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Abstract

In many areas of applied linear algebra, it is necessary to work with matrix approximations. A
usual situation occurs when a matrix obtained from experimental or simulated data is needed to be
approximated by a matrix that lies in a corresponding statistical model and satisfies some specific
properties. In this short note, we focus on symmetric and positive-semidefinite approximations and
we show that the positive and negative indices of inertia of the symmetric approximation and the
rank of the positive-semidefinite approximation are always bounded from above by the rank of the
original matrix.
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1 Introduction

A common problem in applied linear algebra is finding the nearest matrix X to a given matrix A subject to
some specific properties of X. For example, in many applications of different areas such as machine learning
and statistics, the matrix A is obtained from empirical or simulated data while X should lie in some statistical
model. Among the usual properties required for X we find: having a certain rank or being orthogonal, symmetric,
positive-definite... We refer the reader to the paper of Higham [5] for a nice introduction to this kind of applied
problems. The quoted paper also contains a survey on theoretical results and computational methods usually
applied to nearness problems for fundamental matrix properties like symmetry, positive-definiteness, orthogonality
or normality.

In this short note, we focus on the study of the rank and inertia of the symmetric and the symmetric positive-
semidefinite (PSD for short) approximations (in the Frobenius norm) of a low rank matrix. Namely, our main
result (Theorem 3.1) states that the inertia indices of the symmetric approximation of a matrix are upper bounded
by its rank.

The PSD approximation is easy to compute in the Frobenius norm (see [4]) and plays an important role in
detecting and modifying an indefinite Hessian matrix in Newton methods for optimisation [5]. Some other relevant
applications are discussed by Duff, Erisman and Reid in [2], where the authors mention the importance of finding
the closest positive-semidefinite matrix on sparsity optimisation as well as in building a large circuit analysis
model from measured data. In machine learning, some successful applications that depend on symmetric positive-
semidefinite matrices (covariance, correlation or kernel matrices) are multi-camera tracking based on covariance
matrices derived from appearance silhouettes, medical diagnostics via diffusion tensor imaging, computational
anatomy, robust face recognition and action recognition (see [8]). The particular application that originally
motivated this paper is the use of algebraic tools in phylogenetics. More precisely, our study is inspired by
a theoretical result that states that a certain matrix has to be PSD of low rank in order to correspond to a
distribution arising from a hidden Markov process on a certain phylogenetic tree (see Proposition 4.5 in [1]). If
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one wants to apply this result to real data, it is crucial to know whether the rank is preserved under the PSD
approximation. This is guaranteed by our Corollary 3.3.

The outline of this article is as follows. We start with a Preliminaries section where the basic tools needed
to state the main theorem are introduced. In Section 3 we present the main result (Theorem 3.1) and, as a
byproduct, we are able to prove in Corollary 3.3 that the nearest symmetric positive-semidefinite matrix to a
rank k matrix has also rank less than or equal to k.

2 Preliminaries

We present some known results that will be used throughout the rest of the paper and we refer to the book [7]
for the linear algebra background needed for this paper.

Given a real square matrix A ∈ Mn(R), the spectrum of A is the set of all its eigenvalues. The inertia (or
signature) of a real symmetric matrix S is the number, counted with multiplicity, of positive, negative and zero
eigenvalues. It can be denoted by the triplet (i+, i−, i0) where i+ and i− are also known as the positive and
negative inertia indices of S, respectively. By the Spectral Theorem (see page 517 in [7]) the eigenvalues of any
real symmetric matrix S are all real and S diagonalizes through an orthonormal basis of eigenvectors.

The problem of finding the closest symmetric matrix S to a real matrix A ∈ Mn(R) was solved by Fan and

Hoffman in 1955 (see [3]). It is well known that S equals
A+AT

2
and is unique in the Frobenius norm.

Moreover, Higham proved in [4] that if S = UH is a polar decomposition of S (that is, U is orthogonal
and H is symmetric and positive semidefinite), then the PSD approximation X to A in the Frobenius norm is

X =
S +H

2
.

3 Results

From now on, unless noted otherwise, A ∈ Mn(R) is a real matrix of rank(A) = k and S =
A+AT

2
stands for

its nearest symmetric matrix.
Our main result states that the positive and negative indices of inertia of S are upper bounded by rank(A).

Theorem 3.1 Let A ∈ Mn(R) be a matrix of rank(A) = k and S the symmetric approximation of A. Then
i+(S) ≤ k, i−(S) ≤ k and i0(S) ≥ max{0, n− 2k}.

The following easy lemma is crucial to prove Theorem 3.1.

Lemma 3.2 For any v ∈ Rn we have vTAv = vTSv.

Proof. For any v ∈ Rn, vTAv is a scalar, so vTAv = (vTAv)T . It follows that

vTSv = vT
(
A+AT

2

)
v =

1

2

(
vTAv + vTAT v

)
=

1

2

(
vTAv + (vTAv)T

)
=

=
1

2

(
vTAv + vTAv

)
= vTAv,

which proves the result. �

We are now ready to prove Theorem 3.1.
Proof. We proceed by contradiction. Let (i+, i−, i0) denote the inertia of S and suppose i+ = N with N > k.

Let v1, . . . , vn be an orthonormal basis of eigenvectors of S ordered so that v1, . . . , vN correspond to the
positive eigenvalues. That is, Svi equals λivi with λi > 0 for all i ∈ {1, . . . , N}, and λi ≤ 0 if i > N . Let V
be the subspace spanned by these eigenvectors V := 〈v1, . . . , vN 〉. Then for all nonzero v ∈ V it is satisfied that
vTSv > 0.

Grassman’s formula states that dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F ) for all E, F vector subspaces
of the same vector space (see 4.4.19 in [7]). Note that dim(V ) is N and dim (ker(A)) is n−k since rank(A) equals
k. Thus we infer

dim(V + ker(A)) + dim(V ∩ ker(A)) = dim(V ) + dim(ker(A)) = N + n− k. (1)

Since dim(V + ker(A)) ≤ n expression 1 gives us that dim(V ∩ ker(A)) ≥ 1. Consequently, there exists at
least one element w 6= ~0 such that w ∈ V ∩ ker(A). By Lemma 3.2 wTAw equals wTSw, which is positive since
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w belongs to V . But at the same time w belongs to ker(A) and hence wTAw = wT~0 which is equal to zero. This
leads to a contradiction and we conclude i+ ≤ k.

An analogous argument can be used to prove that i− ≤ k. The fact that i0 ≥ max{0, n− 2k} follows trivially
since i+ + i− + i0 = n. �

Using this result, it is easy to bound the rank of the PSD approximation of a matrix A ∈Mn(R):

Corollary 3.3 The rank of the PSD approximation X of a real matrix A is less than or equal to rank(A).

Proof. There exists an orthonormal basis {v1, . . . , vn} of eigenvectors of S, the symmetric approximation of A,
with respective eigenvalues {λ1, . . . , λn} such that S = PΛPT where Λ = diag(λi) and P is the orthogonal matrix
with these eigenvectors as columns. In particular, P−1 = PT . We define Λ̄ as the diagonal matrix with entries
λ̄i = max{0, λi}. Then, the PSD approximation of A is

X = PΛ̄PT . (2)

We claim that PΛ̄PT is equal to the PSD approximation of A. In order to show it, first consider σi = λi
|λi|

if

λi 6= 0 or σi = 0 if λi = 0, and define Σ = diag(σi) and |Λ| = diag(|λi|). Then it is easy to see that S = PΣ|Λ|PT
and since P is orthogonal, S = UH is a polar decomposition of S where U = PΣPT and H = P |Λ|PT .

Therefore, the representation of X = PΛ̄PT follows because
(Σ + Id)|Λ|

2
is equal to Λ̄ and

X =
S +H

2
=

(PΣPT )(P |Λ|PT ) + P |Λ|PT

2
=

(PΣPT + Id)P |Λ|PT

2

=
P (Σ + Id)|Λ|PT

2
= PΛ̄PT .

From this new expression of X in 2 we see that rank(X) = #{λ̄i|λ̄i 6= 0} (λ̄i counted with multiplicity)
which coincides with the positive inertia index of S. Finally since i+(S) ≤ rank(A) by Theorem 3.1, we obtain
rank(X) ≤ rank(A). �

From now on we focus on the extremal cases of rank(X). First, we state a known result.

Theorem 3.4 (Marsaglia [6]) Let A,B ∈ Mn(R). Let CA, CB be the subspaces generated by their columns and
RA, RB subspaces generated by their rows. Let c = dim(CA ∩ CB) and r = dim(RA ∩RB), then

rank(A) + rank(B)− c− r ≤ rank(A+B) ≤ rank(A) + rank(B)−max{c, r}. (3)

In particular, rank(A+B) = rank(A) + rank(B) if and only if dim(CA ∩CB) = dim(RA ∩RAT ) = dim(RA ∩
RB) = 0.

Back to our case of interest, we take B = AT and analyse the cases when dim(CA ∩ CAT ) = dim(CA ∩ RA)
attains its minimal and maximal possible values. The following corollary characterises the former case.

Corollary 3.5 Both the positive and negative indices of inertia of the symmetric approximation S are equal to
rank(A) if and only if dim(CA ∩RA) = 0.

Proof. Using Theorem 3.4 and the fact that S =
A+AT

2
we have that rank(S) is 2k if and only if dim(CA ∩

CAT ) = dim(RA ∩RAT ) = dim(RA ∩CA) is equal to zero. Moreover, since rank(S) = i+ + i− and i+, i− ≤ k (by
Theorem 3.1), rank(S) is equal to 2k if and only if i+ = i− = k. In summary, both i+(S) and i−(S) are equal to
k if and only if rank(S) is 2k, which holds if and only if CA ∩RA is equal to zero. �

Note that the maximal value for dim(CA ∩ RA) is rank(A) = k. In this case, applying Theorem 3.4 to the
case B = AT , we derive that 0 ≤ rank(S) ≤ k. Obviously rank(S) = 0 if and only if S = 0 (and hence A is
antisymmetric and rank(X) = 0). The upper bound is achieved if and only if i0(S) = n−k and i+(S)+i−(S) = k.
Therefore RA = CA = RS , since rank(A) is equal to rank(S). This happens when A is symmetric; in this case we
have S = A and X has rank equal to the number of positive eigenvalues of A (counted with multiplicity).
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