BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH SILICA FUME UNDER DYNAMIC LOADING

A report submitted to Universiti Teknologi MARA in partial fulfilment of the requirements for the Degree of Bachelor of Engineering (Hons.) (Civil) in the Faculty of Civil Engineering

Presented by

RUDY TAWIE AK JOSEPH SIPI

Faculty of Civil Engineering Universiti Teknologi MARA Shah Alam Selangor Darul Ehsan MALAYSIA Declaration:

I hereby declare that this report has not been submitted, either in the same or different form, to this or any other university for a degree, and except where reference is made to the work of others, it is believed to be original.

TAWIE) (RUDY

ABSTRACT

Behaviour of Reinforced Concrete Beam with Silica Fume under Dynamic Loading

Rudy Tawie J. S.

Concrete mixes design to produce $42 \text{ N/mm}^2 - 84 \text{ N/mm}^2$ in compressive strength are easily obtainable today with silica fume replacing a portion of the cement content. Such concretes with a design compressive strength exceeds 42 N/mm^2 may be defined as "High Strength Concrete". For several reasons, there has recently been a marked interest in the determination of the dynamic characteristics of structures and their response under dynamic loads and effect. Subjected to dynamic loading under sinusoidal wave pattern, a study has been carried out to make an experimental investigation on reinforced concrete beam (Grade 60 N/mm²) incorporating silica fume replacing cement by weight of w/c ratio of 0.30, with respect to the serviceability and ultimate limits. A total of three specimens each with different silica fume proportion (8%, 12% and 16%) by weight of cement were cast and tested under the dynamic load. Parameters investigated include deflections, crack widths and crack lengths.

Keywords: High strength concrete, reinforced concrete beam, silica fume, dynamic loading, deflection, cracking.

CONTENTS

ABS	I KACI	- -
ACK	NOWLEDGEMENT	- iv -
LIST	r of figures	- viii -
LIST	F OF TABLES	- ix -
NOT	FATIONS	- x -
CHA	APTER 1	
1.0	INTRODUCTION	1
1.1	BACKGROUND OF STUDY	1
1.2	PROBLEM STATEMENT	2
1.3	OBJECTIVE OF STUDY	3
1.4	SCOPE OF STUDY	4
CHA	APTER 2	
2.0	LITERATURE REVIEW	5
2.1	HIGH STRENGTH CONCRETE (HSC) WITH SILICA FUME	5
	2.1.1 SILICA FUME	6
	2.1.2 MICROSTRUCTURE	8
	2.1.3 POROSITY	8
	2.1.4 WORKABILITY	8
	2.1.5 MODULUS OF ELASTICITY	10
	2.1.6 DURABILITY	11
	2.1.7 CONCRETE MIX DESIGN	11
	2.1.8 AGE AT TEST	13
	2.1.9 CURING CONDITIONS	13
2.2	DYNAMIC LOADING	14
	2.2.1 GENERAL	14
	2.2.2 STRUCTURAL DYNAMIC CONCEPTS	16
	2.2.3 PREVIOUS STUDIES	17
CHA	APTER 3	
3.0	THEORETICAL BASIS	18
3.1	DEFLECTION	18
	3.1.1 DEFLECTION UNDER DYNAMIC LOAD	18
3.2	CRACKING	19
	3.2.1 CRACK WIDTH UNDER DYNAMIC LOAD	20
3.3	DESIGN FOR DYNAMIC LOAD	22
	3.3.1 DESIGN CONSIDERATIONS	22

	3.3.2 DESIGN CALCULATIONS	22
C114	ADTED 4	
- CAR P - A-O		20
4.U 3.4		29
4.1	EVDEDIMENTAL DDOCDAM	30
4.2		30
43	PREPARATION AND CASTING OF CONCRETE CURES AND REAMS	34
ч.J	A 3.1 ADDARATUS	34
	A 3 2 MIX DESIGN	35
4.4	TEST SET HD	37
4.4	A A = DOSITION OF STRAIN GALIGE	37
	4.4.1 = 1051110100F5110010000000000000000000000	38
15	evdedimental ddocedure	38
4.5		28
	4.5.1 DTNAMIC LOADING	20
СНА	APTER 5	
5.0	RESULTS AND DISCUSSION	40
5.1	MIXES	40
5.2	EFFECT OF SILICA FUME	40
5.3	EFFECT OF SILICA FUME DOSAGE	42
5.4	STATIC LOAD TEST	43
5.5	MODULUS OF ELASTICITY	44
5.6	DYNAMIC LOADING	46
5.7	DEFLECTION	46
5.8	CRACKS PROPAGATION	49
5.9	CRACK WIDTH AND CRACK LENGTH	50
5.10	SAMPLE CALCULATIONS	52
	5.10.1 CALCULATION OF BENDING STRESSES	52
	5.10.2 STRAIN ANALYSIS	53
	5.10.3 CALCULATION OF BENDING MOMENT	54
	5.10.4 CALCULATION FOR DEFLECTION USING LOVEGROVE -	
	SALAH EQUATION	55
	5.10.5 CALCULATION FOR CRACK WIDTH USING LOVEGROVE -	
	SALAH EQUATION	55
CH	APTER 6	بر م
0.0	CONCLUSIONS AND RECOMMENDATIONS	56
0.1		36
0.2	KEUUMMENDATIONS	57
REFERENCES		