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Abstract	

Coastal zones are among the most productive yet highly threatened systems in the 

world (EEA 2006; Finkl 2012; Kron 2013). These areas concentrate an elevated number 

of values both natural and socio-economic, making them very vulnerable to the 

potential effects of natural hazards (EEA 2013a). Therefore, effective risk management 

requires a holistic analysis in which the multiple components that determine risk are 

taken into account. This has been addressed with use of The Coastal Risk Landscape 

concept, which can be defined as the integrated risk of coastal areas resulting from the 

action and interaction of natural and/or human induced hazards on existing values and 

assets.  

A methodology to assess coastal erosion and flood risk at a regional scale is 

presented. This uses an integrated analysis of the main processes associated to forcings 

that induce erosion and flooding at different temporal scales (episodic, medium and 

long-term) as well as an analysis of the socio-economic consequences. This has been 

framed within the Source-Pathway-Receptor-Consequences (SPRC) model, in which 

the “pathway” has been adapted to represent each hazard by considering the different 

related processes acting at different timescales.   

To this end, each component (process) is first evaluated individually and 

classified into an intensity scale which allows an integration and comparison of their 

relative importance along the coast. An intensity scale associated with erosion 

components (episodic, medium and long-term) has been defined considering how the 

beach is affected, in terms of providing relevant functions for the area, i.e. recreation 

and protection (Valdemoro and Jiménez 2006). Then, selected variables are used to 

assess the flooding components (flash floods, marine floods and inundation by sea level 

rise), related to the characteristics of their processes, and classified into an intensity 

scale. In this case, an absolute and average value is obtained depending on whether the 

total affected area is considered or not. This permits an assessment of their individual 

contribution in order to analyse their relative contribution to the total risk.  

The consequences of erosion and flooding have been determined separately taking 

into account the most relevant impacts. In the case of erosion, socio-economic values of 
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the two coastal functions analysed at a management scale (the municipality) have been 

considered. Then, the erosion components are combined in a risk matrix, providing risk 

values for different coastal management targets (i.e. recreation and protection). In the 

case of flooding, the consequences are assessed by characterising the values at exposure 

based on an indicator that encompasses five categories (land use, population and social 

vulnerability, transport system, business settings and utilities). The total risk is 

expressed as the combination of the hazard and the exposure. All of this is integrated at 

a management scale, represented by the municipality. 

This methodology has been applied to 219 km of beaches along the Catalan coast 

(NE Spanish Mediterranean). Results obtained indicate that despite the generally good 

condition of the coast to provide recreation and protection functions at present, a future 

projection at 2035, which considers the medium and long-term erosion components 

(background erosion+ SLR-induced erosion), shows an increase in the risk to provide 

such functions. Thus, most of the municipalities with a tourism focus will be unable to 

support a recreational use, and the Maresme comarca will barely provide the required 

level of protection by 2035. Moreover, episodic flood components (marine and flash 

flooding) can be considered the most relevant along the coast, with generally medium 

risk values, rising to high risk in some northern municipalities for marine floods. The 

long-term flood component (SLR) only affects low-lying areas, with the Ebro delta 

being the most important. Results indicate that the Maresme comarca is the most 

sensitive region to storm-induced components in the Catalan coast. 
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Resumen	

Las zonas costeras son unos de los espacios más productivos y altamente 

amenazados del mundo (EEA 2006; Finkl 2012; Kron 2012). Estas áreas concentran un 

elevado número de valores tanto naturales como socio-económicos que las hacen muy 

vulnerables a los efectos potenciales de los riesgos naturales (EEA 2013a). Por ello, 

para llevar a cabo una gestión adecuada del riesgo se requiere un análisis holístico en el 

que se tengan en cuenta las múltiples componentes que determinan el riesgo. Esto se ha 

abordado con el uso del concepto de El Paisaje del Riesgo Costero, que puede definirse 

como el riesgo integrado de las zonas costeras del resultado de la acción e interacción 

de los riesgos naturales y/o humanos inducidos sobre los valores y bienes existentes. 

En este trabajo se presenta una metodología para la evaluación del riesgo de 

erosión e inundación costera a escala regional. Para ello, se considera el análisis 

integrado de los principales procesos asociados a forzamientos que inducen erosión e 

inundación a diferentes escalas temporales (episódica, medio y largo plazo) así como un 

análisis de sus consecuencias socio-económicas. Esta metodología se ha enmarcado 

dentro del modelo Source-Pathway-Receptor-Consequence (SPRC) en el cual el 

“pathway” se ha adaptado para representar cada riesgo considerando los diferentes 

procesos relacionados que actúan a diferentes escalas temporales.  

Para ello, cada componente (proceso) es evaluada individualmente y clasificada 

en una escala de intensidad que permite una integración y comparación de su 

importancia relativa a lo largo de la costa. Así, se define una escala de intensidad para 

las componentes de erosión (episódica, medio y largo plazo), considerando como se ve 

afectada la playa para proveer dos de las funciones más relevantes, recreación y 

protección (Valdemoro y Jiménez 2006). Para la inundación se utilizan diferentes 

variables que permiten evaluar cada una de sus componentes (riadas, inundación marina 

e inundación por la subida del nivel del mar SNM) considerando las características de 

los procesos y clasificándolas en una escala de intensidad. En este caso, se obtiene un 

valor del riesgo absoluto y medio en función de si se considera o no el área total 

afectada. Esto permite la evaluación de la contribución individual así como la relativa al 

riesgo final. 
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Las consecuencias de erosión e inundación se determinan por separado teniendo 

en cuenta sus impactos más relevantes. En el caso de erosión, se consideran valores 

socio-económicos de las dos funciones costeras analizadas a una escala para la gestión 

(municipal). Luego, las componentes de erosión se combinan en una matriz de riesgo, 

que proporcionan valores del riesgo para diferentes objetivos de gestión costera (i.e. 

recreación y protección). En el caso de la inundación, las consecuencias se evalúan 

mediante la caracterización de valores en exposición basados en un indicador que 

abarca cinco categorías (usos del suelo, población y vulnerabilidad social, sistema de 

transportes, negocios y servicios públicos). El riesgo total se expresa como la 

combinación de la amenaza y el valor de exposición. Todo ello es integrado a una escala 

adecuada de gestión, representada por el municipio. 

  Esta metodología se ha aplicado en 219 km de playas a lo largo de la costa 

catalana (NE Mediterráneo español). Los resultados obtenidos indican que, a pesar del 

buen estado general de la costa para proveer las funciones de recreación y protección en 

la actualidad, considerando una proyección futura para el 2035 con las componentes de 

erosión a medio y largo plazo (erosión de base + erosión por SNM), el riesgo para 

proveer estas funciones incrementa sustancialmente. Así, los municipios que en la 

actualidad tienen un desarrollo basado en el turismo, tendrán problemas para proveer un 

uso recreativo, y en la comarca del Maresme difícilmente se podrá proporcionar el nivel 

requerido de protección para el 2035. Además, las componentes episódicas de la 

inundación (riadas e inundación marina) pueden ser consideradas las más relevantes a lo 

largo de la costa con valores en general de riego medio, elevándose a valores de riesgo 

alto por inundaciones marinas en municipios del norte. La componente de inundación a 

largo plazo (SNM) solo tiene efectos en costas bajas, siendo el delta del Ebro el más 

importante. Los resultados indican que la comarca del Maresme es la región más 

sensible a las componentes provocadas por tormentas en la costa catalana.  
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Chapter	1	

Introduction		

1.1 Background	

Coastal zones are among the most productive yet highly threatened systems in the 

world (EEA 2006; Finkl 2012; Kron 2013). Here, populations tend to be concentrated, 

as these zones are the most favourable for developing human activities (EEA 2013a). As 

a consequence of this, the potential for damages of natural and human-induced hazards 

increases (Elliott 2014).  

The Catalan coast, located in the NE Spanish Mediterranean, can be characterised 

as a high-risk area in which the presence of urban infrastructure and socio-economic 

developments, such as for tourism, combined with the effects of natural hazards leads to 

high levels of exposure. Here, coastal erosion and flooding represent two of the most 

relevant hazards due to their induced impacts (Barnolas and Llasat 2007; CAD 2008; 

Jiménez et al. 2011). Thus, it has been reported that in the absence of a general increase 

in marine storm-induced hazards, damages at the Catalan coast  have increased at a rate 

of aproximately 40% per decade over the last 50 years (Jiménez et al. 2012). This is the 

result of an increasingly occupied coast and a progressive coastal retreat where 

approximately 72% of the beaches are subject to erosion, at an average retreat rate of 

about 1.0 myr-1 (CIIRC 2010). 

Given the combined effects of human pressures on the coast and climate change 

impacts, coastal erosion and flooding are problems of increasing intensity (Marchand 

2010). Although traditionally they have been managed with the use of physical 

infrastructures, it has been recognized that absolute mitigation is both unachievable and 

unsustainable due to the high costs and inherent uncertainties involved (Schanze 2006).  

As a result of this, there is a clear and increasing need for including coastal risk 

management within general coastal zone management policies. Within this context, the 

Protocol on Integrated Coastal Zone Management in the Mediterranean (ICZM) 
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(PAP/RAC 2008) advise countries to undertake risk assessments to consider prevention, 

mitigation and adaptation measures in order to cope with the impacts of natural hazard 

in general, and climate change in particular. Also related to this and, specifically 

devoted to flood hazards, the EU Floods Directive 2007/60/EC (EC 2007) establishes a 

framework for the assessment and management of flood risks, aiming for a reduction in 

the adverse consequences for human health, the environment, cultural heritage and 

economic activity. The Directive urges flood risk analysis and flood risk management at 

the community level, based on local circumstances and the specific types of flooding 

(river floods, flash floods, urban floods, and flooding from the sea in coastal areas) 

which may be present.  

In order to assess and mitigate the effects of natural hazards in a given area, it is 

necessary to develop new methods which allow for the consideration of multiple 

hazards and their consequences. This is a key factor in achieving a sustainable 

environment, and for adequate land use planning (Durham 2003; Marzocchi et al. 

2009). Although new approaches, which consider multiple hazards, are emerging (e.g. 

De Pippo et al. 2008; Thierry et al. 2008; Lozoya et al. 2011; Marzocchi et al. 2012; 

FEMA 2013) challenges remain due to the multitude of factors involved in the 

assessment of risk. One of the major difficulties arises with the consideration of 

different time and spatial scales in which hazards act, as well as the range of 

consequences.  

To address all of these challenges, this work presents the Coastal Risk Landscape 

concept, which is defined as the integrated risk of a coastal area resulting from the 

action and interaction of natural and/or human induced hazards on existing values and 

assets. From this, a methodology has been developed which considers both coastal 

erosion and flooding, these being the most significant hazards for the study area 

(Barnolas and Llasat 2007; CAD 2008; Jiménez et al. 2011), and their induced impacts. 

Here, these two hazards are considered to be the resultant processes induced by forcings 

acting at different temporal and spatial scales. 
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1.2 Objectives	

Within this context, the main objective of this study is to develop a methodology 

to assess coastal erosion and flood risks associated with different processes acting at 

different temporal scales and to apply this to the Catalan coast.  

In order to achieve this, three partial objectives have been defined: 

1. To develop a conceptual framework for the assessment of multiple coastal 

risks. 

2. To develop methodologies in the assessment of different hazards at different 

temporal and spatial scales and their consequences at a regional scale. 

3. To assess coastal erosion and flood risk associated with processes of different 

temporal and spatial scales in the Catalan coast. 

1.3 Outline	

The document is organised in seven main chapters and three appendices as 

follows: 

Chapter 2 describes the study area and the data used. 

Chapter 3 provides an overview of the risk analysis framework for the proposed 

methodology.  

Chapter 4 presents the methodology developed for erosion risk analysis and the results 

obtained from its application at the Catalan coast. 

Chapter 5 presents the methodology developed for flooding risk analysis and the 

results obtained from its application at the Catalan coast. 

Chapter 6 analyses the implications of erosion and flooding risk methodologies and 

their integrated results along the Catalan coast. 
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Chapter 7 gives an overview of the main conclusions and the implications for coastal 

management. 

Appendix A shows the maps used for the calculation of the FFPI’. These maps provide 

geomophological and climatic characteristics of the study area. 

Appendix B indicates the importance of the variables used in the calculation of a Social 

Flood Vulnerability Index (SFVI), the corresponding data for Catalonia and the 

standardization methods used. 

Appendix C provides a list of scientific contributions during this doctorate.   
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Chapter	2	

Study	area	and	data	

2.1 The	Catalan	coast	

Catalonia is an autonomous region located on the NE Spanish Mediterranean 

coast (Figure 2.2). It occupies 32,105 km2 with a coastline of around 600 km, of which 

270 km are beaches (CADS 2005). The coast comprises an extensive variety of 

geodiversity and biodiversity represented in different coastal systems, such as cliffs, 

rocky coasts, sandy beaches, estuaries and river deltas.  

Along the coast, beach typology can be divided into two geographical areas. In 

the northern part, beaches mostly correspond with small pocket beaches nestled between 

cliffs, with course sand and high slopes. The rest of the northern coast is made up of the 

low-lying area of the Gulf of Roses and the long narrow beaches of the Maresme region. 

In contrast, in the southern part (south Barcelona) beaches can be characterised as 

having very fine sand and soft slopes (Figure 2.1) (see Appendix A for geomorphologic 

and climatic characteristics). 

An important geomophological feature located parallel to the coast, and the source 

of sand for its beaches, is the Littoral range and the Pre-littoral system, reaching above 

700m and 1700m respectively. The hydrographical network covers the tributary waters 

of the Ebro basin and the Internal Basins of Catalonia (IBC), which include rivers that 

rise in Catalonia and flow into the Mediterranean Sea. The proximity to the 

Mediterranean Sea and its complex orography plays an important role in rainfall and 

flood production (Barnolas and Llasat 2007). Moreover, local topography also exerts a 

significant control over the wind climate which is characterised by low average winds 

although some events, especially those synoptic in nature, are responsible for strong 

winds and gales in the Catalan Sea (Sanchez-Arcilla et al. 2008). The storm-associated 

with a mean climatic year can be defined by the storm season between October-April 

and the calm season between May-September (Jiménez et al. 1997). The precipitation 



The Coastal Risk Landscape 

 

 
6 

regime is characterised by a yearly distribution, with two maximum peaks in autumn 

and spring (Barnolas and Llasat 2007). However, high rainfall precipitation produced by 

convective events shows only one peak between the end of summer and autumn (Llasat 

2001). 

In many cases, permanent rivers form deltas at their mouth, with the most relevant 

being the Ebro delta, an ecologically rich environment, barely controlled by human 

activity and very vulnerable to wave action and varying sea levels (Alvarado-Aguilar et 

al. 2012) (Figure 2.1). Additionally, ephemeral dry streams are also found along the 

coastal fringe characterised by short and steep slopes, which after an intensive rainfall, 

typical of Mediterranean regions, causes immediate high-energy water runoff toward 

the sea.  

Socio-economic development is based on typical coastal activities, such as 

commerce, agriculture, residential developments and tourism (Sardá et al. 2005) with 

the latter being one of the main economic activities contributing around 11 % of the 

Gross Domestic Product (GDP) (Duro and Rodrígez 2011). Tourism has significantly 

influenced a secondary residence urbanization process which has contributed greatly to 

the artificialization of the coastline, and consequently, in the reduction of natural areas 

along the coast. In Figure 2.1, the natural and the urban areas are presented. The most 

relevant natural areas are largely located in the northern (Cap de Creus and the Gulf of 

Roses) and southern regions (Ebro delta). Among the total coastal land, 46 % is urban, 

5.7 % is protected against urbanization (but is not protected for other uses, such as 

agriculture) 8.2 % is non-urban and 39.6% is protected under the regional Plan of the 

Spaces of Natural Interest in Catalonia (PEIN) (Brenner 2007).  

61.9 % of the population of Catalonia (4.68 million people in 2014, (IDESCAT 

2015)) are concentrated in the coastal comarcas, which represent 22.8% of the total 

territory. This results in an average population density of 509.7 people/km2 (without 

considering Barcelonès- see Figure 2.2), which is considerably higher than the total 

Catalonia average of 235.3 people/km2 (IDESCAT 2015). Furthermore, these values can 

be tripled in some municipalities during the summer season.  
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Figure 2.1 Natural and urban areas represented within coastal administrative boundaries (coastal 
comarcas and municipalities). 

Administratively, the Catalan coastal zone is divided into three administrative 

levels which represent different management units (Figure 2.2). With a total of 70 

coastal municipalities, this level typifies the smallest administrative unit. These 

municipalities are grouped within a second level, termed comarcas (similar to a county) 

of which there are 12 in the coastal area. Finally, the first and the largest level includes 

the aforementioned levels grouped within 3 provinces. Their spatial distribution along 

the Catalan coast can be seen in Figure 2.2, complemented by Table 2.1 in which the 

codes used are presented.  
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Figure 2.2 The study area, showing the coastal administrative boundaries: Province, coastal comarcas and 
municipalities (numbers explained in Table 2.1 ) 
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Table 2.1 Coastal administrative division code. 

 Municipality Comarca Province   Municipality Comarca Province 

1 Portbou Alt 
Empordà 

Girona 39 Sant Adrià del 
Besos* 

Barcelonès* Barcelona 

2 Colera 40 Badalona* 

3 Llançà 41 Barcelona* 

4 El Port de la Selva 42 El Prat de Llobregat Baix 
Llobregat 5 Cadaquès 43 Viladecans 

6 Roses 44 Gavà 

7 Castellò d'Empúries 45 Castelldefels 

8 Sant Pere Pescador 46 Sitges Garraf 

9 l'Escala 47 Sant Pere de Ribes* 

10 Torroella de Montgrí Baix 
Empordà 

48 Vilanova i la Geltrú 

11 Pals 49 Cubelles 

12 Begur 50 Cunit Baix 
Penedès 

Tarragona 

13 Palafrugell 51 Calafell 

14 Mont-Ras* 52 El Vendrell 

15 Palamòs 53 Roda de Barà Tarragonès 

16 Calonge 54 Creixell 

17 Castell-Platja d'Aro 55 Altafulla 

18 Sant Feliu de Guìxols 56 Torredembarra 

19 Santa Cristina d'Aro 57 Tarragona 

20 Tossa de Mar La Selva 58 Salou 

21 Lloret de Mar 59 Vila-seca 

22 Blanes 60 Cambrils Baix Camp 

23 Malgrat de Mar Maresme Barcelona 61 Mont-Roig del Camp 

24 Santa Susanna 62 Vandellòs i 
l'Hospitalet de 
l'Infant 

25 Pineda de Mar 63 L'Ametlla de Mar Baix Ebre 

26 Calella 64 El Perelló 

27 Sant Pol de Mar 65 L'Ampolla 

28 Canet de Mar 66 Deltebre 

29 Arenys de Mar 67 Sant Jaume d'Enveja Montsià 

30 Caldes d'Estrac 68 Amposta 

31 Sant Vicenç de 
Montalt 

69 Sant Carles de la 
Ràpita 

32 Sant Andreu de 
Llavaneres 

70 Alcanar 

33 Mataró *Municipalities not considered in the analysis, as they 
have no beaches (Mont-Ras and Sant Pere de Ribes) or 
their socio-economic data may distort the results for 
the entire region (Barcelonès comarca)   

34 Cabrera de Mar 

35 Vilassar de Mar 

36 Premià de Mar 

37 El Masnou 

38 Montgat 
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2.2 Data	

2.2.1 Forcing	data	

Wave data used to characterise storm-induced erosion and flooding have been 

obtained from the hindcast SIMAR-44 database. To obtain a reliable extreme 

distribution representative of the climatic characteristics of the study area, long time 

wave series data are required. For this purpose, the hindcast SIMAR-44 database 

represents the longest existing datasets for the study area. This database was generated 

from high resolution modelling of the atmosphere, sea level, and waves developed by 

Puertos del Estado within the HIPOCAS project (Guedes-Soares et al. 2002; 

Ratsimandresy et al. 2008). The data used covers the period from January 1st 1958 to 

December 31st 2001, providing a time series of meteorological tide level, significant 

wave height Hm0, peak period Tp and the mean wave direction every 3 hours.  

In order to characterise flash floods, the annual maximum daily precipitation for a 

return period of 10 years (INM 2007) was selected as being representative of an extreme 

precipitation event. This information yields 2.5 x 2.5 km-sized cells for all of Catalonia.  

Finally, to characterise sea level rise (SLR) due to climate change, two climatic 

scenarios have been considered: scenario RCP 8.5, as presented within the last AR5 

report (IPCC 2015) (a rise of  0.75 by 2100), and a High-End scenario (a rise of 1.75 m 

by 2100) taken as the worst case, which is relevant for coastal management (e.g. Hinkel 

et al. 2015). This last scenario was created by Jevrejeva et al. (2014), and it was 

obtained with a projection of sea level at 95% probability of the upper-limit scenario 

using the RCP 8.5 steric component. 

2.2.2 Geomorphological	data	

To characterise the shoreline evolution pattern dominated by alongshore gradients 

in the longshore sediment transport, aerial photographs provided by the Institut 

Cartogràphic i Geològic de Catalunya (ICGC 2014) from the period 1995-2010 have 

been analysed. It is considered that the period of analysis properly represents the 

evolution of the system under current conditions since most of major perturbations 
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(harbours, coastal engineering works, and artificial nourishments) were implemented 

before 1995. This data reflects the shoreline behaviour at decadal scale and can be used 

to estimate future beach configurations provided conditions do not change (i.e. in the 

absence of any new coastal engineering measure). For the analysis of current beach 

features, such as the beach width, longitude and sediment type, aerial photography 

(ICGC 2014) has been used alongside data provided by CIIRC (2010). 

To obtain information about the coastal surface topography, a Digital Terrain 

Model (DTM) of 5 x 5 m-sized cells, supplied by the Institut Cartogràphic i Geològic de 

Catalunya (ICGC 2014), has been used. Other physical-geomorphological features, used 

in the assessment of flash flood risk, are provided in raster format for the Maximum 

Green Vegetation Fraction by the USGS Land Cover Institute (Broxton et al. 2014) and 

the Soil Texture, developed by the European Soil Data Centre (EC 2015) with a spatial 

resolution of 1 x 1 km cell size.  

2.2.3 Socio‐economic	data		

To evaluate the socio-economic consequences, different data provided by various 

institutions have been consulted. 

To estimate the importance of tourism within the coastal municipalities, data 

based on taxes generated from tourism was acquired from La Caixa Bank (2013). 

Although this data represents a value for the entire municipality, in coastal 

municipalities tourism based on coastal activities is the major contributor. 

 Data used in the assessment of indicators such as population, non-home 

ownership, single parents, car ownership, overcrowding households the unemployed has 

been obtained from the Institute of Statistics of Catalonia (IDESCAT 2016) which 

provides data from the latest census (2011) and administrative municipalities 

registration.  

In order to define physical territorial exposure values, data in vector format has 

been employed. Urban settlements and infrastructure have been identified with data 

provided by the Mapa Urbanístic de Catalunya (MUC) from the Departament del 

Territori i Sostenibilitat (Generalitat de Catalunya 2016). Other territorial land uses have 
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been characterised with information from the MCSC-4th edition (2009) (Mapa de 

Cubiertas del Suelo de Catalunya) provided by the institute CREAF (Ecological and 

Forestry Applications Research Centre), which supplies a high resolution thematic 

cartography (from aerial photography with a scale of 1:2500 and pixel resolution of 

0.25 m) of  the main land cover in Catalonia (Ibàñez and Burriel 2010). 
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Chapter	3	

Risk	Analysis	Framework	

3.1 Coastal	risk	landscape	concept	

Coastal areas are subjected to the impacts of multiple natural and anthropogenic 

hazards making them especially sensitive given the elevated number of receptors at 

exposure. To manage risks effectively and to build resilience to their impacts, it is 

necessary to understand, measure and predict the evolution and interdependencies 

between them (WEF 2014). Thus, risk assessment must include each of the risk 

components (hazard and consequences) taking into account a number of variables and 

quantities from physical to socio-economic aspects (Kron 2013). To this end, a 

combined assessment of all the anthropogenic and natural risks affecting a territory is a 

key factor in developing a sustainable environment, and for adequate land use planning 

(Durham 2003; Marzocchi et al. 2009). However, one challenge related to analysing 

multiple components is associated with the fact that while for single processes a 

multitude of well-established approaches are available, far fewer studies analyse 

multiple components together (Kappes et al. 2012). Moreover, difficulties particularly 

arise due to differences in spatial and temporal scales. In recent years, new approaches 

are emerging where, in some cases, multiple coastal risks are considered for coastal 

management (CADS 2008; ANCORIM 2010; Saxena et al. 2012; Elliot 2014) and, in 

others, multi-risk methodologies are developed to consider different hazards acting in a 

given area (e.g. De Pippo et al. 2008; Thierry et al. 2008; Lozoya et al. 2011; Marzocchi 

et al. 2012; FEMA 2013).  

Given the intrinsic characteristics of the coast, which can be considered a multi-

component system, and recognizing the multi-dimensional assessment of the term 

“risk”, use is made of the risk landscape concept. There are several definitions of 

“landscape” depending on the context (e.g. De Bolos 1992; Olwig 2005). According to 

the European Landscape Convention, landscape is defined as “an area perceived by 

people, whose character is the result of the action and interaction of natural and/or 
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human factors” (Council of Europe 2000). Within the context of this work, The Coastal 

Risk Landscape is defined as the integrated risk of a coastal area resulting from the 

action and interaction of natural and/or human induced hazards on existing values and 

assets.  

Although it is a relatively new term, one example of its applicability can be found 

in Kamppinen (2001) to address future social risk perceptions. Another of the most 

relevant examples is introduced by the World Economic Forum in their annual report 

“Global Risk” where “The Global Risks Landscape” is included (WEF 2014). One of 

the characteristics of “landscape” is the concept of perception, which is also included 

when assessing the Global Risk Landscape in terms of perceived likelihood and 

impacts. In this work, the analysis has been limited to an “objective” approach by 

assessing the impacts without introducing the perception component. However, the final 

risk assessment is compared with local perceptions on local coastal risks to provide 

some indication of how close objective and subjective assessments are.   

One difficulty inherent in multi-risk assessments is that different disciplines do 

not use a common terminology, and definitions usually change according to the context 

for which they are created (Schneiderbauer and Ehrlich 2004). Table 3.1 presents the 

definitions of the different components of the risk analysis used in this work. 

Table 3.1 Terminology used. 

Risk The probability of harmful consequences or expected losses resulting 

from a given hazard to a given element over a specified time period. 

(Schneiderbauer and Ehrlich 2004). 

Throughout this work the risk components are characterised as 

Risk = Hazard x Consequences 

Hazard  Process or phenomenon that may cause loss of life, injury or other 

health impacts, property damage, loss of livelihoods and services, 

social and economic disruption or environmental damage. This can be 

characterised by their magnitude or intensity, speed of onset, duration 

and area of extent (UNISDR 2009). 

Consequences Potential socio-economic values and services at exposure. 

Vulnerability The potential for casualty, destruction, damage, disruption or other 

form of loss (Alexander 2000). 
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In the context of this work, the analysis is restricted to the most relevant hazards 

affecting the physical state and stability of the Catalan coast; erosion and flooding. 

Hence, a specific methodology adapted to the characteristics of each hazard, 

contributing forcings and induced impacts has been developed. To this end, each hazard 

(erosion and flooding) is considered to be composed of different components induced 

by forcings acting at different timescales (see section 3.3.1). The consequences are 

evaluated taking into account the implications of the different processes acting on the 

coast in terms of services provided by beaches and socio-economic values. The 

combination of hazard and consequences determines the risk associated with each 

component, which is later integrated at different (management) scales (see section 

3.3.2). Although each hazard and consequence is assessed in terms of their respective 

magnitude, obtained values are later standardised using selected risk indicators. This 

permits a selection of common units for all components to compare and to integrate 

them. The development of comparative indicators has been used extensively to measure 

risk in a quantitative way and to enable a comparison of different areas (Birkmann 

2007). This also facilitates the task of communicating results in a format that can be 

understood by the non-specialist, which is especially important for coastal zone 

management objectives (Cooper and McLaughlin 1997). 

3.2 Source‐Pathway‐Receptor‐Consequence	model	

The basic conceptual framework used to analyse risks is the well-known Source-

Pathway-Receptor-Consequence model (SPRC) (Figure 3.1). This model was first used 

in natural science for pollutants (Holdgate 1979) and has been subsequently used for 

different kinds of risk analysis. Particularly, it is widely used in flood risk assessment 

(Evans et al. 2004; Gouldby and Samuels 2005; Narayan et al. 2014) and has become a 

well-established framework in coastal risk management (Sayers et al. 2002; Evans et al. 

2004; MfE 2008; Narayan et al. 2014).  

An example of the application for coastal hazard risk is presented in Figure 3.1.  

The basis of this model is that for a coastal hazard risk to occur, there needs to be a 

‘driver’ (such as a storm), a ‘receptor’ (such as property within the coastal margin), and 

an erosion or inundation pathway between the two, created by the driver (MfE 2008).  
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Figure 3.1 SPRC model. An example for coastal hazard risk (MfE 2008).  

Here, the model is adapted for erosion and flooding risk analysis. In each case, the 

presence of multiple sources inducing a hazard (pathway) are considered and presented 

at different timescale. Thus, the hazard (pathway) is divided into different components 

or processes associated with different timescales. This division permits to clearly see the 

linkages between the sources and the “divided” pathways. The model also represents the 

linkages between the pathways and the receptor and consequences. This is presented in 

more detail in section 4.2 for erosion risk and section 5.2 for flooding risk.  

3.3 Scales	

3.3.1 Temporal	and	spatial	scales	of	processes		

The temporal and spatial scales over which hazards can impact upon the natural 

environment cover many orders of magnitude and are related to the forcing forms 

inducing them (Gill and Malamud 2014). In this work, the analysed hazards (i.e. erosion 

and flooding) are considered to be induced by different forcings acting at different 

temporal and spatial scales. In this sense, although a single denomination for each 

hazard is used, they refer to different processes. Thus, the erosion hazard is considered 

to be composed of three components: (a) a storm-induced erosion, (b) a mid-term 

(decadal scale) erosion mainly due to gradient transport along the coast and (c) a long-

term SLR-induced erosion. The flooding hazard is also considered to be composed of 

three components: (a) a coastal storm-induced flooding, (b) flash floods and (c) a long-
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term SLR-induced inundation. The associated temporal and spatial scales of each 

component are shown in Figure 3.2.  

 
Figure 3.2 Temporal and spatial scales of analysis of coastal processes. 

The storm-induced component is caused by processes taking place at a short time 

scale, from hours to a few days, i.e. the duration of the storm. However, due to the 

stochastic nature of the forcing, this component is identified as being representative of 

the episodic timescale and usually is defined in terms of probability of occurrence. 

Although storms usually impact large coastal stretches, their effects are assessed locally, 

since local morphology can significantly modulate their magnitude. Due to this, the 

associated spatial scale is considered to be small (few 100s m). 

Flash flooding is also associated with the impact of storms and, in consequence, 

has a similar timescale. Due to the specific nature of this hazard, its spatial scale is 

associated with the river basin where this takes place. 

The mid-term erosion component is associated with the cumulative effect of 

littoral dynamics acting on a scale of years to a few decades. This is mainly induced by 

alongshore gradients in sediment transport, and has an associated spatial scale from 

100s of metres a few kilometres. 
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Finally, the long-term hazards are identified here as those induced by SLR. In this 

sense, they can be considered as the result of the continuous and cumulative action of a 

slow process. Thus, a minimum time of integration is required to perceive their impacts, 

and so the associated temporal scale is from decades to centuries. With respect to the 

spatial scale, their action takes place along the entire coast and in this sense they are 

representative of the large scale (up to 100s km). 

3.3.2 Scale	of	integration		

As mentioned, the area of study in this work is the Catalan coast. Since the main 

objective of the proposed methodology is to help in the process of risk management 

from the perspective of a coastal manager, the scale of application/integration of the 

risks has been selected based on administrative/management considerations.  

The basic scale of integration is the municipality. It constitutes the smallest 

official geographical administrative unit where activities that influence the structure and 

dynamics of the shoreline are managed. Therefore, municipalities represent the most 

effective planning unit for an Integrated Coastal Zone Management (ICZM) (Sardá et 

al. 2005). The study area comprises 70 coastal municipalities (Figure 3.3) from which 5 

are not considered in this work (see section 2.1). 

The second management level corresponds to the province. This represents a 

territorial division with its own legal jurisdiction composed of a set of municipalities. 

The study area comprises three coastal provinces (Figure 3.3). 

An intermediate management level between the municipality and province is the 

comarca. This unit integrates different municipalities with a common interest, which 

require a coordinated management. In order to introduce an additional value to this 

management unit, use has been made of the work of Brenner et al. (2006) regarding the 

characterisation of the Catalan coast. These authors analysed socio-economic and 

environmental variables to identify Homogeneous Environmental Management Units 

(HEMUs). These HEMUs are parts of the territory with similar environmental and 

socio-economic conditions that deserve a specific management orientation. HEMUs, 

aggregate several comarcas provided they present similar values. In the study area, 

three different HEMUs classified as highly natural areas (A), seminatural areas (B), and 
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semiurban areas (C) are identified in addition to the Barcelona area with a high 

socioeconomic development (D) which is not covered in this work (Figure 3.3). 

 
Figure 3.3 Scales of integration. 
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Chapter	4	

Erosion	risk	analysis*	

4.1 	Introduction		

Coastal erosion has become an important environmental concern as recent 

decades have seen significant economic losses, ecological damage, and social problems 

(Roca, Gamboa et al. 2008; Marchand 2010; Jiménez et al. 2012). Climate change and 

continuing urban sprawl will likely cause this tendency to grow (IPCC 2015). In 

Europe, it has been estimated that about 20,000 km of its coastline (corresponding to 

20%) faces serious coastal erosion impacts (EC 2005). As a result, over the last decade, 

the cost of coastal adaptation against flooding and erosion has been an average of 0.88 

billion Euros per year (EC 2009). In the Catalan coast about 72% of the beaches are 

subject to erosion, at an average retreat rate of about 1.0 myr-1, with more than 50% of 

the coastal municipalities having reported damages in existing beach infrastructure 

(CIIRC 2010). However, beach erosion not only poses risk to existing assets, but also 

causes a significant setback to recreation and tourism activities, and, consequently, 

threatens one of the most important sources of income for coastal economies (Phillips 

and Jones 2006; Houston 2013).  

Due to this fact, the need for including coastal hazards management within 

general management policies in the coastal zone is clear. Within this context, the 

Protocol Integrated Coastal Zone Management in the Mediterranean (PAP/RAC 2008) 

includes a specific chapter on natural hazards where the signed parties (countries) are 

mentored in “preventing and mitigating the negative impact of coastal erosion more 

effectively, and should undertake to adopt the necessary measures to maintain or restore 

the natural capacity of the coast to adapt to changes, including those caused by the rise 

in sea levels.”  

                                                 
* Edited version of Erosion Risk Analysis in the Maresme coast (NW Mediterranean,Spain) by 

Ballesteros C, Jiménez JA, Valdemoro HI and Bosom E (2017) accepted (in review) to the journal 
Natural Hazards. 
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Athough an important amount of data on coastal erosion is currently available, 

there is still a gap between its existence and its use by coastal managers (EC 2005), and 

this shortfall results in deficient or uninformed decisions.  

Moreover, understanding coastal erosion involves an insight into all the factors 

that interact along the coast and an awareness of different timescales (Marchand 2010). 

In this context, erosion is a process that operates at a wide variety of temporal scales. 

Due to this fact, and in order to tackle erosion, an holistic approach of processes at 

multiple scales is required (Fekete et al. 2009). This approach should include practical 

measures and principles that are also important for coastal erosion management, such as 

local specificity and a long-term perspective (EC 2005). 

In the Catalan coast, as in other Mediterranean coasts, coastal erosion has 

important consequences over two main coastal function; protection and recreation 

(Jiménez et al. 2011). Coastal protection can be defined as the natural function provided 

by the beach in safeguarding the hinterland (infrastructure and/or socio-economic 

receptors) from the direct wave action, whereas recreation makes reference to the space 

provided by the beach for leisure purposes.   

Within the SPRC framework, a methodology is presented here to assess erosion 

risk at a regional scale considering the implications of different erosion processes 

associated with different timescales affecting coastal functions. The methodology also 

includes an assessment of the resulting consequences, by taking into account socio-

economic indicators that determine the relative importance of each function. This 

information is integrated at the most adequate spatial and temporal management scale, 

and is combined within a risk matrix that will permit coastal managers to make 

decisions for specific management targets.  

4.2 Methodology	

Risk can be defined as the probability of harmful consequences or expected losses 

resulting from a given hazard to a given element over a specified time period 

(Schneiderbauer and Ehrlich 2004). In this part of the work, the considered hazard is 

coastal erosion, which is evaluated at three timescales. The expected negative 

consequences (or potential losses) are evaluated by assessing how two specific beach 
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functions, i.e. recreation and protection, are affected by this hazard. The decrease of the 

beach recreational carrying capacity leads to economic losses for tourism-dependent 

businesses. It will also have social consequences, because the local population will be 

affected by the disappearance of leisure spaces (beaches). The decrease in the protection 

provided by beaches will expose existing coastal infrastructure to the direct action of 

waves leading to its damage or loss. These consequences are represented in terms of 

socio-economic indicators valuing the relative importance of each component 

(recreation and protection). Finally, the period of time in which the risk is evaluated is 

selected taking into account the perspective of the coastal manager. Thus, the risk is 

evaluated at current conditions to help make decisions now, and at decadal scale (25 

years forecast) to help make future-decisions.   

The methodology presented for erosion risk has been framed within the SPRC 

model (Figure 4.1). Sources represent all forcings determining or conditioning the 

erosion process in the coast. They cover all scales, and range from those acting at very 

large spatial and long-term scales, as is the case for changes in sediment supply and the 

effects of SLR, to those associated with the episodic scale such as storm events (Figure 

4.1). These sources determine the pathway, which although known as “erosion” in 

generic terms, is decomposed here into three components (episodic-term, medium-term 

and long-term), each one associated with a specific timescale. These three erosion 

components characterise the hazard, and are separately evaluated by considering the 

relevant process controlling its magnitude. They are subsequently integrated in order to 

assess how the beach (“receptor”) is impacted in terms of providing relevant functions 

for the area, i.e., recreation and protection. In order to measure the changes in the beach 

state affecting a given function, the concept of beach functional vulnerability (BFV) is 

introduced. This is a measure of the lack of capacity of the beach to properly provide a 

given function and which can be affected by coastal hazards (here restricted to erosion). 

Finally, the practical consequences of these socio-economic changes are measured in 

terms of a series of indicators representing relevant aspects of the analysed functions.  

These last two components, represented by the BFV and the consequences are jointly 

considered to assess the effects of the analysed hazard for coastal management. To do 

this, both components are combined within a risk matrix, where their values are 

spatially integrated at the management scale, and are then compared to identify and rank 

the most sensitive areas along the coast. 
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Figure 4.1 SPRC for erosion risk analysis. 

4.2.1 Erosion	hazard	assessment	

As mentioned, erosion is considered here as the "integrated" hazard of the action 

of three components which are the result of different processes acting at different 

timescales. 

 Episodic‐term	component	

The episodic component corresponds to the instantaneous beach erosion induced 

by the impact of a storm on the coast. Although the induced beach erosion takes place at 

a timescale of hours and days (the duration of the storm), it is considered as 

representative of the episodic scale due to the stochastic nature of the forcing, the 

storms. Due to this, the characterisation of this hazard component is done in 

probabilistic terms, i.e. the magnitude of the hazard associated with a given probability 

of occurrence. 

To characterise the magnitude of the storm-induced erosion, the extreme 

probability distribution of the shoreline retreat has been obtained for the study area 

following Bosom and Jiménez (2011). The procedure is as follows, first the maximum 

annual storm in the 44-year wave time series is identified. Then, the expected induced 

beach erosion using the bulk erosion model of Mendoza and Jiménez (2006) is 

calculated. This model predicts the storm-induced beach erosion as a function of storm 

properties (wave height, period and storm duration) and beach characteristics (sediment 
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grain size and beach slope) and is applied to selected representative profiles along the 

study area (as a function of their sediment and profile shape). Finally, obtained sets of 

erosion magnitudes are fitted by a Generalized Extreme Value (GEV) probability 

distribution (one per each representative profile type) in order to know the expected 

storm-induced erosion at any probability of occurrence.   

 Medium‐term	component	

The medium-term erosion component is that associated at a timescale from years 

to few decades. At the study site, it is driven by alongshore gradients in longshore 

sediment transport rates which are due to the presence of different marinas and coastal 

structures acting as barriers for the net longshore sediment transport directed 

southwards. This component has been empirically derived by analysing shoreline data 

to obtain representative shoreline rates of displacement. This has been done by applying 

a least-squares linear regression analysis of shoreline data over time. This method filters 

out short-term shoreline fluctuations and retains the main shoreline evolution trend (e.g. 

Dolan et al. 1991; Fenster et al. 1993), which is the medium-term evolution (erosion 

when negative) component.  

This component has been evaluated through an analysis of the shoreline evolution 

over a period of a few decades using aerial photography from 1995 to 2010. As 

previously mentioned, this period can be considered as representative of the system 

behaviour under current conditions since most of major perturbations (harbours, coastal 

engineering works and artificial nourishments) were completed before 1995. The 

analysis has been applied to control points along the coast with a spacing of 100 m. The 

timeframe of the analysis can be considered as representative of this timescale because, 

in areas where the littoral dynamics is strongly dominated by the longshore sediment 

transport, shoreline evolution rates calculated using this technique require relatively 

short periods to reflect the dominant trend. This is the case for the study area, where, as 

discussed, mid-term shoreline changes are driven by the southwards directed net 

longshore sediment transport rates (CIIRC 2010; CEDEX 2014). Obtained shoreline 

evolution rates can be used to estimate future (decadal) beach configurations provided 

conditions do not change (i.e. in the absence of any new coastal engineering measure).  
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 Long‐term	component	

The long-term component of the erosion hazard is that associated with a timescale 

of several decades. This component is driven by processes acting at the long-term scale 

such as SLR, as well as by the cumulative effect (residual) of shorter-term processes 

such as alongshore gradients in sediment transport rates. Since the latter are directly 

characterised at the corresponding timescale, in this study the SLR-induced erosion is 

considered the intrinsic long-term component.  

To evaluate this component, it is assumed that the SLR-induced response on 

sedimentary coasts can be modelled using the Bruun model (Bruun 1962). This model is 

based on the assumption of the existence of an equilibrium beach profile under current 

maritime climate. A change in the position of the mean sea level (MSL) will not affect 

the shape of the equilibrium profile which will only react to maintain its constant shape 

with respect to the new MSL. To do this, the model predicts a landwards and upwards 

movement of the beach profile, which results in a shoreline retreat. In spite of the fact 

that the Bruun rule is the most common way to assess SLR-induced shoreline retreat 

(e.g. Le Cozannet et al. 2014), there is a disagreement about its validity at the local 

scale. Many researchers use it to estimate an order of magnitude of the expected 

shoreline retreat (e.g. Nicholls and Cazenave 2010; Le Cozannet et al. 2014; Jiménez et 

al. 2016), whereas others claim that it should only be applied on a small number of 

coasts due to its simplicity and assumptions (e.g. Cooper and Pilkey 2004). In the 

absence of a generally accepted morphological model, it is assumed that the Bruun rule 

can be used to estimate an order of magnitude of SLR-induced shoreline retreat at the 

regional scale. In consequence, the model is applied to compute the expected regional 

long-term erosion rate along the area of study, i.e. a unique value of the shoreline retreat 

for the entire study area. 

4.2.2 Beach	Functional	Vulnerability	(BFV)	

As previously described, beaches in the Mediterranean coast provide two main 

functions: protection and recreation. Erosion induces changes in the available beach 

width, which affects the aforementioned functions. In order to evaluate these effects, the 

necessary beach configuration to ensure these functions has been considered. Therefore, 
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in order to classify the hazard in terms of its impacts, an optimum and a failure state 

have been established for each function (protection and recreation). Thus, an optimum 

state will correspond to a beach configuration which is fully able to support/provide the 

function of interest, whereas a failure state will be given by a beach configuration which 

is unable to provide such a function.  

For a recreational beach configuration, these limits will be fixed depending on the 

density of use for the analysed beach (Jiménez et al. 2011). According to studies on user 

perception and characteristics of the study area (Yepes 1999; Valdemoro and Jiménez 

2006; Roca, Riera et al. 2008; Sardá et al. 2009), it can be assumed that the optimum 

beach width is 35 metres. Assuming a steady affluence of users, the failure state of the 

beach is selected when the beach width is 1/3 of the optimum width, which results in an 

excessive density of beach users and, in consequence, in a poor recreational capacity. 

Protective beach configuration will be dependent on the characteristics of the 

storm and on the beach morphology at the time of impact. Beach configuration related 

to the protection function is determined by the beach width required to dissipate the 

energy of a storm for a given probability of occurrence (Bosom and Jiménez 2011; 

Jiménez et al. 2011). This is equivalent to a beach wider than the storm-induced erosion 

associated to such probability. In order to select the probability of interest, coastal 

managers have to define a safety level of analysis. This level should be determined by 

taking into account the characteristics and values of the hinterland. In this case, a beach 

wider than the erosion induced by a storm with a 50 yr return period is considered the 

most appropriate for the study area (see e.g. Bosom and Jiménez 2011). Therefore, in 

order to define the optimum beach width, the 50 yr return period storm-induced 

shoreline retreat plus an additional six metres has been considered. These six metres 

represent the minimum beach width required to safely maintain beach operations after 

the storm, in order to carry out reconstruction activities and to avoid the full exposure of 

the hinterland to direct wave action. The failure state is fixed by the beach width 

determined by the storm reach associated with the impact of a frequent storm, which 

here is defined as the 10 yr return period. In any case, these limits can be modified 

taking into account the importance of the values at exposure along the coast of interest, 

as well as, the safety level fixed by local stakeholders.  
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Hence, in order to assess coastal erosion regarding a given function, the actual and 

the future status of the beach induced by the medium and the long-term erosion 

components is evaluated with respect to the optimum beach status required for the 

functions of interest. To this end, the future status of the beach has been calculated 

according to two possible scenarios by 2035, with this future projection considered 

suitable to provide useful information to decision makers while maintaining the analysis 

within reasonable uncertainty bounds. Therefore, one scenario has been defined by the 

25 year projection of the beach width using evolution rates given by the medium-term 

component. The second scenario corresponds to the same beach width projection plus 

the shoreline retreat induced by the long-term component (SLR) (Table 4.1).   

To measure the ability of the beach to provide a given function an indicator, the 

beach functional vulnerability, BFV, is defined, which is computed taking into account 

the beach status at a given time (β) as a function of the optimum and failure states (see 

Table 4.1). It varies between 0 (representing a beach status able to properly provide the 

selected function) and 1 (a beach without any capacity to provide the target function). 

This indicator is calculated every 100 m along the study area to characterise local 

beaches. 

With this approach, the erosion hazard is computed not only by the physical 

consequence, i.e. induced shoreline retreat, but also by the practical (end-user oriented) 

consequences, i.e. capacity to provide a given function. 
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Table 4.1 Methodology to assess the beach state (β) and functional vulnerability (BFV) for each function at selected scenarios. 
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4.2.3 Consequences	

Many approaches exist for assessing the consequences induced by coastal hazards 

(e.g. Cooper and McLaughlin 1998; McLaughlin et al.2002; Boruff et al. 2005; Del Rio 

and Gracia 2009). However, although there are well-established approaches (e.g. 

Messner et al. 2007; Green et al. 2011; FEMA 2013; Penning-Rowsell et al. 2013), in 

many cases, they depend on the type of hazard analysed and their implications for the 

applicable socio-economic and natural systems. Erosion is a process that can clearly be 

reflected in a direct impact that results in beach retreat. However, beach functions can 

have indirect consequences that can go beyond the direct impact, resulting in important 

losses to the local economy. In this work, these consequences are addressed by selecting 

a set of socio-economic indicators related to the function of interest. In order to define 

these, indicators must be easily quantifiable, they must be integral at a proper 

management unit scale, and need to be acceptable/understandable to coastal managers. 

In this sense, indicators have been developed and selected to characterise the 

importance of the main coastal functions: protection and recreation within the study area 

and they are represented at the minimum management scale, that is, at the municipality 

level.  

Focusing on the recreational function of the coast, two differentiated typologies 

can be distinguished: a) beaches with a tourist focus, representing one of the most 

important sources of income for the local economy, and b) a recreational use of beaches 

by the local population. 

It should be pointed out that in the analysis of the consequences, a temporal scale 

is not considered given the uncertainty associated with socio-economic scenarios. 

Rather, and in contrast to the erosion hazard components, they represent a variable 

which is steady at the present time. However, in order to replicate the methodology 

presented here in other regions, if further data is available, future socio-economic 

indicators can be implemented in the analysis. 

The construction and socio-economic importance of coastal uses are represented 

in the following indicators.  
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 Tourist	Index	

In order to obtain a representative value of the importance of coastal tourism, a 

direct economic value of the beaches should be considered (Ariza et al. 2012; Houston 

2013). However, this evaluation requires a thorough analysis of the many factors which 

should be considered in order to obtain reliable information. In the absence of this direct 

economic value, a representative indicator of tourism at municipality level is used here. 

The tourist index developed by La Caixa Bank (2013), is a relative index based on tax 

revenues (Business Activities Tax), which takes into account the number of rooms, the 

annual occupancy rate and the category of tourist establishments (budget hotel, 

campground, etc.). The index value is the percentage share of each municipality relative 

to the entire nation, which can be expressed as: 

																				 Tourist index=
Municipality tax rate

Total tax rates in Spain 
x 100,000         								(4.1) 

In order to carry out an assessment at different scales the absolute tourist index 

value has been relativised obtaining a value for each municipality from 0 to 1 at the 

three spatial scales of analysis proposed in this study. It should be noted that although 

this index represents a value for the entire municipality, in the study area as in many 

other coastal Mediterranean regions, tourism based on coastal activities is the major 

contributor. 

 Leisure	Index	

In order to consider the role played by the local population in the recreational use 

of the coast, an indicator which expresses the user density of locals “served” by the 

beaches has been developed. Consequently, it is assumed that beach use will be 

proportional to the total municipality population, and therefore, it can be said that the 

higher the population, the larger the beach use demand. The index is expressed as 

follows: 

							 Leisure index= 
Total municipality population

Length of municipality coastline (m)
                (4.2) 
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The leisure index has been built considering the total municipality population at 

2016 (IDESCAT 2016) and the total coastline classified as beaches by the CIIRC 

(2010). 

 Infrastructure	Index	

Regarding the protection function of the beach, an index to quantify the main 

infrastructures at the coast has been developed. The rationale behind this is that this 

function will be especially relevant in those places with important elements to be 

protected. To do this, and taking into account the characteristics of the study site, three 

components have been considered behind the beach within a buffer area: built-up urban 

areas, roads, and the railway. In order to obtain a value at the municipality level, these 

three components have been relativised with respect to the total buffer area (built-up 

areas) and to the coastline length (roads and railway).  

To define the buffer area, the scope of the hazard should be considered. In this 

case, with a focus on erosion and the characteristics of the study area, damages in the 

hinterland occur in a narrow fringe along the shoreline, and therefore, a buffer area of 

100 m inland is considered.  

To aggregate the three components measured in the index, it is considered that 

damages reported for each component (roads, railway, and built-up areas) can be similar 

in consequence, and so an additive aggregation method, assuming a linear relationship, 

is taken into account as expressed in Eq. 4.3; 

Infrastructure index=

 
Urban surface (km2)
Buffer area (km2) 

+
Roads (km)

Coastline (km)   +
Railway (km)
Coastline (km)  

3
   (4.3) 

Thus, a value from 0 to 1 will be obtained for each municipality. Although the 

information stated by this index does not specially represent the direct damages, this 

index characterises the coast in terms of the number of infrastructures exposed and 

potentially damaged if the natural protection function of the coast fails. 
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4.2.4 Spatial	integration		

In order to provide a management-oriented value, BFV values locally obtained 

(every 100 m along the coast) are spatially aggregated at the municipality scale. This 

scale represents the smallest administrative level where coastal managers can undertake 

risk management measures. Because the main objective of the management is to 

reduce/mitigate risks (negative responses) and, to avoid compensatory results among 

erosive and accretive stretches in a given municipality when a linear aggregation 

method is performed (average), a weighted averaging to characterise the aggregate 

impact has been adopted (Table 4.2). The underlying hypothesis is that eroding beaches 

which will result in an exposition of existing infrastructure and/or decreasing carrying 

capacity of the beach will not be compensated by wider beaches in areas already well 

protected or wide enough to support recreation. This replicates the observed preference 

of users to concentrate in a narrow fringe close to the shoreline, even in very wide 

beaches. A decreasing linearly weighting scale (Table 4.2) has been selected to give 

more importance to those stretches with larger BFV values (narrowing beaches) than 

stretches with lower BFV values corresponding with stable or wide beaches. This 

method highlights stretches at risk in order to obtain a final value at the municipality 

level. 

Thus, the integrated beach functional vulnerability (BFV’) at the scale of interest 

is given by; 

																																												 BFV'= ෍ αi BFVi li ෍ li
total

൘
i=1,n

                                    (4.4) 

where BFV represents the beach functional vulnerability of a given stretch, i the 

corresponding weights and li the length of the coastal stretch. 

Table 4.2 Weights assigned. 

Intervals (BFV)  Weights () 

[0.0-0.2] 0.125 

[0.2-0.4] 0.25 

[0.4-0.6] 0.50 

[0.6-0.8] 0.75 

[0.8-1.0] 1 
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4.3 Results	

The results obtained for the erosion assessment are presented in this section for 

the entire Catalan coast.  Results for each erosion hazard component are only illustrated 

for one coastal sector, the Maresme coast. This analysis has been done for all sectors 

along the Catalan coast and they are directly included in the evaluation of the erosion 

risk matrix (section 4.3.5). 

4.3.1 Episodic‐term	component	

As previously mentioned, this hazard component is represented by the storm-

induced shoreline erosion. This is symbolised here by an extreme probability 

distribution of the shoreline erosion which has been computed for the different beaches 

along the study area. As an example, Figure 4.2 shows the obtained extreme erosion 

climates for all beach types along the Maresme coast (dashed lines) in function of their 

sediment size and beach profile together with the representative erosion climate (solid 

line), provided by the weighted average of the individual beaches taking into account 

their relative contribution to the total coastline. As can be seen, although it can be 

assumed that incident wave climate is uniform along this coastal sector, there will be 

differences in erosion due to variations in beach morphology. This has been done for the 

entire coast using the sectorization and classification of beach types of Bosom (2014). 

According to the obtained probability distribution, the average storm-induced 

shoreline retreat along the Catalan coast associated to a return period of 50 years is 

about 20 m.  



Chapter 4: Erosion risk analysis 

 

 
 35 

 
Figure 4.2 Representative extreme probability distribution of storm-induced shoreline erosion in the 
Maresme coast. 

 

4.3.2 Medium‐term	component	

Figure 4.3 shows the obtained medium-term shoreline displacement rate every 

100 m along for the Maresme coast. This coastal area displays a clear spatial pattern 

representative of the majority mid and southern beaches along the Catalan coast 

showing the importance of longshore sediment transport gradients in driving the 

observed changes. In general, the coast presents a generalized retreat with the 

exceptions of areas just upcoast of existing barriers (harbours) where accretion is 

observed. Moreover, the stretches just downcoast from these barriers are the areas with 

the largest recession rates. Overall, for the 1995-2010 period, the average evolution rate 

for the Maresme is -0.97 m/yr with a maximum retreat of 7.97 m/yr, which was 

obtained at the municipality of Malgrat de Mar (23) corresponding with the low-lying 

area of the Tordera delta.    



The Coastal Risk Landscape  

 
36 

 
Figure 4.3 Shoreline evolution rate along the Maresme coast  

The average evolution rate for the Catalan coast is -0.7 m/yr with the maximum 

shoreline retreat found in the deltaic zones such as the Tordera delta, as presented 

previously, and the Ebro delta, the most susceptible area to erosion. In this region the 

average shoreline evolution indicated maximum rates of -22.47 m/yr and -13.75 m/yr 

for the Sant Antony beach within Deltebre (66) municipality and for the Platja de Buda 

within Sant Jaume d’Enveja (67) municipality respectively. Although deltaic zones 

represent the areas with the most important shoreline retreats, large shoreline retreats 

along the Catalan coast are also presented in the Maresme comarca, within the 

municipalities of Arenys de Mar (29) (-3.95 m/yr) and el Masnou (37) (-3.57 m/yr) 

among others. 

4.3.3 Long‐term	

The long-term component is provided by the computed SLR-induced shoreline 

retreat for the RCP8.5 scenario up to the year 2100. This component is calculated by 

applying the Brunn equilibrium model for different sedimentary coastal sectors which 

represent homogeneous geomorphologic characteristics (similar grain size and 



Chapter 4: Erosion risk analysis 

 

 
 37 

shoreface slope) (Figure 4.4).  Obtained values indicate the Ebro delta as the most 

erosional sector. Due to its very mild shoreface, and considering that this area is also 

affected by subsidence, SLR-induced shoreline retreat determines an order of magnitude 

between two and three times greater than the rest of the Catalan coastal sectors. In 

contrast, the Maresme represents the less sensitive area to erosion by SLR given its 

steep slope. In general, results along the Catalan coast (excluding the Ebro delta), show 

a background erosion of about 0.57 m/yr with an increase in erosion rates by the year 

2050 due to the acceleration of SLR (Figure 4.4). Expected shoreline retreats by 2050 

are 19 m in the Maresme, 22 m in Costa Brava and 25 m in Llobregat-Costa Dorada 

(see Jiménez et al. 2016).  

 
Figure 4.4 SLR-induced shoreline retreat (RCP 8.5 scenario) along the Catalan coast. 

4.3.4 Consequences	

Figure 4.5 shows the socio-economic indicators used to measure the degree of 

exposure and importance of the two analysed coastal functions; recreation and 

protection. It should be noted that although the results presented here have been 

relativised considering the whole Catalan coast, the indicators have also been re-scaled 

at province and HEMU levels (for the tourist and leisure indices) for analysing the 

effect of scaling on the assessed impact. In general, results show a different spatial 

pattern along the coast for the three indicators assessed. The tourist index highlights the 

two main tourist destinations (with the exception of Barcelona); Costa Dorada in 
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Tarragona with Salou (59) having the highest value and Costa Brava in Girona with 

Lloret de Mar (19) presenting the highest value. Both locations present a magnitude 

considerably larger than the other municipalities. To avoid an excessive weight of these 

two municipalities on the scaling of the tourism-based economy for the rest of 

Catalonia, the remaining municipalities have been relativised with the next highest 

value (i.e. Cambrils (60) at the Catalan level). This is illustrated in Figure 4.5, where the 

importance of other tourist municipalities, such as Roses (6), Tossa de Mar (20), Santa 

Susanna (24), Calella (26) and Sitges (46), among others, are also highlighted.  

With respect to the level of the local population served by beaches, the leisure 

index shows that Mataró (33) and Tarragona (57) represent the highest values. Both 

municipalities correspond to important urban areas, Tarragona being a provincial 

capital. For this reason, Tarragona has been considered in the analysis at the Catalan 

level but not in the analysis at other scales (province and HEMU levels) as this would 

distort the results of the analysis. Other municipalities with high index values are St. 

Andreu de Llavaneres (32), Viladecans (43), Cubelles (49) Palafrugell (13). In some 

cases, the coastal configuration of the municipality, with small coastlines and/or bays, 

can influence the final index value, whereas in other cases it is the elevated municipality 

population.  

The infrastructure index shows a clear distribution, where the highest index values 

are presented in the Maresme comarca. Also, the municipalities of Portbou (1) and 

Colera (2) in the north present high values although they are concentrated in a small 

portion of the territory. It should be noted that although the map gives a total value for 

the whole municipality area (Figure 4.5), the infrastructure index has only been assessed 

in the sedimentary part of the municipality coastline. In this sense, the municipalities of 

Portbou and Colera can generate a false impression as their coastlines are mainly 

formed by a rocky coast with natural areas. In the case of the Maresme coast, 

characterised by the presence of a quasi-continuous sedimentary coastline, there is an 

important level of infrastructure development very close to the shoreline as this region 

represents a metropolitan extension of Barcelona, with excellent communication routes 

to the city (the railway and a motorway) and the expansion of new residential areas. The 

rest of the coastal municipalities present similar values due to the coastal zone having 
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been uniformly developed, with the exception of natural areas, such as the Ebro delta 

(south) or the Gulf of Roses (north) with very low or no development at all.  

 
Figure 4.5 Consequences represented by socio-economic indicators. Leisure and infrastructures indices 
are evaluated only for the part of the municipality coastline composed of beaches. 

4.3.5 Erosion	risk	matrix	

The computed erosion components (hazard) and consequences have been 

integrated to obtain the erosion risk matrix. As previously mentioned, the hazard 

component is evaluated to account for each analysed function in terms of the beach 

functional vulnerability, BFV’.  

The risk matrix enables the presentation of two components, hazard and 

consequences, and in this way, to illustrate their importance separately. Moreover, this 

approach permits, when more than one hazard component is considered, to easily show 

their time evolution.  

Figure 4.6 and Figure 4.7 show risk matrices obtained for analysed coastal 

functions scaled using the HEMU and province levels. In the analysis of the recreational 

function, only the mid and long-term erosion components have been included because 
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in the region, storms usually take place in autumn and winter, while the beach is only 

used for recreation in summer (Valdemoro and Jiménez 2006). Thus, during “normal 

climatic years”, beaches are generally able to recover after seasonal storm-induced 

erosion. Although the hazard is the same (the same BFV’ considering the recreational 

function), the resultant risk is different as the consequences are measured taking into 

account different recreational interests. Moreover, when considering different scales, it 

can be observed how the erosion risk for recreational uses changes since the socio-

economic indicators are relativised at such scales.  

When the scaling of the risk is done using parts of the territory (HEMUs or 

provinces, Figure 4.6 and Figure 4.7) obtained results have to be interpreted 

individually. As an example, obtained results for HEMU A (Figure 4.6) indicate that 

with the exception of a single municipality (Roses (6)), the expected potential damage 

on tourism should be very low because this HEMU corresponds to areas dominated by 

natural values and where tourism development is usually low. However, if the same 

area is evaluated just in terms of leisure (potential use of beaches by the local 

population) additional municipalities emerge as areas at-risk showing some kind of 

clustering in two big groups in terms of population.  

Results obtained for tourism use along the Catalan coast as a whole (Figure 4.11), 

show that the erosion risk is, in general, low and very low at present, with the exception 

of two municipalities, Sitges (46) and Tossa de Mar (20) which present medium risk 

values. In spite of these current generally good conditions, the projection by 2035 

indicates an increasing risk due to background erosion rates, which increase further if 

the long-t component (SLR-induce erosion rates) is also considered. The municipalities 

most affected are Blanes (22), Santa Susanna (24) Tarragona (54) and Lloret de Mar 

(21). 

When considering leisure (Figure 4.11), Mataró (33) and Tarragona (57) are 

principally the two municipalities with the highest risk level. Both municipalities are 

important urban areas, with an elevated population which determines the highest index 

values. Other municipalities with very high levels considering the projection by 2035 

are St. Andreu de Llavaneres (32), Castell-Platja d’Aro (19) and Palafrugell (13).  
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Figure 4.8 and Figure 4.9 show the spatial distribution of values presented in risk 

matrices (Figure 4.6 and Figure 4.7) for the HEMU and province aggregation scale 

along the Catalan coast. As can be observed, under current conditions the Catalan coast 

can be considered as generally safe, but when future evolution is included some 

hotspots appear, especially when SLR is considered. This type of aggregation results in 

the appearance of these sensitive areas in all territories since each HEMU type or 

province will have their own critical areas. 

Focusing on province level (Figure 4.7 and Figure 4.8), erosion risk at present for 

tourist use is low in Tarragona and Girona while high in Barcelona for the municipality 

of Sitges (46). However, when considering the medium component (longshore sediment 

transport) the level of risk significantly increases in those municipalities with high 

tourist index values (i.e. 6, 20, 22, 46, 24, 25, 58). Moreover, when the long-term 

component is taken into account, risk increases considerably to very high, especially in 

Girona for Lloret de Mar (21) and Roses (6). At HEMU level (Figure 4.6 and Figure 

4.8) results show a risk distribution quite similar to the provincial one. However, at this 

scale of analysis and considering the medium and the long-term components, some 

municipalities such as Sitges (46) and Santa Susanna (24) present high risk values 

instead of very high, whereas other municipalities such as Cambrils (60) and Vila-seca 

(58) increase their risk level. 

Regarding leisure use (Figure 4.7 and Figure 4.9), the risk at the present time is 

medium for Barcelona, presented in Mataró (33) and Castell-Platja d’Aro (19), and 

Palafrujell (13) within Girona. In these municipalities, the level of risk rises when the 

medium and long-term components are considered. In the case of Tarragona2, although 

risk levels at present are low and very low, these significantly increase by 2035 in 

Calafell (51) and Altafulla (56). As is the case for tourist use, erosion risk changes for 

leisure use considering different scales of analysis (Figure 4.6 and Figure 4.9). Major 

changes are found in HEMU category A where municipalities such as Portbou (1), 

Cadaquès (5), Roses (6), l’Ametlla de Mar (63) and el Perello (64) present very high 

erosion risk values for the local use of beaches.  

                                                 
2 It should be noted that the Tarragona municipality is not considered in the analysis at province 

and HEMU level given that it represents a provincial capital with a significant population which can 
distort the results for the rest of municipalities. 
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As expected risk conditions significantly change when future projections include 

background erosion rates plus SLR-induced retreat are considered. 
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Figure 4.6 Erosion risk for recreation- HEMU level (tourist use / leisure use). 
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Figure 4.7 Erosion risk for recreation-Province level (tourist use / leisure use). 

Barcelona 

Girona 
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Figure 4.8 Erosion risk for tourism considering province and HEMU level. 

 
Figure 4.9 Erosion risk for a leisure use considering province and HEMU level. 
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Figure 4.10 shows the erosion risk matrix for a protection function of the beach. 

In this case, the function will be determined by the impact of storms that usually occur 

in winter when there is no recreational use (Valdemoro and Jiménez 2006). Thus, in this 

case, all the erosion components are considered in the analysis. 

As a result of this, and although background erosion rates for all municipalities 

controlled by the medium-term erosion are the same as before, their associated BFV’ are 

different, since the optimum and the failure beach function states will be fixed 

considering the episodic-term erosion component. 

Figure 4.10 presents the results obtained at province and HEMU level. However, 

it should be noted that as the infrastructure index is not scaled (as it represents an 

absolute value), the risk associated to a given municipality is the same in both scales. 

Figure 4.11 shows the spatial distribution of the erosion risk for a protection function 

associated to each municipality along the Catalan coast. As can be observed, in general 

and, at present, the coast is relatively safe with the exception of some medium to high 

risk areas mostly in the municipalities located within the Maresme comarca (i.e. 32, 35, 

36) and the municipality of Roda de Barà (53) within the Tarragonès comarca where a 

large density of infrastructure and narrow beaches exist. By 2035, background erosion 

rates will substantially increase the level of associated risk in these municipalities to the 

highest level, also raising risk levels in municipalities such as El Port de la Selva (4) and 

Santa Susanna (24), Sant Pol de Mar (27), Arenys de Mar (29) and Caldes d’Estrac (30) 

within the Maresme comarca. 
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Figure 4.10 Erosion risk for a protection use- Province and HEMU level.   

Barcelona HEMU A 

Girona HEMU B 

Tarragona HEMU C 
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Figure 4.11 Erosion risk for the Catalan coast considering recreation (touristic/leisure use) and protection coastal functions. 
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Chapter	5	

Flood	risk	analysis*	

5.1 Introduction		

Floods are considered to be one of the most harmful phenomena, causing 69% of 

the overall natural catastrophic losses in Europe (CEA 2007; Llasat 2009). In Spain, the 

Consorcio de Compensacion de Seguros (CCS), a public corporation which provides 

insurance to cover “extraordinary“ risks, states that 61% of its resources are required to 

mitigate damages incurred as a result of flood events (Insurance Compensation 

Consortium 2016). The greatest number of casualties and material damage have 

occurred in the Spanish Mediterranean (Barnolas and Llasat 2007; Camarasa-Belmonte 

and Soriano-García 2012). Moreover, in the absence of additional adaptation, the risk 

from coastal flooding is predicted to rise in the future as a result of two primary factors. 

First, climate change and rising sea levels are expected to increase the frequency and 

severity of flood events (EEA 2013b) and second, the number of potentially exposed 

receptors (infrastructure, socio-economic assets, population) is increasing in floodplains 

and/or near the sea (e.g. Hallegatte et al. 2013).  

Flood risk can be defined as the product of the probability of flooding and the 

associated negative consequences or damages (UNISDR 2009). In order to reduce the 

negative consequences of flooding, it is necessary to consider the implications of the 

hazard and the exposure values potentially affected. Traditionally, flood risk in coastal 

areas has been managed with the use of physical structures to protect against floods (e.g. 

Saurí-Pujol et al. 2001). However, it is recognized that absolute protection is both 

unachievable and unsustainable due to the high costs and inherent uncertainties 

involved (Schanze 2006). As a result, there has been a shift in environmental policy in 

the European Union from emphasis on flood protection to flood risk management. The 

European Floods Directive 2007/60/EC (EC 2007) urges flood risk analysis and flood 
                                                 
* Edited version of A multi-component flood risk assessment in the Maresme coast (NW 

Mediterranean) by Ballesteros C, Jiménez JA and Viavattene C (2017) accepted (in review) to the journal 
Natural Hazards. 
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risk management at the community level, based on local circumstances and the specific 

types of flooding (river floods, flash floods, urban floods, and flooding from the sea in 

coastal areas) which may be present.  

To correctly define coastal management policies for successful flood risk 

management, given the spatial and temporal nature of flood risk, broad-scale integrated 

assessments are essential (Dawson et al. 2009; de Moel et al. 2015). Thus, in order to 

manage the coastal zone at a regional scale, a holistic approach is required where, in 

addition to the factors determining flood risk (hazards and consequences), the various 

flood processes acting at different temporal scales should be considered. 

In Mediterranean coastal regions, floods can be present as a result of forcings 

from multiple origins acting at different timescales. Hence, flooding from a marine 

origin (related to changing sea levels), can be the result of a marine storm associated 

with a short-term scale. Regarding flooding from the same origin, but associated with a 

long-term scale, the effect of climate change can cause a permanent inundation due to 

SLR. Finally, regarding flooding of a terrestrial origin and caused by short-term 

convective rainfall at the mouth of stream systems, floods in the Mediterranean coast 

can be present in the form of flash floods. 

In order to manage coastal flood risk and to develop measures for effective and 

long-term disaster risk reduction, it is therefore necessary to know not only the 

magnitude of each of the different flood components (flash flood, marine storm, SLR) 

and their associated consequences, but also their relative importance in relation to one 

another. This input is essential when analyses at a regional scale are taken into account, 

as it allows coastal managers to identify and detect the most critical areas at risk as a 

result of the different flood components. This analysis then enables a more detailed 

assessment to be undertaken and for resources to be focused in these specific locations. 

Although established approaches exist to carry out a comprehensive analysis and 

assessment of flood risk for each individual flood component, few studies address all 

components combined together (Kappes et al. 2012). Doing so presents particular 

challenges due to the difficulty of analysing multiple components (processes) acting at 

different spatial and temporal scales. In order to tackle this problem, different 

methodologies have been developed using indicators (e.g. Gornitz 1990; McLaughlin et 
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al. 2002; Birkmann 2007). Through the use of indicators, it is possible to integrate risk 

components with homogenous units and to integrate multiple-flood hazards into one 

flood risk assessment. One advantage of this approach is that it allows an evaluation of 

all components and their associated risks using methods that do not require extensive 

data or a high degree of model accuracy. 

Here, a methodology framed within the Source-Pathway-Receptor-Consequence 

(SPRC) model is presented in order to determine the potential flood risk as a result of 

different flood components. The methodology uses representative indicators that are 

suitable for comparing flood risk between different locations and also between flood 

types. 

Within this context, a framework to analyse coastal flood risk as a result of 

multiple components (flash flood, marine flooding, SLR) at the regional scale is 

introduced. The practical objective is to identify the most sensitive areas to flooding and 

to verify the most relevant flood component in terms of magnitude and potential for 

damage. With this information, coastal managers can prioritize their efforts in areas 

where risk management is needed the most.  

5.2 Methodology	

In the present application of the SPRC, coastal flood risk is presented as the result 

of different forcings (sources) that cause flood processes at different spatial and 

temporal scales (pathways) with an associated impact for the exposure values and 

consequences (Figure 5.1). Three main flood processes are here considered as: flash 

floods, marine floods, and inundation by SLR. Flash floods and marine floods are 

characterised as episodic events associated with hydro-meteorological, acute and 

ephemeral phenomena (the inundation is transient) that are expressed in probabilistic 

terms. In contrast, SLR is characterised as a long-term process which causes a 

permanent inundation of the affected surface. In this case, the forcing is characterised as 

the evolution over time of sea level for different scenarios.  

To characterise the receptor (the coast) and the associated flood consequences, a 

number of socio-economic coastal values are considered. Hence, the consequences are 
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the resulting value of the integration of the following five components: land use, social 

vulnerability, transport system, utilities, and business setting. 

 
Figure 5.1 SPRC model for multi-component flood risk analysis. 

5.2.1 Flood	risk	assessment	

In order to assess the flood risk associated with each component, an approach has 

been adopted in which the different flood components have been evaluated in terms of 

their hazards and exposure values by means of representative indicators. As the main 

objective is to identify the most sensitive areas along the coast as well as the 

contribution of each component, the selected indicators have been classified and 

standardized in homogenous units. To this end, a hazard intensity scale from 1 to 5 is 

considered where, 1 represents the least harmful level and 5 the most harmful (see Table 

5.1). This classification has been made considering the implications for potential 

damage given the characteristics of the different processes and the affected area.  

For the exposure values, the same scale was adopted where 1 represents the 

lowest level of exposure and 5 the highest (see Table 5.2). This consideration will allow 

the integration of the various risk components (hazard and consequences) and the 

multiple flood hazards into one flood risk assessment. It should be noted that this 

approach assumes that all values at exposure will be affected by the considered flood 

hazards without taking into account their physical vulnerability. As such, it should be 

noted that this risk assessment will represent a type of worst-case scenario.  
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Finally, both components are integrated, defining an absolute flood risk Rabs as; 

						 															R௔௕௦ ൌ෍ሺܫܪ௝ ∗ ௝ሻܧ
ଵ
ଶൗ

௡

௝

∗ ௝ܵ  
(5.1) 

where HI represents the hazard intensity indicator, E the indicator to measure the 

exposure values, S the affected area, and j each of the n areas in which the coastal area 

is divided for the assessment. The principal objective of most coastal indices is the 

classification and partition of the coastline into units that exhibit similar attributes or 

characteristics (Cooper and McLaughlin 1998). Hence, with the aim of spatially 

comparing the risk at the regional scale, a flood risk value is obtained for each 

component at the municipality level. This value allows for the identification of the most 

susceptible flooding areas at the management level (assuming that the municipality 

level is the lowest level of management for decision makers).  

Furthermore, an average risk value for each municipality was obtained in order to 

characterise, in unitary terms, their relative importance along the coast i.e. the risk has 

been assessed without considering the flooding area. This will be expressed on a scale 

from 1 to 5. The average risk, Raver is defined as, 
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5.2.2 Flood	hazard	assessment	

Hazard assessment can be defined as the process which enables an understanding 

of the characteristics, nature, and magnitude of the considered threat. In the simplest 

case, a flood hazard can be characterised as a land surface covered by water. However, 

as was previously presented, the different flood hazards that were considered differ 

widely in their characteristics, in relation to their physical processes and temporal and 

spatial scales. Thus, the flooded area associated with episodic components (storms) is 

temporarily flooded, being a quasi-instantaneous process (the duration of the event), 

whilst in the case of the long-term component, the flooded surface is permanently 

flooded, being characterised by a very slow and continuous process. 
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In this study, for flood components associated with a probability of occurrence, a 

return period (Tr) of 100 yr was selected, following the indications of EU Flood 

Directive (EU 2007), also being considered as representative for medium-probability 

events.  

In the following sections, the assessment procedure carried out for each 

component is presented.  

 Flash	flood	

Flash floods are defined as extreme flood events associated with short, high-

intensity rainfalls, mainly of convective origin, that occur locally (Marchi et al. 2010). 

Extreme events, being greater in magnitude and with a strong seasonality, occur in 

Mediterranean regions (Gaume et al. 2009; Llasat et al. 2010; Camarasa-Belmonte and 

Soriano-García 2012). It is in the coastal areas where these phenomena pose a 

considerable risk due to the high vulnerability of urban development and an increase in 

population and tourism during the summer season (Llasat et al. 2010; Camarasa-

Belmonte et al. 2011). 

To carry out a flash flood assessment, a two-step approach has been developed. 

The first step is an analysis of the most susceptible sub-basins affected. Once identified, 

the second step involves a detailed hazard assessment. 

To identify the most susceptible sub-basins, a modified version of the Flash Flood 

Potential Index (FFPI) developed by Smith (2003) has been used. This index combines 

different physiographic characteristics, which have a strong influence on the hydrologic 

response of the catchments, and therefore, the potential for flash flooding. The index 

includes information about soil texture (S) important in determining water holding and 

infiltration characteristics, terrain slope (M) on account of water speed and 

concentration of runoff , vegetation (V) that affects soil moisture and hydrologic flow, 

and land use (L) that can play a significant role in water infiltration, concentration and 

runoff behaviour (see Appendix A). 

 Here, a modified version has been obtained by adding a new factor with 

information about climatology of extreme precipitation using annual maximum daily 

rainfall statistics (R) to account for the potential influence of local climatology (Jiménez 
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et al. 2015). Therefore, not only is a territory sensitive to flash flooding due to 

physiographic factors, but also because it is subjected to a given rainfall regime that 

may induce such a hazard. The final modified FFPI’ index is calculated as follow:  

 

ᇱܫܲܨܨ ൌ
ܯ ൅ ܮ ൅ ܵ ൅ ܸ ൅ ࡾ

5
  (5.3) 

To combine these factors, the associated raster data has been ranked at the same 

scale from 1 to 10 (see Appendix A), considering the hydrologic response as a criteria, 

as established by Ceru (2012). This index is calculated using raster data, so that the 

territory is completely divided into cells, each with the combined information 

previously mentioned. In order to identify the highly-susceptible sub-basins, this 

information is integrated by assessing an averaged value of each cell at sub-basins level 

(Figure 5.2). The resulting values are classified into five categories, which allow for the 

identification of the most susceptible areas to the effects of flash flooding. 

Once susceptible flash flooding areas are identified, a second and more detailed 

hazard assessment is carried out. To do so, a standard fluvial flood analysis was 

conducted. Thus, for a given return period (Tr =100 yr), the flooded area and the flood 

depth are assessed. In this sense, flood depth is considered a good variable in flood 

assessment because it is relatively straightforward to link this to direct damages using 

depth-damage curves.  

For the study area, the Catalan Water Agency (ACA) provides information 

regarding flood depth associated with three return periods, in accordance with the 

European Floods Directive (2007/60/EC) recommendations. This data has been 

obtained by means of a hydrological analysis using the HEC-HMS model, and a 

hydraulic analysis made using the Guad2D model with a detailed, digital, elevation 

model (Generalitat de Catalunya 2015).  

As mentioned, the flood depth variable can be used to estimate a damage value 

through the use of depth-damage curves. To establish the hazard intensity scale in five 

categories, curves proposed by Velasco et al. (2015) have been used which were 

obtained for the city of Barcelona. From a practical viewpoint, each flooded area, with a 

given depth interval, is assigned a corresponding hazard intensity value (see Table 5.1). 
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 Marine	flood	

This component assesses a temporary coastal flood under the influence of marine 

storms. In this case, the forcing is the temporary increase in mean sea level induced by 

low atmospheric pressure and onshore winds during the storm resulting in both wave 

run-up and overtopping. The methodology used here has been developed within the 

RISC-KIT project (see Ferreira et al. 2016; Viavattene et al. 2017). 

The hazard intensity along the coast has been evaluated by estimating the water 

level extreme climate and the extension of the area to be inundated. This has been 

calculated for a total of 376 sectors of 1 km in length along the coast for long beaches 

and in the case of smaller beaches the sectors have been define by their total length. 

From each sector the most representative beach profile has been defined. The run-up, 

Ru, as the main water levels contributor in the study area (Mendoza and Jiménez 2008) 

has been calculated using the Stockdon et al. (2006) model in beaches and the Pullen et 

al. (2007) model when the coastline is formed by breakwater. Resultant Ru time series 

calculated for each profile have then been fitted by means of a General Pareto 

Distribution (GPD), obtaining a probability distribution for representative beach slopes 

of the study area. 

Given the characteristics of the beach profiles typified by the monotonous 

increase in elevation landwards, and in order to calculate the extension of the area to be 

inundated, a bathtub approach has been applied, assuming that those areas hydraulically 

connected to the sea and below a certain height will be flooded (Poulter and Halpin 

2008; Gallien et al. 2011). 

Subsequently, flooded areas have been classified on a hazard intensity scale based 

on the reach of the flood extension, considering the characteristics of the beaches in the 

study area (see Table 5.1). 

 Inundation	by	Sea	Level	Rise	

This component assesses coastal flooding due to an increase of the sea level in the 

long term, generally associated with climate change. In contrast to other flood hazards 

in which the area affected by flooding returns to pre-event conditions following a 

recovery time, this hazard, due to SLR, is characterised as a permanent inundation, 
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resulting in an irreversible land loss as a consequence of the sea advancing. Therefore, 

the criteria to define hazard intensity have been established based on time. Thus, it is 

considered that those areas submerged by water for the longest duration will be the most 

damaged, whereas those submerged by water during a shorter duration, will incur less 

damage. With this assumption, those areas affected first (more time submerged) might 

not have time (or they will have a shorter time) for adaptation, so damages may be 

greater, whilst the areas which require more time to be covered by water (less time 

submerged) will have time to adapt to the changing territory and therefore, future 

damages could be smaller.  

To define the corresponding hazard intensity, a continuous rank is established 

every 20 years from the present time (2020) to the future (2100). Thus, the flooding area 

affected first (2020) is assigned a value of five, and so on (see Table 5.1). In this case, 

as the variable considered is time, flood levels will change as different scenarios are 

considered. In this case, RCP 8.5 and the High-End scenario with a rise of 1.75 m have 

been selected.  

To calculate the inundated area for the different scenarios, a bathtub approach has 

been adopted, assuming that those areas hydraulically connected to the sea and under a 

certain height will be flooded (Poulter and Halpin 2008; Oltra 2010; Gallien et al. 

2011).  

 

Table 5.1 Flood hazard intensity. 

Flash flood Marine flood Inundation by SLR 

Hazard intensity 
Flood depth (m) Flood extent (m) 

Year when the area 
will be flooded (yr) 

<0.15 ≤50 % beach width >2100 0 

0.15-0.3 ≤100 % beach width 2080-2100 1 

0.3-0.5 ≤beach width +20 m 2060-2080 2 

0.5-1.0 ≤beach width +40 m 2040-2060 3 

1.0-2.0 ≤beach width +60 m 2020-2040 4 

>2.0  >beach width + 60 m  2020 5 
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5.2.3 Consequences	

In the assessment of the consequences, flood damages are usually divided 

between those caused by direct contact with the receptor, and indirect damages trigged 

in secondary effects, principally with a relationship to the disruption of physical and 

economic linkages. At the same time, the methods for calculating damages vary 

depending on whether the damages are tangible (i.e. can be assigned a monetary value), 

or intangible, which are not traded in a market (Messner et al. 2007; Green et al. 2011). 

As the type of receptor varies (properties, people, ecosystems, etc.) the unit of 

measurement changes, and therefore, many evaluation methods for assessing the 

consequences exist. 

As previously mentioned, within the framework of this work, it is assumed that 

the consequences can be represented by a set of socio-economic indicators. Following 

the characterisation of the study area, and bearing in mind the potential direct and 

indirect consequences of coastal floods, these indicators are represented by the 

following categories: land use (eLU), the social vulnerability of the population (eSFV), 

transport systems (eTs), utilities (eUt) and business settings (eBs). These indicators are 

evaluated and classified in homogenous units (Table 5.2), and then combined in a 

unique exposure value (eT), using a linear aggregation method, as shown below 

(Viavattene et al. 2015):  

																					 								்݁ ൌ ሾሺ݁௅௎ ∗ ௌ݁ி௏ ∗ ்݁௦ ∗ ݁௎௧ ∗ ݁஻௦ሻሿ
ଵ
ହൗ  (5.4) 

To calculate this aggregate value, the exposure values have been characterised in a 

different way for each flood component.  

In the case of flash flooding and inundation by SLR, as the spatial extent of the 

flood is known, those exposure indicators which are determined by their spatial 

distribution in the territory such as land use (eLU), transport system (eTs) and utilities 

(eUt) have been evaluated within the flooded area. To this end, since the hazard intensity 

of these two flood components are also spatially represented in the territory, information 

on the hazard and the exposure indicators (both in vector format) are jointly intersected 

providing information on the hazard for each land use within the flooded area. 

Remaining indicators such as social and population vulnerability (eSFV) and business 
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settings (eBs) are calculated on account of statistic data which is provided in Catalonia at 

the municipal level, this being the minimum scale for statistical data. 

To evaluate exposure values for marine floods, a buffer area of 100 m along the 

coast is considered. Since there is not a map with information of the flooded area, the 

buffer is considered the maximum expected extent of the flood landwards of the beach. 

This buffer area is selected given the characteristics of this process along the Catalan 

coast (also applicable to most of the Mediterranean coast), so it should be adapted 

depending on the area to be analysed. In areas where marine flooding can extend in 

large, low-lying areas, such as a typical main flood in the North Sea (see e.g. McRobie 

et al. 2005; Dawson et al. 2009), this can be substituted by the area of the flood 

extension. 

In what follows, the methodology carried out to evaluate and classify each 

indicator aforementioned is presented. 

 Land	use	(eLU)	

The land use exposure indicator measures the different types of land in the flood 

area. To assess it by means of the land cover map of Catalonia (Ibàñez and Burriel 

2010), which provides detailed information in vector format, land uses have been 

reclassified into 10 classes, covering the most representative uses for the study area (see 

Table 5.2). For each class, a value from 1 to 5 has been assigned, depending on their 

relative importance. In this sense, the criteria to establish the values will be dependent 

on the orientation of the analysis and the coastal management purposes. In this study, an 

anthropocentric perspective has been adopted, and thus, higher values were assigned to 

those land uses where flood damages affecting economic activities are reported (see 

Table 5.2). This indicator does not consider the physical vulnerability of the different 

land uses but reflects the exposed area and the associated importance value for each 

land use. 

 Population	and	social	vulnerability	(eSFV)	

In order to measure intangible impacts to the flood-affected population, a Social 

Flood Vulnerability Index (SFVI) has been applied. This index represents the relative 

vulnerability of various communities to long-term health impacts and financial recovery 
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from a flood event (Viavattene et al. 2015). As there are no previous studies for the area 

to inform how the population may cope with flood events, characteristics and variables 

suggested by Tapsell et al. (2002) have been considered. The variables selected, listed 

below, accurately represent the socio-economic characteristics of the study area. Among 

the social variables, the long-term sick (a), single parents (b) and the elderly (c) were 

taken into account. Financial-deprivation variables are represented by unemployment 

(d), overcrowding of households (f), non-car ownership (g) and non-home ownership 

(h) (see Appendix B). To create the social flood vulnerability index, each variable has to 

be standardised following different transformation methods (see Appendix B) to 

produce the minimum skewness kurtosis within their distributions. As Tapsell et al. 

(2002) indicate the aggregation method adopted gives more importance to the social 

variables than to the financial-deprivation variables. Eq.5.5 presents the aggregation 

method used. 

						 								 eௌி௏= a+ b+ c+ ((d+f+g+h)*0.25) (5.5)

An important consideration when applying the SFVI is the level of data 

aggregation. For the Catalan coast (with the exception of Barcelona), due to the small 

municipality dimensions in terms of settlement and built-up areas, and the fact that this 

is a regional study, the most recent and appropriate data (IDESCAT 2016) is at the 

municipality level. This can be considered the minimum scale for obtaining SFVI 

values. However, if data is available at smaller scales (e.g. census level), it should be 

implemented at this level as the extension of the flood plain is often narrow and short. 

When the social vulnerability indicator (eSFV) value is evaluated for each 

municipality, this is reclassified into a scale from 1 to 5. In this case, natural breaks has 

been considered an adequate method to identify groups with similar values, whilst 

maximizing the differences between classes (see Table 5.2). 

 Transport	system	(eTs)	

Another key element when assessing the consequences of flood events is the 

transport system. To obtain a representative indicator of the direct impact of flood 

events on this infrastructure, two criteria have been considered due to the different 

characteristics of each flooding hazard. The first criteria considers the total linear metres 

of railways and motorway within the flood area (flash flood and SLR-induced 
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inundation). This is then ranked into five classes, taking into account that damages will 

be greater when an increased length of transport system has become exposed. The 

second criteria considers the presence or absence of different transport systems within 

the buffer area (marine flood). In this case, a ranking has been made, taking into account 

their relative importance to the overall system and the probable systemic impacts 

resulting from the disruption (see Table 5.2).  

 Utilities	(eUt)	

This component assesses the presence of any critical infrastructures providing 

essential services which floods can affect, interrupt, or cease with serious consequences 

for the community, both inside and outside the affected area. The presence of critical 

infrastructure in the flood area has been identified with information provided in the land 

use map. Once identified, these utilities have been classified on a scale from 1 to 5 

according to their relative importance in terms of the level of population served (see 

Table 5.2). 

 Business	settings	(eBs)	

To assess the impact of coastal floods on business activity, two indices were 

selected. For marine processes (such as marine floods and inundation by SLR) on the 

coastal fringe, tourism is the most important economic sector. To obtain a representative 

value of this activity, a tourist index developed by La Caixa (2013) has been used (see 

section 4.2.3). Damages caused by flash floods can be found inland where other 

businesses may be located. As considered previously, an industrial index developed by 

La Caixa (2013) has also been used as it offers a useful assessment of flash flood 

consequences to business activity. This index is based on tax revenues corresponding to 

industrial activities, and reflects the relative weight of industry in each municipality 

with respect to all of Spain. Both indices have been ranked into five categories by 

applying an equal intervals method (see Table 5.2). 
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Table 5.2. Exposure indicators ranking. 

Exposure indicators  Consequences 

 1 
Inexistent or 
very low  

2  
Low 

3 
Moderate 

4 
High 

5 
Very high 

Land 
use 
(eLU) 

Anthropogenic 
perspective 

-Barren 
-Riparian 
buffer/Wetland 
(1.5) 
-Grassland (1.5) 

-Forest 
-Urban 
green 

-Beach and 
dune 
-Cropland 

-Campsite 
-Industrial 

-Urban 

Transport system (eTs) 

Metres of railway and 

highway affected  

(Flash flood/SLR) 

<250 250-500 500-1,000 
1,000-
2,000 

>2,000 

Presence 

(Marine flood) 

No significant 
utilities 
networks 

Local road Motorway Coastal 
railway 

Motorway 
and coastal 
railway 

Utilities (eUt) No significant 
utilities 
networks/assets 

Mainly 
local and 
small 
utilities 
networks/a
ssets  

Presence of 
utilities 
networks/ass
ets with 
local/regiona
l importance  

High-
densely 
and 
multiple 
utilities 
networks/a
ssets of 
local 
importance 
or regional 
importance 

High-
densely and 
multiple 
utilities 
networks/ass
ets of 
national or 
international 
importance 

Business (eBs) 
Tourist Index 

(Marine flood/ SLR) 

<45 45-89 89-133 133-177 >177 

Industrial Index 

(Flash flood) 
*method: equal 
interval 

<78 78-154 154-231 231-307 >307 

Population and social 
(eSFV) 
Social Flood 
Vulnerability Index 
*method: natural 
breaks interval 

 

≤-4.4 -4.4 -(-1.8) -1.8-(-0.2) -0.2-1.8 >1.8 
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5.3 Results	

5.3.1 Introduction		

In this section, the results obtained from flood risk analysis are presented. Here, 

the flood component results are presented differently from erosion since the 

consequences are different for each flood component. Thus, each flood component is 

individually presented with the obtained results from the hazard, consequences and risk.  

Obtained marine and flash flooding results presented here are associated to a return 

period of 100 yr. Moreover, results obtained from all the flood components (flash flood, 

marine flood and inundation by SLR) have only been presented at the Catalan scale, 

without considering the other scales of analysis (province and HEMU level). This is 

because the levels of risk associated with the remaining scales do not imply significant 

risk variability along the coast due to the fact that only two variables are able to produce 

differences (Business settings (eBs) and SFVI (eSFV)). 

5.3.2 Flash	flood	

Figure 5.2 shows the FFPI’ along the Catalan coast, integrated at the sub-basin 

level. These results indicate that for the same region there are differences in the level of 

susceptibility to the effects of flash flooding. This is mainly due to geomorphologic 

characteristics such as the slope and the type of soil as well as the spatial variations in 

rainfall. These results permit an identification of the most potentially hazardous areas in 

terms of flash flooding in Catalonia. 
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Figure 5.2 Flash Flood Potential Index (FFPI') for sub-basins along the Catalan coast. 

Figure 5.2 shows the potential flooding areas identified by the Catalan Water 

Agency (Generalitat de Catalunya 2015) in order to implement the EU Floods Directive 

(Directive 2007/60/EC) (EC 2007). These areas were identified by combining 

geomorphological studies based on visual analyses (topography and morphology), 

flooding studies, aerial photographs and field visits. This information suggests that there 

is a strong correlation between the largest flood areas and medium and high FFPI’ 

levels, which allows for a validation of this index as a first approach in identifying areas 

prone to flash floods. However, one exception has been identified in the Ebro delta, as 

this area corresponds with a plain surface not affected by flash flooding. In this case, 

rainfall and vegetation could be the factors in generating higher values.   

In the second step, those sub-basins likely to be affected by flash flooding with 

medium and high FFPI’ levels were chosen to undertake a detailed flash flood 

assessment. To this end, flood data of the sub-basins prone to flash flooding was 

obtained from the Catalan Water Agency (Generalitat de Catalunya 2015) which uses 

hydrologic and hydraulic studies to determine the flood area and variables such as 

flood-depth or flood-velocity associated with three return periods. In this case, the 

flood-depth information for a return period of 100 yr has been used. However, the 
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Catalan Water Agency only provides this information for the Maresme region where the 

presence of dry streams usually causes flash flooding. Further information available 

from the Catalan Water Agency along the coast corresponds with permanent rivers, 

which is not of interest for the present assessment. Thus, the second step of the flash 

flooding analysis has only been carried out in the Maresme. However, if data were 

available, the proposed methodology could be applied in any sub-basins prone to flash 

flooding. In Figure 5.3 the flash flooding extension area and hazard classification, 

following flood damage curves proposed by Velasco et al. (2015), are presented. As an 

example, three areas are highlighted to show more detailed information on the flood 

extension area and the different hazard intensity levels. If areas are classified in terms of 

the average hazard intensity (flood depth values) the most hazardous area is located in 

Sant Pol de Mar (27). The second most hazardous area is located between Cabrera de 

Mar (34) and Mataró (33) with the highest values in Mataró. When the hazard is 

evaluated in absolute terms, i.e. taking into account the total affected area, the most 

hazardous are Santa Susanna (24) and Pineda de Mar (25). 
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Figure 5.3 Flash flooding areas and hazard intensity classification for the municipalities more prone to 
flash flooding in the Maresme coast. 

Obtained exposure indicators for the areas are representative of medium values 

(Figure 5.4) with Mataró (33) showing the highest values. This is due to the existence of 

a different number of assets with high relevance at local and regional level being 

affected (e.g. railway, road, factories and a water treatment plant) as well as the high 

values of social and population vulnerability to floods (see Figure 5.8).  

Figure 5.4 also shows total risk values at municipality level after combining 

hazard and exposure values. Hence, risk values are presented considering the risk in 

unitary terms (average risk) and the total area affected (absolute risk). The 

municipalities of Mataró (33) and Sant Pol de Mar (27) are the ones which present 

higher average risk values whereas, Santa Susanna (24) and Pineda de Mar (25) show 

the highest absolute risk. 
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Figure 5.4 Flash flood total exposure (eT), average and absolute risk for the municipalities more prone to 
flash flooding in the Maresme coast. 

5.3.3 Marine	flood	

As described in the methodology (section 5.2.2), the analysis of marine flooding 

has been undertaken in basic units given by sectors of 1 km in length along sedimentary 

coastlines and at beach length in the cases of shorter stretches or pocket beaches. To 

illustrate obtained results at this smallest scale, Figure 5.5 shows the marine flooding 

hazard for 46 sectors along the Maresme coast. Results indicate that this region, in 

general, is characterised with low marine flood hazard levels, although there are 

exceptions in a few sectors, where the hazard intensity is high due to the combination of 

both large run-up values and low topographic levels. Therefore, these sectors represent 

the highest susceptible areas to be affected by marine storm-induced flooding. However, 

since the goal of this study is to undertake a comparative analysis along the entire 

territory, results for each sector have been integrated at the municipality level.  
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Figure 5.5 Marine flooding hazard in sectors of 1km along the Maresme coast. 

Figure 5.6 shows the marine flooding hazard integrated at municipality level for 

the Catalan coast. It should be noted that in order to integrate sectors at municipal level 

only the extension of the municipality coastline where computations have been done 

(essentially the sedimentary coast) are considered. Thus, in Figure 5.6 it can be 

observed that most of the municipalities are subjected to medium and high marine 

flooding hazard values even though that in some cases, the hazard has been assessed in 

a small fraction of the municipality coastline.  

Within the Girona province, municipalities such as Cadaquès (5) Castellò 

d’Empùries (7), Sant Pere del Pescador (8), Torroella del Montgrí (10), Palamòs (15) 

and Blanes (22) present the highest values. Sant Andreu de Llavaneres (32), Cabrera de 

Mar (34), Viladecans (43) and Gavà (44) within Barcelona province, are the 

municipalities presenting the highest hazard values. 

Whereas in Tarragona province the highest hazard values are presented in the 

municipalities of Creixell (54), Torredembarra (55), Altafulla (56), and Sant Jaume 

d’Enveja (67) and Amposta (68) with the final two being mainly controlled by the 

geomorphologic characteristic of the beaches, typified by very low profile elevation.  
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 Nevertheless, it should be noted that due to the short length (1 km) of the sectors 

of analysis and marine flooding scope, when integrating at municipal level, sectors with 

high marine hazard values can be hidden at such a level. In any case, results obtained at 

basic km-sectors can enable an identification of these if needed. 

 
Figure 5.6 Marine flooding hazard average for the coastal municipalities. 

Figure 5.7 shows three of the consequences indicators (land use (eLU), transport 

system (eTs) and utilities (eUt)) which have been calculated within the flooding area that 

in the case of marine flooding is taken as a buffer area of 100 metres along the coast. 

Firstly, they have been calculated for each 1km-sector and then integrated to represent 

the total value at municipality level. The land use indicator (eLU) shows a distribution in 

which the highest values are in those municipalities with an important presence of urban 

beaches. This reflects the orientation of the analysis, in which major importance is given 

to socio-economic developments rather than natural ecosystems. However, in order to 

assess the consequences to different categories, the weights assigned can be customized 

to reflect the objective of the analysis. The transport system indicator (eTs) generally 

highlights low and medium values, with the exception of the Maresme region where 

higher values are presented. This reflects the elevated number of infrastructures in this 



The Coastal Risk Landscape 

70 

area. Regarding the utilities indicator (eUt), no important potentially impacted elements 

have been identified. 

As occurred for the hazard assessment, in the case of municipalities with a small 

section being composed of beaches, the municipality-integrated value is controlled only 

by this part. An example of this is the high value of infrastructures in Roses (6) (Figure 

5.7). 

 
Figure 5.7 Land use (eLU), Transport system (eTs) and Utilities (eUt) exposure indicators (municipality 
average for sedimentary coasts) for marine flooding.  

The two remaining indicators that are directly obtained at municipality level, the 

business setting (eBs) using a tourist index, and the SFVI (eSFV) can vary depending on 

the scale of analysis i.e. province, HEMU and regional (Figure 4.5 and Figure 5.8) for 

the three spatial scales of analysis. As there is no a spatial variation in the assessment of 

these indicators, but rather an analysis of statistical data at municipal scale, these 

indicators are common for the three flood components analysed.  

The SFVI indicates the areas where the population is more likely to be severely 

affected by floods, in terms of health and financial recovery. Results for Catalonia show 

high SFVI values in the municipalities of Palamòs (15), Blanes (22), el Perelló (64), 
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Sant Jaume d’Enveja (67) and Sant Carles de la Ràpita (69). For the other scales 

(HEMU and province), these municipalities also indicate high SFVI values. Focusing 

on the HEMU level A, the municipalities which present higher values are situated in the 

southern part, in the Baix Ebre and Montsià comarcas whereas in contrast, Alt Empordà 

in the northern part presents relatively low values. HEMU level B shows the highest 

values situated in the municipalities of Palamòs (15), Blanes (22) and Cubelles (49), 

whereas for level C higher values are found in the Maresme comarca. At province level 

the major values are presented mainly in Tarragona in the municipalities situated in the 

Baix Ebre and Montsià comarcas. 
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Figure 5.8 Social Flood Vulnerability Index (SFVI) for the three scales of analysis. 
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The five socio-economic indicators are integrated (Eq.5.5) to obtain the total exposure 

indicator which is shown in Figure 5.9. Although there are differences along the coast 

when exposure indicators are evaluated individually, when they are integrated together 

in a unique value relatively low and medium exposure values for all the municipalities 

are observed. Major exposure indices are situated in Barcelona, and more specifically in 

the Maresme comarca. 

 

 
Figure 5.9 Marine flooding total exposure (eT). 

The total risk from marine flooding along the Catalan coast is presented in Figure 

5.10. The results obtained for the combination of hazard and exposure values reflect, in 

general, medium risk from marine flooding at municipality level. However, 

municipalities such as Torroella de Montgrí (10), Palamòs (15), Blanes (22), St. Andreu 

de Llavaneres (32), Cabrera de Mar (34) and Creixell (54) indicate high values of risk 

for this hazard. 
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Figure 5.10 Marine flooding risk.  

5.3.4 Inundation	by	Sea	Level	Rise		

Figure 5.11 presents inundation associated with SLR considering two scenarios, 

RCP 8.5 and High-End. In both cases, and for the spatial scale presented here, the most 

significantly inundated area is located in the Ebro delta. When considering the High-

End scenario, the inundation area for the Ebro delta and Gulf of Roses further increase, 

and a new inundation area can also be observed in the Llobregat delta. The largest 

increase in risk areas from scenario RCP 8.5 to High-End occurs for the highest part of 

the territory. These require a longer time to be inundated and, as a consequence, new 

areas are essentially of low risk. 



Chapter 5: Flood risk analysis 

 

 75 

 
Figure 5.11 Inundation by SLR and hazard intensity classification. 

As an example for the rest of the coast Figure 5.12 shows the inundated area and 

corresponding hazard intensity along the Maresme coast under the High-End scenario. 

As can be observed, the extension of inundation is very small and can only really be 

appreciated in the north of the region where the low-lying area of the Tordera delta 

(Malgrat de Mar municipality (16)) is located. With the exception of the Tordera delta, 

these results indicate the relatively low importance of SLR, in term of inundation, due 

to the small surface of flood-prone areas which are only restricted to beaches. This 

highlights the geomorphologic characteristics of the coastline, which can be typified as 

having moderately steep profile slopes (with the exception being the low-lying area of 

the Tordera delta).  
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Figure 5.12 SLR inundation (High-End Scenario) and hazard intensity classification in the Maresme 
coast. 

Figure 5.13 show the obtained results in Figure 5.11 integrated at municipality 

level for the Catalan coast. It should be noted that, when considering the average 

hazard, the hazard level does not always increase when the High-End scenario is taken 

into account. This is due to the value representing the hazard in unitary terms and does 

not take into consideration the total area affected. Moreover, the relative area inundated 

over time (hazard intensity criteria) varies depending on the scenario analysed. 
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Figure 5.13 SLR hazard intensity for RCP 8.5 and High-End scenarios (average inshore buffer/absolute 
offshore buffer). 

The exposure indicators to SLR considering a High-End scenario are presented in 

Figure 5.14. In this case, these have been evaluated within the extension of the flooded 

area. Results for the land use indicator (eLU) show a distribution where higher values are 

shown in municipalities with an intensively urbanised coastal fringe. With respect to the 

transport system indicator (eTs), higher values are found in areas where the extension of 

the inundation is substantial, thus impacting increased lengths of this form of 

infrastructure. As a result, higher values are observed in deltas, particularly the Ebro 

delta and other municipalities such as Tarragona (57) and Sant Pere Pescador (8). 

Finally, the utilities indicator (eUt) identifies the municipalities with important critical 

infrastructure, which in some cases are, again, directly related to low-lying areas and the 

extension of the inundation such as in the Ebro delta or the Llobregat delta. In the 

Llobregat delta the values include the presence of Barcelona airport. Another 

municipality in which important utilities are exposed to SLR (High-End) is Valdellòs i 

l’Hospitalet de l’Infant (62) as part of the area classified as a nuclear power plant is 

inundated under this scenario.   
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Figure 5.14 Land use (eLU), Transport system (eTs) and Utilities (eUt) exposure indicators (municipality 
average for sedimentary coasts) considering SLR High-End scenario. 

Finally, a total exposure value represented by the integration of the 

aforementioned indicators and the business settings (eBs) and SFVI (eSFV) indicators is 

obtained for the SLR component considering both scenarios (RCP 8.5 and High-End). 

The total exposure (eT) for the High-End scenario is presented in Figure 5.15. The 

results indicate generally low values at exposure. However, the main differences are 

found in the municipalities where the extension of the inundation is more severe such as 

those including low-lying areas, which at the Catalan coast contain substantial human 

activity and important socio-economic receptors. 
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Figure 5.15 SLR (High-End scenario) average total exposure (eT). 

The risk associated with SLR for the two scenarios considered is presented in 

Figure 5.16. In general the average risk to SLR considering both scenarios is medium 

and low for all the municipalities. Focusing on the absolute risk, it can be clearly 

observed that the highest risk value is in the Ebro delta. However, although for the rest 

of the coast the risk is low and medium, there is a general distribution in which the 

municipalities situated south of Barcelona present medium values and north of 

Barcelona low values of risk, with an exception being low-lying areas of the Gulf of 

Roses and Baix Empordà comarca. This pattern is likely to reflect topographic 

characteristics of the coastal profiles along the coast.   
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Figure 5.16 SLR inundation risk for RCP 8.5 and High-End scenarios (average inshore buffer/absolute 
offshore buffer). 

5.3.5 Integrated	food	risk		

Figure 5.17, Figure 5.18 and Figure 5.19 show the risk distribution associated 

with the three flood components along the Catalan coast (with the flash flood 

component only presented for the Maresme comarca). As the analysis has been 

classified in a common scale for all of the flood components, this permits an integrated 

representation of flooding risk along the coast. The results indicate that when the 

absolute flood risk is considered the SLR for both scenarios is the most relevant 

component in low-lying areas such as the Gulf of Roses, Llobregat delta and Ebro delta. 

The latter highlights an order of magnitude considerably superior to the other low-lying 

areas. This highlights that the major contributor to determining the risk is the flooded 

extension area. Thus, the marine flooding risk does not appear to be important since the 

maximum expected extension of the flood area considered is a buffer of 100 m for each 

municipality. In spite of the high absolute risk values for the SLR component, the 

importance of the flash flood component can be observed in the Maresme comarca for 

the municipalities of Pineda de Mar (25) and Santa Susanna (24). In order to express the 

risk at municipality level in unitary terms (without considering the total flooded area) 
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the average risk shows that marine flooding represents, generally, the most important 

component. This stresses that although the characteristic effects of this component can 

be observed in a short period of time (episodic-term component) its scope given a return 

period (100 yr) and as a result the consequences, can involve potential risk values 

higher than SLR. Therefore, due to the relatively small scope of the inundation area 

(with the exception of the low-lying area) and the resultant consequences, the SLR 

component generally represents lower risk values. Moreover, another consideration to 

be made is that the risk calculated for SLR is cumulative, i.e. considering the 

accumulated impact in a long time period (2100). However the risk associated to storms 

is for one event. To properly compare them, the risk associated with the impact of 

multiple events in a similar period should also be cumulated. In this sense, average risk 

may be a more “fair” way of comparison. Along the coast, it can be stressed that the 

municipalities of Palamòs (15), Blanes (22), Sant Andreu de Llavaneres (32) Cabrera de 

Mar (34) and Creixell (54) are the areas where risk from marine flooding is 

considerably higher compared to the other components.  
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Figure 5.17 Absolute and average flood risk for marine and SLR components (Girona province).
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Figure 5.18 Absolute and average flood risk for marine and SLR components (Barcelona province).
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Figure 5.19 Absolute and average flood risk for marine and SLR components (Tarragona province). 
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Chapter	6	

Discussion.	Integrating	risks	

along	the	Catalan	coast	

6.1 Methodological	aspects	

Coastal areas are subjected to the effects of multiple hazards (Kron 2013). 

However, here only coastal erosion and flooding have been analysed as they are 

considered to be the most relevant for the Catalan coast and induce the highest degree of 

damage (Jiménez et al. 2012). 

In this work, these two hazards have been assessed separately since although 

induced by the same forcings, they produce different impacts and consequences and, 

moreover, the way to mitigate them is different. For this reason, it is important to 

identify sensitive coastal stretches for each hazard to allow coastal decision makers to 

properly undertake mitigation actions.  

Any hazard can be decomposed into various components in relation to different 

processes and their associated timescales. This disaggregation should be done in 

advance in accordance with the target of analysis. Therefore, whether or not a particular 

component must be included will depend on the stated objectives of the analysis. In this 

work, each hazard was analysed focussing on the most expected and the likely impacts. 

For erosion, the focus has been set considering the consequences to recreation and 

protection. Since recreation is a seasonal activity taking place during the summer, and, 

for mid-latitudes, storms are unlikely to happen during this season, erosion components 

affecting recreational use are limited to the medium and long-term components. If the 

objective of the analysis is to assess the potential impact of out-of-season storms, the 

episodic component could also be added. However, for the protection function, all the 

erosion components are included because the storm-induced (episodic) component is 
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the main contributor to protection needs and, the mid- and long-term components 

determine the future evolution of such needs. 

When considering the flood hazard, flash floods, marine floods and inundation by 

SLR have been considered the most relevant flood components (processes) acting at 

different time and spatial scales in Mediterranean coastal environments.   

The spatial scale and method of aggregation have been selected from the 

management perspective. Each hazard and associated risk is assessed at a given basic 

scale of analysis (which depends on the hazard) and, later, is integrated up to the 

management scale which is determined by the administrative characteristics of the study 

area. Thus, for erosion, the minimum scale corresponds to mid-term shoreline evolution 

which is computed in sectors every 100 m whereas the largest is associated to the SLR-

induced erosion which is calculated for very long coastal regions (10-100s km). For 

flooding, the minimum scale corresponds to marine flooding which has been analysed 

for 1 km long sectors. For this hazard, the SLR component is calculated nearly in a 

continuous manner since the coast is inundated taking into account local topography. 

Despite this, all components have been integrated at the municipality scale. This is due 

to the fact that the municipal scale is the lowest management unit in Spain. However, 

since the information is provided at different levels, the integration can be done at any 

scale. It should be stressed that in municipalities with short stretches of sedimentary 

coastline, the total municipality risk value presented only corresponds with the 

sedimentary parts of the coastline (e.g. Cap de Creus). Moreover, with the focus on the 

identification of “negative” situations (stretches at greater risk), a risk-orientated 

method of aggregation has been proposed for erosion, in which higher importance has 

been given to eroding stretches than to accretive sections to avoid masking the existence 

of sensitive areas by simple averaging. 

With respect to time integration, erosion analysis has been assessed for current 

conditions plus a minimum time for projection. The proper transfer of useful 

information to decision makers must permit action to be taken in order to 

prevent/mitigate expected damages. This requires time, and territorial planning takes in 

the order of a few decades. It is recommend, therefore, to make projections at 10-20 

years in order to properly include erosion risk within management plans.  
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To characterise the socio-economic consequences of the hazards, quantifiable, 

comparable and robust indicators have been selected, to assess the potential values 

affected in each case (erosion and flooding). It should be noted that this approach is 

primarily useful for identifying critical location while comparing sites.  

In the case of erosion, two indicators have been selected for recreation: a tourist 

index and a leisure index. The first evaluates coastal tourism, this being one of the most 

important economic activities, and the second evaluates the service provided by beaches 

for leisure. These indicators allow an analysis of the effects on resources, not only for 

foreign tourists, but also for the local population. Although the assessment has been 

undertaken assuming tourist use and population to be steady during the period of 

analysis, the method can easily deal with future projections by assessing and 

implementing available socio-economic indicators. 

For protection evaluations, the selected indicator for assessing the consequences 

represents the main infrastructures that would be affected if the protection function of 

the coast fails. In this sense, the decision on which assets to consider in the analysis will 

depend on which need protecting. The assets were selected within a buffer area of 100 

m, taking into account the maximum and the more likely reach of coastal hazards 

induced by the beach narrowing process. Therefore depending on the site, the buffer 

should be adjusted accordingly.  

For flooding, five indicators have been selected to properly reflect the potential 

direct and indirect consequences of flooding hazards. These indicators reflect the 

presence of receptors in the flood zone, from infrastructure to socio-economic activities. 

Within these five indicators, the land use indicator has been weighted taking into 

account an analysis from an anthropogenic perspective which can be adjusted to 

different the objective of the analysis. The social and population vulnerability indicator 

is represented by the SFVI, which determines the vulnerability level of the population 

using social and financial-deprivation variables (see Appendix B). This index allows a 

quantitative assessment of the intangible damages to floods, a parameter commonly 

overlooked in the assessment of consequences. The variables comprising this index are 

considered appropriate for the study area, although they were originally derived for UK 

conditions and have also been used in the Maresme coast in the framework of the RISC-

KIT project (e.g. Jiménez et al. 2017). However, they can be adapted to other territorial 
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and social characteristics, such as seasonal behaviour of the populations in coastal areas. 

The total exposure index obtained by the integration of the five indicators is produced 

using a linear aggregation method, which can also be modified by assigning different 

weights to give more, or less, importance to specific aspects (e.g. social vulnerability or 

businesses).  

The selected indicators are robust for the site (frequently used and well- 

calculated). However, they can be adapted and/or substituted by any other indicator 

reflecting similar values, as long as they are acceptable to decision-makers. Indicators 

such as tourism, leisure and SFVI indices have been normalized (scaled from 0 to 1) 

within three scales of analysis (Catalonia, province and HEMU level) which in the case 

of erosion has permitted the differentiation of risk levels according to different 

management scales. It should be stressed that beyond damages, this analysis considers 

consequences as exposure values i.e. it is the maximum potential damage, since 

vulnerability associated with physical fragility is not considered. 

In the case of erosion, a risk matrix has been used as a means to reflect hazards 

and consequences independently while incorporating new components in their 

assessment over time. The qualitative level of risk, ranked within the risk matrix 

between the two factors has been fixed according to the safety level required to prevent 

erosion risk and to prioritize actions in carrying out proper risk management activities. 

When comparing flood components, it should be noted that the risk calculated for 

SLR is cumulative, i.e. considering the accumulated impact in a long time period 

(2100). However, the risk associated to storms is for one event. To properly compare 

them, the risk associated with the impact of multiple events in a similar period should 

be also cumulated. In this sense, average risk should be a more “fair” way of 

comparison. 

6.2 Erosion	and	flooding	risks	at	the	Catalan	coast	

The assessment undertaken in this work only concentrates on the most sensitive 

part of the coast, about 219 km of sedimentary coast, of the more than 600 km of 

Catalan coast. This does not mean that the rest of the coast is not subjected to risk, but 

since this is expected to be smaller, the focus has been limited to beaches.  
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Figure 6.1 and Figure 6.2 show, in an aggregated manner, the main results for 

erosion and flooding risks (displayed in parallel) associated to a given timescale and 

process.  

Figure 6.1 shows the spatial distribution of erosion and flooding risk associated to 

the episodic scale, i.e. the storm-induced risk. This is illustrated here for the return 

period (Tr) of 100 years and will change if another Tr is considered. This is an 

important consideration as the classification will change depending on the safety 

requirements of the specific location. If erosion risk is considered, most of the Catalan 

coast is relatively safe, with most of the exceptions being along the Maresme coast. 

It should be stressed that these values give an overall view of the municipality as a 

whole and this does not preclude that in a given point of the coast there will be a 

sensitive stretch (which can be identified in 1 km sectors). The information provided 

here is indicating the whole municipality coastline sensitivity. Moreover, it has to be 

considered that represented values integrate hazards and consequences and, in some 

cases, although the coast would be severely eroded, damages could be low due to the 

unimportance of existing assets.  

Despite the fact that at the present time, storm-induced erosion (episodic-term 

component) can be considered low in Catalonia, with the exception of the Maresme 

coast, when the mid- and long-term components are included in the analysis, new at-risk 

areas appear along the coast and levels of risk in the Maresme coast considerably 

increase (see Figure 6.3). This indicates the progressive sensitivity of the coast due to 

background erosion (mid-term) and SLR (long-term) components. 

Flood risk associated with the episodic-term components corresponds with marine 

and flash flooding, however, the flash flooding component is not presented in Figure 6.1 

to avoid an overestimation of the risk level in the Maresme comarca (the unique region 

of analysis). Along the Catalan coast, the risk associated with marine flooding can be 

classified as having medium risk values. Nevertheless, the Maresme coast again shows 

some higher values and other sectors along the coast also emerge as potentially at-risk. 

In this sense, these results permit to characterise the Catalan coast as more sensitive to 

storm-induce flood risk than to erosion risk. Moreover, taking into account both results, 

the Maresme region emerges as one for the most at-risk areas to storms in Catalonia. 
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Figure 6.2 shows the erosion and flooding risk long-term components. In this case 

erosion in the long-term is presented for a tourist use of the beaches. This function does 

not consider the episodic-term component, but only the mid-term component projected 

at 2035, plus the effect of the long-term component at such time. The latter has been 

measured in a decadal scale (2035), which is considered a suitable scale to take into 

account the long-term component while providing timely information for coastal 

management decisions. 

Erosion results show that in order for beaches to provide a recreational function, 

most of the current municipalities with a tourism focus will be at-risk by 2035 (i.e. 

tourism conurbation areas of Salou (59) and Lloret the Mar(21)). Moreover, when 

considering the leisure use of beaches, new municipalities along the coast providing 

such recreational uses primarily for the local population emerge at-risk by 2035.  

Results obtained considering the long-term flooding component, SLR by 2100 

(Figure 6.2), show that the Catalan coast generally has a very low sensitivity to the 

effects of SLR given the topographic characteristic (i.e. steep beach slopes). However, it 

is only in the low-lying areas along the coast (Gulf of Roses, Llobregat delta and Ebro 

delta) where the effects of SLR will induce high risk, highlighting the sensitivity of the 

Ebro delta, not only by 2100 but also in the medium-term (2035) (see Figure 5.11).  
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Figure 6.1 Episodic-term erosion (protection) and flood risks (marine flood component) for the Catalan 
coast.  

 
Figure 6.2 Long-term erosion (touristic use by 2035 + SLR RCP 8.5) and flood risks (SLR RCP 8.5) for 
the Catalan coast. 
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Figure 6.3 Episodic-term erosion at present and projected by 2035 (medium-t by 2035 + SLR RCP 8.5). 

The results obtained for the Maresme comarca were integrated with an analysis of 

public perception in order to identify, in this territory, any gaps and misunderstanding in 

public awareness which could then be included in risk communication campaigns. Thus, 

it is observed that “objective” results obtained here reflect a high correlation with 

stakeholder perceptions for the area (“subjective”). As Roca et al. (2015) suggest, 

stakeholders clearly perceive episodic coastal processes, such as marine storms and 

flash flooding, as the intensity and frequency of these hazards is regularly reflected in 

their induced impacts on coastal assets. Thus, Figure 6.4 shows the results obtained for 

these perceived impacts, where the railway and roads as well as the loss of beach for a 

protection function, are the items most valued.     
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Figure 6.4 Perceived impacts in the Maresme (Roca et al. 2015). 

In contrast, long-term processes in this region are not perceived as a major issue 

as stakeholder concerns are associated with short-time scales. This is presented in 

Figure 6.5 where “objective” results are combined with perceived information 

(“subjective”) obtained from surveys conducted in the area. These results show that in 

the northern part of the Maresme (i.e. Alt Maresme), where the SLR is more relevant 

due to the presence of the low-lying area of the Tordera delta, stakeholders do not 

perceive this component as a risk (Ballesteros et al. 2016). 

 

 
Figure 6.5 Flooding objective and perceived risk in the Maresme comarca. 
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Chapter	7	

Summary	and	Conclusions		

7.1 Erosion	and	flooding	risk	methodology		

In this work, a methodology to assess coastal erosion and flooding risks at 

different timescales and at a regional scale has been developed. This has been framed 

within the SPRC model, in which the pathway has been adapted to represent each 

hazard by considering the different related processes acting at different timescales.   

Erosion and flooding hazards have been considered individually, and are 

evaluated independently. In the case of erosion, this has enabled the consideration of the 

most important components for each coastal function in the assessment of the 

consequences and to evaluate the expected time evolution of the risk. For flooding, 

marine and flash floods (storm-induced floods) are characterised as episodic-term 

components, and inundation-induced by SLR as a long-term component. 

The consequences of erosion and flooding have been determined separately taking 

into account the most relevant impacts, from the management standpoint, potentially 

induced by each process, i.e. recreation and protection. Thus, in order to assess erosion 

consequences, a beach functional vulnerability (BFV), defined as the lack of capacity of 

the beach to cope with erosion to properly provide a given function, has been employed. 

Since the main objective of the analysis is to provide useful information to inform 

management decisions at a regional scale, results are integrated at the minimum 

administrative/management unit, which, in the case of Spain, is the municipality. The 

considered coastal function has been evaluated in socio-economic terms to assess the 

potential consequences for each municipality. The results are combined within the risk 

matrix, which is independently obtained for each management (function) target. This 

permits a comparison, in a consistent form, of the considered risk among different 

management units (municipalities). 
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Flooding consequences are calculated by measuring values at exposure within the 

flood prone area. This is achieved using an indicator that encompasses five categories 

representing most representative values at the study site (land use, population and social 

vulnerability, transport system, utilities and business setting). The total affected area, at 

municipality scale, is presented both as the absolute risk (considering the total affected 

area) and the average risk (where the risk is considered in unitary terms). 

By considering multiple coastal processes, beach functions and socio-economic 

values, it is possible to manage erosion and flooding to accomplish more specific goals 

in a more efficient and sustainable manner. This permits an identification of the most 

sensitive areas along the coast, which are the main contributors to the quantified risk, 

and thus, to properly design risk reduction measures. 

As the methodology considers a joint analysis of the implications of components 

acting at different timescales, this will help to delineate medium and long-term risk 

management strategies as a prerequisite for long-term coastal planning.  

7.2 Erosion	and	flooding	risk	at	the	Catalan	coast		

The proposed methodology has been applied to 219 km of beaches along the 

Catalan coast, where the large variability in the physical characteristics and socio-

economic developments has permitted the identification of a differentiated risk 

distribution.  

By considering two coastal functions (i.e. recreation and protection) in the 

assessment of erosion risk, the different sensitivity levels of the beaches along the 

Catalan coast, in providing such functions, can be observed. From a recreational 

standpoint, the analysis also demonstrates the need to include specific indicators for 

tourism and leisure. These indicators reflect strong regional differences in tourism 

development, while the social recreational use of beaches is almost as important along 

the entire territory.  

At a regional scale (Catalonia), results reflect the current adequate status of the 

beaches to properly provide a recreational use. However, despite these good conditions, 

future projections to 2035, considering background erosion (medium-term component) 
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and SLR-induced erosion (long-term component), indicate that an elevated number of 

municipalities along the Catalan coast will present high risk levels to support a 

recreational function in the medium-term. Thus, most of the current municipalities with 

a tourism focus (i.e. tourism conurbation areas of Salou (59) and Lloret the Mar (21)) 

will unable to support such uses by 2035. When considering the leisure use of beaches, 

primarily for the local population, new municipalities along the coast which provide 

such recreational uses emerge at-risk by 2035. In this case, the surrounding 

municipalities of Barcelona (i.e southern Maresme comarca municipalities) and 

Tarragona are highlighted as the most sensitive areas. 

The protection function provided by beaches along the Catalan coast, shows a 

generally low level of risk, with the exception being the Maresme comarca. In this 

region, results demonstrate that at the present time beaches barely provide the required 

level of protection since most of the stretches are eroded despite supporting various 

forms of infrastructure. Moreover, this situation worsens when future conditions are 

taken into account (mid and long-term components) where additional municipalities 

along the Catalan coast emerge with medium risk levels, and beaches in the Maresme 

no longer provide a protection function.  

These results stress the importance of considering the long-term component (SLR-

induced erosion) within a timeframe (2035) which permits mitigation measures to be 

undertaken. For both coastal functions, the Maresme comarca represents the most 

sensitive area. Furthermore, the results show that by 2035 recreation along the Catalan 

coast will be the most at-risk function due to erosion.  

The consideration of various flood hazards shows that the episodic components, 

marine and flash flooding, are the most relevant along the Catalan coast. However, the 

main difference is that storm-induced marine flooding acts along the entire coast (with 

different magnitudes) whereas flash floods take place in a localised part of the territory. 

In this sense, the whole Catalan coast presents a generally medium risk value to storm-

induced marine flooding, with scattered municipalities in the northern part (e.g. 

Torroella de Montgrí (10), Palamòs (15), and Blanes (22)) and the Maresme comarca 

presenting high risk values. The latter can, again, be considered one of the most 

sensitive areas to the effects of episodic-term flood components, both of marine origin 

and flash flood. 
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The comparison of erosion and flooding risk associated with storm-induced 

components (episodic-term) shows that the Catalan coast is more sensitive to the effects 

of marine flooding than to erosion. 

At the mid-term (2035) the only significantly affected area by SLR is the Ebro 

delta. When the analysis is undertaken at 2100, the total floodplain in low-lying coastal 

systems (i.e. Ebro delta, Llobregat delta and Gulf of Roses) is affected by a permanent 

inundation due to SLR. This will have serious implications for agriculture, ecosystems 

and tourism within these areas.  
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7.3 Future	developments	

The research presented in this thesis is a comprehensive assessment of different 

coastal erosion and flooding processes and their consequences at regional scale. 

However, there are inevitably ways in which this study could be refined or improved 

with further work. Some of the most pertinent of these suggestions are as follows: 

 The consideration of actual direct and indirect damages in monetary terms (€) to 

evaluate the consequences. This would help to undertake cost-benefit analyses for 

coastal erosion and flood risks and to inform the allocation of the budget for 

general management policies.  

 To incorporate new natural and human-induced hazards (e.g. pollution) in the 

assessment. 

 To assess the understanding of risk (at different timescales) for the whole Catalan 

coast in order to analyse and compare the calculated and perceived levels of risk. 

This information could be included in coastal management policies and awareness 

raising campaigns.  

 Improvements in the data collected by others would increase the robustness of the 

analysis. In particular, flash flood maps for a given return period with depth and 

velocity information for the more prone sub-basins would improve the regional 

assessment. 
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Set of variables used and ranking for the FFPI’  
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Justification of the variables used in the Social Flood Vulnerability Index (SFVI) 

from Tapsell et al. (2002) and the corresponding data for Catalonia. 

 

Variable Rationale IDESCAT  DATA (Statistical 
Institute of Catalonia) 
www.idescat.cat  

Elderly Elderly people was chosen because 
epideminiological research has 
shown that after this age there is a 
sharp increase in the indicence and 
severity of arthritis (and other 
conditions) and this illness is 
sensitive to the damp, cold 
environmental conditions that would 
follow a flood event. 

 Población por grupos de edad  
De 65 a 84 años+De 85 años y 
más. 
[(c) elderly] 

Lone 
parents 

Previous FHRC (Flood Hazard 
Research Centre) research has shown 
that lone parents are badly affected 
by floods because they tend to have 
less income and must cope 
singlehandedly with both children 
and the impact of the flood with all 
the stress and trauma that this can 
bring. 

 Hogares. Por tipo de núcleo / 
Padre o madre con hijos.  
[(b) single parents] 

Pre-existing 
health 
problems 

Research by FHRC has shown that 
post-flood morbidity (and mortality) 
is significantly higher when the flood 
victims suffer from pre-existing 
health problems. 

 Personas reconocidas 
legalmente con discapacidad 
[(a) long-term sick] 

Financial 
deprivation 

The financially deprived are less 
likely to have home-contents 
insurance and would therefore have 
more difficulty in replacing 
households’ items damaged by a 
flood event (and it would take longer)

 Viviendas familiares 
principales. Por régimen de 
tenencia/De alquiler. 
 [(h) non-home ownership] 

 Hogares. Por dimension/ 
Cuatro personas y más. 
[(f) overcrowding] 

 Paro registrado/población 
activa. 
 [(d) unemployment] 

 Índice de motorización. 
 [(g) non-car ownership] 
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Transformation methods applied in the compilation of the SFVI: 

indicator transformation method 

lone parents long natural (x+1) 

aged 63+ long natural (x+1) 

long-term sick  square root 

non-homeowners square root 

unemployed long natural (x+1) 

non-car owners square root 

overcrowding long natural (x+1) 
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Publications	

Ballesteros C, Jiménez JA, Viavattene C (2016) Evaluación del riesgo de inundación a 

múltiples componentes en la costa del Maresme Revista Iberoamericana del Agua 

(in press) 

Ballesteros C, Jiménez JA, Valdemoro HI, Bosom E (2017) Erosion risk analysis in the 

Maresme coast (NW Mediterranean, Spain) Nat Hazards (accepted, in review). 

Ballesteros C, Jiménez JA, Viavattene C (2017) A multi-component flood risk 

assessment in the Maresme coast (NW Mediterranean) Nat Hazards (accepted, in 

review). 

Jiménez JA, Ballesteros C, Sanuy M, Valdemoro HI. (2017) Storm-induced risks along 

the coast northwards of Barcelona (NW Mediterranean). Coastal Eng (accepted, 

in review). 

Jiménez JA, Ballesteros C, Sanuy M, Nicholls R (2017) Impacts of sea-level rise-

induced inundation on the Catalan coast (NW Mediterranean). Reg Environ 

Change (in preparation).  

Conference	participation	

Ballesteros C, Roca E, Jiménez JA, Villares M (2016) Assessing the coastal risk 

landscape in the Maresme region. ECSA56, Coastal systems in transition. From a 

"natural" to an "anthropogenically-modified" state, Bremen (Germany). 

Ballesteros C, Jiménez JA, Viavattene C (2015) Evaluación socio-económica del 

impacto de las inundaciones en la costa del Maresme. XIII Jornadas Españolas de 

Ing. de Costas y Puertos, Avilés (Spain). 

Jiménez JA, Ballesteros C, Valdemoro HI, Bosom E (2015) Erosion risk assessment 

along the Catalan coast at decadal scale. Coastal Sediments, San Diego (USA). 

Ballesteros C, Jiménez JA, Valdemoro HI, Bosom E (2014) The risk landscape in the 

Maresme coast (Catalonia, NW Mediterranean). 3rd Int. Symposium on ICZM. 

Antalya (Turkey). 
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Valdemoro HI, Ballesteros C, Bosom E, Jiménez JA, Sanchez-Arcilla A (2014) Impact 

assessment of high-end SLR scenarios on the recreational and protection functions 

provided by beaches along the Catalan coast (NW Mediterranean). 3rd Int. 

Symposium on ICZM. Antalya (Turkey). 

Roca E, Ballesteros C, Villares M, Jiménez JA (2014) Perceptions on coastal risk 

landscape: From hazard measurements to communication campaigns. 3rd Int. 

Symposium on ICZM, Antalya (Turkey). 

Ballesteros C, Jiménez JA, Villares M, Garola A, Roca E (2013) El Paisaje del Riesgo 

Costero en el Litoral Catalán XII Jornadas Españolas de Ingeniería de Costas y 

Puertos, Cartagena (Spain). 

Contributions	to	scientific	reports	

Sanuy M, Ballesteros C, Jiménez JA (2016) Tordera Delta CRAF Phase 2. RISC-KIT 

– Deliverable 5.2. 

Jiménez JA, Ballesteros C (2016). CRAF Phase 1: Identification of Hotspots in the 

Catalan coast. RISC-KIT - Deliverable 5.1. 

Jiménez JA, Valdemoro HI, Ballesteros C, Bosom E, Sánchez-Arcilla A (2015) High-

end scenario impact assessments under BaU adaptation conditions. The Catalan 

coast. RISES – Deliverable 3.1. 

Participation	in	research	projects	

PaiRisC-M, “El Paisaje del Riesgo Costero en el Mediterráneo. Aplicación al litoral 

catalán”. CTM2011-29808 

PaiRisClima, “El Paisaje del Riesgo Costero en el litoral catalán. La influencia del 

cambio climático” CGL2014-55387-R  

RISC-KIT, “Resilience- Increasing Strategies for Coasts-toolKit”. EU Grant No. 

603458 

RISES-AM, “Responses to climate change: Innovative Strategies for high End 

Scenarios-Adaptation and Mitigation” EU Grant No. 603396 
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Workshops	

RISC-KIT Consortium Meeting (Faro, Portugal) 

Period: 20th - 22th April, 2016 

Objective: Meeting to discuss project progress and a workshop on applying the 

CRAF tool. Attended by the RISC-KIT International Expert Board. 

RISC-KIT Workshop (Delft, Netherlands) 

Period:  27th - 30th  June, 2016 

Objective: Information session on data gathering and applying the INDRA model 

(INtegrated DisRuption Assessment model) at the case study site. 

I Jornada de joves investigadors en riscos costaners: sinèrgies entre grups 

d’investigació UPC-UB / I Conference of young researchers on coastal risks: 

synergies between research groups UPC-UB (Barcelona, Spain) 

Period: 20th January, 2017 

Objective: Cross disciplinary networking meeting between young researchers 

from UPC and University of Barcelona on coastal risks. 

International	research	placement	

Flood Hazard Research Centre (FHRC), Middlesex University (London, UK) 

Period: 10th September - 12th December, 2014 

Host researcher: Dr. Christophe Viavattene, Senior Research Fellow 

Objective: To expand my knowledge from coastal risk to fluvial flood risk 

management, cost benefit analyses and the social and health impacts of flood 

events. Also built the Spanish social vulnerability index for use in the EU RISC-

KIT project. 
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