UNIVERSITI TEKNOLOGI MARA

EXTRACTING FEATURE FROM IMAGES BY USING K-MEANS CLUSTERING ALGORITHM

ABDUL HAKIM BIN ZAINAL ABIDIN

BACHELOR OF COMPUTER SCIENCE (Hons.)

FEBRUARY 2016

STUDENT'S DECLARATION

I certify that this report and the project to which it refers is the product of my own work and any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring of the discipline

.....

Abdul Hakim Bin Zainal Abidin

2013518473

FEBRUARY 1, 2016

ABSTRACT

Image segmentation refers to process of separating out a desire region from an image. Extracting feature in images to get meaningful information is a demanding task as need to extract the information in very large images. However, existing face recognition methods would not perform well under certain conditions. This research purposed clustering algorithm to improve process extracting feature in images to get meaningful information because it can speed up the time to process of extracting meaningful information in images due to the efficient of the algorithm that has high performance to process the image. This research scope are to develop a computer application that can extract meaningful information in images by implement K-Means clustering algorithm. 10 self capture facial image will be use as the research subject to test the algorithm that will extracting meaningful information of the person. For this research, the meaningful information that will be extracting is eye feature. Methodology of this research consists of Planning and Analysis, Data Collection, Algorithm Design and Development and Testing. All the process in developing the prototype will be reveal later in this report. The result of this research show that nearly all image has accuracy more than 80% that prove that K-Means clustering algorithm are suitable as method for extracting meaningful information in images.

TABLE OF CONTENTS

CONTENTS	PAGE
SUPERVISOR APPROVAL	ii
STUDENT'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF FIGURE	ix
LIST OF TABLE	xi
CHAPTER ONE: INTODUCTION	
1.1 Overview	1
1.2 Problem statement	2
1.3 Objective	2
1.4 Scope	3
1.5 Significance	3
1.6 Chapter Summary	3
CHAPTER TWO: LITERATURE REVIEW	
2.1 Introduction	4
2.2 Overview Image Processing	6
2.2.1 Image Processing Main Focus	6
2.3 Image Segmentation	7
2.4 Digital Imaging	7
2.4.1 Definition of Digital Image	7
2.4.2 Type of Digital Image	8
2.5 Color Threshold	9

2.6 Edge Detection Algorithm	10
2.7 Clustering Algorithm	11
2.7.1 Definition Clustering Algorithm	12
2.7.2 Type Clustering Algorithm	12
2.7.2.1 Connectivity Based Clustering	13
2.7.2.2 Centroid-Based Clustering	14
2.7.2.3 Connectivity Based Clustering vs.	
Centroid-Based Clustering	15
2.7.3 Clustering In Image Segmentation	16
2.8 Related Works	17
2.9 Chapter Summary	17
CHAPTER THREE: METHODOLOGY	
3.1 Introduction	18
3.2 Methodology	18
3.3 Planning and Analysis	19
3.4 Data collection	20
3.5 Algorithm Design and Development	22
3.6 Testing and evaluation	28
3.6.1 Functionally test	28
3.6.2 Ground truth evaluation	29
3.7 Chapter Summary	29
CHAPTER FOUR: DESIGN AND DEVELOPMENT	
4.1 Introduction	30
4.2 Application process flow	30
4.2.1 Input image	31
4.2.2Color thresholding	31
4.2.3 Edge detection and selection region	32
4.2.4 Crop image	34
4.2.5 Get range of left and right eye	35
4.2.6 Perform K-mean cluster	35
4.2.7 Display the extracted feature	36
4.3 K-mean algorithm	36