following are equivalent,

(i) PMŴ is stable.

(ii) W 9∞ W |M [ J ] for all information sets J satisfying J(t) ⊆W (−∞, t] for all t ∈ Z.

(iii) M⊆MW
∞ .

The subspaceMW
∞ is easily derived from the projection matrices {π(h)

j }j,h≥1. By Theorem

5.2 (ii), MW
∞ is the maximal subspace M satisfying limh→∞ PMπ

(h)
j = 0 for all j ≥ 1. As is
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shown in the proof of Theorem 5.3 (ii), π(h)
j consists of terms of the form hkjlλhνj , where λ and

ν are eigenvalues associated with the state–space representation of the projection matrices and

k and l are integers. It follows that PMW
∞

is precisely the projection matrix that annihilates

all terms with |λ| ≥ 1.

Clearly the cotrending space is the cointegration space for a cointegrated VARMA; how-

ever, the concept of a cotrending space includes the cointegration space as a special case

because it is defined for any L2 process including periodic or explosive VARMA processes.

For a cointegrated VARMA, the decomposition W = PMW
∞
W + (In − PMW

∞
)W is similar but

not equal to the Beveridge & Nelson (1981) decomposition as the former is a geometric de-

composition whereas the latter is an algebraic decomposition – see e.g. the proof of Theorem

4.2 of Johansen (1995) which starts off with a geometric decomposition but later shifts some

of the stable processes back into the stable part of the decomposition.

6 Subspace Causality and Controllability

Controllability in the linear systems literature refers to the ability of the policymaker to hit

any given target from any initial condition of the dynamic system. This issue arises in many

important contexts of relevance to time series: linear systems (Kailath, 1980), Kalman filters

(Anderson & Moore, 1979), and linear quadratic control (Bertsekas, 2001) among others and

it has been variously considered in the economics literature as well; Pitchford & Turnovsky

(1976) and Preston & Pagan (1982) is some of the earliest work on controllability in the

context of the pure theory of policymaking; Hansen & Sargent (2005) provides a more recent

consideration of controllability in the context of linear dynamic economic models.

Now consider the model most commonly encountered in the literature.

Assumption 5. Let Y = {Y (t) ∈ RnY : t ≥ 0} ⊂ L2 consist of policy variables which are

chosen by the policymaker. Let X = {X(t) ∈ RnX : t ≥ 0} consist of target variables of

interest which evolve according to,

Z(t) = AZ(t− 1) +BY (t− 1) + ε(t), t > 0 (6.1)

X(t) = CZ(t) + η(t) (6.2)

We assume that ξ = {ξ(t) = (ε′(t), η′(t))′ : t ≥ 0} ⊂ L2 is a white noise process consisting of
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unobserved shocks to the system. Z is an nZ–dimensional vector processes describing system–

wide dynamics, of which we observe only partial information through X; we assume that

Z(0) ∈ L2 and E(Z(0)) = 0. The previous assumptions imply that X is in L2. The purpose

of the policymaker is to choose the sequence of Y ’s to pursue some objective, whatever it may

be. Note that the trajectory of X is given by,

X(t) = CAtZ(0) +
t−1∑
j=0

CAj(BY (t− j − 1) + ε(t− j)) + η(t), t > 0 (6.3)

Since X is determined by Y , Z(0) and ξ and the latter two are unobservable, to study the

effect of variations in Y along V ⊆ RnY on the variations in X along U ⊆ RnX , we will work

with the information set I(t) = PV⊥Y [0, t] for all t ≥ 0. Finally, denote by T the class of L2

processes Y which are orthogonal to Z(0) and ξ.

Now given this model, we would like to measure the effect of Y on X over and above

the influence of all other factors. The engineering literature has solved this by looking at the

effect of a deterministic process Y on E(X). Clearly, E(X) lies in the image of the sequence

of matrices {CAjB}∞j=0; by the Cayley–Hamilton theorem (theorem 2.4.2 of Horn & Johnson

(1985)) this is exactly the image of the matrix [CB CAB · · · CAnZ−1B], which is called the

output controllability matrix. Thus the image of the output controllability matrix is precisely

the range of values of X that are reachable in expectation by some choice of Y and the system

is completely controllable (in the sense that any target is reachable in expectation) if and only

if the output controllability matrix is of full rank.10

In contrast, the theory of causality allows us to approach the problem from a different

point of view. For a given Y , the prediction variation ∆PUXPVY I
h (t) gives us some information

about the causal effect of Y on X; therefore, to measure the independent effect of Y on X

(i.e. in the absence of feedback) we will consider the causal effect of an arbitrary Y ∈ T on

X. To keep things simple, let Y ∈ T be a white noise process with variance matrix InY and

compute the prediction variation,

∆PUXPVY I
h (t) =

 0, t = 0∑t+h−1
j=h−1 PUCA

jBPVY (t+ h− j − 1), t > 0
(6.4)

10See Kailath (1980) or Sontag (1998) for more details. Preston & Pagan (1982) provide a fascinating interpretation

of controllability in terms of Tinbergen’s counting principle.
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where we have used the fact that P (Y (s)|I(t)) = P (Y (s)|PV⊥Y (s)) = PV⊥Y (s) for 0 ≤ s ≤ t.

It is now clear that Y |V 9h X|U [ I ] if and only if PUCAjBPV = 0 for j ≥ h − 1.11 Note

in particular that if Y |V 9h X|U [ I ] then Y |V 9j X|U [ I ] for all j ≥ h so that Y |V 9(∞)

X|U [ I ] if and only if Y |V 91 X|U [ I ]. In the special case where h = 1 and V = RnY , we

see that the reachable subspace is precisely CXY I1 . We prove a slightly stronger results in the

following theorem.

Theorem 6.1. Under Assumption 5 with V = RnY , the subspace U ⊆ RnX is unreachable if

and only if U ⊆ UXY I1 for all Y ∈ T .

The relationship between causality and controllability is still more intimate. We know

from DR’s Separation Theorem that if (Y ′, X ′PU⊥)′ 91 X|U [ IPUX ] then (Y ′, X ′PU⊥)′ 9(∞)

X|U [ IPUX ], where IPUX(t) = PUX(ω, t] for t > ω and X and Y are as in Assumption 1;

that is, if Y has neither a direct nor an indirect effect on X along U then Y has no effect at

all on X. The next result shows that under Assumption 5 and when Z is perfectly observ-

able the converse of the Separation Theorem holds and is precisely Kalman’s controllability

decomposition.

Theorem 6.2 (Partial Converse of the Separation Theorem). Suppose Assumptions 5 holds

with V = RnY , C = InX , η = 0, and IPUX(t) = PUX[0, t] for t ≥ 0. If U = UXY I(∞) , then

X|U⊥ 9(∞) X|U [ IPUX ].

We find in the proof of Theorem 6.2 that PUAPU⊥ = 0; thus if we set U = UXY I(∞) and

C = CXY I(∞) then X decomposes as, X = UX̃U + CX̃C , where X̃U = U ′X, X̃C = C ′X the

system can be expressed as,X̃U (t)

X̃C(t)

 =

U ′AU 0

C ′AU C ′AC

X̃U (t− 1)

X̃C(t− 1)

+

 0

C ′B

Y (t− 1) +

U ′ε(t)
C ′ε(t)


Thus the uncontrollable part X̃U is a VAR(1) which is not causally related to Y , while X̃C

is related to Y and is characterized by a VARX(1,1). This is precisely Kalman’s controllability

decomposition, which can now be considered a partial converse to the Separation Theorem.

Finally, it has long been recognized that Granger–causality is directly relevant to optimal

control (see e.g. Granger (1988a) and the references therein); however the full extent of the

11The “if” part follows from equation (6.4), while the “only if” part follows from the fact that if ∆PUXPVY I
h (t) = 0

for t ≥ 0 then 0 = E∆PUXPVY I
h (t)Y ′(t+ h− j − 1) = PUCA

jBPV for h− 1 ≤ j ≤ t+ h− 1.
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relationship has not been completely characterized as Granger only considers extreme forms of

control where the policymaker gives zero weight to all variables except for one. The following

result completely characterizes the solution to the linear quadratic optimal control problem

in econometric terms.

Theorem 6.3. Suppose Assumption 5 holds and let Q ∈ RnX×nX and R ∈ RnY ×nY be positive

definite, with L = E{
∑∞

t=0 β
t(X ′(t)QX(t) + Y ′(t)RY (t))} and 0 < β < 1. If CXY I(∞) = RnX for

all Y ∈ T then the L2 process Y that minimizes L exists and is unique.

7 Conclusion

This paper has demonstrated that the subspace perspective of causality encompasses existing

notions of causality, stability, cointegration, and controllability. We have shown how to extend

cartesian causality to take into account the subspaces along which causal links may reside.

We have demonstrated that L2 stability, a weaker form that second–order stationarity, can be

viewed as a form of non–causality. We then specialized the theory to linear invertible process

and derived the parametric restrictions for non–causality. The theory was then specialized

even further to VARMA processes where we showed how cointegration can be seen as a special

case of cotrendedness. Finally, we showed that the linear systems concept of controllability

is also a special case of causality, providing purely econometric statements of two celebrated

theorems in linear systems theory: the Kalman controllability decomposition and the existence

and uniqueness theorem for optimal policies in linear quadratic control. For the rest of this

section, therefore, we will focus on elaborating certain themes in the paper and suggest further

extensions to the results.

First, the paper has relied heavily on the notion of maximality of subspaces with respect

to a given property (in our case, the property of being a subspace along which there is non–

causality). The existence of these subspaces follows from Zorn’s lemma (see e.g. Artin (1991)) if

the property is invariant to subspace summation; uniqueness then follows from maximality and

additivity again. It is interesting to note the extent of analytic tractability that this method

has afforded us. For example Theorem 3.1 is almost tautological and provides Granger’s

result in full generality where as the original Granger (1988b) result relies heavily on the

representation theory of bivariate I(1) time series. It would be fruitful to see this methodology
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applied to other problems in multivariate time series analysis.

Second, we have completely ignored the relationship between reduced rank regression (i.e.

the results of Section 4) and canonical correlations analysis (see e.g. Reinsel & Velu (1998)).

Although the two points of view are practically equivalent in the case of finite information

sets; the situation is drastically complicated when the information set is infinite dimensional.

Certain results are available for canonical correlations analysis in infinite dimensions (see e.g.

Jewell & Bloomfield (1983)); however these concern stationary processes and it would be

interesting to see how they extend to our setting; in particular, one would expect that the

subspaces of non–causality are precisely those pertaining to canonical correlations equal to

zero.

Third, the paper introduced a new concept of long run causality, which encompasses the

concepts of Bruneau & Jondeau (1999) and Yamamoto & Kurozumi (2006). There is, however,

a frequency–domain concept of long run causality (Hosoya (1991) and Hosoya (2001)) and it

was not clear at the time of writing this paper, whether or in what way the two concepts

overlap. It would seem reasonable to expect that they are equivalent; however, an extension

in that direction was beyond the scope of this paper and is left to further research.

Fourth, the linear theory we have studied in this paper can be seen as a first step towards a

non–linear theory of Granger causality, which extracts causally related non–linear components

from multivariate time series. In particular, we know from Lemma 3.1 that Y |V 9h X|U [ I ] if

and only if U ′X(t+ h) is not linearly related to past and present values of Y . The non–linear

extension of this theory would consider the set of all Borel measureable functions g on RnX

such that E(g(X(t+h))|X(t), Y (t), X(t−1), Y (t−1), . . .) = E(g(X(t+h))|X(t), X(t−1), . . .).

Finally, subspace causality was demonstrated to be a generalization of model reduction

techniques such as Sargent & Sims (1977) and Velu et al. (1986). It would be interesting to

see how the more general kinds of subspace non–causality can be applied for model reduction.

In the same vain, it would be interesting to see how Bayesian analysis can be conducted using

subspace non–causality priors. These are all interesting questions, which will hopefully be

addressed by future research.
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8 Appendix

8.1 Relationships Between Cartesian and Subspace Non–Causality

Fortunately, very simple relationships exists between many of the results in the cartesian non–

causality literature and the proposed subspace non–causality of this paper. We will focus on

the case when W = (X ′, Y ′, Z ′) is an L2 process under investigation. From Lemma 3.1 we

know that Y |V 9h X|U [ I ] if and only if Ỹ 9h X̃ [ I ], where Ỹ = V ′Y and X̃ = U ′X.

It would seem therefore that in order to use results about cartesian non–causality all that is

required is to make the following “translation,”

X 7→ X̃ = U ′X

Y 7→ Ỹ = V ′Y

Z 7→ Z̃ = (Z ′, X ′U⊥, Y ′V⊥)′

Note that such transformations involves no loss of information as it amounts to nothing more

than multiplication of W by the unitary matrix,

U ′ 0 0

0 V ′ 0

0 0 InZ

U ′⊥ 0 0

0 V ′⊥ 0


Some cartesian non–causality results require assumptions about the information set I;

these assumptions translate easily to the subspace setting. If, for example, I is required to be

conformable with X, we work with an information set Ĩ that must now by conformable with

X̃. Some of DR’s results require that I(t) = H + X(ω, t] + Z(ω, t] for t > ω, where H may

include constants and initial conditions, in that case we require the information set to satisfy,

Ĩ(t) = H + X̃(ω, t] + Z̃(ω, t] = H +X(ω, t] + V ′⊥Y (ω, t] + Z(ω, t] for t > ω.

The above correspondences can be used to translate any results about cartesian non–

causality to the subspace perspective. Indeed we prove all of the new results below for the

cartesian non–causality case as it is notationaly much more convenient.
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8.2 Proofs

Proof of Lemma 3.1. Recall that PU = UU ′ and PV = V V ′ (see e.g. Theorem 2.5.1 of

Brockwell & Davis (1991) and the subsequent remark). This implies that PVY (ω, t] =

V ′Y (ω, t]. Now for h <∞, ∆PUXPVY I
h (t) = PU∆XPVY I

h (t) = UU ′∆XV ′Y I
h (t) = U∆U ′XV ′Y I

h (t),

which is zero if and only if ∆U ′XV ′Y I
h (t) = 0. As for the long run case simply note that,

E‖∆PUXPVY I
h (t)‖2 = E‖U∆U ′XV ′Y I

h (t)‖2 = E‖∆U ′XV ′Y I
h (t)‖2.

Proof of Lemma 3.2. We prove the case of non–causality at horizon h; the case of non–

causality up to horizon h is almost identical and is omitted.

(i) Since W ⊆ V, PWY (ω, t] ⊆ PVY (ω, t] and we have,

∆PUXPWY I
h (t) = P (PUX(t+ h)|I(t) + PWY (ω, t])− P (PUX(t+ h)|I(t))

= P (PUX(t+ h)− P (PUX(t+ h)|I(t))|I(t) + PWY (ω, t])

= P (P (PUX(t+ h)− P (PUX(t+ h)|I(t))|I(t) + PVY (ω, t])|I(t) + PWY (ω, t])

= P (∆PUXPVY I
h (t)|I(t) + PWY (ω, t]),

by the law of iterated projections. Now if Y |V 9h X|U [ I ] and h < ∞ then the term inside

the projection is zero and the result follows; if on the other hand, h =∞, then the term inside

the projection goes to zero in L2 and the result follows from the continuity of the projection

operator (see e.g. Proposition 2.3.2 (iv) of Brockwell & Davis (1991)). The converse for each

case follows by taking W = V.

(ii) IfW ⊆ U then by the law of iterated projections PWPU = PW and from the properties

of matrix norms,

‖∆PWXPVY I
h (t)‖ = ‖PW∆PUXPVY I

h (t)‖ ≤ ‖PW‖‖∆PUXPVY I
h (t)‖

If Y |V 9h X|U [ I ] and h < ∞ then the right hand side is zero; on the other hand if h = ∞

then the right hand side goes to zero in L2. The converse follows by taking W = U .

(iii) Y |Vj 9h X|U [ I ] for j ∈ J , implies that PUX(t+h)−P (PUX(t+h)|I(t)) is orthogonal

(resp. asymptotically orthogonal) to the Hilbert spaces I(t) + PVjY (ω, t], j ∈ J when h <∞

(resp. h =∞). The result then follows if we can prove that the spaces {I(t) + PVjY (ω, t]}j∈J

generate I(t) + P∑
j∈J Vj

Y (ω, t] because then PUX(t+ h)− P (PUX(t+ h)|I(t)) is orthogonal

(resp. asymptotically orthogonal) to I(t) + P∑
j∈J Vj

Y (ω, t] for h < ∞ (resp. h = ∞). Thus
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we claim that sp{I(t) + PVjY (ω, t] : j ∈ J} = I(t) + P∑
j∈J Vj

Y (ω, t]; we prove this using a

Gram–Schmidt decomposition of the subspace
∑

j∈J Vj .

Since PVj = PVjP
∑

j∈J Vj
for all j ∈ J , I(t) + PVjY (ω, t] ⊆ I(t) + P∑

j∈J Vj
Y (ω, t] for all

j ∈ J ; therefore, sp{I(t) + PVjY (ω, t] : j ∈ J} ⊆ I(t) + P∑
j∈J Vj

Y (ω, t]. On the other hand,

since we are in finite Euclidean space,
∑

j∈J Vj =
∑

j∈J ′ Vj , where J ′ ⊆ J is finite; we relabel

the elements of this set to consist of integers in {1, 2, . . .}. Now partition the latter subspace

as follows.

W1 = V1, Wj+1 = Vj+1 ∩W⊥j , j = 1, . . . , |J ′| − 1,

and reorder the sets if necessary to put all the null spaces at the end of the list with the set J ′′ ⊆

J ′ consisting of the non–null spaces. Then,
∑

j∈J Vj =
∑

j∈J ′′Wj and P∑
j∈J Vj

=
∑

j∈J ′′ PWj .

Since Wj ⊆ Vj for all j ∈ J ′′ it follows that, I(t) + P∑
j∈J Vj

Y (ω, t] = I(t) + PW1Y (ω, t] +

· · ·PW|J′′|Y (ω, t] ⊆ I(t) + PV1Y (ω, t] + · · ·PV|J′′|Y (ω, t] ⊆ sp{I(t) + PVjY (ω, t] : j ∈ J}.

(iv) As we did in (iii), let {Wj}j∈J ′′ be a finite collection of mutually orthogonal spaces such

that,
∑

j∈J Uj =
∑

j∈J ′′Wj and Wj ⊆ Uj for all j ∈ J ′′. Then P∑
j∈J Uj

=
∑

j∈J ′′ PWj . Since

eachWj is a subspace along which non–causality occurs, by (ii) we have, P (PWjX(t+h)|I(t)+

PVY (ω, t]) = P (PWjX(t+h)|I(t)) for h <∞. The result then follows on summing across j. If

on the other hand h =∞, then P (PWjX(t+ h)|I(t) +PVY (ω, t])−P (PWjX(t+ h)|I(t))→ 0

in L2 as h→∞; summing again across j, we arrive at the desired result.

Proof of Lemma 3.3. We prove only the case of non–causality at horizon h; the case of up to

horizon h non–causality follows a similar argument. To prove existence consider the collection

of all subspaces U such that Y |V 9h X|U [ I ] and order them by inclusion. Now any linearly

ordered subset of these subspaces will have an upper bound namely its sum; this follows from

Lemma 3.2 (iv). Therefore by Zorn’s lemma a maximal element exists.12 Uniqueness is proven

by noting that if U1 and U2 are maximal then by Lemma 3.2 (iv) again Y |V 9h X|U1+U2 [ I ];

maximality then gives us that U1 + U2 is equal to both U1 and U2. The opposite case, fixing

U instead of V, follows a similar argument.

Proof of Proposition 3.1. We prove only (i) – (vi) as (vii) – (xii) follow similar arguments.

Since UXY Ih is maximal, U ⊆ UXY Ih for every U such that Y 9h X|U [ I ]. By Lemma 3.2,∑
{U :Y9hX|U [ I ]} U ⊆ UXY Ih . On the other the other hand, UXY Ih ∈ {U : Y 9h X|U [ I ]} so

12Artin (1991) gives a clear and concise exposition on the uses of Zorn’s lemma in algebra.

26



that UXY Ih ⊆
∑
{U :Y9hX|U [ I ]} U . This proves (i) and (ii) follows the same line of argument.

(iii) follows from Definition 3.3. To prove (iv) note that PUXY I
(∞)

∆XY I
h (t) = 0 for all h ≥ 1 and

t > ω implies that PUXY I
(∞)

∆XY I
h (t) → 0 in L2 as h → ∞ for all t > ω. (v) and (vi) follow

from the fact that
∑h

i=1W⊥i = (
⋂h
i=1Wi)⊥ and (

⋂h
i=1Wi)⊥ ⊆ (

⋂h+1
i=1 Wi)⊥ respectively for

any collection of subspaces {Wi}h+1
i=1 of RnX (see exercise 15 p. 254 of Artin (1991)).

Proof of Theorem 3.1. Follows directly from the maximality of MX
∞. A more constructive

proof is the following: suppose to the contrary that for all M1 ⊆ RnX and M2 ⊆ (MX
∞)⊥,

X|M1 9∞ X|M2 [Hω(X) ]. Then the choiceM1 = RnX ,M2 = (MX
∞)⊥ leads to a contradic-

tion as it implies, by Lemma 3.2 (iv), that MX
∞ = RnX .

Proof of Theorem 4.1. Follows from DR’s Theorem 3.1 and subsection 8.1.

Proof of Corollary 4.1. CXY Ih is the orthogonal complement of UXY Ih , which is the space or-

thogonal to the span of the columns of {π(h)
XY j}∞j=1 by Theorem 4.1; this proves (i). (ii) follows

from the fact that im(π(h)
XY j)

⊥ = ker(π(h)
XY j

′
) and the fact that

∑h
i=1W⊥i = (

⋂h
i=1Wi)⊥ for any

collection of subspaces {Wi}h+1
i=1 of RnX (see exercise 15 p. 254 of Artin (1991)). (iii) and (iv)

follow similarly.

Proof of Theorem 4.2. We will prove the cartesian causality version of the theorem (i.e. the

case U = RnX and V = RnY ); the general case then follows from subsection 8.1.

The first part is proven similarly to DR’s Theorem 3.1. Suppose that ∆XY I
h (t) = (π(h)

X· (L)−

φ
(h)
X· (L))W (t+ 1), where φ(h)

X· (L) = [φ(h)
XX(L) 0 φ

(h)
XZ(L)] is a power series in the lag operator

L and π
(h)
X· (L) = [π(h)

XX(L) π
(h)
XY (L) π

(h)
XZ(L)]. If ∆XY I

h (t)→ 0 in L2 then from the properties

of the dot product, E(∆XY I
h (t)a′(t)) → 0. Therefore,

∑∞
j=1[π(h)

XXj − φ
(h)
XXj π

(h)
XY j π

(h)
XZj −

φ
(h)
XZj ]E(W (t−j)a′(t))→ 0. Since E(W (t−j)a′(t)) = Ω(t) > 0 for j = 0 and is zero otherwise,

this implies that [π(h)
XX1 − φ

(h)
XX1 π

(h)
XY 1 π

(h)
XZ1 − φ

(h)
XZ1] → 0 and so π

(h)
XY 1 → 0. Now since

the first summand of ∆XY I
h (t) converges to zero the entire process can be repeated again,

first noting that E(∆XY I
h (t)a′(t − 1)) → 0, then factoring out Ω(t − 1) and finally isolating

[π(h)
XX2 − φ

(h)
XX2 π

(h)
XY 2 π

(h)
XZ2 − φ

(h)
XZ2] → 0. Continuing on with this process proves that,

limh→∞ π
(h)
XY j = 0 for all j ≥ 1.

To prove the converse we use equation (4.6), setting ξ(t+ 1− j) = Y (t+ 1− j)−P (Y (t+
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1− j)|I(t)) to simplify the notation,

E‖∆XY I
h (t)‖2 = E

∥∥∥∥∥
t−$∑
j=1

π
(h)
XY jξ(t+ 1− j)

∥∥∥∥∥
2

≤ E

(
t−$∑
j=1

‖π(h)
XY jξ(t+ 1− j)‖

)2

≤ E

(
t−$∑
j=1

‖π(h)
XY j‖‖ξ(t+ 1− j)‖

)2

,

where the last two inequalities follow from properties of the norm.

= E
t−$∑
j=1

t−$∑
k=1

‖π(h)
XY j‖‖π

(h)
XY k‖‖ξ(t+ 1− j)‖‖ξ(t+ 1− k)‖

=
t−$∑
j=1

t−$∑
k=1

‖π(h)
XY j‖‖π

(h)
XY k‖E{‖ξ(t+ 1− j)‖‖ξ(t+ 1− k)‖},

by the Fubini–Tonelli theorem.

≤
t−$∑
j=1

t−$∑
k=1

‖π(h)
XY j‖‖π

(h)
XY k‖

(
E‖ξ(t+ 1− j)‖2

) 1
2
(
E‖ξ(t+ 1− k)‖2

) 1
2 ,

by the Cauchy–Schwartz theorem.

≤
t−$∑
j=1

t−$∑
k=1

‖π(h)
XY j‖‖π

(h)
XY k‖ sup

$<s≤t
E‖ξ(s)‖2

≤
t−$∑
j=1

t−$∑
k=1

‖π(h)
XY j‖‖π

(h)
XY k‖ sup

$<s≤t
E‖Y (s)− P (Y (s)|H−∞(W ))‖2,

because projections onto H produce larger mean squre error than projections on I(t).

=

(
t−$∑
k=1

‖π(h)
XY j‖

)2

sup
$<s≤t

E‖Ŷ (s)‖2,

which goes to zero as h→ 0 by assumption.

Proof of Theorem 4.3. Follows from DR’s Theorem 3.2 and subsection 8.1.

Proof of Theorem 5.1. We prove the theorem from the cartesian causality perspective, the

subspace version then follows from subsection 8.1.

(i) The proof is in two steps. We will require the following result (DR’s Lemma A.4),

which is easily proven by applying the multiplication rule for power series (see e.g. p. 84 of

Brockwell & Davis (1991) or Lütkepohl (2006) Proposition 2.4).
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Lemma 8.1. Suppose a(z) =
∑∞

i=0 aiz
i is a power series and a(z) = b(z)c(z), where b(z) is a

power series with a non–zero radius of convergence and c(z) is a polynomial of degree p. Then

{ai}∞i=0 = {0} if and only if {ai}pi=0 = {0}.

Step 1: Y 91 X [ I ] if and only if πXY j = 0 for all 1 ≤ j ≤ p+ (n− 1)q.

In − π(z) = θ∗(z)φ(z)
det(θ(z)) , where θ∗(z) is the adjoint of θ(z). The degree of θ∗(z)φ(z) is at

most p+ (n− 1)q, while the degree of det(θ(z)) is nq; thus the typical element of In − π(z) is

representable by a fraction with numerator of degree p+ (n− 1)q and denominator det(θ(z)).

It follows that the same holds true for −πXY (z), being an off diagonal submatrix of In−π(z).

By Lemma 8.1 now, πXY (z) = 0 if and only if its first p+ (n− 1)q coefficients are zero, that

is, if and only if πXY j = 0 for all 1 ≤ j ≤ p+ (n− 1)q.

Step 2: Y 9h X [ I ] if and only if π(h)
XY j = 0 for all 1 ≤ j ≤ p+ (n− 1)q.

We prove this by showing that π(h)
XY (z) is a ratio of a p+(n−1)q–order polynomial and the

nq–order polynomial det(θ(z)). The proof is by induction. Suppose that the typical element

of π(i)
XY (z) is representable by a ratio of a p + (n − 1)q–order polynomial and the nq–order

polynomial det(θ(z)) for 1 ≤ i ≤ h− 1. The case h = 1 was proven in step 1; if we can prove

the general case then the statement of step 2 will follow as a corollary using Lemma 8.1. From

equation (4.4),

π(h+1)(z) = z−1π(h)(z) + π
(h)
1 (π(z)− In), h ≥ 1 (8.1)

It follows that,

π
(h)
XY (z) = z−1π

(h−1)
XY (z) + π

(h−1)
XX1 πXY (z) + π

(h−1)
XY 1 (πY Y (z)− InY ) + π

(h−1)
XZ1 πZY (z) (8.2)

Each summand on the left hand side is representable by a ratio of a p+ (n− 1)q–order poly-

nomial and the nq–order polynomial det(θ(z)) by the induction hypothesis and the discussion

in step 1. In particular, since π(h−1)
XY (z) is representable by a ratio of a p+(n−1)q–order poly-

nomial and the nq–order polynomial det(θ(z)) and it clearly has a zero at z = 0, z−1π
(h−1)
XY (z)

is representable by a ratio with a numerator of degree p+ (n− 1)q − 1 and the denominator

det(θ(z)).

(ii) Note that, E‖Ŷ (s)‖2 ≤ E‖Ŵ (s)‖2 ≤ sup$<s≤t E‖Ŵ (s)‖2 for all $ < s ≤ t ∈ Z.

By Theorem 4.2, since sup$<s≤t E‖Ŵ (s)‖2 < ∞ all that remains to be shown is uniform

convergence. The proof is in two steps.

Step 1. limh→∞
∑t−$

j=1 ‖π
(h)
XY j‖ = 0 if limh→∞ π

(h)
XY j = 0 for all j ≥ 1.
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Section 11.5 of Lütkepohl (2006) gives the following formula for h–step forecasts of VARMA

processes,

P (W (t+ h)|W (−∞, t]) =
h−1∑
k=0

π
(k)
1 µ(t+ h− k) + C ′Ah1W̃ (t), t ≥ $ + q

where,

A1 =



φ1 φ2 · · · · · · φp θ1 θ2 · · · · · · θq

In 0 · · · · · · 0 0 0 · · · · · · 0

0 In
. . .

...
...

...
...

...
. . .

...
...

. . . . . .
...

...
...

0 0 · · · In 0 0 0 · · · · · · 0

0 0 · · · · · · 0 0 0 · · · · · · 0

0 0 · · · · · · 0 In 0 · · · · · · 0
...

... 0 In
. . .

...
. . .

...
...

...
. . . . . .

...

0 · · · · · · 0 0 · · · 0 In 0



,

W̃ (t) =



W (t)

W (t− 1)
...

...

W (t− p+ 1)

a(t)

a(t− 1)
...

...

a(t− q + 1)



, C =



In

0
...

...

0

0

0
...

...

0
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If we now substituted for the shocks {a(t− j)}q−1
j=0 we arrive at,

W̃ (t) =



In 0 0 · · · · · · 0 0 0 · · ·

0 In 0 · · · · · · 0 0 0 · · ·

0 0 In · · · · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

0 0 0 · · · · · · In 0 0 · · ·

In −π1 −π2 · · · · · · −πp−1 −πp −πp+1 · · ·

0 In −π1 · · · · · · −πp−2 −πp−1 −πp · · ·

0 0 In · · · · · · −πp−3 −πp−2 −πp−1 · · ·
...

...
...

. . . . . . . . . . . . . . . . . .

0 0 0 · · · In −π1 −π2 −π3 · · ·





W (t)

W (t− 1)

W (t− 2)
...
...

W (t− p+ 1)

W (t− p)

W (t− p− 1)
...



,

Note that the above equation presumes that q = p− 1, although we make no such assumption

(the form above is given for illustration only). Now setting,

Fj =



0

0

0
...
...

0

−πj

−πj−1

−πj−2

...

...

−πj−q+1



,

which is an n(p+ q)× n matrix, and matching coefficients we finally arrive at,

π
(h)
j = C ′Ah1Fj , j ≥ max(p, q)

On the other hand, following the analysis of section 11.3 in Lütkepohl (2006), the projection
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matrices can be obtained as,

πj = −C ′Aj2B,

where,

A2 =



−θ1 −θ2 · · · · · · −θq −φ1 −φ2 · · · · · · −φp

In 0 · · · · · · 0 0 0 · · · · · · 0

0 In
. . .

...
...

...
...

...
. . .

...
...

. . . . . .
...

...
...

0 0 · · · In 0 0 0 · · · · · · 0

0 0 · · · · · · 0 0 0 · · · · · · 0

0 0 · · · · · · 0 In 0 · · · · · · 0
...

... 0 In
. . .

...
. . .

...
...

...
. . . . . .

...

0 · · · · · · 0 0 · · · 0 In 0



,

B =



In

0
...

...

0

In

0
...

...

0


It follows from the properties of matrix powers that π(h)

XY j consists of linear combinations of

the form hkjlλhνj , where the λ’s are eigenvalues of A1, the ν’s are eigenvalues of A2, and the

k’s and l’s are integers. If limh→∞ π
(h)
XY j = limj→∞ π

(h)
XY j = 0 then all such λ’s and ν’s must
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lie strictly inside the unit circle. It follows that ‖π(h)
XY j‖ < cρj+h for some constants c > 0 and

0 < ρ < 1 and uniformity follows.

Step 2. limh→∞ π
(h)
XY j = 0 for all j ≥ 1 if and only if limh→∞ π

(h)
XY j = 0 for all 1 ≤ j ≤

(nX + nZ)nq + nY (p+ (n− 1)q).

From equation (4.4), it is easy to check that for any integer m ≥ 2, limh→∞ π
(h)
XY j = 0 for

1 ≤ j ≤ m if and only if limh→∞ π
(h)
XY 1 = 0 and limh→∞ π

(h)
XX1πXY j + π

(h)
XZ1πZY j = 0 for all

1 ≤ j ≤ m− 1. Thus we will have proven our claim if we can show that limh→∞ π
(h)
XX1πXY j +

π
(h)
XZ1πZY j = 0 for all j ≥ 1 if and only if the first (nX +nZ)nq+nY (p+(n−1)q)−1 equations

hold. Recall from (i) that πXY (z) and πZY (z) are representable as ratios of (p + (n − 1)q)–

order matrix polynomials and an nq–order polynomial; thus, following the standard state

space representation methodology, [π′XY (z) π′ZY (z)]′ is expressible as a matrix power series

of the form C(Im − Az)−1Bz, where m = (nX + nZ)nq + nY (p + (n − 1)q) (see e.g. pp.

426–429 of Lütkepohl (2006)). It follows that π(h)
XX1πXY (z) + π

(h)
XZ1πZY (z) is expressible as

DhC(Im1 − Az)−1Bz. Now the Cayley–Hamilton Theorem (see Theorem 2.4.2 in Horn &

Johnson (1985)) implies that limh→∞DhCA
jB = 0 for all j ≥ 1 if and only if the first m− 1

terms are zero.

(iii) The proof is in two steps.

Step 1: Y 9(∞) X [ I ] if and only if π(h)
XY j = 0 for all j ≥ 1 and 1 ≤ h ≤ nZ(p+(n−1)q)+1.

From DR’s Lemma 3.2 and Lemma A.3, Y 9(∞) X [ I ] is equivalent to πXY (z) = 0 and

πXZ(z)(InZ − πZZ(z))−1πZY j = 0 for all j ≥ 1.13 Now we know from step 1 of (i) that

InZ − πZZ(z) is representable by a matrix polynomial of degree p + (n − 1)q divided by a

polynomial of degree nq. Thus, modulo det(θ(z)), the typical element of (InZ − πZZ(z))−1 is

representable by a fraction with numerator of degree (nZ−1)(p+(n−1)q) and a denominator

of degree nZ(p + (n − 1)q). Now the common factor, det(θ(z)), cancels out of πXZ(z)(InZ −

πZZ(z))−1 and so each of its elements is representable by fraction with numerator of degree

nZ(p+(n−1)q) and a denominator of degree nZ(p+(n−1)q). It follows from Lemma 8.1 that

13A quicker proof of this than DR’s proof is obtained by by noting from equation (8.2) that Y 9(∞) X [ I ] if and

only if πXY (z) = 0 and ψXZ(w)πZY (z) = 0. Writing out the XY block of the identity (In +ψ(w))(In − π(w)) = In

gives us that ψXY (w) = 0, whence the XZ block gives us that ψXZ(w)πZY (z) = (InX
+ ψXX(w))πXZ(w)(InZ

−

πZZ(w))−1πZY (z). The reverse implication follows from the very same equations, first by showing that ψXY (w) = 0

and then concluding that ψXZ(w)πZY (z) = 0.
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πXZ(z)(InZ − πZZ(z))−1πZY j is identically zero if and only if the first nZ(p+ (n− 1)q) terms

are zero; but according to DR’s Lemma 3.2 and Lemma A.3 that is equivalent to π(h)
XY j = 0

for all 1 ≤ h ≤ nZ(p+ (n− 1)q) + 1 and all j ≥ 1.

Step 2: π
(h)
XY j = 0 for all j, h ≥ 1 if and only if it holds for 1 ≤ j ≤ p + (n − 1)q and

1 ≤ h ≤ nZ(p+ (n− 1)q) + 1.

From step 1, π(h)
XY j = 0 for all j, h ≥ 1 if and only if it holds for j ≥ 1 and 1 ≤ h ≤

nZ(p + (n − 1)q) + 1. From (i) we know that for each h in the aforementioned range, the

number of equations that must be solved is truncated at p + (n − 1)q and so the result

follows.

Proof of Corollary 5.1. We prove only (i) – (iii); (iv) – (vi) follow similar arguments. (i) is

equivalent to (ii), following the same line of argument as used in proving Corollary 4.1 (ii). To

prove (ii) we must show that,
∑
{j≥1} im(π(h)

XY j) =
∑
{1≤j≤m1} im(π(h)

XY j) for all h ≥ 1. Now it

was shown in the proof of Theorem 5.1 that π(h)
XY (z) is representable as a ratio of a (p+(n−1)q)–

order matrix polynomial and an nq–order polynomial. It follows by similar methods to those

used in Lütkepohl (2006) pp. 426–429, that π(h)
XY (z) = C(Im1 −Az)−1Bz for some state–space

representation (A,B,C) of the transfer function π(h)
XY (z) and m1 = nXnq + nY (p+ (n− 1)q).

Now the Cayley–Hamilton Theorem (see Theorem 2.4.2 in Horn & Johnson (1985)) implies

that
∑
{j≥0} im(CAjB) =

∑
{0≤j≤m1−1} im(CAjB). The result follows on noting that π(h)

XY j =

CAj−1B for j ≥ 1.

To prove (iii) we will show that,
∑
{h≥1} im(π(h)

XY j) =
∑
{1≤h≤m2} im(π(h)

XY j) for all j ≥ 1.

In order to do that we define the operators, ψ(j)(w) =
∑∞

h=1 π
(h)
j wh for j ≥ 1 and let each

be partitioned as in Assumption 3. Then it follows from equation (4.5) that ψ(1)(w) = ψ(w).

Moreover, from equation (4.4) we have that,

ψ(j+1)(w) = w−1ψ(j)(w)− (In + ψ(w))πj , j ≥ 1,

which is similar in structure to equation (8.1). Therefore, following a similar line of argument

to that used in the proof of Theorem 5.1 (i) we find that ψ(j)
XY (w) is representable by a ratio of

polynomials, the numerator of degree p(n−1)+q and the denominator (in this case, det(φ(w)))

of degree pn. Now by a similar argument to that used in (i) we conclude that the first m2

terms in {π(h)
XY j}∞h=1 span the space spanned by the entire collection for any j ≥ 1.
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Proof of Theorem 5.3. If PMŴ is stable then all of the unstable roots of det(φ(z)) cancel out

of the equation det(φ(L))PMŴ (t) = PMφ
∗(L)θ(L)a(t). Following a construction similar to

that undertaken in the proof of Theorem 5.1 (ii), P (PMŴ (t+h)|Ŵ (−∞, t]) can be expressed

as a linear combination of a finite number of initial values of PMŴ ’s and a’s; stability is then

equivalent to the asymptotic vanishing of the linear coefficients of the said expression. But

this then is equivalent to E‖P (PMŴ (t+h)|Ŵ (−∞, t])‖2 → 0 as h→∞ for all t ∈ Z. (ii) then

follows from the law of iterated projections and the continuity of the projection operator. (iii)

follows from (ii) by taking J(t) = H−∞(W ) for all t ∈ Z. Finally, if W 9∞ W |M [H−∞(W ) ]

then P (PMŴ (t + h)|Ŵ (−∞, t]) → 0 in L2 as h → ∞ for all t ∈ Z, which is equivalent – as

we just saw – to the stability of PMŴ .

Proof of Theorem 6.1. We have already proven the “if” part; simply choose Y ∈ T to be

a white noise process of positive definite variance matrix. The “only if” part follows from

equation (6.4) and the fact that U must be orthogonal to
∑
{j≥0} im(CAjB).

Proof of Theorem 6.2. By the Exhaustivity Theorem of DR, X|U⊥ 9(∞) X|U [ IPUX ] is equiv-

alent toX|U⊥ 91 X|U [ IPUX ]. Since U is the maximal subspace orthogonal to
∑
{j≥0} im(AjB),

Kalman’s controllability decomposition (Lemma 3.3.3 of Sontag (1998)) implies that, PUAPU⊥ =

0. The result then follows from the fact that ∆
PUXY IPUX

1 (t) = PUAPU⊥X(t).

Proof of Theorem 6.3. CXY I(∞) = RnX for all Y ∈ T if and only if X is controllable. The rest

then follows by standard linear quadratic optimization methods (see e.g. Bertsekas (2001)).
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