

UNIVERSITI TEKNOLOGI MARA

BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH SILICA FUMES UNDER STATIC LOADING

AMER BIN YUSUFF / MD. YUSOFF

I hereby declare that this report has not been submitted, either in the same or different form, to this or any other University for a degree, and except where reference is made to the work of others, it is believed to be original

(AMER BIN YUSUFF / MD. YUSOFF)

ABSTRACT

The purpose of this study is to study behaviour of high strength reinforced concrete of grade 60 incorporating silica fumes by replacement at 8%, 12%, 16%, and 20% to weight of cement with water cement ratio of 0.3 cured in room temperature under static load. Structure properties have been investigated are crack pattern and location occur, deflection and modulus of elasticity due to bending of reinforced concrete respectively. Four numbers of beam with respective percentage of silica fumes are casted and underwent static load test to failure.

This laboratory study are done in the Civil Engineering Laboratory, UiTM Shah Alam by using 1000KN Universal Testing Machine. The result obtain shows by replacing certain percentage of silica fumes (SF) into concrete have increase the concrete strength and 16% of replacement are give the best result such as higher concrete compression strength and higher ultimate load at failure. The results also show the different behaviour of beam contain different percentage of silica fumes.

TABLE OF CONTENTS

ACKNOWOLEDGEMENT						
LIST OF NOTATIONS						
LIST OF FIGURES						
LIST OF TABLES						
LIST OF PHOTOS						
LIST OF GRAPHS						
ABSTRACT			vii			
CHAPTER ONE	:	INTRODUCTION	1			
	1.1	GENERAL	1			
	1.2	SCOPE OF STUDY AND OBJECTIVE	3			
CHAPTER TWO	:	LITERATURE REVIEW	4			
	2.1	CONCRETE GRADE	4			
	2.2	HIGH STRENGTH CONCRETE	4			
	2.3	CHEMICAL COMPOSITION OF				
		SILICA FUMES	5			
	2.4	DEFLECTION	7			
		2.4.1 Behaviour of Flexural Member				
		Under Deflection	8			
		2.4.2 Method of Computing Deflection	9			
		2.4.2.1 Deflection Under Static Loading	9			

	2.5	CRACKING				
		2.5.1	Cracking Under Static Load	12		
		2.5.2	Cracking Mechanism	14		
		2.5.3	Method of Computing Crack Width	15		
			2.5.3.1 Crack Width Under			
			Static Load	15		
	2.6	MODU	JLUS ELASTICITY OF CONCRETE	16		
	2.7	SILIC	A FUMES	18		
	2.8	WATER CEMENT RATIO				
	2.9	COMP	RESSIVE STRENGTH	20		
CHAPTER THREE	: DESI	: DESIGN CONDITION				
3.1	CONC	ICRETE MIXES DESIGN				
		3.1.1	Workability of Concrete	23		
			3.1.1.1 Factors Effecting Workability	23		
		3.1.2	The Compressive Strength of Concrete	25		
			3.1.2.1 Mixing of Fresh Concrete	25		
			3.1.2.2 Age at Test and Curing Conditions	26		
			3.1.2.3 Durability of Concrete	26		
		3.1.3	The Mix Design Process	28		
	3.2	DESIC	IN CONSIDERATION FOR R.C. BEAM	28		
	3.3	DESIC	JN REINFORCED CONCRETE BEAM	29		
		33.1	Design Calculation	29		