-

P
brought to you by . CORE

View metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

Future Generation Computer Systems 79 (2018) 786-796

Contents lists available at ScienceDirect a =
FIGICIS!

Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs =

Efficient CFD code implementation for the ARM-based Mont-Blanc
architecture

G. Oyarzun ®>* R. Borrell *", A. Gorobets >, F. Mantovani 9, A. OlivaP

@ Termo Fluids, S.L., ¢/ Magi Colet 8, 08204 Sabadell (Barcelona), Spain

b Heat and Mass Transfer Technological Center, ETSEIAT, Technical University of Catalonia, C/ Colom 11, 08222, Terrassa, Spain
¢ Keldysh Institute of Applied Mathematics RAS, 4A, Miusskaya Sq., Moscow, 125047, Russia

4 Barcelona Supercomputing Center, ¢/ Jordi Girona 3, 08034, Barcelona, Spain

@ CrossMark

HIGHLIGHTS

Termo Fluids CFD code has been run on up to 128 ARM-based Mont-Blanc nodes.

An heterogeneous implementation has been developed to occupy the overall system.

A dynamic Tabu search load balance algorithm distributes the workload among devices.
The hybrid approach is up to times faster than the CPU-only version of the code.
Mont-Blanc nodes are 41% more energy efficient than Minotauro hybrid nodes.

ARTICLE INFO ABSTRACT

Article history:

Received 20 April 2017

Received in revised form 9 August 2017
Accepted 10 September 2017

Available online 20 September 2017

Since 2011, the European project Mont-Blanc has been focused on enabling ARM-based technology for
HPC, developing both hardware platforms and system software. The latest Mont-Blanc prototypes use
system-on-chip (SoC) devices that combine a CPU and a GPU sharing a common main memory. Specific
developments of parallel computing software and well-suited implementation approaches are of crucial
importance for such a heterogeneous architecture in order to efficiently exploit its potential.

This paper is devoted to the optimizations carried out in the TermoFluids CFD code to efficiently run it

Keywords: X R 2 N

ARyM system on the Mont-Blanc system. The underlying numerical method is based on an unstructured finite-volume
Heterogeneous computing discretizqtic_)n of the Navier—_Stokes equations for the numerical_simulation of incompressible.tl_erulent
Parallel CFD flows. It is implemented using a portable and modular operational approach based on a minimal set

of linear algebra operations. An architecture-specific heterogeneous multilevel MPI+OpenMP+OpenCL
implementation of such kernels is proposed. It includes optimizations of the storage formats, dynamic
load balancing between the CPU and GPU devices and hiding of communication overheads by overlapping
computations and data transfers. A detailed performance study shows time reductions of up to 2.1x on
the kernels’ execution with the new heterogeneous implementation, its scalability on up to 128 Mont-
Blanc nodes and the energy savings (around 40%) achieved with the Mont-Blanc system versus the high-

end hybrid supercomputer MinoTauro.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Energy-efficient computing

1. Introduction

Exascale computing (108 floating-point operations per second)
is the next major milestone in the process of exponential growth
of HPC systems occurred for over half a century (the Moore’s
law) [1]. One of the main concerns of the HPC community is
that current high-end hardware cannot achieve this leap with
reasonable power consumption (* 20MW) [2]. Nowadays, several

* Corresponding author at: Heat and Mass Transfer Technological Center, ET-
SEIAT, Technical University of Catalonia, C/ Colom 11, 08222, Terrassa, Spain.
E-mail address: guillermo@cttc.upc.edu (G. Oyarzun).

http://dx.doi.org/10.1016/j.future.2017.09.029

public and private institutions around the world are investigat-
ing different aspects that should lead to the future generation
of supercomputers, looking for innovative solutions in the way
supercomputers interconnect, compute and move and store data.
This set of initiatives have entitled this problem as the Exascale
challenge.

In the road to Exascale computing, the Mont-Blanc project [3]
is a European initiative devoted to design a new type of HPC
systems built from low-power commercially available embedded
technology. The idea consists in leveraging the huge investments
on the exponentially growing market of mobile devices. The hy-
brid nodes of the Mont-Blanc prototype contain ARM-based CPUs

0167-739X/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

https://core.ac.uk/display/132530455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.future.2017.09.029
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.09.029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:guillermo@cttc.upc.edu
http://dx.doi.org/10.1016/j.future.2017.09.029
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796 787

and GPUs fused in a System-on-Chip (SoC) architecture. This low-
power consumption architecture has the potential of becoming
an interesting cost-effective solution for future HPC-systems [4].
Nonetheless, the competitiveness of such an architecture relies
upon the development of algorithms and software that fully exploit
its capabilities. In this context, new tools like Climbing Mont Blanc
(CMB)[5] have been created in order to facilitating the training and
competitions in energy efficient programming of state-of-the-art
heterogeneous multicores.

The initial prototype of the Mont-Blanc project was named
Tibidabo [6], and consisted of 128 nodes equipped with the NVIDIA
Tegra 2 device which includes a GPU and the dual-core ARM
Cortex-A9 CPU. The Tegra 2 GPU did not support general purpose
computing; therefore, the first experiences were restricted to the
CPUs [7,8]. The nodes interconnection and its limitations were
studied in [9]. One of the first attempts of porting CFD applications
to mobile architectures was presented in [10], where scalability
tests were presented using up to 96 nodes, while in [11] it is pre-
sented a study of the energy efficiency of a CFD code on embedded
platforms. In the current version the Mont-Blanc prototype is com-
posed of 930 nodes with the SoC Samsung Exynos 5 that combines
an ARM Cortex-A15 CPU and an OpenCL capable Mali T604 GPU.
The description of the hardware and general performance results
can be found in [12]. A comparative study of the performance of
the two devices composing each chip can be found in [13]. Another
example is [14], where an OpenCL implementation of an N-body
algorithm for mobile GPUs is presented.

While it is true that the Mont-Blanc system provides the neces-
sary tools to run a numerical application, specific adaptations are
required in order to exploit the resources efficiently. In this paper
we present the architecture-specific developments carried out in
TermoFluids (TF) code. TF is a multi-physics CFD code developed
by Termo Fluids S.L. and its partners [15,16], which has been used
in many industrial and academic numerical studies. The present
work was carried out in the context of the End User Group of the
Mont-Blanc 2 project.

The implementation approach of TF has been recently evolved
to improve its portability across different architectures. In par-
ticular, the time integration phase has been re-designed to base
it only on the composition of three linear algebra kernels: the
sparse-matrix vector product (SpMV), the linear combination of
two vectors (referred as AXPY in the BLAS standard [17]), and the
dot product. With this approach the non-linear operators, such as
the convective term, are expressed as the concatenation of two
SpMV. Further details can be found in [18]. This constitutes the
baseline of the present paper, which is focused on optimizing the
basic kernels composing the time integration to efficiently run on
the Mont-Blanc prototype. In contrast to previous works [10,13],
where applications were only ported to run on one of the two
devices composing the Samsung Exynos 5 chip, here we present
a multilevel heterogeneous approach that allows the concurrent
execution in both the CPU and GPU devices.

A domain decomposition is used to distribute the problem
among different nodes, being data transfers implemented through
the Message Passing Interface (MPI) standard. The costs of those
transfers are partially hidden (up to 67%) by using an overlapping
strategy that allows performing computations and communica-
tions simultaneously. A shared memory OpenMP parallelization is
used within the multi-core CPUs. The OpenCL computing standard
is used for the GPUs. Finally, a load-balancing algorithm based on
a Tabu search strategy is used to distribute the load among devices
within each node. The new adapted heterogeneous implementa-
tion delivers around 1.35x speedup on average compared to the
baseline CFD algorithm suitable for a CPU-only execution with
single-level MPI parallelization. A detailed performance study, pre-
sented in Section 5, shows time reductions on the kernels’ execu-
tion of up to 2.1x with the new heterogeneous implementation, its

scalability on up to 128 Mont-Blanc nodes and the energy savings
(around 40%) achieved with the Mont-Blanc system versus a high-
end hybrid supercomputer MinoTauro.

The rest of this paper is organized as follows: in Section 2 the
mathematical model and its implementation are shortly described.
Details about the Mont-Blanc prototype and the programming
model are given in Section 3. Section 4 is devoted to the adaptation
and optimization of the CFD algorithm. The performance study is
presented in Section 5 together with an analysis of the energy costs.
Finally, Section 6 is devoted to concluding remarks.

2. Governing equations and numerical method

The simulation of a turbulent flow of an incompressible New-
tonian fluid is considered. The flow field is described by the di-
mensionless incompressible Navier-Stokes (NS) equations and the
temperature transport equation:

V-u=0, (1)
du+C(u,u) = Du— Vp+f, (2)
3:0 +C(u,0) = Pr='po, (3)

where u is the 3D velocity vector, 6 is the temperature, and the
convective term is C (u, ¢) = (u - V)¢. In the forced convection
case, with density variations neglected the temperature is a passive
scalar, the body force vector is f = 0, and the diffusive term
reads Du = Re~!'V?u, where Re is the Reynolds number. In the
case of natural convection, when the density variations are not
neglected, the diffusive term becomes Du = PrRa~'/2V?u, and
f = (0, 0, Pro) (Boussinesq approximation), where Ra and Pr are
the Rayleigh and Prandtl numbers, respectively.

The NS equations (2) are discretized using a cell-centered
symmetry-preserving discretization [19] on a collocated unstruc-
tured mesh. The operator-based finite-volume spatial discretiza-
tion of the equations reads

duh ¢
QF + C () uy + Du, — M'p, =0, (4)
where the discrete incompressibility constraint is given by Muy, =
0. The diffusive matrix, D, is symmetric and positive semi-definite.
It represents the integral of the diffusive flux through the faces.
The diagonal matrix, §2, describes the sizes of control volumes.
The approximate convective flux is discretized as in [19]. The
time evolution of the temperature, 6y, is discretized similarly. A
second-order explicit one-leg scheme is used for the temporal
discretization of both the convective and diffusive terms. The
pressure-velocity coupling is solved with the classical fractional
step projection method [20]. Consequently, a Poisson equation for

pﬁ“ is solved on each time-step,
Lpp™' = Muf, with L=—-M~ ™M, (5)

where the discrete Laplacian operator, L, is represented by a sym-
metric negative semi-definite matrix.

Our implementation of this CFD solver is based on the algebraic
operational approach described in [18]. Basically, we replaced the
stencil data structures and the sweeps through mesh elements
by sparse matrices and sparse-matrix vector products (SpMV),
respectively. Such an approach has higher modularity without sac-
rificing performance and consequently can be easily ported to any
architecture. Sparse matrices are stored in compressed formats.
The matrix entries are saved in a one-dimensional double precision
array and additional integer arrays are included in order to describe
the sparsity pattern, i.e. position of each entry in the matrix.

788 G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

OTHERS

AXPY

Fig. 1. LES simulation of flow around ASMO car. Mesh 5.5M. Execution using
32 GPUs. Distribution of computing time among the main kernels on the time-
integration.

On the one hand, the linear operators that remain constant
during all the simulation, such as the gradient and the divergence,
can be directly represented by a sparse matrix and are applied
through a SpMV. On the other hand, the non-linear operators, such
as the convective term, need to be reevaluated at each time step.
If the mesh topology does not change the sparsity pattern of the
matrix remains constant, therefore only the one-dimensional array
of matrix entries needs to be updated. In this case the nonlinear
convective operator is implemented as a concatenation of two
SpMVs. The first SpMV takes the advection field as input and
results in the vector of updated coefficients (this array of matrix
coefficients is treated as a vector). Then, the second SpMV applies
the updated matrix to the input vector of the convection operator.
Note that the definition of the first operator depends on the storage
format used for the convective operator. An example for the sliced
ELLPACK format is shown in [21].

The preconditioned conjugate gradient solver is used for the
Poisson equation. Either the Jacobi diagonal scaling or the approxi-
mate inverse preconditioner are used depending on each particular
case. Both preconditioners can be represented as a SpMV at the
solution stage . Further details can be found in [22]. In conclusion,
we express the full time integration step in terms of three algebraic
kernels: the SpMV, the linear combination of two vectors (AXPY)
and the dot product.

Fig. 1, exemplifies the operational approach for a Large Eddie
Simulation (LES) of the flow around ASMO car performed on a
hybrid cluster with 128 6-core Intel Westmere E5649 CPUs and
128 NVIDIA M2090 GPUs. The 98% of the computing costs are spent
on the three main algebraic kernels, being the SpMV the dominant
one among them. This circumstance makes the code extremely
portable to any architecture.

3. Mont-Blanc prototype
3.1. Computer system architecture

The Mont-Blanc project [3] is a European research project
started in 2011 with the goal of leveraging the fast growing mar-
ket of smartphones and tablets for performing parallel scientific
computing. The project has deployed a fully functional large scale
prototype based on mobile SoCs as well as the system software
stack needed to operate it as on a standard HPC cluster. Currently,
the Mont-Blanc cluster is composed of 930 prototype nodes that
use ARM SoC technology adapted from the mobile industry. The
primary features of the system nodes are:

o ARM Cortex-A15, a dual core RISC CPU at 1.7 GHz with 128-
bit SIMD extensions, 64 KB of L1 cache and 1 MB of L2 cache.

o ARM Mali T604 GPU with four stream multiprocessors, each
one supporting up to 256 active threads. Its 128-bit vector
registers can fit two double precision real values.

e 4GB of LPDDR3-1600 RAM memory that is physically shared
between the GPU and the CPU devices. Both devices share a
common memory bandwidth of 12.8 GB/s.

e The nodes are interconnected via the ASIX AS88179 USB 3.0
to 1 Gb Ethernet bridge, and an Ethernet PHY.

e The local storage of the node is limited to a 16 GB uSD card.

These low-end computing units provide a significantly lower
performance than the high-end devices of traditional systems.
However, the mobile SoCs have a much lower price and a reduced
power consumption. Moreover, this architecture allows the CPU
and GPU devices to physically share a common memory space. This
feature can be viewed as a step forward in the evolution of hetero-
geneous systems, since it eliminates the communication overhead
that comes from the data transfer between the CPU and GPU
devices. Similar solutions providing a higher level of integration are
likely to be found in future generations of heterogeneous systems.
Those novel aspects of the Mont-Blanc nodes have motivated us to
explore the development of a concurrent execution model capable
of attaining the maximum performance.

3.2. Programming model

The different components of the system are utilized by means
of a multilevel parallel model that combines three layers of par-
allelism: distributed memory MIMD parallelization by means of
MPI 3.0 standard couples multiple hybrid nodes, shared memory
MIMD parallelization by means of OpenMP 3.0 standard engages
multicore CPUs, stream processing and SIMD parallelism by means
of OpenCL 1.1 standard engages GPUs (see Fig. 2).

The choice of the frameworks is governed by the node compo-
nents. The GPU only supports OpenCL, so CUDA and its libraries
could not be used. For the CPU there were no OpenCL drivers
available, so OpenMP is used instead. Compilation of the code is
performed using the GNU C++ compiler. It contains the neces-
sary extensions for the ARM architecture (additional flags are the
architecture flag -mcpu=cortex-al5 and double precision flags -
mfpu=vfpv4 -mfloat-abi=hard).

The common memory of the CPU and GPU is used by allocating
regions in memory (buffers) accessible from both OpenCL kernels
and OpenMP threads. Such specific buffers are allocated by means
of the OpenCL API using the clCreateBuffer function with the flag
CL_MEM_ALLOC_HOST_PTR. By doing so, a zero-copy mode is es-
tablished when accessing the buffer from the CPU. This means
that OpenMP threads do not create local copies of the memory
region, but operate directly on it. The clEnqueueMapBuffer and
clEnqueueUnmapMemObject functions are used for controlling
the data accesses from the OpenMP threads.

For a concurrent execution, the master thread of the CPU sends
to the GPU execution queue a non-blocking kernel execution by
the OpenCL function clEnqueueNDRangeKernel. This operation
launches the kernel on the GPU and, since it is non-blocking, re-
turns to the execution queue of the CPU. Then, the master thread of
the CPU launches the OpenMP version of the kernel. When the CPU
has finished its work, the master thread creates a synchronization
point with the GPU by means of the OpenCL function clFinish. This
is a blocking operation that holds the execution until all the kernels
in the GPU queue have finished their execution.

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

789

MPI [Supercomputer]
Hybrid node Ethernet Hybrid node Ethernet Hybrid node
\ T TT Distributed memory MIMD
|] | |
OpenCL [GPU accelerator] [Multicore CPU] OpenMP

1

[Stream multiprocessors]

[Processor cores]

S

<Comm0n memory space
1

b

Shared memory MIMD

Stream processing SIMD

Fig. 2. Levels of parallelism and stack of frameworks for Mont-Blanc architecture.

c
g[>Local, inner
o

2 [> Local, interface
wv

’Non-local, halo
.
@ Non-local

lextended sub-domain

Fig. 3. Domain decomposition.

4. Algorithmic optimizations

Several issues must be addressed in order to use the Mont-Blanc
prototypes efficiently. Firstly, a significant reduction of the inter-
node data transfer overhead is possible with an overlap of commu-
nications and computations on the GPU devices. Secondly, intra-
node optimizations that improve data layout and device-specific
kernels are important. Finally, a proper dynamic load balancing
between the CPU and GPU is required. Details on those aspects are
presented in this section.

4.1. Inter-node communications

The first level of parallelization is a domain decomposition.
Consequently the mesh M, is decomposed into P non-overlapping
subdomains My, ..., Mp_q. For each MPI process, cells of its
subdomain are referred as local cells, likewise the corresponding
unknowns are referred as local unknowns. A local cell adjacent to
a non-local cell is denoted as interface cell, these form the inside
subdomain border. The local cells that are not part of the interface
are referred as inner cells. A non-local cell with an adjacent local
cell is referred as a halo cell, these form the outside subdomain
border. This decomposition is illustrated in Fig. 3.

The MPI communication patterns differ among the three main
kernels. In the AXPY computations are performed on the local com-
ponents of the vectors without any MPI communication episode.
The dot product requires a global reduction operation after the
local sum is calculated by each MPI process. This reduction com-
munication has a cost of O(log(P)), where P is the number of
MPI processes engaged. Finally, the SpMV requires a point-to-
point communication such that each MPI-process obtains the halo
components of the multiplying vector. This point-to-point com-
munication is referred as a halo update. Note that the product
of the inner components, and the halo update are independent
operations that can be performed concurrently. The subsets of
inner, interface and halo vector components and its associated
matrix rows are illustrated in Fig. 4 (left). The overlapping process
is illustrated in Fig. 4 (right). More details on these aspects can be
found in [22].

4.2. Intra-device optimization

Two aspects must be taken into account for an optimal intra
device performance: the data layout and the intra device paral-
lelization. Both aspects are strongly related: an optimal data-layout
is the one that minimizes the memory transfers on the parallel
execution.

Regarding the vector operations there is not much discussion
about the data layout, vectors are stored on 1D arrays. The OpenMP
parallelization for the ARM Cortex-A15 CPU is done by distribut-
ing loop iterations between threads with work-sharing directives.
Vectorization is not used since it is not supported by this CPU for
double precision values. The four stream multiprocessors of the
Mali T604 GPU are occupied with threads (work-items) launched
by means of OpenCL. The SIMD registers of the GPU have a 128-bit
width, thus two double precision operations can be performed at
once. OpenCL vector data types: double2 and int2, are used in
order to optimize the vectorization.

Regarding the SpMV operation, the data layout (storage format)
depends on the sparsity pattern of the matrix [23]. The most widely
used format is known as Compressed Sparse Row (CSR). Such for-
mat consists in storing three separate arrays: the non-zero entries,
the column indices and the pointers indicating the beginning and
the end of each row, respectively. For matrices with equal number
of entries per row, the vector of row pointers is redundant, by
eliminating it we get the ELLPACK format. The regularity required
by the ELLPACK format is forced by padding zeros in the rows with
less entries. An optimized option to minimize the zero padding is
the sliced ELLPACK (sELL) format. It consists in sorting the rows by
the number of entries and then divide the matrix into slices which
are themselves stored using the ELLPACK format. More details can
be found in [18,21]. A performance comparison between the CSR
and the sELL in our application context is presented in the next
section.

The SpMV algorithm is composed of two loops: the outer loop
iterates over the row indexes of the matrix and the inner loop
across the non-zero entries of each row. In the ARM Cortex-A15
CPU the parallelization consist in using OpenMP directives for dis-
tributing the outer loop, assigning dynamically created chunks of
rows to the OpenMP threads. In the Mali T604 GPU the stream pro-
cessing model consists in launching thousands of threads (work-
items) which are grouped in independent blocks (work-groups)
dynamically scheduled to the stream-multiprocessors.

The data layout of the ELLPACK format in the main memory
is influenced by the computing approach and differs among the
two computing units. In the CPU the OpenMP threads process one
row after the other, so a row-major order is used to optimize the
memory accesses, see Fig. 5 (top). In the GPU the memory requests
within a work-group are handled as a single transaction, i.e. all of
its work-items process simultaneously the uploaded data. In this
case each work-item operates two rows simultaneously to take ad-
vantage of the vectorization. If each work-group has M work items,

790 G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

Matrix Vector GPU ! CPU
- T M [\
1 1
| ° X N | Y
3 : Halo update:
| | MPI_lIsend,MPI_lIrecv
Inner ! Inner 1 "
! SpMV 1 p Y N
| m% Inner part ! SPMV (100-m)9%
1 1
| 0 GPU ! Inner part CPU
— — I
Interface § | Interface i MP1_Waitall
! { || !
2
Halo 1
L : [SpMV Interface part]
Fig. 4. Distributed matrix and vector structure (left) and concurrent execution model (right).
1 2 CPU ELIT‘PACK Thread 1 L Thread 2 N
3 g 3 val |1]2]3]4]5]6]7]8]9]|10]11|12]13|14]15]16]17]18]19]20|21|22|23]24]
7 8 col |o]9]o]2]2]|6|1frrjo]3]o]7]1]|6]5]|r2f2]7[4r0]8]9]4]5]
9 10|
11] 124
13 14 GPU ELLPACK
= o work o, 12 1,2, 1,2, 1,2, 1,2
17| 18 item]] =
19| i al val [1]3]5]7]|2]|4]e]8]9]11]13]15]10]12]14]16]17]19]21]23]18]20}22|24]
23]24] col |oJo]2]1]9]2]e6]rfo]o]1]s]3]|7]|6]r1]2]4|8|4]|7]10]9]5]

Work-group 1 N Work-group 2, Work-group 3,

Fig. 5. Data layout of the ELLPACK format for the CPU and GPU devices.

the matrix rows are divided in blocks of size 2M and a column-wise
order is prescribed within each block. This way when a column of
one of those blocks is uploaded to the stream multiprocessor all of
its threads can operate on it. This strategy is illustrated in Fig. 5
(bottom) for a hypothetical GPU with two threads (work-items)
per stream-multiprocessor (workgroup). The Mali T604 GPU has
4 stream multiprocessors with 256 active threads each.

Additionally to the storage format, the SpMV performance de-
pends on the indirect memory accesses required for the multi-
plying vector. These can be optimized with a matrix bandwidth
reduction algorithm. The lower the matrix bandwidth the lower
the distance between components used on the same row and,
consequently, the better is exploited the spacial locality for cache
reuse. In TF we re-order the vector and matrices components at
three different levels: (i) firstly, in order to optimize communi-
cations, the components are grouped into the inner, the interface
and the halo subgroups (illustrated in Fig. 4); (ii) within each of
the previous subgroups, components are reordered by the number
of entries of the respective row (to efficiently apply the sliced
ELLPACK format); (iii) at the third level of the hierarchy (i.e. for
the components corresponding to rows with the same number of
entries and in the same subgroup with respect to the first criteria)
we apply the Cuthill-McKee [24] bandwidth reduction algorithm.
In this paper we consider static meshes therefore this reordering is
only carried out at the preprocessing stage.

4.3. Load balancing inside hybrid nodes

An optimized heterogeneous implementation for such fused
devices (where CPU and GPU compete for a shared memory band-
width) is necessary to maximize the occupancy of the system. Our
idea consists in finding for each kernel a distribution of workload
between CPU and GPU that minimizes the execution time. This
distribution is defined by the percentage of work, m¥%, assigned
to GPU, and (100 — m)% to CPU, respectively. Since fused devices

operate in a shared memory space, a specific distribution can be
set without data transfer overhead.

The proposed load balancing optimization is based on a Tabu
search strategy (outlined in Fig. 6), which finds the best distri-
bution for each of the three main kernels. The Tabu search is
a heuristic method for solving optimization processes avoiding
sub-optimal solutions in an iterative process. When a solution m
is found, it is perturbed with £Am and the iterative process is
continued through the new candidates that have not been explored
before, i.e. are not in the Tabu list. The iteration process continues
until all the elements in the candidate list have been tested. Similar
strategies using this method can be found in [25]. Note that for
the SpMV kernel, in which computations and communications
are overlapped, the communication costs must be included in the
workload distribution, therefore, the result depends on the number
of computing nodes used in the simulation.

An alternative approach for the SpMV distribution on hybrid
systems can be found in [26,27]. Their strategy consists in using
a probabilistic mass function to represent the distribution pattern
of the non-zeros, and afterwards generate an hybrid storage format
according to it.

5. Performance tests

The overall computing performance in a LES simulation is stud-
ied in terms of achieved GFLOPS rate and scalability. The numerical
tests were executed on the Mont-Blanc nodes described in Sec-
tion 3. In summary, each node has a SoC Samsung Exynos 5 that
combines an ARM Cortex-A15 CPU and an OpenCL capable Mali
T604 GPU. The nodes are interconnected by means of a Gigabit
Ethernet network. The theoretical peak performance of the SoC is
28.1 GFLOPS and the memory bandwidth is 12.8 GB/s. We focus on
the analysis of the three main kernels that compose our algorithm,
since its wall-clock time sums up to 98% within the time integra-
tion phase.

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796 791

Add Initial distribution
to the candidate list m=mo >

Y

VES /@didate

list empty?,

Select the last
candidate distribution

in the list: m=mi

~N

heterogeneous execution
using dist. mi

[Calculate the time of

A

Best distribution
is selected

Fig. 6. Flow chart of the Tabu search algorithm for finding the best distribution.

Add two new
non-tested
Candidate

distributions
m=mi+Am

and m=mi-Am

Improves
current dist.?,

Table 1
Performance in GFLOPS obtained with the CSR and sELL formats for meshes of dif-
ferent sizes.

Device, SpMV format Mesh size, thousands of cells

50 100 200 400 800
CPU CSR 0.31 0.29 0.29 0.27 0.27
CPU sliced ELLPACK 0.42 0.41 0.39 0.37 0.37
GPU CSR 0.34 0.35 0.36 0.35 0.36
GPU sliced ELLPACK 0.59 0.59 0.59 0.57 0.58

5.1. Intra node performance: SpMV data layout

For the SpMV tests we have used a second order discretization
of the Laplacian operator on tetrahedral-based meshes. The SpMV
is a memory bounded operation. In ideal conditions, i.e. with max-
imal cache reuse for the input vector, the arithmetic intensity is
only 9/76 FLOPS per byte, see [18] for details. Therefore the storage
format is a major aspect to be considered in order to optimize the
performance.

Table 1 shows the GFLOPS achieved at running the SpMV on
the CPU and GPU of the Mont-Blanc nodes separately. We compare
the CSR and sliced ELLPACK formats for meshes of different sizes.
As explained in Section 4.2, using the ELLPACK format reduces the
memory transfers and improves cache use since the vector of row
indices is eliminated. Moreover, dealing with a constant number
of entries per row eliminates the thread divergence' within work-
groups in the GPU. Consequently, the sELL format outperforms the
CSR with average speedups of 1.37x and 1.65x on the CPU and
GPU devices, respectively. In all the following tests of the paper we
use the sELL format, with the specific data layout for each device
described in Section 4.2.

The AXPY and dot operations are also memory bounded kernels
with arithmetic intensities of 1/12 and 1/8 FLOPS per byte, respec-
tively. However in this case there is not possible optimization of the
data layout which must be a one-dimensional array.

5.2. Intra node performance: Heterogeneous execution

In Fig. 7 the performance of the three main kernels for different
mesh sizes is illustrated. Mont-Blanc nodes have 4 Gbytes of main

1 We understand by thread divergence in the GPU when threads in the same
block follow different execution paths. In stream processing such behavior results
in a serial execution that degrades the performance.

memory; according to this we have done tests on a range of
problem sizes for which performing a complete LES simulation
would be reasonable. The performance in GFLOPS achieved for the
separate executions on CPU and GPU is compared to the heteroge-
neous execution on both devices

The CPU performance is almost constant for each kernel. In
particular, for the SPMV this means that we are beyond the range
where cache effects take place. The performance ratio between the
dot and AXPY is in average 1.33, similar to the ratio between their
arithmetic intensities, 1.5. Note that the dot requires a reduction
operation within the parallel region that degrades its performance.
The SpMV has a higher arithmetic intensity than the AXPY but
slightly lower performance. The reason are the random memory
accesses of the input vector. Those cannot be well predicted by
the prefetching units, converting the SpMV into a latency bounded
kernel.

For the throughput-oriented GPU execution we observe a dif-
ferent behavior. In particular, the GPU design is based on launching
large numbers of threads to the stream multiprocessors and using
context switching to hide memory costs. This approach outper-
forms the latency-oriented design of the CPU, being especially no-
ticeable for the SpMV. However, enough occupancy is required in
order to saturate the device and achieve the maximal performance.
This explains the performance growth on the vectorial kernels
which under-occupy the device for the smaller problem sizes. In
addition, we observe that despite the fact that the dot product has a
higher arithmetic intensity it performs almost equally as the AXPY.
This is because the reduction operation has very low performance
on the GPU.

The benefits from the heterogeneous execution are not the
same for the different kernels. For the bandwidth bounded vec-
torial kernels, having two devices generating memory requests
at the same time produces relatively low improvements. This is
because the bandwidth is already quite well saturated with a single
device, especially with the GPU. For the SpMV the improvement
is bigger. In average the speedup is 1.97x and 1.30x compared
to the CPU and the GPU executions, respectively. In this case, the
limitation are the latency costs derived from the cache misses
produced by the indirect memory accesses. Therefore increasing
the density of memory requests allows to better profit the highly
under-saturated bandwidth. Note that the low arithmetic intensity
of the main algebraic operations limits our maximum achievable
performance to less than 3% of the theoretical peak, however this is
in agreement with what we have observed on other heterogeneous
systems for CFD applications [18].

Regarding the load balancing, as explained in Section 4.3, it
is very hard to predict a good distribution a priori, due to the
performance variability when CPU and GPU devices run concur-
rently or with the problem size. Consequently we use an iterative
load balance optimization based on a Tabu search algorithm. In
Fig. 8(left) the performance obtained with different load distribu-
tions is shown for the three main kernels, running a problem with
200K unknowns. Note that the performance suffers significant
changes, what makes the load balance optimization a major issue.
Fig. 8 (right) shows the optimal distribution achieved with the
Tabu search algorithm for different problem sizes. For the SpMV
we observe an almost flat line, the reason is the nearly constant
performance of the two devices with the problem sizes. This op-
timal distribution is of around 70% of the load on the GPU, that
in this kernel clearly outperforms the CPU. For the AXPY we see
a moderate increase of the load assigned to the GPU that ranges
from 50% up to 62%, in agreement with the improvement of the
GPU performance with the problem size. Finally, the reduction
operation of the dot makes the CPU more suitable for the smaller
vectors, although with the growth of the problem size the relative
cost of the reduction falls and the GPU rapidly increases its load
ratio.

792

GFLOPS

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

AXPY

=
o0
.

GFLOPS

<
=

=
=

<
o

GFLOPS

400

thousands of components

800

100

thousands of components

200 400 800

[facPUTIGPUTICPUTGPU |

[facPUTIGPUTICPUTGPU |

Fig. 7. Performance of the SpMV, AXPY and dot operations.

100 200 400 800 100
thousands of rows
[JoCcPUIIGPUIRCPU+GPU |
1
0.8 7
0..~
s e
N 0.6 BN T
Ty LR
F et
RLTPUPEY % B LLEL DY .
O 0.4g - - Weweg. g
0.2 -® SpMV-200K | -|
-4 AXPY-200K
-&- DOT-200K
O Il Il Il Il
0 0.2 0.4 0.6 0.8 1

ratio in GPU

1

0.8} 1

_____ o ------0
o - ' i
% 06] RS Amnnees 1
8 oo
e}
£ 04f 1
CE /’__l
,."/—
02F /,—" -e SpMV .
-a- AXPY
—_‘,,“" -#-DOT
100 200 400 800

workload (thousands)

Fig. 8. Performance for different load distributions, problem with 200K unknowns (left) and balance point obtained for different problems sizes (right).

T T
12 | H SpMV Computations

D Communications

10

Time (ms)

N = D

o

6.4 12.8

254

Matrix size (Millions of rows)

[| SpMV Overlapped b

1F o~k ——a———-a |
1-
. .’,'
.8 _-Car
Z 08 .]
&) !:’
2 0.6 1 —
<1
ks
° 0.4+ 1
e
=
0.2} -e (Case-1600K | |
: -m Case-3200K
-+ Case-6400K
0 | | | | | |

2 4 8 16 32 064
Nodes

Fig. 9. Comparison of the overlapped and non-overlapped versions of the SpMV on 128 Mont-Blanc nodes (left) and balance point for the parallel execution of the overlapped

SpMV (right).
5.3. Inter node performance: Overlapping

In the overlapped version of SpMV communications take place
simultaneously with computations for the inner part of the matrix.
In Fig. 9 (left) the overlapped and non-overlapped versions are
compared on 128 Mont-Blanc nodes for mesh sizes from 6.4M up
to 25.4M cells. For the non-overlapped cases the communication
and computation costs are distinguished. The larger is the problem
size the more communication costs are hidden. In these three
examples the overlapping hides 37.79%, 54.19% and 67.19% of the

communication costs, respectively. Consequently the overall SpMV
time is reduced by 1.2x, 1.3x and 1.6x, respectively. Note that
128 Mont-Blanc nodes gather 256 CPU-cores and 128 GPUs.

Since the communication and computation phases are per-
formed simultaneously, the load balancing of the kernel must
include both phases too. This is not necessary for the dot prod-
uct because the reduction communication is performed once the
calculations are finished. The balance point is evaluated using the
same Tabu search algorithm as in the sequential case. The com-
munications are performed through the CPU, consequently a larger

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796 793

14 -]
----- . 1
P 1
12} —
T
TR e TESSPRPRS TESSPRRER Aooooeeeeo
E 0.8 F
?06f
0.4
- SpMV-400K
02 -4- AXPY-400K
-=-DOT-400K
0 Il Il Il Il
4 8 16 32 64 128
Nodes

Fig. 10. Weak speedup of the algebraic kernels: SpMV, AXPY and dot.

workload is assigned to the GPU. Fig. 9 (right) shows the percentage
of rows assigned to the GPU for different problem sizes and number
of nodes. Both at decreasing the problem size or increasing the
number of nodes, the relative weight of the communication costs
grow, therefore the GPU increases its ratio. At a certain point the
GPU computes the entire inner matrix because the communication
costs are equal or larger than the computation costs, in the latter
case the GPU will remain idle while the communication is com-
pleted. According to the plot, this situation occurs when the load
per node is < 200K.

5.4. Inter node performance: Scalability

The scalability of our code has been tested on the Mont-Blanc
prototype in terms of both weak and strong scaling. In a weak
scaling test the problem size grows proportionally to the number
of computer nodes engaged so the workload per node remains
constant (and the execution time should also be constant in the
ideal case). Results of such a test are shown in terms of slowdown
compared to the initial number of nodes. In contrast, in a strong
scaling test the problem size remains constant when the number
of nodes is increased gradually. In the ideal case execution time
reduces proportionally to the number of nodes engaged.

Weak scaling tests for the three main kernels are shown in
Fig. 10. The local workload of 400K cells per node is kept constant,
the number of nodes grows from 4 to 128 while the total mesh size
grows proportionally from 1.6M to 51.2M cells. As expected, AXPY
shows a perfect scaling due to the absence of communications. In
contrast, the dot product and the SpMV show slowdowns of 1.45 x
and 1.35 x, respectively.

The strong scaling results are shown in terms of the speedup
compared to the initial number of nodes and the parallel efficiency
(in percents of the ideal speedup). In Fig. 11 (left), the parallel
efficiency of the SpMV is shown for different mesh sizes. Certainly,
the larger is the size of the problem the higher is the speedup
achieved, because the relative weight of the communications is
inversely proportional to the problem size. In Fig. 11 (right), the
strong speedup of the main kernels is studied for a mesh of 12.8M
cells used in the LES simulation of the flow around ASMO car [28].
An estimation of the overall code performance is also included. This
estimation can be done from the performance of the main kernels,
knowing the repetitions of each one per time step. In [18] is shown
its good accuracy for different applications. Note that despite the
AXPY operation does not require communications, its strong scal-
ability is not linear. The reason for this behavior is the reduction of
the GPU occupancy that at certain point degrades its performance.
This effect can be clearly observed in Fig. 7. For the dot product this

degradation factor is added to the increment of the communication
costs with the number of nodes. Note that its parallel efficiency
is below 25% on 128 nodes. Finally the parallel efficiency of the
SpMV and of the overall simulation are very similar (around 50%
on 128 nodes) since the SpMV is the dominant kernel as shown in
Fig. 1. Note that the interconnection technology based on Ethernet
limits the bandwidth to 1 Gb/s. Moreover, the use of mobile SoC
missing PCle links, forced the Mont-Blanc consortium to bridge
USB3 to Ethernet. This design compromise increases the latency
of the network as analyzed in [12]. Significant improvements are
expected on these aspects in the next Mont-Blanc prototype which
will be based on the Cavium ThunderX2 processor [3]. This high-
end ARM-based SoC is targeting server market and will feature
several PCle lanes.

5.5. Comparative analysis: Performance and energy efficiency

We compare the performance and energy efficiency of Mont-
Blanc nodes with respect to the heterogeneous nodes of the
MinoTauro supercomputer from BSC. MinoTauro nodes have two
NVIDIA M2090 GPUs and two 6-core Intel Xeon E5649 CPUs, and
are interconnected with an InfiniBand QDR network. The version of
code for MinoTauro is based on the same operational approach as
used in Mont-Blanc, butimplemented by means of MPI+CUDA [18].
This version features similar optimizations such as reordering of
unknowns, overlapping and adapted storage formats, but not the
heterogeneous mode. The benefit of using CPUs for computations
on MinoTauro is relatively small. Firstly, it is because the GPUs
are many times faster than the CPUs. Secondly, distribution of
workload between CPU and GPU results in additional intra-node
traffic and, as a consequence, notably increases overhead of the
host-device transfers. It must also be noted, that CUDA kernels
are nearly identical to the OpenCL ones and both versions perform
nearly equal on NVIDIA GPUs.

Fig. 12 (left) shows comparison of the performance on both sys-
tems for the simulation of the flow around the ASMO car (Re = 7 x
10°) on a mesh of 5.5 million cells. The performance is measured
in GFLOPS per node and corresponds to the time-integration phase.
The time is obtained by averaging measurements over 10,000 time
steps.

The proposed adapted implementation outperforms the base-
line version by around 35% on average. The most notable benefit
(up to 53%) is observed at the smaller number of nodes because
the low weight of communications leaves more time for the CPU
to compute.

The performance on MinoTauro is on average 33 x higher than
on Mont-Blanc. This difference mainly comes from the much bigger
computing power and memory bandwidth of the MinoTauro com-
puting devices and from the much more powerful interconnect. In
both systems, the performance in GFLOPS per node reduces when
the number of nodes grows. It is because, firstly, the GPUs perfor-
mance goes down at smaller workloads and, secondly, the commu-
nication costs increase. This effect is more severe on MinoTauro,
consequently its speedup compared to Mont-Blanc decreases with
the number of nodes, see Fig. 12 (right).

A detailed on-line measurement of the power consumption
was not possible on MinoTauro for the present study. However,
an estimation can be obtained based on the idle power (280 W)
and the peak power (800 W) of a single node of MinoTauro. Ac-
cording to the previous measurements performed on Mont-Blanc
system [12], in idle state a Mont-Blanc node consumes 5 W, in-
creasing up to 11 W when running the LINPACK benchmark. Since
our application is mainly constrained by the memory accesses, less
than 3% of the peak performance is achievable in both systems.
In particular for a single node execution the percentages achieved
are 2.2% and 2.8% on MinoTauro and Mont-Blanc, respectively.

794
100% A8 T
“a. e,
v AT
80% . * e
‘a
60% 4 —~—8—
. A
5 o A el
40% v .
T - . A
o/ ||-¢ 3.2M mesh |
20% -4 6.4M mesh
-® 12.8M mesh
—Ideal
0% L L . .
% 1 2 4 8 16 32 64 128
Nodes

Strong speedup

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

32
- SpMV-12.8M
-4- AXPY-12.8M
. -=-DOT-12.8M
16 [|- AsMO-12.8M . y
— Ideal il
L . Te” 4
8 K P »
e
e
4k A 1
i
///
2t . 1
4 8 16 32 64 128
Nodes

Fig. 11. Parallel efficiency for the overlapped SpMV (left) and the strong speedup of the main kernels and of the overall code (right).

14
12
2 10
3
Z 8
g
o 6
=
o 4
2
0
8 16 32 64 128
Nodes

‘ loMont-Blanc Ini. I8 Mont-Blanc Opt. I#Minotauro ‘

40
o
= 30
o}
o3
(=3
0

20 1 1

10 F —=— Minotauro vs Mont-Blanc Opt. | |

—— Minotauro vs Mont-Blanc Ini.
0 1 1 1
8 16 32 64 128
Nodes

Fig. 12. GFLOPS per node achieved in the simulation of the flow around ASMO car for different number of nodes (left) and the speedup of MinoTauro vs Mont-Blanc nodes

(right).

80 1
w0
= o0f .
=
=
@
A 40 1
5 40
3
=]
= 20 8
0 "
8 16 32 64 128
Nodes

‘DDMonth]zmc Ini. IaMont-Blanc Opt. I#8Minotauro ‘

) ///
2
=
<
~
1F .
0.5 —=— Mont-Blanc Opt. vs Minotauro | |
—— Mont-Blanc Ini. vs Minotauro
0 1 1 1
8 16 32 64 128
Nodes

Fig. 13. MFLOPS-per-Watt in the simulation of the flow around ASMO car for different number of nodes (left) and ratio of Mont-Blanc vs MinoTauro in this context (right).

Consequently we can assume that the power consumption will be
close to the idle state, and therefore utilize it in our estimation.
The FLOPS-per-Watt for the different executions of the ASMO
car test are illustrated in Fig. 13 (left). Additionally, the energy
efficiency of Mont-Blanc vs MinoTauro is shown in Fig. 13 (right). In
average the Mont-Blanc nodes are 1.7 x more energy-efficient than
Minotauro’s nodes. If we had used the peak power consumption of
both nodes as consumption estimation this ratio would be 2.2 x.
We can therefore expect that the real power efficiency gain ranges
between these two values. Real measurements of the energy costs

of Mont-Blanc nodes compared to MareNostrum IIl supercomputer
from BSC can be found in [12]. In this study improvements of 1.7 x
are observed, thus supporting the estimation introduced in our
current tests.

6. Conclusions

The challenge of building a supercomputer that can deliver and
sustain Exascale performance at acceptable power consumption

G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796 795

costs (& 20MW) has stressed the research on new computing
architectures. In this context, Mont-Blanc project is the main Eu-
ropean initiative focused on leveraging the huge investments of
the exponentially growing market of mobile devices to build new
HPC systems. In this paper, we have described the optimizations
performed to TermoFluids CFD code to attain the maximum per-
formance in this new HPC architecture.

Our first concern has been to fully occupy the intra node re-
sources. We have developed a hybrid version of the main kernels
that compose our CFD code in order to engage both the CPU
and GPU devices of each node. This has been achieved by means
of an OpenCL+OpenMP implementation with optimized storage
formats for each device. Moreover, we have included a dynamic
load balance algorithm based on a Tabu search method to effi-
ciently distribute the workload. The best results of this approach
were obtained for the SpMV, which happens to be the most time
consuming operation of our code. In this operation, up to 2.1x
speedup was obtained with respect to the CPU-only execution. The
remaining operations, AXPY and DOT, attained speedups of 1.3 x
and 1.24 x respectively.

The following step has been to optimize the communication
scheme in order to improve the parallel efficiency of the algorithm.
We have adopted an overlapping strategy for the SpMV in which
communications and computations are performed concurrently.
Following this approach, up to 67% of the communication costs
are hidden for a mesh of 25.4 million cells. The same Tabu search
balance algorithm is used for the workload distribution in parallel.
Since the communications are performed by the CPU, the new
distribution assigns more load to the GPU. In addition, scalability
tests are provided engaging up to 128 Mont-Blanc nodes. The weak
speedup tests show that for a reasonable workload of 400K cells,
the maximum slowdown of the operations is 1.45x. The strong
speedup tests show a parallel efficiency of about 50% at increasing
the number of Mont-Blanc nodes from 4 up to 128. Altogether
the new implementation of the CFD algorithm demonstrates on
the Mont-Blanc system an improvement of 35% on average with
respect to the baseline MPI-only version for CPUs. Finally, we have
presented a comparative analysis of the performance and power
consumption versus the high-end heterogeneous supercomputer
MinoTauro. We have estimated that Mont-Blanc nodes are about
30 times slower but 41% more energy efficient at running a LES
simulation of the flow around ASMO car.

The future generation of Mont-Blanc prototypes are planned
to be built with high-end ARM technology that has already been
proven in data centers and cloud computing. Such technology
upgrade will increase the overall system performance, reducing
in special the network limitations. This paper has presented some
algorithmic and implementation strategies that can be useful to
unlock the potential of these incoming generation of ARM-based
systems.

Acknowledgments

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
[FP7/2007-2013] and Horizon 2020 under the Mont-Blanc Project
(www.montblanc-project.eu), grant agreement n 288777, 610402
and 671697. The work has been financially supported by the Min-
isterio de Ciencia e Innovacién, Spain (ENE- 2014-60577-R), the
Russian Science Foundation, project 15-11-30039, CONICYT Becas
Chile Doctorado 2012, the Juan de la Cierva posdoctoral grant
(IJCI-2014-21034), and the Initial Training Network SEDITRANS
(GA number: 607394), implemented within the 7th Framework
Programme of the European Commission under call FP7-PEOPLE-
2013-ITN. Our calculations have been performed on the resources
of the Barcelona Supercomputing Center. The authors thankfully
acknowledge these institutions.

References

[1] D.E.Keyes, Exaflop/s: the why and the how, C. R. Méc. 339 (2-3)(2011) 70-77.
http://dx.doi.org/10.1016/j.crme.2010.11.002.

[2] J. Dongarra, et al., The international exascale software project roadmap, Int.
J. High Perform. Comput. Appl. 25 (1) (2011) 3-60. http://dx.doi.org/10.1177/
1094342010391989.

[3] Mont-Blanc project. http://www.montblanc-project.eu/.

[4] GW4 Alliance, Isambard ARM-based supercomputer. http://gw4ac.uk/isamba

rd/..

L. Natvig, T. Follan, S. Stoa, S. Magnussen, A. Garcia Guirado, Limbing Mont

Blanc - A Training Site for Energy Efficient Programming on Heterogeneous

Multicore Processors, 2015. CoRR abs http://1511.02240.

N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, A. Ramirez, Tibidabo: Making

the case for an ARM-based HPC system, Future Gener. Comput. Syst. (2013).

N. Rajovic, A. Rico,]. Vipond, I. Gelado, N. Puzovic, A. Ramirez, Experiences with

mobile processors for energy efficient HPC, in: Design, Automation and Test in

Europe Conference and Exhibition, DATE, 18-22 March 2013, 2013, pp. 464,

468.

[8] N. Rajovic, P.M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, M. Valero,

Supercomputing with commodity CPUs: are mobile SoCs ready for HPC?

in: Proceedings of the International Conference on High Performance Comput-

ing, Networking, Storage and Analysis, SC’13, ACM, New York, NY, USA, 2013.

Article 40, 12 pages.

K.P. Saravanan, P.M. Carpenter, A. Ramirez, A performance perspective on

energy efficient HPC links, in: Proceedings of the 28th ACM International Con-

ference on Supercomputing, ICS '14, ACM, New York, NY, USA, 2014, pp. 313-

322.

[10] D. Goddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Rajovic, N. Puzovic, A.
Ramirez, Energy efficiency vs. performance of the numerical solution of PDEs:
An application study on a low-power ARM-based cluster, J. Comput. Phys.
(ISSN: 0021-9991) 237 (2013) 132-150.

[11] E. Calore, S.F. Schifano, R. Tripiccione, Energy-performance tradeoffs for HPC
applications on low power processors, in: S. Hunold, A. Costan, D. Giménez, A.
Iosup, L. Ricci, M.E.G. Requena, V. Scarano, A.L. Varbanescu, S.L. Scott, S. Lankes,
J. Weidendorfer, M. Alexander (Eds.), Euro-Par 2015: Parallel Processing Work-
shops, Springer International Publishing, 2015, pp. 737-748.

[12] Nikola Rajovic, et al., The mont-blanc prototype: an alternative approach
for hpc systems, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC '16, IEEE Press,
Piscataway, NJ, USA, 2016 Article 38, 12 pages.

[13] L Grasso, P. Radojkovic, N. Rajovic, I. Gelado, A. Ramirez, Energy efficient HPC
on embedded SoCs: Optimization techniques for mali GPU, in: Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, 19-23 May
2014, pp. 123, 132.

[14] J.A.Ross,D.A.Richie, SJ. Park, D.R. Shires, L.L. Pollock, A case study of OpenCL on
an android mobile GPU, in: High Performance Extreme Computing Conference,
HPEC, IEEE, 2014 pp. 1, 6,9-11.

[15] O. Lehmkuhl, C.D. Perez-Segarra, R. Borrell, M. Soria, A. Oliva, Termofluids: A
new parallel unstructured CFD code for the simulation of turbulent industrial
problems on low cost PC cluster, Parallel CFD 2007, Lect. Notes Comput. Sci.
Eng. 67 (2008) 275-282.

[16] R.Borrell,]. Chiva, O. Lehmkuhl, G. Oyarzun, . Rodriguez, A. Oliva, Optimising
the termofluids CFD code for petascale simulations, Int. J. Comput. Fluid Dyn.
30 (6) (2016).

[17] J. Dongarra, Basic linear algebra subprograms technical forum standard, Int. J.
High Perform. Appl. Supercomput. 16 (1) (2002) 1-111; Int. J. High Perform.
Appl. Supercomput. 16 (2) (2002) 115-199.

[18] G. Oyarzun, Heterogeneous Parallel Algorithms for Computational Fluid Dy-
namics on Unstructured Meshes (Ph.D. thesis), Polytechnic University of Cat-
alonia, 2015 (Chapter 2). www.tdx.cat/handle/10803/323892.

[19] EX. Trias, O. Lehmkuhl, A. Oliva, C.D. Perez-Segarra, RW.C.P. Verstappen,
Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids, J. Comput. Phys. 258 (2014) 246-267.

[20] AJ. Chorin, Numerical solution of the Navier-Stokes Equations,]J. Comput.
Phys. 22 (1968) 745-762.

[21] A.Monakov, A. Lokhmotov, A. Avetisyan, Automatically tuning sparse matrix-
vector multiplication for GPU architectures, high performance, embedded
architectures and compilers, Lecture Notes in Comput. Sci. 5952 (2010) 111-
125.

[22] G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, MPI-CUDA sparse matrix-vector
multiplication for the conjugate gradient method with an approximate inverse
preconditioner, Comput. & Fluids 92 (2014) 244-252.

[23] D.B. Heras, V. Blanco,].C. Cabaleiro, F.F. Rivera, Modeling and improving lo-
cality for the sparse-matrix-vector product on cache memories, Future Gener.
Comput. Syst. 18 (1) (2001) 55-67.

[24] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in: Proc. 24th Nat. Conf, ACM, 1969, pp. 157-172.

5

6

[7

[9

http://www.montblanc-project.eu
http://dx.doi.org/10.1016/j.crme.2010.11.002
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1177/1094342010391989
http://www.montblanc-project.eu/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://gw4ac.uk/isambard/
http://1511.02240
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb6
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb8
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb9
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb10
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb11
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb12
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb14
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb15
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb16
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb17
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb17
http://www.tdx.cat/handle/10803/323892
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb19
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb20
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb21
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb22
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb23
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb24
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb24

796 G. Oyarzun et al. / Future Generation Computer Systems 79 (2018) 786-796

[25] C. Gil,]. Ortega, AF. Diaz, M.D.G. Montoya, Annealing-based heuristics and
genetic algorithms for circuit partitioning in parallel test generation, Future
Gener. Comput. Syst. 14 (5) (1998) 439-451.

[26] W. Yang, K. Li, K. Li, A hybrid computing method of SpMV on CPU-GPU
heterogeneous computing systems,]. Parallel Distrib. Comput. (2017).

[27] W.Yang, K. Li, Z. Mo, K. Li, Performance optimization using partitioned SpMV
on GPUs and multicore CPUs, IEEE Trans. Comput. 64 (9) (2015) 2623-2636.

[28] D.E.Aljure, O.Lehmkuhl, I. Rodriguez, A. Oliva, A flow and turbulent structures
around simplified car models, Comput. & Fluids 96 (2014) 122-135.

Dr. Guillermo Oyarzun is a Marie Curie post-doc re-
searcher of the SEDITRANS project in the Department of
Civil Engineering at the University of Patras, Greece. He
obtained his Ph.D. at Barcelona Tech, Spain. He currently
collaborates as external researcher in the Heat and Mass
Transfer Technological Center (CTTC) and in Termo Fluids
S.L. His scientific activity has been developed in the fields
of Computer Science applied to Computational Fluid Dy-
namics, with a focus on the development of new numerical
methods and software tools for the emerging technologies
in High Performance Computing (HPC).

Dr. Ricard Borrell is a Juan de la Cierva postdoctoral
researcher at the Barcelona Supercomputing Center (BSC).
His research is conducted in the areas of Applied Math-
ematics and Computer Science for Computational Me-
chanics, with the focus on High Performance Computing.
He is author of 17 journal papers and of more than 75
contributions to international conferences. Additionally,
he is co-founder of Termo Fluids S.L (www.termofluids.
com) a spinoff of Barcelona Tech, aiming to transfer aca-
demic knowledge and experience to the industrial sector.
Moreover, he has been member of the Industrial Advisory
Committee of PRACE for two years.

Dr. Andrey Gorobets is a leading researcher at the
Keldysh institute of applied mathematics (KIAM) of Rus-
sian academy of sciences (RAS), Moscow, Russia. He is
twice Ph.D., one in the Institute for math modeling of RAS,
Russia, one in Barcelona Tech, Spain, and once Dr. Sc. at
KIAM. All the degrees are in high performance computing
of computational fluid dynamics problems. As a result, He
has 41 journal publications and He has participated in 89
conference talks on this subject. His main research topic
now is development of parallel algorithms for large-scale
numerical simulations on hybrid supercomputers.

Dr. Filippo Mantovani is a postdoctoral research asso-
ciate of the Mobile and embedded-based HPC group at
the Barcelona Supercomputing Center (BSC). He graduated
in mathematics and holds a Ph.D. in Computer Science
from University of Ferrara, Italy. He has been a scientific
associate at the DESY laboratory in Zeuthen, Germany,
and at the University of Regensburg, Germany. He spent
most of his scientific career in computational physics,
computer architecture and high-performance computing,
contributing to the Janus, QPACE and QPACE2 projects. He
joined BSCs Mont-Blanc project in 2013, becoming in 2014
principal investigator of the project.

Professor Assensi Oliva Founder and head of the Heat
and Mass Transfer Technological Center (CTTC), one of the
leading research centers in the field of Turbulence and
Heat and Mass transfer. He has more than 40 years of
experience working on heat and mass transfer phenom-
ena analysis, fluid mechanics (CFD), numerical simulation
models and experimental test facilities. As a result of his
research activity, he has been author of more than 100
publications in international journals of mechanical and
thermal engineering in the last 15 years and about 300
contributions in peer-review international conferences.

http://refhub.elsevier.com/S0167-739X(17)30573-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb25
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb26
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb27
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb28
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb28
http://refhub.elsevier.com/S0167-739X(17)30573-3/sb28
http://www.termofluids.com
http://www.termofluids.com
http://www.termofluids.com

	Efficient CFD code implementation for the ARM-based Mont-Blanc architecture
	Introduction
	Governing equations and numerical method
	Mont-Blanc prototype
	Computer system architecture
	Programming model

	Algorithmic optimizations
	Inter-node communications
	Intra-device optimization
	Load balancing inside hybrid nodes

	Performance tests
	Intra node performance: SpMV data layout
	Intra node performance: Heterogeneous execution
	Inter node performance: Overlapping
	Inter node performance: Scalability
	Comparative analysis: Performance and energy efficiency

	Conclusions
	Acknowledgments
	References

