

Exact and heuristic methods for statistical
tabular data protection

Daniel Baena Mirabete

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Statistics and Operations Research

Exact and heuristic methods

for statistical tabular data

protection

PhDTesis

Author: Daniel Baena Mirabete

Supervisor: Jordi Castro Pérez

2017

iii

Als meus pares, Isabel i Antonio

pel seu amor incondicional.

v

They who can give up essential liberty to obtain a little

temporary safety deserve neither liberty nor safety.

Benjamin Franklin.

Contents

Agraïments-Acknowledgments xiii

Abstract xv

1 Statistical disclosure control 1

1.1 Introduction . 1

1.1.1 Motivations . 1

1.1.2 Microdata protection . 2

1.1.3 Tabular data protection 4

1.1.4 Contributions . 15

2 Using the analytic center in the feasibility pump 19

2.1 Introduction . 19

2.2 The feasibility pump heuristic . 21

2.2.1 The original feasibility pump 21

2.2.2 The modi�ed objective feasibility pump 22

2.3 The analytic center feasibility method (ACFM) 23

2.4 The analytic center feasibility pump (AC-FP) 24

2.4.1 The analytic center . 24

2.4.2 Using the analytic center in the feasibility pump heuristic . 25

2.5 Computational results . 28

3 Fix-and-relax approaches for Controlled Tabular Adjustment 35

3.1 Introduction . 35

3.2 Fix-and-relax . 38

3.3 Outline of block coordinate descent 40

3.4 Computational results . 41

3.4.1 Tuning the number of clusters in �x-and-relax 45

vii

viii Contents

3.4.2 Comparison between �x-and-relax and plain branch-and-cut 46

3.4.3 Comparison between �x-and-relax with block coordinate

descent and plain branch-and-cut 49

3.4.4 Comparison between �x-and-relax and other heuristics . . 55

3.4.5 Using �x-and-relax to warm start branch-and-cut 58

4 Stabilized Benders methods for large combinatorial optimization

problems: applications to cell suppression 63

4.1 Benders decomposition . 64

4.2 Stabilizing Benders through local branching constraints 66

4.3 Application to data privacy: the cell suppression problem 68

4.3.1 Adding a normalization constraint to the subproblem . . . 73

4.4 Computational results . 74

5 Conclusions and future directions 85

5.1 Conclusions . 85

5.2 Future directions . 87

5.3 Our contributions . 87

Bibliography 89

List of Figures

1.1 The risk-utility graph . 3

1.2 Example of disclosure in tabular data 5

1.3 Example of 1H2D table made of di�erent subtables 7

1.4 Small table for optimal CTA method 13

2.1 The feasibility pump heuristic (FP)(original version) 21

2.2 The analytic center feasibility pump (AC-FP) heuristic 26

3.1 The �x-and-relax (FR) heuristic applied to the CTA problem . . . 39

3.2 The block coordinate descent (BCD) heuristic for the CTA problem 44

4.1 The stabilized Benders method through local branching constraints 69

4.2 Performance pro�les for the di�erent combinations based on upper

bound . 79

4.3 Performance pro�les for the di�erent combinations based on CPU

time . 80

4.4 Performance pro�les for the most e�ective combinations based on

upper bound and CPU time . 81

ix

List of Tables

2.1 Characteristics of the subset of MILP instances from MIPLIB 2003 29

2.2 Computational results using AC-FP with PCx and CPLEX 30

2.3 Comparison of AC-FP with ACFM 31

2.4 Comparison with objective FP . 32

3.1 Characteristics of symmetric/asymmetric synthetic 1H2D instances 42

3.2 Characteristics of real instances 43

3.3 CPU time for di�erent number of clusters 47

3.4 Performance pro�le for di�erent number of clusters 48

3.5 Comparison between FR and plain BC for random 1H2D instances 50

3.6 Comparison between FR and plain BC for real instances 51

3.7 Comparison between FR+BCD versus BC for random instances . 52

3.8 Comparison between plain BC and FR+BCD with real instances . 54

3.9 Summary of results for real instances between FR+BCD versus BC 55

3.10 Comparison between FR and FP for real instances 57

3.11 Comparison between FR and BC using RINS 59

3.12 Using the FR solution to warm start plain CPLEX BC 60

4.1 Characteristics of synthetic 1H2D instances. 76

4.2 Characteristics of real tables. 77

4.3 Comparison between stabilized Benders meth1, using the barrier

solver and the use of the state-of-the-art classical Benders for ran-

dom 1H2D tables . 82

4.4 Comparison between stabilized Benders meth1, using the barrier

solver and the use of the state-of-the-art classical Benders for a

subset of real tables . 83

4.5 Comparison between stabilized Benders meth1, using the barrier

solver and CPLEX-Benders for a set of small 1H2D instances . . . 84

xi

Agraïments-Acknowledgments

Segurament és en aquests moments �nals, just quan estic a poques hores de fer

l'entrega de la meva tesis, el millor moment de recordar a totes aquelles persones

que m'han acompanyat en aquesta llarga travessia i que han fet possible i realitat

aquest repte personal tan important per a mi. No ha estat un camí gens fàcil,

però us puc assegurar que l'he gaudit per moments, l'he patit en altres però

que sobretot m'ha enriquit professionalment i més encara a nivell personal. Com

amant de l'atletisme puc dir que a dia d'avui aquesta tesis és la meva gran carrera

de fons realitzada amb les millor llebres possibles.

En primer lloc vull agrair a la persona més rellevant d'aquest projecte. El

meu director de tesis, el Dr. Jordi Castro. Crec que no cal que en aquestes breus

línies li agraeixi res a nivell cientí�c donat que ja es dóna per suposat. Sí que vull

agrair-li la seva dedicació, la seva feina, el seu suport però especialment la seva

paciència. Gràcies!

En segon lloc la meva família. Als meus pares. Antonio i Isabel. Sou sense

cap mena de dubte el meu pilar imprescindible. Sempre al meu costat. En tots

aquests anys de la meva vida mai m'heu deixat sol, sempre heu tingut paraules

d'ànims, sempre un bon consell a dir-me. I el més important, cada dia de la meva

vida he sentit molt de prop el vostre amor incondicional.

Als meus germans. Sandra i Sergio. Us asseguro que heu estat un exemple

per a mi. Estic immensament orgullós de ser el vostre germà petit. De ben petit,

m'heu portat pel camí que tocava, sense deixar que em perdés. Ara que arribo a

aquest punt i seguit del meu camí us dono les gràcies per tot.

Als meus nebots. Aitor i Roger. Els dos petitons de la família que estimo

amb bogeria. Gràcies per treure cada dia que estic amb vosaltres el nen petit que

tots tenim a dins. Gràcies per ensenyar-me que lo més important a la vida és ser

feliç i passar-ho pipa. Gràcies pel vostre somriure diari.

Finally I would like to sincerely thank Dr. Antonio Frangioni for his dedica-

xiii

xiv Agraïments-Acknowledgments

tion, kindness and attention during my 3 months in Pisa (Italy). It made me feel

at home. Thank you very much for providing me with scienti�c knowledge that

fortunately has been re�ected in this thesis.

I ara si, per últim, gracies a tots els meus amics. Potser alguns de vosaltres

no acabeu d'entendre que hagi perdut tants moments especials i tants caps de

setmana amb vosaltres per quedar-me tancat a casa treballant. Crec que jo

tampoc mai ho entendré però només se que volia fer-ho. Gràcies per respectar-ho

i per no deixar mai de comptar amb mi.

MOLTES GRÀCIES A TOTS.

THANKS TO EVERYONE.

Abstract

One of the main purposes of National Statistical Agencies (NSAs) is to provide

citizens or researchers with a large amount of trustful and high quality statistical

information. NSAs must guarantee that no con�dential individual information

can be obtained from the released statistical outputs. The discipline of Statistical

disclosure control (SDC) aims to avoid that con�dential information is derived

from data released while, at the same time, maintaining as much as possible the

data utility. NSAs work with two types of data: microdata and tabular data.

Microdata �les contain records of individuals or respondents (persons or enter-

prises) with attributes. For instance, a national census might collect attributes

such as age, address, salary, etc. Tabular data contains aggregated information

obtained by crossing one or more categorical variables from those microdata �les.

Several SDC methods are available to avoid that no con�dential individual in-

formation can be obtained from the released microdata or tabular data. This

thesis focus on tabular data protection, although the research carried out can be

applied to other classes of problems. Controlled Tabular Adjustment (CTA) and

Cell Suppression Problem (CSP) have concentrated most of the recent research

in the tabular data protection �eld. Both methods formulate Mixed Integer Lin-

ear Programming problems (MILPs) which are challenging for tables of moderate

size. Even �nding a feasible initial solution may be a challenging task for large

instances. Due to the fact that many end users give priority to fast executions and

are thus satis�ed, in practice, with suboptimal solutions, as a �rst result of this

thesis we present an improvement of a known and successful heuristic for �nding

feasible solutions of MILPs, called feasibility pump. The new approach, based

on the computation of analytic centers, is named the Analytic Center Feasbility

Pump. The second contribution consists in the application of the �x-and-relax

heuristic (FR) to the CTA method. FR (alone or in combination with other

heuristics) is shown to be competitive compared to CPLEX branch-and-cut in

xv

xvi Abstract

terms of quickly �nding either a feasible solution or a good upper bound. The

last contribution of this thesis deals with general Benders decomposition, which

is improved with the application of stabilization techniques. A stabilized Benders

decomposition is presented, which focus on �nding new solutions in the neigh-

borhood of �good� points. This approach is e�ciently applied to the solution of

realistic and real-world CSP instances, outperforming alternative approaches.

The �rst two contributions are already published in indexed journals (Op-

erations Research Letters and Computers and Operations Research). The third

contribution is a working paper to be submitted soon.

Chapter 1

Statistical disclosure control

1.1 Introduction

1.1.1 Motivations

A large amount of data travels daily through Internet. Today, according to

Data Never Sleeps 4.0, more than 347.000 tweets, 150 millions of emails sent,

21 millions of WhatsApp messages, 38.000 posts in Instagram, 701.000 logins in

Facebook, 3 millions of videos viewed in YouTube, 203.000$ in Amazon's sales,

among many others, are generated every minute in the World. We are living

in the age of digital information, the age of Big Data. More than 3.400 million

people are Internet users. We are constantly showing our preferences, directly or

indirectly, through surveys, shopping, talks, participation in the social networks,

etc. Many areas like banking, insurance, investment, pharmaceutical industry,

e-commerce or search engines manage large individual customer information for

their own bene�t. In addition to these areas mentioned, there are sectors like

o�cial statistics or health information, where the main purpose is to provide citi-

zens or researchers with trusted and high quality statistical outputs. In all cases,

the more detailed the information you provide is, the richer and more interesting

the statistical information will be. However, what about the right to individu-

als' privacy? The Universal Declaration of Human Rights and Organic Law of

Personal Data Protection protect, through heavy �nes applied to violators, that

not con�dential information provided by individuals can be derived to statistical

outputs released. The anonymisation of individual data, for example by removing

usernames and/or IP addresses, is not enough in order to ensure the privacy of

1

2 Chapter 1. Statistical disclosure control

individuals. Let us remind the particular case from 2006 of the company AOL

Research where 650.000 detailed Internet search records, previously anonymised,

were released. Despite those e�orts, a particular user was identi�ed by the New

York Times. Of course, the image of the company was extensively damaged and

they incurred in severe economic penalties. The discipline Statistical disclosure

control (SDC) seeks to avoid that con�dential information can be derived from

data released whereas, at the same time maintaining as far as possible the data

utility. So, the goal is always to publish data as close as possible to the original

data (minimize information loss) but reducing the risk that someone identi�es

a particular person or enterprise (minimize disclosure risk). This discipline is

also known as Statistical disclosure limitation (SDL) because the disclosure risk

can be only limited, not completely avoided, unless no data is published. This

is clearly shown in the risk-utility graph of Figure 1.1 (from [29]). Several SDC

methods have been developed in order to minimize the disclosure risk while max-

imizing the data utility. SDC methods are very important because in addition

to potential �nes, it guarantees data quality and high response rates in surveys.

If respondents feel that their privacy will be respected, they will be more likely

to respond in future surveys. In this thesis, we focus on o�cial statistics but

the interested reader in the application of SDC methods to the Big Data �eld,

can also check the recent paper [26]. In general, National Statistical Agencies

(NSAs) work with two types of data: microdata and tabular data. Microdata

�les contain records of individuals or respondents (persons or enterprises) with

attributes. For instance, a national census might collect attributes such as age,

address, salary and each attribute is recorded separately for each respondent.

Tabular data contains aggregated information obtained by crossing one or more

categorical variables from those microdata �les.

In the following sections, we will brie�y describe the most relevant aspects

about microdata and tabular data protection methods.

1.1.2 Microdata protection

A microdata �le contains data at the level of the individual respondent, that is,

the lowest level of aggregation of the information collected. The lines or records

of the microdata �le corresponds to single persons, enterprises, households or

others. Each record is characterized by a set of variables or attributes (such as

age, gender, income, job etc.). The attributes can be classi�ed as follows:

1.1. Introduction 3

Figure 1.1: The risk-utility graph.

• Identi�ers: Attributes that can be used directly to identify the respon-

dent. For instance: names, passport numbers, addresses. The identi�ers

attributes are always removed before releasing any microdata �le. However,

it is often not enough.

• Quasi-identi�ers: Also called key variables. Attributes that only combined

with other quasi-identi�er could be used to identify the respondent. For

instance: city, job, birth date, sex and ZIP/postal. The value of any quasi-

identi�er by itself often does not lead to identi�cation; however the com-

bination of several quasi-identi�ers could mean individual disclosure. For

instance: male, 20 years, married, Barcelona, nurse. This combination of

variables is known as key. It is not advisable to remove all quasi-identi�ers

attributes given that the data utility is drastically reduced. An important

step in the SDC process is to detect a list of possible quasi-identi�ers.

• Others: All attributes apart from identi�ers and quasi-identi�ers.

Each attribute (identi�er, quasi-identi�er or other) can be classi�ed as con-

�dential (or sensitive) or non-con�dential (non-sensitive). Con�dential variables

contain sensitive information such as health, income, religion, political a�liation,

etc., that should be protected by SDC methods. Non-con�dential variables do

not contain sensitive information. For instance: place of residence, zip code, etc.

4 Chapter 1. Statistical disclosure control

The attributes can be categorical (i.e, they take values over a �nite set, for in-

stance gender, region or education level) or continuous (they take values on an

in�nite number of values in a particular domain, for instance income, height or

weight). Any continuous variable can be transformed to categorical through the

establishment of intervals. Any publication of a microdata �le without previous

pre-processing implies the maximum individual disclosure risk. Di�erent SDC

methods have been developed in order to minimize the risk that intruders can

estimate sensitive information while at the same time maximizing the data utility,

providing an opportunity to make a good and high quality statistical analysis.

All protection methods can be classi�ed as:

• Perturbative: The original microdata �le is modi�ed changing the value of

some attributes. The perturbative SDC method must guarantee that dis-

closure risk is below a certain threshold agreed by NSAs. Microaggregation,

Data swapping o Rank swapping, Noise addition, Rounding, Resampling,

Post-randomization method or Data shu�ing are some of the most well

known perturbative methods.

• Non-Perturbative: The original values are not changed with these meth-

ods. However, the level of detail released fell signi�cantly applying suppres-

sions or global recoding. In general, the risk of identifying a respondent

is reduced. Sampling, Global recoding, Top and bottom coding or Local

suppression are some of the most well known non-perturbative methods.

In this thesis we focus on tabular data protection, for more information about

microdata protection the interested reader is addressed to the recent research

monographs [24], [25], [49] and [62].

1.1.3 Tabular data protection

Tabular data is obtained by crossing two or more categorical variables in a mi-

crodata �le. For each cell, the table may report either the number of individuals

that fall into that cell (frequency tables) or information about another variable

(magnitude tables). Tables contain summarized data from microdata �les, in

fact, tabular data is the most common form of publishing information of NSAs.

Although tabular data report aggregated information for several respondents, so

1.1. Introduction 5

t1 t2
...

51�55 ... 38000d 40000d ...
56�60 ... 39000d 42000d ...
...

(a)

t1 t2
...

51�55 ... 20 1 or 2 ...
56�60 ... 30 35 ...
...

(b)

Figure 1.2: Example of disclosure in tabular data. (a) Salary per age and town.
(b) Number of individuals per age and town. If there is only one individual in
town t2 and age interval 51�55, then any external attacker knows the salary of
this single person is 40000d. For two individuals, any of them can deduce the
salary of the other, becoming an internal attacker.

they could be considered anonymized, there is a risk of disclosing individual in-

formation. Figure 1.2 illustrates this situation with a simple case. The left table

(a) reports the salary of individuals by age (row variable) and town (column

variable), while table (b) provides the number of individuals. If there was only

one individual of age between 51 and 55 in town t2, then any external attacker

would know the con�dential salary of this person. For two or more individuals,

any of them (or may be a coalition of several respondents) could either disclose

the other's salary or compute a good estimation of the rest of respondents.

Cells that require protection (such as that of the example) are named sensi-

tive, unsafe, primary or con�dential cells. The tables can be classi�ed as positive

or general tables according to the sign of cell values. Cell values in positive ta-

bles are always nonnegative while in general tables the sign can be positive or

negative. Another possible classi�cation of tables is based on their particular

structure. In fact, this is the most important criteria because some protection

methods can only be applied to particular table structures. According to their

structure, tables may be classi�ed as single k-dimensional, hierarchical or linked

tables. A single k-dimensional table is obtained by crossing k categorical vari-

ables. For instance, the table of Figure 1.2 shows two tables obtained from a

microdata �le with information of inhabitants of some region. Crossing variables

age and town, the two-dimensional frequency table of Figure 1.2(b) may be ob-

tained. Instead, Figure 1.2(a) shows a magnitude table with information about

a third variable like overall salary for each range of age and town. A hierarchical

table is made up of a set of tables obtained by crossing some categorical variables,

6 Chapter 1. Statistical disclosure control

and some of them have a hierarchical structure, that is, some tables are subtables

of other tables. Hierarchical tables are of interest for NSAs. A particular class of

hierarchical table is known as two dimensional tables with one hierarchical vari-

able, or, shortly, 1H2D tables. These tables are obtained by crossing a particular

categorical variable with a set of, let's say, h categorical variables that have a

hierarchical relation; this results in a set of h two-dimensional tables with some

common cells. For instance, Figure 1.3 (from [12]) illustrates a particular 1H2D

table. The left subtable shows number of respondents for �region�×�profession�;
the middle subtables is a �zoom in� of regions, providing the number of respon-

dents in municipalities of each region; �nally the right subtables details the ZIP

codes of municipalities. A linked table is made up of a set of tables obtained

from the same microdata �le. Note that, hierarchical and k-dimensional tables

are particular cases of linked tables. Marginal cells of any table contain the total

sum of a row or column. Notice that there are two types of marginals: those

that contain the sum of interior cells and the one that contains the sum of the

marginals themselves.

The �rst step and one of the most important aspects in tabular data protection

is to determine if a cell is considered unsafe or not. Several sensitive rules exist for

that purpose, which are outlined bellow (a detailed explanation of these sensitive

rules is outside the scope of this thesis. The reader interested in this �eld can be

found more details in ([12, 24, 25, 48, 49, 62])):

• Minimum frequency rule: Used for frequency tables, a cell is considered un-

safe when the cell frequency is less than a pre-speci�ed minimum frequency

n (normally n = 3). This rule could also be applied to magnitude tables

but this is not a good practice because it doesn't take into account the

contribution of each respondent to the cell value.

• (n,α) dominance rule: A cell is considered unsafe when the sum of the n

largest contributions exceeds α% of the cell total. For instance, for a cell

100 = 30 + 30 + 20 + 10 + 10 (i.e., cell of value 100 and 5 respondents with

contributions 30, 30, 20, 10, 10), if n = 1 and α = 50 then the cell is non-

sensitive: any respondent contribution is less than a 50% of the cell value;

however if parameter n = 2 and α = 50 then the cell is considered sensitive

since 30 + 30 > 100 · 50. Note that (n,α) rule tries to avoid that a coalition

of n respondents could obtain accurate estimates of the other respondents

contribution. Some usual values are n 1 or 2 and α higher than 60.

1.1. Introduction 7

Figure 1.3: Example of 1H2D table made of di�erent subtables: �region�×�profession�,
�municipality�×�profession� and �zip code�×�profession�.

8 Chapter 1. Statistical disclosure control

• p%-rule: A cell is considered unsafe if some respondent may obtain an esti-

mate of another respondent contribution within a p% precision. In practice,

NSAs consider the worst case: when the respondent with the second largest

contribution tries to estimate the value of the respondent with the highest

contribution. For instance, for the cell 100 = 55 + 30 + 10 + 3 + 2 (i.e.,

cell of value 100 and 5 respondents with contributions 55, 30, 10, 3, 2), the

second respondent knows that the value of the �rst respondent is at most

100− 30 = 70; If p = 20%, since 70 > (1 + 20/100) · 55 = 66, then the cell

is non-sensitive. If p = 30, since 70 < (1 + 30/100) · 55 = 71.5, the cell is

considered sensitive.

The values of parameters n,α and p are decided by NSAs. In general, the p%-

rule is preferred to the (n, α) dominance rule because the (n, α) dominance rule

could wrongly consider as unsafe some sensitive cells and vice-versa. Let us look

at an example of [57]. Let n = 1 and α = 0.6(60%). Then a cell with value 100 =

59 + 40 + 1 would be declared not sensitive (because 59 < 0.6 · 100), while a cell

with value 100 = 61+20+19 would be declared sensitive (because 61 > 0.6 ·100).

However, for the cell declared non-sensitive, the second largest respondent gets

a too tight estimation for the largest contribution (100 − 40 = 60). Similarly,

for the cell considered sensitive, the estimation by second respondent would be

100−20 = 80, far from the real value. These situations could be avoided by using

n = 2 but even in this case the p% rule is preferred. Whatever, neither p%-rule

nor (n, α) re�ect the concentration of contributions in a proper way: for this

reason, better bounds on the largest contribution could be done in cells declared

as non-sensitive because they have a smaller tail (sum of small contributions)

than cells declared sensitive. In [27] the authors propose a sensitivity rule based

on the concentration of contributions, measured by the entropy of the relative

contributions. In [44] the author claims that classical sensitive rules are not

always well-suited for survey data with negative values, missing data or sampling

weights. For this reason, he introduces a new class of sensitivity rule known as

the Precision Threshold and Noise framework.

The second step is, of course, to minimize the risk of disclosing individual in-

formation. For this, several statistical disclosure control methods are available. In

general, we can divide all statistical disclosure control methods in two categories:

those that adjust the data before tables are created (pre-tabular: disclosure con-

trol techniques are applied to microdata �les before crossing variables to generate

1.1. Introduction 9

tabular data) and those that consider statistical disclosure control methods once

the table is created (post-tabular).

In post-tabular techniques, we �nd perturbative methods (i.e., they change

the original values, for example: controlled tabular adjustment, rounding or con-

trolled rounding) or non-perturbative (i.e., they do not change the original values

because we only suppress data or change the table structure, for example: re-

coding or cell suppression). A post-tabular data protection method can be seen

as a map F such that F (T) = T ′, i.e., table T is transformed to another table

T ′. There are two main requirements for F : (1) the output table T ′ should be

�safe�, and (2) the quality of T ′ should be high (or equivalently, the information

loss should be low), i.e., T ′ should be a good replacement for T . The disclosure

risk can be analyzed through the inverse map T = F−1(T ′): if not available or

di�cult to compute by any data attacker, then we may guarantee that F is safe.

Among the available post-tabular methods we �nd:

• Recoding: This technique consists in combining several categories with few

respondents into a new in order to satisfy the sensitive rules above cited.

For instance: a categorical variable age with several categories where the

category 51 − 55 has �ve respondents and the category 56 − 60 has only

one respondent. In order to preserve the privacy of respondent between

56 − 60 years old, we create a new category 51 − 60 with six respondents

after aggregation of 51− 55 and 56− 60.

• Random rounding: This technique consists in rounding all cell tables to

the closest multiple of a certain base number r. Rounding up or down is a

random decision. Note that in order to get an additive protected table, the

total cells could not be rounded to the nearest multiple of r.

• Controlled additive rounding: This method is an extension of the rounding

method in order to guarantee both the additivity of the resulting table and

the total cells are rounded to a multiple of r (but likely to a multiple which

can be far from the original value, increasing the information loss). This

method was initially presented by [19] and it has recently been extended by

[58] using lower and upper protection levels. The resulting model is a large

MILP which is solved by advanced optimization techniques like Benders

decomposition.

10 Chapter 1. Statistical disclosure control

• Cell suppression problem (CSP): This method is based on the suppression

of a set of cells that guarantees the protection of the table with minimum

loss of information.

• Controlled tabular adjustment (CTA): This method consists in �nding the

minimum amount of perturbations to the original cells that minimize the

risk of disclosing individual information from released table.

CTA and CSP are two of the most recurrent available methods. For this rea-

son, this thesis has focused on these particular techniques, trying to improve their

e�ciency. In the following subsections we explain CSP and CTA in further detail.

But, before starting, in order to model the di�erent mixed-integer optimization

problems, we have to modeling tables. Brie�y, any positive table can be de�ned

as:

• A set of cells ai, i ∈ N = {1, . . . , n}, that satis�esM = {1, . . . ,m} linear
relations Aa = b, a ∈ Rn being the vector of ai's, and A ∈ Rm×n. These

linear relations impose that the set of inner cells has to be equal to the total

or marginal cell, i.e., if Ij is the set of inner cells of relation j ∈M, and tj
is the index of the total cell of relation j, the constraint associated to this

relation is
(∑

i∈Ij ai

)
− atj = 0.

• Nonnegative cell weights wi, i ∈ N , used in the de�nition of the objec-

tive function. These weights penalize suppressions or modi�cations from

the original cell values in the released table. Cells weights are usually a

function of the cell value, e.g., wi = ai where the overall value perturbated

or suppressed is minimized. If wi = 1 the number total of perturbated or

suppressed cells is minimized.

• A lower and upper bound for each cell i ∈ N , respectively lai and uai , which

can be considered publicly known.

• A set S = {i1, i2, . . . , is} ⊆ N of indices of sensitive or con�dential cells.

• A lower and upper protection level for each sensitive cell, respectively, lpli
and upli, i ∈ S.

A table is considered feasible by NSAs if it guarantees the required protection

intervals for each sensitive cell. In addition to this, another important measure

1.1. Introduction 11

in order to evaluate a SDC tabular method is the loss of statistical utility of the

protected data (information loss or data utility). In [28] the information loss was

measured by comparing several statistics on the original and protected microdata

(like means, correlations and covariances preserved).

More details about tabular data protection can be found in the recent survey

[12] and the monographs [48, 49].

Cell suppression problem

Cell suppression problem (CSP) is a statistical disclosure control method where

values of some cells are not published while the original values of the others are.

In particular, it consists of �nding a set of additional cells (named secondary or

complementary cells) that guarantees that the value of primary cells containing

sensitive information (also suppressed) cannot be recompiled, with minimum loss

of information. If only sensitive cells are suppressed their values could be retrieved

from marginal, for this reason, additional cells (hopefully, as few as possible) are

selected for secondary suppression. Once the protected �le has been released, any

external attacker could calculate a lower and upper bound for each sensitive cell

s ∈ S by solving the following optimization problems:

as = min xs

s. to Ax = b

li ≤ xi ≤ ui i ∈ S ∪ P
xi = ai i 6∈ S ∪ P

and

as = max xs

s. to Ax = b

li ≤ xi ≤ ui i ∈ S ∪ P
xi = ai i 6∈ S ∪ P .

(1.1)

where P is the set of secondary cells to be suppressed. The sensitive cell

protection is guaranteed if and only if:

as ≤ as − lpls and as ≥ as + upls (1.2)

The classical model for CSP was originally formulated in [50]. It considers two

sets of variables: (1) yi ∈ {0, 1}, i = 1, . . . , n, is 1 if cell i has to be suppressed,

0 otherwise; (2) for each primary cell s ∈ S, two auxiliary vectors xl,s ∈ Rn and

xu,s ∈ Rn, which represent cell deviations (positive or negative) from the original

ai values. The resulting model is:

12 Chapter 1. Statistical disclosure control

min
n∑
i=1

wiyi

s. to
Axl,s = 0

(li − ai)yi ≤ xl,si ≤ (ui − ai)yi i = 1, . . . , n

xl,ss ≤ −lpls

Axu,s = 0

(li − ai)yi ≤ xu,si ≤ (ui − ai)yi i = 1, . . . , n

xu,ss ≥ upls


∀ s ∈ S

yi ∈ {0, 1} i = 1, . . . , n.

(1.3)

The inequality constraints of (1.3) with both right- and left-hand sides impose

bounds on xl,si and xu,si when yi = 1, and prevent deviations in non-suppressed

cells (i.e., yi = 0). Clearly, the constraints of (1.3) guarantee that the solutions

of the linear programs (1.1) will satisfy (1.2).

From a computational point of view, CSP is very large even for tables of

moderate size and number of primary cells. Note that (1.3) gives rise to a MILP

problem of n binary variables, 2n|S| continuous variables, and 2(m + 2n)|S|
constraints. For instance, for a table of 4000 cells, 1000 sensitive cells, and 2500

linear relations, we obtain a MILP with 8000000 continuous variables, 4000 binary

variables, and 21000000 constraints. Because of that, it has been solved in the

past by cutting planes or Benders decomposition approaches [33]. In chapter 4,

an outline of the Benders decomposition algorithm applied to CSP is presented.

Controlled tabular adjustment

Controlled tabular adjustment [11, 21] (also known as minimum-distance con-

trolled tabular adjustment or simply CTA) is a perturbative recent technique

for the protection of any tabular data. It was empirically observed in [13] that

estimates T̂ = F̂−1(T ′), F̂−1 being an estimate of F−1 for CTA, were not close

to T for some real tables. CTA can be considered a safe method for the tables

tested. Moreover, the quality of CTA solutions has shown to be high [15, 16],

higher than that provided by alternative methods in some real instances.

The goal of CTA is: given a table with any structure, to �nd the closest safe

1.1. Introduction 13

C1 C2 C3 C4 Total
R1 10 15 11 9 45
R2 8 10(3) 12(4) 15 45
R3 10 12 11(2) 13(5) 46
Total 28 37 34 37 136

(a)

C1 C2 C3 C4 Total
R1 11 18 11 5 45
R2 8 7 16 14 45
R3 9 12 7 18 46
Total 28 37 34 37 136

(b)

Figure 1.4: Small table for optimal CTA method: (a) Original table, sensitive
cells are in boldface. Symmetric protection limits lpli and upli are in brackets.
Weights are cell values (wi = ai). (b) Optimum protected table, after CTA
protection method is applied.

table to the original one. This is achieved by adding the minimum amount of

deviations (or perturbations) to the original cells that make the released table

safe. Safety is guaranteed by imposing that sensitive cells in the new protected

table are far enough from the original value. This means the cell value is either

above or below some certain values, thus a disjunctive constraint involving a

binary variable is needed for each sensitive cell. The minimum amount of above

or below perturbations required for each sensitive cell are named, respectively,

upper protection and lower protection levels. Changes in sensitive cells force other

changes in the remaining cells to guarantee that the value of total or marginal

cells is preserved.

Figure 1.4 illustrates CTA on a small two-dimensional table with four sensitive

cell in boldface, where symmetric lower and upper protection levels are in brackets

(Table (a) from Figure 1.4). Depending on the protection sense of the sensitive

cell, either lower or upper (decided in an optimum way by CTA), the value to be

published for this cell will be respectively less or equal than the original cell value

minus the lower protection level or greater or equal than the original cell value

plus the upper protection level. Note that some non sensitive cells are modi�ed

to guarantee that total or marginal cells are preserved.

Although it is a recent approach, CTA is gaining recognition among NSAs;

for instance, CTA is considered a relatively new emerging method in the recent

monographs [48, 49]. We recently implemented a package for CTA in [17] in

collaboration with the NSAs of Germany and the Netherlands, within a project

funded by Eurostat, the Statistical O�ce of the European Communities. This

package has been largely improved within the FP7-INFRA-2010-262608 project

funded by the European Union, with the participation, among others, of the NSAs

of Germany, Netherlands, Finland, Sweden and Slovenia. This CTA software is

14 Chapter 1. Statistical disclosure control

included in the τ -Argus package [47] (http://neon.vb.cbs.nl/casc/tau.htm),

used by many European NSAs for the protection of tabular data. Among the

recent literature on CTA variants we �nd [18, 45]. In recent specialized workshops

on statistical disclosure control, some NSAs stated that perturbative methods,

like CTA, are gaining acceptance [64], and perturbative approaches are being

used for the protection of national census tables (e.g., [40] for Germany). CTA

has also been used within other wider protection schemes, such as the pre-tabular

protection method of [39]. In addition, some NSAs are questioning current non-

perturbative protection methods because �the task of balancing con�dentiality

and usability [...] is nearly impossible� [60]. Therefore there is a need for new

methods, and this justi�es the research on CTA and other approaches. Indeed,

there is no actually any protection method that �ts the needs of all NSAs in the

world.

From a computational point of view, the size of the CTA optimization problem

is by far smaller than for other well-known protection methods, such as the cell

suppression problem (CSP). Despite these nice features, CTA formulates a chal-

lenging mixed integer linear problem (MILP) for current state-of-the-art solvers

(such as Cplex or XPress). Optimal (or suboptimal, e.g., with a 5% gap) solutions

may require many hours of execution for medium instances; very large or massive

tables can not be tackled with current technology. Even �nding a feasible initial

solution may be a challenging task for large instances.

Since the purpose of CTA is to �nd the closest safe values xi to ai and con-

sidering any distance `, CTA can be formulated as:

min
x

||x− a||`
s. to Ax = b

lai ≤ xi ≤ uai i ∈ N
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ S.

(1.4)

The disjunctive constraints of (1.4) guarantee the published value is safely out of

the interval (ai− lpli, ai+upli). Problem (1.4) can also be formulated in terms of

deviations from the current cell values. De�ning zi = xi−ai, i ∈ N ,and similarly

http://neon.vb.cbs.nl/casc/tau.htm

1.1. Introduction 15

lzi = lai − ai and uzi = uai − ai, (1.4) can be recast as

min
z

||z||`
s. to Az = 0

lzi ≤ zi ≤ uzi i ∈ N
zi ≤ −lpli or zi ≥ upli i ∈ S,

(1.5)

z ∈ Rn being the vector of cell deviations. Using the `1 or the Manhattan

distance and the cell weights wi, the objective function is
∑

i∈N wi|zi|. Since wi
are nonnegative, splitting the vector of deviations z in two nonnegative vectors

z+ ∈ Rn and z− ∈ Rn, model (1.5) with the `1 distance can thus be written as

min
z+,z−,y

∑
i∈N

wi(z
+
i + z−i)

s. to A(z+ − z−) = 0

0 ≤ z+
i ≤ uzi i ∈ N \ S

0 ≤ z−i ≤ −lzi i ∈ N \ S
upli yi ≤ z+

i ≤ uzi yi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1}, i ∈ S,

(1.6)

with y ∈ Rs being the vector of binary variables associated with protection direc-

tions. When yi = 1 the constraints mean upli ≤ z+
i ≤ uzi and z

−
i = 0, thus the

protection direction is �upper�; when yi = 0 we get z+
i = 0 and lpli ≤ z−i ≤ −lzi ,

thus the protection direction is �lower�.

1.1.4 Contributions

The research carried out in this thesis contributes to improving two important

areas of optimization: heuristic techniques and decomposition methods. Even

though our focus is on tabular data protection those contributions can be applied

to general problems. The three main contributions are outlined below.

Firstly, we improved a known and successful heuristic for �nding feasible so-

lutions of MILPs, called feasibility pump (FP). The problem of �nding a feasible

solution of a MILP is known to be NP-hard problem. Moreover, many end users

give priority to fast executions and are thus satis�ed in practice with suboptimal

solutions. Brie�y, FP alternates between two sequences of points: one of feasible

solutions for the relaxed problem (but not integer), and another of integer points

16 Chapter 1. Statistical disclosure control

(but not feasible for the relaxed problem). Hopefully, the procedure may eventu-

ally converge to a feasible and integer solution. Integer points are obtained from

the feasible ones by some rounding procedure. We extend FP, such that the inte-

ger point is obtained by rounding a point on the (feasible) segment between the

computed feasible point and the analytic center for the relaxed linear problem.

Since points in the segment are closer (may be even interior) to the convex hull

of integer solutions, it may be expected that the rounded point has more chances

to become feasible, thus reducing the number of FP iterations.

The second contribution consists in the application of the �x-and-relax heuris-

tic (FR) to the CTA method. Finding optimal (or suboptimal) solutions or even

�nding a feasible initial solution for CTA may be a complex task that requires

many hours of execution. We present �x-and-relax heuristic as an e�cient method

applied to the CTA, either alone or in combination with other heuristics.

Finally, the last contribution of this thesis deals with Benders decomposition,

successfully applied in many real-world applications, which allows to decompose

the di�cult original MILP in several smaller sub-problems. Despite its successful

application, the convergence to optimal solution is often too slow due to well-

known instability issues that limit their e�ciency in very large-scale problems.

This is mainly due to the fact that the solutions tend to oscillate wildly between

di�erent feasible regions, so we can move from a good point to a much worse one.

This behaviour is prevented by using a stabilized Benders decomposition, which

focus on �nding new solutions as close as possible to well considered points.

This PhD thesis gave rise to the following publications in peer-reviewed jour-

nals, scienti�c conferences and research reports:

• Publications:

� D. Baena, J. Castro, Using the analytic center in the feasibility pump,

Operations Research Letters, 39 (2011) 310-317. It corresponds to

Chapter 2 of this PhD thesis.

� D. Baena, J. Castro, J. A. González, Fix-and-relax approaches for

controlled tabular adjustment, Computers & Operations Research, 58

(2015) 41-52. It corresponds to Chapter 3 of this PhD thesis.

� D.Baena, J.Castro, A. Frangioni, Stabilized Benders methods for large

combinatorial optimization problems: applications to cell suppression,

1.1. Introduction 17

working paper to be submitted. It corresponds to Chapter 4 of this

PhD thesis.

• Scienti�c conferences:

� D. Baena, J. Castro, J.A. González, Fix-and-relax approaches for con-

trolled tabular adjustment, XXXV Congreso Nacional de Estadística

e Investigación Operativa, Pamplona, Spain, May 2015.

� D. Baena, J. Castro, A �x and relax heuristic for controlled tabular ad-

justment, 25th European Conference on Operational Research-EURO

2012, Vilnius University, Vilnius (Lithuania), July 2012. Invited pre-

sentation.

� D. Baena, J. Castro, The analytic center feasibility pump, XXXIII

Congreso Nacional de Estadística e Investigación Operativa, Madrid,

Spain, April 2012.

Chapter 2

Using the analytic center in the

feasibility pump

2.1 Introduction

In the previous chapter, we outlined the two most important methods for tabu-

lar data protection (CTA and CSP). Both protection methods are a challenging

mixed integer linear problem (MILP) for current state-of-the-art solvers. Optimal

(or suboptimal, e.g., with a 5% gap) solutions may require many hours of execu-

tion for medium instances; very large or massive tables can not be tackled with

current technology. A big e�ort to reach an optimal solution may not make sense

because, in practice, end users of tabular data protection techniques give priority

to fast executions and are thus satis�ed with suboptimal solutions. However,

�nding a feasible initial solution for large instances is a NP-hard problem. For

this reason, heuristics are a very important tool in mixed-integer optimization to

ensure feasible and hopefully good solutions for a particular problems in a reason-

able computational time. Moreover, they are also very useful to warm start other

methods such as branch-and-cut. It could be expected that providing a good

incumbent from the beginning would signi�cantly reduce the computational time

for current state-of-the-art solvers. It is worth noting that some methods can only

be applied if an initial feasible solution is known. In [7, 35] the authors proposed

a new heuristic approach to compute MILP solutions, named the feasibility pump

(FP). This heuristic turned out to be successful in �nding feasible solutions even

for some hard MILP instances. A slight modi�cation of FP was suggested in

[2], named the objective feasibility pump, in order to improve the quality of the

19

20 Chapter 2. Using the analytic center in the feasibility pump

solutions in terms of the objective value. The main di�erence between the two

versions is that the objective FP, in contrast to the original version, takes the ob-

jective function of the MILP into account during the execution of the algorithm.

FP alternates between feasible (for the linear relaxation of MILP) and integer

points, hopefully converging to a feasible integer solution. The integer point is

obtained by applying some rounding procedure to the feasible solution. This

thesis suggests an extension of FP where all the points in a feasible segment are

candidates to be rounded. The end points of this segment are the feasible point

of the standard or objective FP and some interior point of the polytope of the

relaxed problem, the analytic center being the best candidate (our approach will

be named analytic center FP, or AC-FP). When the end point of the segment in

the boundary of the polytope is considered for rounding, we obtain the standard

FP algorithm. The motivation of this approach is that rounding a point of the

segment closer to the analytic center may increase the chances of obtaining a fea-

sible integer point in some instances, thus reducing the number of FP iterations.

The computational results with AC-FP show that, for some instances, taking

a point in the interior of the feasible segment may be more e�ective than the

standard end point of the objective FP. A recent version of FP [34] introduced

a new improved rounding scheme based on constraint propagation. Although in

our research we considered as base code a freely available implementation of the

objective FP, AC-FP could also be used with the new rounding scheme of [34].

Interior-point methods have been applied in the past in branch-and-bound frame-

works for MILP and mixed integer nonlinear problems (MINLP) [6, 9, 52, 53].

However, as far as we know, the only previous attempt to apply them to a primal

heuristic was [56]. Although AC-FP and the approach of [56] (named analytic

center feasibility method (ACFM)) have the same motivation (using the analytic

center for getting MILP feasible solutions), both approaches are signi�cantly dif-

ferent, as shown at the end of Subsection 2.4.2. Brie�y, (i) AC-FP relies on FP,

while ACFM is based on an analytic center cutting plane method; (ii) AC-FP

only computes one analytic center, while ACFM computes one per iteration; (iii)

as a consequence of the previous point, ACFM can be computationally expensive,

while AC-FP is almost as e�cient as FP. Later to the publication of our work,

[8] presents a FP approach improved, which e�ciently also explores all rounded

solutions along a line segment.

2.2. The feasibility pump heuristic 21

1. initialize t := 0 and x∗ := arg min{cT x : Ax = b, x ≥ 0}
2. if x∗I is integer then return(x∗) end if

3. x̃ := [x∗] (rounding of x∗)
4. while time < TimeLimit do
5. x∗ := arg min{M (x, x̃) : Ax = b, x ≥ 0}
6. if x∗I is integer then return(x∗) end if

7. if ∃j ∈ I : [x∗j] 6= x̃j then

8. x̃ := [x∗]
9. else

10. restart
11. end if

12. t := t+ 1
13. end while

14. return(FP failed)

Figure 2.1: The feasibility pump heuristic (original version).

2.2 The feasibility pump heuristic

2.2.1 The original feasibility pump

Consider a generic mixed integer linear problem (MILP) of the form:

min
x

cTx

s. to Ax = b

x ≥ 0

xj integer ∀j ∈ I,

(2.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and I ⊆ N = {1, . . . , n}, is the subset of integer
variables.

The FP heuristic starts by solving the linear programming (LP) relaxation of

(2.1)

min
x
{cTx : Ax = b, x ≥ 0}, (2.2)

and its solution x∗ is rounded to an integer point x̃, which may be infeasible for

(2.2). The rounding x̃ of a given x∗, denoted as x̃ = [x∗], is obtained by setting

x̃j = [x∗j] if j ∈ I and x̃j = x∗j otherwise, where [�] represents scalar rounding to

the nearest integer. If x̃ is infeasible, FP �nds the closest x∗ ∈ P , where

P = {x ∈ Rn : Ax = b, x ≥ 0}, (2.3)

by solving the following LP

x∗ = arg min{M (x, x̃) : Ax = b, x ≥ 0}, (2.4)

22 Chapter 2. Using the analytic center in the feasibility pump

M (x, x̃) being de�ned (using the `1 norm) as

M (x, x̃) =
∑
j∈I

|xj − x̃j|. (2.5)

Notice that continuous variables x̃j, j /∈ I, do not play any role. If M (x∗, x̃) =

0 then x∗j(=x̃j) is integer for all j ∈ I, so x∗ is a feasible solution for (2.1). If not,

FP �nds a new integer point x̃ from x∗ by rounding. The pair of points (x̃, x∗)

with x̃ integer and x∗ ∈ P are iteratively updated at each FP iteration with the

aim of reducing as much as possible the distance M (x∗, x̃). An outline of the

FP algorithm is showed in Figure 2.1. To avoid that the procedure gets stuck at

the same sequence of integer and feasible, there is a restart procedure when the

previous integer point x̃ is revisited (lines 7�11 of algorithm of Figure 2.1). In a

restart, a random perturbation step is performed.

The FP implementation has three stages. Stage 1 is performed just on the

binary variables by relaxing the integrality conditions on the general integer vari-

ables. In stage 2 FP takes all integer variables into account. The FP algorithm

exits stage 1 and goes to stage 2 when either (a) a feasible point with respect

to only the binary variables has been found; (b) the minimum M (x∗, x̃) was not

updated during a certain number of iterations; or (c) the maximum number of

iterations was reached. The point x̃ that produced the smallest M (x∗, x̃) is stored

and passed to stage 2 as the initial x̃ point. When FP turns out to be unable to

�nd a feasible solution within the provided time limit, the default procedure of

the underlying MILP solver (CPLEX 12 [1] in this work) is started; this is named

stage 3.

2.2.2 The modi�ed objective feasibility pump

According to [2], although the original FP heuristic of [7, 35] has proved to be a

very successful heuristic for �nding feasible solutions of mixed integer programs,

the quality of their solutions in terms of objective value tends to be poor. In

the original FP algorithm of [7, 35] the objective function of (2.1) is only used

at the beginning of the procedure. The purpose of the objective FP [2] is, in-

stead of instantly discarding the objective function of (2.1), to consider a convex

combination of it and M (x, x̃), reducing gradually the in�uence of the objective

term. The hope is that FP still converges to a feasible solution but it concentrates

the search on the region of high-quality points. The modi�ed objective function

2.3. The analytic center feasibility method (ACFM) 23

Mα (x, x̃) is de�ned as

Mα (x, x̃) := (1− α) M (x, x̃) + α
|| M ||
||c||

cTx, α ∈ [0, 1], (2.6)

where || � || is the Euclidean norm of a vector, and M is the objective function

vector of M (x, x̃) (i.e., at stage 1 is the number of binary variables, and at stage 2

is the number of integer (both general integer and binary) variables). At each FP

iteration α is geometrically decreased with a �xed factor ϕ < 1, i.e., αt+1 = ϕαt

and α0 ∈ [0, 1]. Notice that the original FP algorithm is obtained using α0 = 0.

The objective FP algorithm is basically the same as the original FP algorithm of

Figure 2.1, replacing M (x, x̃) by Mαt (x∗, x̃) at line 5, performing at the beginning

the initialization of α0, and adding at the end of the loop αt+1 = ϕαt.

2.3 The analytic center feasibility method (ACFM)

ACFM [56] is a three-phase procedure that mainly relies on the analytic center

cutting plane method. In phase-I it computes (i) the analytic center x̄ of the

bounded polyhedron

P ∩ {x : cTx ≤ z} ∩ C, (2.7)

z being an upper bound on the objective function and C a set of valid cuts (ini-

tially empty), and (ii) the minimizer x∗min and maximizer x∗max of the objective

function cTx subject to x ∈ P . Actually, the formulation in [56] of the problem

for computing the analytic center is di�erent from the above one, since it con-

siders only inequalities, and it needs a reformulation of equality constraints; our

approach, detailed in Section 2.4 below, directly works with the original formula-

tion of the problem, as it can deal with equality constrained problems. Scanning

the segments x̄ x∗min and x̄ x∗max , phase-I tries to obtain the closest integer point

to the analytic center by rounding the integer components of di�erent segment

points�let us name x̃ such a rounded point�and adjusting the remaining con-

tinuous components by solving

min
x
{cTx : Ax = b, x ≥ 0, xj = x̃j j ∈ I}. (2.8)

If (2.8) is feasible then an integer feasible solution is obtained. Whether this

problem is feasible or not, phase-II is started. If phase-I found a feasible integer

24 Chapter 2. Using the analytic center in the feasibility pump

point, the upper bound z on the objective is updated and we go to phase-I

again, to recompute the new analytic center (di�erent from previous iteration,

since z, thus (2.7), changed). If no feasible integer point was found at phase-I,

then additional constraints (cuts) are added to C to move the analytic center

towards the interior of the integer feasible region, and phase-I is restarted again

(computing a new analytic center for the new polyhedron (2.7)). The procedure

iterates Phase-I and Phase-II until some stopping criteria is satis�ed (iteration

limit�20 iterations in [56]�, or quality of the solution). If no feasible solution is

found the procedure switches to a phase-III which is similar to the stage 3 of FP.

2.4 The analytic center feasibility pump (AC-FP)

2.4.1 The analytic center

Given the LP relaxation (2.2), its analytic center is de�ned as the point x̄ ∈ P
that minimizes the primal potential function −

∑n
i=1 lnxi, i.e.,

x̄ = arg min
x
−
∑n

i=1 lnxi

s. to Ax = b

x > 0.

(2.9)

Note that the analytic center is well de�ned only if P is bounded. Note also that

constraints x > 0 could be avoided, since the domain of ln are the positive num-

bers. Problem (2.9) is a linearly constrained strictly convex optimization problem.

It is easily seen that the arg min−
∑n

i=1 lnxi is equivalent to the arg max
∏n

i=1 xi.

Therefore, the analytic center provides the point that maximizes the distance to

the hyperplanes xi = 0, i = 1, . . . , n, and it is thus expected to be well centered in

the interior of the polytope P . We note that the analytic center is not a topolog-

ical property of a polytope, and it depends on how the polytope is represented.

That is, two di�erent sets of linear inequalities P and P ′ de�ning the same poly-

tope may provide di�erent analytic centers. Other centers, such as the center of

gravity, are not a�ected by di�erent formulations of the same polyhedron (but

they are computationally more expensive). In this sense, redundant inequalities

may change the location of the analytic center (i.e., if formulation P ′ is obtained

from formulation P by adding redundant constraints, it will provide a di�erent

analytic center). Additional details can be found in [63].

2.4. The analytic center feasibility pump (AC-FP) 25

The analytic center may be computed by solving the KKT conditions of (2.9)

Ax = b

ATy + s = 0

xisi = 1 i = 1, . . . , n

(x, s) > 0,

(2.10)

y ∈ Rm and s ∈ Rn being the Lagrange multipliers of Ax = b and x > 0 respec-

tively. Alternatively, and in order to use an available highly e�cient implemen-

tation, the analytic center was computed in this work by applying a primal-dual

path-following interior-point algorithm to the barrier problem of (2.2), after re-

moving the objective function term (i.e., setting c = 0):

min
x
−µ
∑n

i=1 lnxi

s. to Ax = b

x > 0,

(2.11)

where µ is a positive parameter (the parameter of the barrier) that tends to zero.

The arc of solutions of (2.11) x∗(µ) is named the primal central path. The central

path converges to the analytic center of the optimal set. When c = 0 (as in (2.11))

the central path converges to the analytic center of the feasible set P [63].

2.4.2 Using the analytic center in the feasibility pump heuris-

tic

Once the analytic center has been computed, it can be used to (in theory in-

�nitely) increase the number of feasible points candidates to be rounded. Instead

of rounding, at each FP iteration, the feasible point x∗ ∈ P , points on the segment

x(γ) = γx̄+ (1− γ)x∗ γ ∈ [0, 1] (2.12)

will be considered. Note that the segment is feasible, since it is a convex combi-

nation of two feasible points.

AC-FP �rst considers a stage 0 (which is later applied at each FP iteration)

where several x(γ) points are tested, from γ = 0 to γ = 1 (i.e, from x∗ to x̄).

Each x(γ) is rounded to x̃(γ). If x̃(γ) is feasible, then a feasible integer solution

was found and the procedure is stopped at the stage 0. Otherwise the algorithm

26 Chapter 2. Using the analytic center in the feasibility pump

1. initialize t := 0, α0 ∈ [0, 1], ϕ ∈ [0, 1], and x∗ := arg min{cT x : Ax = b, x ≥ 0}
2. compute analytic center x̄ := arg min

{
−
∑n
i=1 lnxi : Ax = b, x > 0

}
3. { Beginning of stage 0}
4. for γ ∈ [0, 1] do
5. x(γ) := γx̄+ (1− γ)x∗

6. x̃(γ) := [x(γ)] (rounding of x(γ))
7. if x̃(γ) is feasible then return(x̃(γ)) end if

8. end for

9. { End of stage 0}
10. select x̃ from the set {x̃(γ)}
11. while time < TimeLimit do
12. x∗ := arg min{Mαt (x, x̃) : Ax = b, x ≥ 0}
13. for γ ∈ [0, 1] do
14. x(γ) := γx̄+ (1− γ)x∗

15. x̃(γ) := [x(γ)] (rounding of x(γ))
16. if x̃(γ) is feasible then return(x̃(γ)) end if

17. end for

18. select x̂ from the set {x̃(γ)}
19. if x̂I 6= x̃I then
20. x̃ := x̂
21. else

22. restart
23. end if

24. αt+1 := ϕαt
25. t := t+ 1
26. end while

27. return(FP failed)

Figure 2.2: The AC-FP heuristic.

proceeds with the next stage of FP, considering two di�erent options:

a) using the point x̃(0) = [x∗] (option γ = 0);

b) using the point x̃(γ) that minimizes ||x̃(γ)− x(γ)||∞ (option `∞).

If the �rst option is applied at each FP iteration, and no feasible x̃(γ) for γ > 0

is found, AC-FP behaves as the standard FP algorithm. In the second option, if

no feasible x̃(γ) is found, the procedure selects the x(γ) which is closer to [x(γ)]

according to the `∞ norm. The aim is to select the point with more chances

to become both integer and feasible, in an attempt to reduce the number of FP

iterations. This second option provided better results in general and it was used

in the computational results of Section 3.4. It is worth to note that if the rounding

of several x(γ) points is feasible, the procedure selects the one with the lowest

γ, i.e., the one closest to x∗ (instead of the one closest to the analytic center x̄),

since this point was computed considering the objective function (for α > 0). An

outline of the algorithm is shown in Figure 2.2.

From Figure 2.2 it is clear that AC-FP only computes one analytic center (that

of P) at line 2 of the algorithm, unlike ACFM [56] which computes one analytic

center (for a modi�ed polyhedron) at each iteration. This is computationally the

most signi�cant di�erence between AC-FP and ACFM: since the computation of

2.4. The analytic center feasibility pump (AC-FP) 27

analytic centers can be expensive, AC-FP is more e�cient than ACFM. It is also

seen that AC-FP and ACFM are completely di�erent approaches: the former is

an extension of FP, the latter is based on computing analytic centers of modi�ed

polyhedrons obtained by adding cutting planes to P .

Both procedures, AC-FP and ACFM, consider the feasible segment between

the analytic center x̄ and a solution of the relaxed problem (x∗ in AC-FP, x∗min

and x∗max in ACFM) for rounding purposes. It is worth to note that in AC-FP

the analytic center is the same for all the iterations and x∗ is di�erent at each

iteration, whereas the opposite holds for ACFM: it computes a di�erent analytic

center at each iteration whereas x∗min and x∗max are uniquely determined at the

beginning. In addition, AC-FP and ACFM use the rounded point x̃(γ) in a

di�erent manner. AC-FP checks if x̃(γ) is feasible, and stops the procedure once

the �rst feasible x̃(γ) is found (which is indeed the criterion considered by FP).

On the other hand, ACFM, which may obtain a rounded feasible point at its

phase-I, keeps on iterating with phase-I and phase-II until some stopping criteria

(i.e., time limit or quality of the solution) is satis�ed. In addition, after obtaining

the rounded point, ACFM solves (2.8) for adjusting the remaining continuous

components (this is not done by AC-FP, which relies on the overall FP procedure

for performing a similar adjustment at line 12 of the algorithm of Figure 2.2).

Since AC-FP may obtain a feasible point at stage 0 close to the analytic center

x̃ and far from the feasible point x∗ ∈ P , this point may provide a very large

objective function value. An extension would be to save this point and keep on

looking for new feasible points of higher quality (as done by ACFM).

As stated in Subsection 2.3, ACFM computes two linear feasible points x∗min

and x∗max, the minimizer and maximizer of cTx within P , and it considers the two

segments that join the analytic center of the current ACFM iteration with those

two points. On the other hand, AC-FP only considers one segment between x̄

and x∗. Actually, we initially also considered two segments: the current one x̄ x∗,

and a second one joining x̄ with the farthest feasible point from x̄ in the direction

x̄−x∗ (name it x∗f). Note that this point is easily computed as x∗f = x̄+β∗(x̄−x∗),
where β∗ = min{ −xi

(x̄−x∗)i : (x̄− x∗)i < 0, i = 1, . . . , n}. The computational bene�t
of using x∗f instead of x∗max is that the solution of an extra LP problem is avoided.

However, in practice, using the second segment x̄ x∗f was not useful, and it was

discarded in the �nal AC-FP implementation.

28 Chapter 2. Using the analytic center in the feasibility pump

2.5 Computational results

AC-FP was implemented using the base code of the objective FP, freely avail-

able from http://www.or.deis.unibo.it/research_pages/ORcodes/FP-gen.

html. The base FP implementation was extended for computing the analytic

center using three di�erent interior-point solvers, CPLEX [1], GLPK [42] and

PCx [20]. The new code is available from http://www-eio.upc.es/~dbaena/

sw/2010/fp_analytic_center.tgz. CPLEX integrates better with the rest of

the FP code, which also relies on CPLEX, and it also turned out to be signi�-

cantly more e�cient than GLPK and PCx. On the other hand, even deactivating

all the preprocessing options and removing the crossover postprocess, CPLEX

was not always able to provide the analytic center of P because of its aggressive

reduced preprocessing (which can not be deactivated as we were told by CPLEX

developers). For instance, for P = {x :
∑n

i=1 xi = n, x ≥ 0}, the barrier option
of CPLEX did not apply the interior-point algorithm, not providing an interior

solution (i.e., it provided xi = n, xj = 0, j 6= i), whereas both GLPK and PCx

reported the right analytic center xi = 1, i = 1, . . . , n. Of the other two solvers,

PCx turned out to be much more e�cient than GLPK. Indeed, PCx may handle

upper bounds implicitly (i.e., 0 ≤ x ≤ 1 from linear relaxations of x ∈ {0, 1}) in
its interior-point implementation, whereas GLPK transforms the problem to the

standard form (replacing x ≤ 1 by x + s = 1, s ≥ 0), signi�cantly increasing the

size of the Newton's system to be solved at each interior-point iteration.

The AC-FP implementation was applied to a subset of MIPLIB2003 instances,

whose dimensions are shown in Table 2.1. Columns �rows�, �cols�, �nnz�, �int�,

�bin� and �con� provide respectively the number of constraints, variables, nonze-

ros, general integer variables, binary variables, and continuous variables of the

instances. Column �objective� shows the optimal objective function. Unknown

optimal objectives are marked with a �?�.

Table 2.2 shows the results obtained with AC-FP using PCx and CPLEX-

12.1. For the two AC-FP variants, Table 2.2 reports the number of FP iterations

(columns �niter�), the objective value of the feasible point found (�fobj�), the gap

between the feasible and the optimal solution (�gap%�), and the FP stage where

the feasible point was found (�stage�). Columns �tFP(tAC)� report separately the

CPU time spent in stages 1 to 3 (�tFP�) and the time for computing the analytic

center before stage 0 (in brackets, �tAC�); the total time is the sum of �tFP� and

�tAC�. Columns �AC value� show the value of the original objective function eval-

http://www.or.deis.unibo.it/research_pages/ORcodes/FP-gen.html
http://www.or.deis.unibo.it/research_pages/ORcodes/FP-gen.html
http://www-eio.upc.es/~dbaena/sw/2010/fp_analytic_center.tgz
http://www-eio.upc.es/~dbaena/sw/2010/fp_analytic_center.tgz

2.5. Computational results 29

Instance rows cols nnz int bin con objective
10teams 230 2025 12150 0 1800 225 924
a1c1s1 3312 3648 10178 0 192 3456 11503.40
a�ow30a 479 842 2091 0 421 421 1158
a�ow40b 1442 2728 6783 0 1364 1364 1168
air04 823 8904 72965 0 8904 0 56137
air05 426 7195 52121 0 7195 0 26374
arki001 1048 1388 20439 96 415 877 7580810
atlanta-ip 21732 48738 257532 106 46667 1965 90.00
cap6000 2176 6000 48243 0 6000 0 -2451380
dano3mip 3202 13873 79655 0 552 13321 ?
danoint 664 521 3232 0 56 465 65.66
disctom 399 10000 30000 0 10000 0 -5000
ds 656 67732 1024059 0 67732 0 93.52
fast0507 507 63009 409349 0 63009 0 174
�ber 363 1298 2944 0 1254 44 405935
�xnet6 478 878 1756 0 378 500 3983
gesa2-o 1248 1224 3672 336 384 504 25779900
gesa2 1392 1224 5064 168 240 816 25779900
glass4 396 322 1815 0 302 20 1200010000
harp2 112 2993 5840 0 2993 0 -73899800
liu 2178 1156 10626 0 1089 67 ?
manna81 6480 3321 12960 3303 18 0 -13164
markshare1 6 62 312 0 50 12 1
markshare2 7 74 434 0 60 14 1
mas74 13 151 1706 0 150 1 11801.20
mas76 12 151 1640 0 150 1 40005.10
misc07 212 260 8619 0 259 1 2810
mkc 3411 5325 17038 0 5323 2 -563.84
mod011 4480 10958 22254 0 96 10862 -54558500
modglob 291 422 968 0 98 324 20740500
msc98-ip 15850 21143 92918 53 20237 853 19839500
mzzv11 9499 10240 134603 251 9989 0 -21718
mzzv42z 10460 11717 151261 235 11482 0 -20540
net12 14021 14115 80384 0 1603 12512 214
noswot 182 128 735 25 75 28 -41
nsrand-ipx 735 6621 223261 0 6620 1 51200
nw04 36 87482 636666 0 87482 0 16862
opt1217 64 769 1542 0 768 1 -16
p2756 755 2756 8937 0 2756 0 3124
pk1 45 86 915 0 55 31 11
pp08aCUTS 246 240 839 0 64 176 7350
pp08a 136 240 480 0 64 176 7350
protfold 2112 1835 23491 0 1835 0 -31
qiu 1192 840 3432 0 48 792 -132.87
roll3000 2295 1166 29386 492 246 428 12890
rout 291 556 2431 15 300 241 1077.56
set1ch 492 712 1412 0 240 472 54537.80
seymour 4944 1372 33549 0 1372 0 423
sp97ar 1761 14101 290968 0 14101 0 660706000
swath 884 6805 34965 0 6724 81 467.40
timtab1 171 397 829 94 64 239 764772
timtab2 294 675 1482 164 113 398 1096560
tr12-30 750 1080 2508 0 360 720 130596
vpm2 234 378 917 0 168 210 13.75
?: Unknown value

Table 2.1: Characteristics of the subset of MILP instances from MIPLIB 2003.

30 Chapter 2. Using the analytic center in the feasibility pump

A
C
-F
P
w
ith

P
C
x

A
C
-F
P
w
ith

C
P
L
E
X

Instance
niter

fob
j

tF
P
(tA

C
)

stage
gap%

A
C
value

niter
fob

j
tF
P
(tA

C
)

stage
gap%

A
C
value

10team
s

179
1022

26(0)
3

10.59
1020

177
1056

25(0)
3

14.27
1020

a1c1s1
0

46756.40
0(0)

0
306.43

50396.80
0

38193.60
0(0)

0
232

40504.70
a�ow

30a
171

3802
1(0)

2
228.13

5377.34
298

5578
2(0)

2
381.36

4714.70
a�ow

40b
394

8300
12(0)

3
610.09

7234.03
54

7051
2(0)

1
503.25

6635.6
air04

186
72098.00

1220(2)
3

28.43
79260.30

186
71223.99

1147(0)
3

26.87
79989.5

air05
186

37907
162(1)

3
43.73

45309
190

35798
148(0)

3
35.73

45732.10
arki001

871
7729296.21

43(0)
3

1.96
7807100

1573
7763720.15

79(0)
3

2.41
7822170

atlanta-ip
42

198.02
68(9398)

1
118.68

171.31
397

154.01
934(11)

3
70.32

159.76
cap6000

0
-2442800

1(0)
0

0.35
-596562

0
-2442800

1(0)
0

0.35
-109362

dano3m
ip

205
1000

1892(17)
3

?
12849.20

252
1000

1947(4)
3

?
995.15

danoint
99

76
4(0)

1
15.50

434.456
230

85.50
9(0)

3
29.75

66.77
disctom

4
-5000

3(1)
1

0
-5000

4
-5000

4(0)
1

0
-5000

ds
198

5418.56
1945(10)

3
5633.77

1053.93
0

5418.56
1(2)

0
5633.77

5418.56
fast0507

39
11884

131(4)
1

6691.43
8254.52

0
275

2(1)
0

57.71
122425

�b
er

41
6481510

0(0)
1

1496.68
19694200

15
3147830

0(0)
1

675.45
45602200

�xnet6
18

38401
0(0)

1
863.91

60883.20
0

97271.70
0(0)

0
2341.58

101827
gesa2-o

20
71213100

0(0)
2

176.23
116914000

35
32635500

1(0)
2

26.59
166784000

gesa2
3

38472300
1(0)

2
49.23

124095000
47

40307000
1(0)

2
56.35

188208000
glass4

254
10500117800

2(0)
3

775
142889000000

224
5000046800

1(0)
3

316.67
8862840000

harp2
178

-40631391
3(0)

3
45.02

-50758200
59

-49759800
1(0)

1
32.67

-46262500
liu

119
3036

4(5)
1

?
9218.57

121
5876

5(0)
1

?
959.02

m
anna81

0
-12948

0(6)
0

1.64
-7307.16

0
-12878

0(0)
0

2.17
0

m
arkshare1

65
603

0(0)
1

30100
30.48

0
7286

0(0)
0

364250
7286

m
arkshare2

66
925

0(0)
1

46200
36.10

0
10512

0(0)
0

525550
10512

m
as74

0
57195600000

0(0)
0

484618022.50
571956000000

0
50000000000

0(0)
0

423649728.01
1000000000000

m
as76

0
26804400000

0(0)
0

67000682.38
536000000000

0
50000000000

0(0)
0

124980840.41
1000000000000

m
isc07

217
3935

3(0)
2

40.02
3601.66

219
3410

2(0)
2

21.34
4894.40

m
kc

13
-276.96

1(0)
1

50.79
-253.58

12
38.81

1(1)
1

106.69
-95.53

m
od011

23
-37482400

3(1)
1

31.30
-31430100

23
-35547800

3(0)
1

34.84
-36600000

m
odglob

60
21809700

1(0)
1

5.16
272286000

0
82243300

0(0)
0

296.53
142949000

m
sc98-ip

33
30196300

16(949)
1

52.20
29571000

29
30928000

19(22)
1

55.89
29545100

m
zzv11

567
-16262

435(116)
3

25.12
-4264.40

561
-13744

484(7)
3

36.71
-4794.93

m
zzv42z

23
-12736

13(147)
1

37.99
-3210.77

27
-14192

12(15)
1

30.90
-3825.70

net12
25

337
10(86)

1
57.21

325.12
25

337
8(27)

1
57.21

337
nosw

ot
34

-15
0(0)

2
61.90

-21.82
33

-31
0(0)

2
23.81

-15.67
nsrand-ipx

883
258080

367(2)
3

404.05
761986

694
203040

265(0)
3

296.56
802647

nw
04

2
18380

9(8)
1

9
50318.90

42
61640

120(2)
1

265.54
52460.90

opt1217
124

-12.11
0(0)

1
22.80

-8.23
0

0
0(0)

0
94.12

0
p2756

244
51338

7(0)
3

1542.85
139225

279
51338

7(0)
3

1542.85
164724

pk1
57

86
0(0)

1
625

34.13
0

731
0(0)

0
6000

731
pp08aC

U
T
S

11
16390

0(0)
1

122.98
18715

0
21671.40

0(0)
0

194.82
23012.40

pp08a
15

15850
0(0)

1
115.63

21666.70
0

18439.30
0(0)

0
150.85

18778.70
protfold

307
-18.90

365(2)
3

37.81
-18.42

qiu
41

868.57
1(0)

1
748.05

722.04
0

3693.35
0(0)

0
2858.10

4188.61
roll3000

818
40048.40

65(1)
3

210.68
44336.80

175
18507

11(1)
2

43.57
38004.10

rout
79

1644.41
1(0)

1
52.56

1455.68
74

1337.27
1(0)

1
24.08

1474.90
set1ch

0
268719

0(0)
0

392.71
224714

0
216475

0(0)
0

296.92
262834

seym
our

39
754

5(35)
1

78.07
728.54

0
588

0(0)
0

38.92
1345

sp97ar
63

1161990000
57(4)

1
75.87

8272000000
97

11702100000
88(1)

1
1671.15

18441700000
sw
ath

795
34774.58

96(1)
3

7324.22
1470.14

795
34774.58

100(0)
3

7324.22
1470.14

tim
tab1

169
1081000

1(0)
2

41.35
1475570

819
1401240.99

3(0)
3

83.22
419539

tim
tab2

972
2105005.99

6(0)
3

91.96
2052380

1072
1772242.99

7(0)
3

61.62
671850

tr12-30
214

289227.99
7(0)

3
121.47

135860
221

285716
6(0)

3
118.78

75936.50
vpm

2
11

29.50
0(0)

1
106.78

48.48
27

23.75
0(0)

1
67.8

14.08
?:

U
nknow

n
value

T
able

2.2:
C
om

putational
results

using
A
C
-F
P
w
ith

P
C
x
and

C
P
L
E
X
.

2.5. Computational results 31

AC-FP with PCx AC-FP with CPLEX ACFM
Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt(tAC) gap%
mas74 0(0) 484618022.50 0(0) 423649728.01 7 15026.47 8.89(8.26) 434.75

mas76 0(0) 67000682.38 0(0) 124980840.41 1 44877.42 2.55(2.1) 12.18

misc07 3(0) 40.02 2(0) 21.34 13 4795 9.28(8.71) 70.64
noswot 0(0) 61.90 0(0) 23.81 3 -37 2.51(2.11) 9.76

pk1 0(0) 625 0(0) 6000 1 28.99 0.75(0.72) 163.55

pp08aCUTS 0(0) 122.98 0(0) 194.82 1 8458 2.81(2.25) 15.07

pp08a 0(0) 115.63 0(0) 150.85 1 9048.56 2.07(1.5) 23.11

rout 1(0) 52.56 1(0) 24.08 4 1111.88 101.95(100.58) 3.18

vpm2 0(0) 106.78 0(0) 67.8 6 15.5 28.43(27.31) 12.73

Table 2.3: Comparison of AC-FP (PCx and CPLEX) with ACFM only for the
instances solved in [56].

uated at the analytic center. Di�erences are due to di�erent computed analytic

centers because both solvers apply very distinct preprocessing strategies.

Table 2.3 compares AC-FP with ACFM using the subset of nine MIPLIB2003

instances solved in [56]. For ACFM, Table 2.3 reports the number of ACFM

iterations needed to reach the feasible solution (�niter�), the feasible solution

(column �fobj�), and the gap between the solution found by ACFM and the

optimal solution (column �gap%�). Column �tt(tAC)� reports the total CPU

time of the ACFM algorithm, including the amount of CPU time in seconds

spent on calculating the analytic centers (in brackets, �tAC�). The best result

(i.e., execution with the lowest gap) is highlighted in boldface.

Table 2.4 compares AC-FP with the objective FP. For the objective FP we

report the number of FP iterations (column �niter�), the objective value of fea-

sible point found (�fobj�), the gap between the feasible and the optimal solution

(�gap%�), the FP stage where the feasible point was found (�stage�) and the total

CPU time (column �tt�). The best result (i.e. that with the lowest gap if obtained

in stages 0�2), is highlighted in boldface. Note that for instance �swath� objective

FP is considered the best approach, though the gap is greater than for AC-FP,

since the solution with objective FP was found at stage 2, while AC-FP failed

and it needed stage 3. This same argument was applied for instance �dano3mip�,

of unknown gap. For instance �liu� AC-FP with PCx provided a better objective

function, though the gap is also unknown. If two approaches provide the same

gap, but one is signi�cantly more e�cient, this is marked as the best result (as

in instance �ds�).

The default FP settings were used as suggested in [2]. All runs were carried on

a Dell PowerEdge 6950 server with four dual core AMD Opteron 8222 3.0 GHZ

32 Chapter 2. Using the analytic center in the feasibility pump

AC-FP with PCx AC-FP with CPLEX objective FP
Instance tFP(tAC) gap% tFP(tAC) gap% niter fobj tt stage gap%

Problems with only binary variables
10teams 26(0) 10.59 25(0) 14.27 278 1014 19 3 9.73

a1c1s1 0(0) 306.43 0(0) 232 351 22714.68 8 2 97.45

a�ow30a 1(0) 228.13 2(0) 381.36 41 2355 0 1 103.28

a�ow40b 12(0) 610.09 2(0) 503.25 21 2329 1 1 99.32

air04 1220(2) 28.43 1147(0) 26.87 45 58229 181 1 3.73

air05 162(1) 43.73 148(0) 35.73 3 26930 2 1 2.11

cap6000 1(0) 0.35 1(0) 0.35 31 -2442163 0 1 0.38
dano3mip 1892(17) ? 1947(4) ? 70 763.97 361 1 ?

danoint 4(0) 15.50 9(0) 29.75 96 74 3 1 12.50

disctom 3(1) 0 4(0) 0 3 -5000 3 1 0

ds 1945(10) 5633.77 1(2) 5633.77 446 5418.56 9495 3 5633.77
fast0507 131(4) 6691.43 2(1) 57.71 8 184 51 1 5.71

�ber 0(0) 1496.68 0(0) 675.45 41 6481506.12 0 1 1496.68
�xnet6 0(0) 863.91 0(0) 2341.58 67 41304 0 1 936.77
glass4 2(0) 775 1(0) 316.67 374 12700154400 1 3 958.34
harp2 3(0) 45.02 1(0) 32.67 138 -60669440 3 1 17.90

liu 4(5) ? 5(0) ? 119 3286 1 1 ?
markshare1 0(0) 30100 0(0) 364250 65 725 0 1 36200
markshare2 0(0) 46200 0(0) 525550 65 963 0 1 48100
mas74 0(0) 484618022.50 0(0) 423649728.01 109 16534.04 0 1 40.10

mas76 0(0) 67000682.38 0(0) 124980840.41 106 46242.57 1 1 15.59

misc07 3(0) 40.02 2(0) 21.34 188 3690 1 1 31.31
mkc 1(0) 50.79 1(1) 106.69 13 -288.96 0 1 48.67

mod011 3(1) 31.30 3(0) 34.84 12 -45633967.33 1 1 16.36

modglob 1(0) 5.16 0(0) 296.53 60 22995521.33 0 1 10.87
net12 10(86) 57.21 8(27) 57.21 216 337 12 2 57.21
nsrand-ipx 367(2) 404.05 265(0) 296.56 132 211040 5 2 312.38
nw04 9(8) 9 120(2) 265.54 10 17858 10 1 5.91

opt1217 0(0) 22.80 0(0) 94.12 40 -16 0 1 0

p2756 7(0) 1542.85 7(0) 1542.85 377 51338 2 3 1542.85

pk1 0(0) 625 0(0) 6000 56 36 0 1 208.33

pp08aCUTS 0(0) 122.98 0(0) 194.82 10 8360 0 1 13.74

pp08a 0(0) 115.63 0(0) 150.85 11 12010 0 1 63.39

protfold 365(2) 37.81 286 -16 90 2 46.88
qiu 1(0) 748.05 0(0) 2858.10 9 160.76 0 1 219.34

set1ch 0(0) 392.71 0(0) 296.92 46 95845.5 0 1 75.74

seymour 5(35) 78.07 0(0) 38.92 7 471 3 1 11.32

sp97ar 57(4) 75.87 88(1) 1671.15 9 919778417.68 4 1 39.21

swath 96(1) 7324.22 100(0) 7324.22 395 35951.85 14 2 7575.56

tr12-30 7(0) 121.47 6(0) 118.78 25 164128 1 1 25.68

vpm2 0(0) 106.78 0(0) 67.8 12 18.25 0 1 30.51

Problems with binary and general integer variables
arki001 43(0) 1.96 79(0) 2.41 803 7719381.38 15 3 1.83

atlanta-ip 68(9398) 118.68 934(11) 70.32 454 156.01 227 3 75.52
gesa2-o 0(0) 176.23 1(0) 26.59 33 36205441.29 1 2 40.44
gesa2 1(0) 49.23 1(0) 56.35 33 28181419.78 0 2 9.32

manna81 0(6) 1.64 0(0) 2.17 52 -12940 2 2 1.70
msc98-ip 16(949) 52.20 19(22) 55.89 61 30502274.00 26 1 53.75
mzzv11 435(116) 25.12 484(7) 36.71 540 -17898 127 3 17.59

mzzv42z 13(147) 37.99 12(15) 30.90 25 -14502 49 1 29.39

noswot 0(0) 61.90 0(0) 23.81 13 -41 1 2 0

roll3000 65(1) 210.68 11(1) 43.57 793 36109.80 17 3 180.12
rout 1(0) 52.56 1(0) 24.08 117 1652.55 0 1 53.31
timtab1 1(0) 41.35 3(0) 83.22 216 1400493.99 1 2 83.13
timtab2 6(0) 91.96 7(0) 61.62 1222 1982037.99 2 2 80.75
?: Unknown value

Table 2.4: Comparison with objective FP.

2.5. Computational results 33

processors (without exploitation of parallelism capabilities) and 64 GB of RAM.

According to the Standard Performance Evaluation Corporation (http://www.

spec.org/) the ratio of the performance of our machine (considering specfp2000

and specint2000) and that used in [56] is about 1.5. Therefore the CPU times in

Table 2.3 for ACFM are those of [56] divided by 1.5.

As stated in Subsection 2.4.2, as a consequence of computing one analytic

center per iteration, ACFM can be computationally expensive, and this is the

most important di�erence from a practical point of view between ACFM and

AC-FP. Indeed, as it can be observed in Table 2.3, ACFM was only tested in [56]

on nine of the smaller MIPLIB instances, while we applied AC-FP to 54 (some

of them much larger) instances. For example, for instance �rout� ACFM needed

101 seconds and got a solution of 1111.88 (gap of 3.18%), while AC-FP needed

one second for an objective of 1337.27 (gap of 24.08%); but in other cases AC-FP

outperformed ACFM both in time and objective, as in instance �misc07� where

ACFM required nine seconds for an objective of 4795 (gap 70.64%), while AC-FP

took two seconds for an objective of 3410 (gap 21.34%).

Although from Table 2.4, in general it can be concluded that AC-FP is inferior

to the objective FP, there are some notable exceptions. For instance, for the 13

instances with both binary and general integer variables, AC-FP (either with

PCx or CPLEX) obtained a solution with a lower gap than the objective FP

in eight of the 13 instances; in some cases more e�ciently and even being able

to �nd a solution when the objective FP failed (i.e., it required stage 3), as for

instances �roll3000� and �atlanta-ip� (in this latter case, however, at the expense

of a very large CPU time). On the other hand, for problems with only binary

variables AC-FP obtained solutions with a lower gap in very few instances. A

possible explanation of this di�erent behaviour in problems with and without

general integer variables is that, for a binary problem, the only feasible integer

points �close� to the segment x(γ) are {0, 1}n, which in addition may be far from

the center. For problems with general integer variables, the number of feasible

integer solutions close to the analytic center will be, in general, much larger. For

some problems with only binary variables, AC-FP behaved very poorly, as for

�mas74� and �mas76� (it stopped at stage 0 in those cases). However, in other

instances it was much more e�cient obtaining the same gap that the objective

FP, as for �ds�. Note that for �ds� AC-FP with CPLEX obtained the feasible

solution in one second at stage 0 (the other two variants failed, requiring stage

http://www.spec.org/
http://www.spec.org/

34 Chapter 2. Using the analytic center in the feasibility pump

3). However, in that case CPLEX did not really compute the analytic center: it

solved minx{0 : x ∈ P} heuristically, instead of applying the barrier algorithm,

as required. It thus considered a segment between two feasible solutions, none

of them being the analytic center of P . Therefore, the idea of using a segment

of feasible points is not restricted to the case where one of the endpoints is the

analytic center, and it can be extended to more general situations.

Chapter 3

Fix-and-relax approaches for

Controlled Tabular Adjustment

3.1 Introduction

Controlled Tabular Adjustment (CTA), as explained in Chapter 1, is a MILP

which applied to very large or massive tables becomes very complex. Finding

optimal or suboptimal solutions to model (1.6) within an acceptable computa-

tional time can be a challenging task to o�cial statistics (NSAs). When the

number of sensitive cells is large, the branch-and-cut scheme has shown to be

ine�cient, and in some cases it is even unable to provide a �rst feasible solution.

For some massive instances�such as, e.g., those in http://www-eio.upc.es/

~jcastro/huge_sdc_instances.html� the LPs obtained by �xing the value of

binary variables�associated to the protection directions�are even not solvable

with moderate computational resources. For example, the LPs derived from the

six million cells instances of the above web address exhausted the memory of a

16 gigabytes workstation when solved with the CPLEX barrier solver. Unfortu-

nately, the alternative simplex solver is even more prohibitive, but in terms of

CPU time: interior-point algorithms have shown to be much more e�cient than

the simplex for the LPs derived from CTA [11, 12]. Quick tools to provide fast

solutions to CTA are a necessity because of the increasing ability of NSAs to

create more complex and huge tables from collected data.

For this reason, there is a lot of interest to speed up the solution time. The

approach described in this chapter goes along these lines, with two clear objec-

tives:

35

http://www-eio.upc.es/~jcastro/huge_sdc_instances.html
http://www-eio.upc.es/~jcastro/huge_sdc_instances.html

36 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

• Its �rst goal is to apply a �x-and-relax (FR) heuristic [23] to the MILP

CTA problem. Brie�y, FR partitions the set of binary variables into k

clusters, and iteratively optimizes for each cluster i = 1, . . . , k, �xing the

binary variables of clusters j < i at the optimal value found in previous

iterations, and relaxing the integrality of binary variables of clusters j > i.

The e�ect of this partitioning of the set of binary variables is that the

nodes of the branch-and-cut tree are selectively explored. Equipping this

procedure with a backward repartition strategy (details will be given in

Section 3.2), if the MILP is feasible then FR will always provide a feasible,

hopefully good and e�cient, suboptimal solution. The approach cannot

guarantee the optimal solution, but in practice end users of statistical data

protection techniques prefer quick suboptimal solutions than optimal costly

ones, i.e., requiring too many hours, days or weeks of CPU time. FR has

been successfully applied in the past mainly to scheduling problems [23,

30, 31]. In those applications, variables and constraints can naturally be

partitioned according to some sequential stages, two consecutive ones being

only linked by a few of the variables and constraints of each partition. Such a

structure can also be found in two dimensional tables with one hierarchical

variable, or, shortly, 1H2D tables, described in Chapter 1. This type of

tables, which are of interest for NSAs, are a priori suitable for FR. Most of

the instances tested in the computational results of this work are 1H2D, and,

as it will be shown, FR provides good solutions in a fraction of the time

required by state-of-the-art branch-and-cut solvers (to obtain equivalent

solutions, i.e., with the same objective function value).

• The second objective of the work is to apply a hybrid approach combining

FR and the block coordinate descent (BCD) heuristic, which was success-

fully applied to some classes of CTA problems in [43]. This hybrid method

will be named FR+BCD. Indeed, FR is e�cient for computing initial, hope-

fully good, feasible points, while BCD requires a feasible starting point.

Therefore, both heuristics are complementary. As it will be shown in Sec-

tion 3.4, BCD, warm started with the FR solutions, was able to reduce

the gap of the FR solution in approximately half of the real-world CTA

instances. In 25 of the 34 real-world instances FR or FR+BCD provided

similar or better objective functions in less CPU time than the state-of-

the-art MILP solver CPLEX. It will be seen that FR+BCD improved the

3.1. Introduction 37

FR solutions in only 25% of these 1H2D tables. For real-world tables, this

percentage increased up to 50%, making FR+BCD a competitive approach.

In the past, several approaches have been tried to solve the CTA method

more e�ciently. A straightforward Benders reformulation of the problem was

attempted in [14], but promising results were only obtained for two-dimensional

tables (i.e., tables obtained by crossing two categorical variables, whose con-

straints are represented by a node-arc network incidence matrix [12]). Heuristic

and metaheuristic methods were attempted in [41], but they only solved small

two-dimensional and three-dimensional tables of up to 625 and 8000 cells, re-

spectively, while we consider in this thesis much more complex synthetic and

real tables from the literature, of up to 200000 and 36000 cells, respectively. For

instance, we generated a set of 20 two-dimensional and 20 three-dimensional ta-

bles with the same characteristics (sizes and number of sensitive cells) than those

in [41]. We remark that: (1) the tables used in [41] were also randomly gen-

erated; (2) the matrix constraints only depends on the table structure (two- or

three-dimensional table) so they were the same in our experiments and those in

[41]; (3) although the instances are not exactly the same, what makes di�cult

(in general) a problem is the structure of the matrix constraints and the number

of sensitive cells (which is associated to the number of binary variables of the

optimization problem); those characteristics are the same in our experiments and

those of [41]. CPLEX 12.5 found a 0% gap solution for all these two-dimensional

tables with an average CPU time of 0.02 seconds (the maximum time required by

an instance was 0.03 seconds). For the three-dimensional tables, the average CPU

time was 0.2 seconds (the maximum time for an instance was 0.49 seconds), again

for 0% gap solutions. No CPU time comparison with CPLEX was reported in

[41]; it was just stated that CPLEX 8.1 could not solve the instances. Therefore,

up to now, there is no conclusive evidence that those metaheuristics are helpful

for the CTA problem. We also tried in the past other general metaheuristics as

genetic algorithms without success: combinations or modi�cations of solutions

are not expected to satisfy the large number of linear constraints with no par-

ticular structure of CTA. Indeed, these constraints are usually complex, and any

practical approach must rely on the e�cient solution of (usually di�cult) linearly

constrained problems (either LPs or MILPs). The approaches in this chapter rely

on decomposing the problem into smaller, thus tractable, MILP instances. It is

worth to note that even the LPs obtained from large CTA instances by �xing the

38 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

binary variables are very di�cult for today state-of-the-art solvers. Indeed, some

of these instances have been included in standard LP repositories [54].

The chapter is organized as follows. Section 3.2 describes the FR heuristic

for CTA; Section 3.3 outlines the BCD approach. Finally, Section 3.4 presents

extensive computational results, showing the e�ectiveness of FR and FR+BCD

for synthetic 1H2D and real-world tables.

3.2 Fix-and-relax

FR is a decomposition method based on partitioning the set of binary variables

into clusters to iteratively solve a sequence of MILPs of smaller dimension than

the original problem. In those smaller MILPs only a subset of variables retain

their binary constraints while the rest are either �xed or relaxed. Since only a

reduced subset of (non-�xed) 0-1 variables is kept integer at each FR iteration,

a computational improvement is expected. FR can both be seen as an approach

for obtaining (hopefully good) initial feasible solutions and primal bounds. There

are other approaches for initial good solutions in MILPs, such as the feasibility

pump [36], but as it will seen in Section 3.4, in practice FR outperformed them.

FR can be brie�y stated as follows. The set of binary variables is partitioned

into a �nite set of clusters {V1, . . . , Vk}. The original MILP is then decomposed

into k subproblems and at each iteration one of them is solved. At �rst itera-

tion (counter r set to 1) the subproblem considers as binary only the variables

of V1, while the integrality of binary variables in the remaining clusters is re-

laxed. Continuous variables in the original MILP maintain this same status at

each subproblem. Hopefully, this �rst subproblem will be easily solved since the

cardinality of V1 is much smaller than the number of binary variables in the orig-

inal MILP. Once solved, the counter r is incremented and the next subproblem

is considered. At subproblem of iteration r, k > r > 1, the binary variables of

clusters Vi, i < r, are �xed to the values of optimal solutions from the previous

iterations; variables of cluster Vr are considered binary, while the integrality of

variables in clusters Vj, j > r is relaxed. The process is repeated until r = k. If

no subproblem is infeasible, a (hopefully good) feasible solution will be available

after the solution of subproblem k. In the particular case of CTA, the set S of

sensitive cells is partitioned into the subsets {V1, . . . , Vk}, and the subproblem r

3.2. Fix-and-relax 39

1. Input: Number of clusters k ≥ 1
2. Partition S into {V1, . . . , Vk} clusters
3. Initialize r = 1 and solve CTA1

FR

4. if CTA1
FR is infeasible, STOP

5. else Store values of binary variables of CTA1
FR, set lower bound LB, and

r ← r + 1
6. while r ≤ k do
7. Solve CTArFR
8. if infeasible, rede�ne the partition structure as in (3.2)
9. else Store optimal values of binary variables of CTArFR, and r ← r + 1
10. end while

11. Return UB (solution of CTAkFR) and LB

Figure 3.1: The �x-and-relax heuristic applied to the CTA problem.

associated to (1.6)�which will be referred as (CTArFR)�is

min
z+,z−,y

n∑
i=1

wi(z
+
i + z−i)

s. to A(z+ − z−) = 0

0 ≤ z+
i ≤ uzi i ∈ N \ S

0 ≤ z−i ≤ −lzi i ∈ N \ S
upli yi ≤ z+

i ≤ uzi yi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi = ỹi i ∈

⋃
h=1,...,r−1 Vh

yi ∈ {0, 1} i ∈ Vr
yi ∈ [0, 1] i ∈

⋃
h=r+1,...,k Vh,

(3.1)

where ỹi, i ∈ ∪h=1,...,r−1Vh, are the values of binary variables found at subproblems

CTA1
FR, . . ., CTA

r−1
FR . Although FR is a heuristic for MILP problems, it is easily

switched to an optimal approach by setting k = 1.

It is worth noting that the �rst subproblem CTA1
FR has two main features

compared to the subsequent ones:

• The lower bound on the objective function provided by CTA1
FR is a global

lower bound of (1.6). On the other hand, the lower bound of subproblems

r > 1 are just local lower bounds. The lower bound reported by the FR

algorithm will then be that of CTA1
FR. Note that the optimal solution of

CTA1
FR can be considered a lower bound of (1.6) only if computed with a

0% gap. However, such a gap is impractical, because the solution of CTA1
FR

40 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

would take a long execution time�something to avoid, since the goal of FR

is to quickly provide a decent solution. In the implementation developed,

the lower bound was obtained by the CPLEX routine CPXgetbestobjval.

When a problem has been solved to optimality, this routine provides the op-

timal solution value. Otherwise, it provides the minimum objective function

value of all remaining unexplored nodes in the branch-and-cut tree.

• If CTA1
FR is infeasible, then (1.6) is infeasible as well. However, if some

subproblem r > 1 is infeasible it can not be concluded that (1.6) is infeasible;

it just means that we can not �x yi = ỹi, for i ∈ Vr−1, at subproblem r. To

overcome this drawback, when subproblem r > 1 is reported as infeasible,

we backtrack to problem r−1, modifying the partition by joining the clusters

Vr−1 and Vr as follows:
Vr−1 ← Vr−1

⋃
Vr

Vi ← Vi+1, i = r, . . . , k − 1

k ← k − 1

r ← r − 1.

(3.2)

Note that the above repartition strategy will always provide a feasible so-

lution if (1.6) is feasible. Indeed, in the worst case, if subproblem k is

infeasible and (3.2) is applied k − 1 times, we will end up with a unique

cluster, i.e., we will be solving (1.6). However, in practice, as it was ob-

served in the computational results of Section 3.4, this repartition strategy

was never needed in the instances tested.

An outline of the FR algorithm for CTA is shown in Figure 3.1.

3.3 Outline of block coordinate descent

The BCD approach applied to CTA has been described in [43]. Brie�y, it consists

of a sequence of CTA subproblems, each of them optimizing the objective function

over the cell deviations z+, z− and a subset of the decision variables y, while

the remaining variables y are kept �xed to some direction. Provided that we

start from a feasible assignment of y, the method can move from a solution to

another, hopefully better. Although there could be uncountable strategies to

determine the subset of variables to be optimized, the set S is usually partitioned

3.4. Computational results 41

into k clusters (or blocks) and the algorithm iterates through them. However,

BCD could perform inde�nitely, starting again with the same or with another

partition. Stopping criteria normally employed are: only one cycle of k clusters;

a time limit, or a speci�ed number of subproblems without improvement in the

objective function. Since the method does not account for dual information there

are no means to compute a gap for the solution. Despite this, the results of [43]

showed that BCD reaches sub-optimal but still good solutions in signi�cantly less

time than branch-and-cut schemes. The algorithm is summarized in Figure 3.2.

Experience with BCD has shown that, in general, the performance of the

method improves as the number of blocks decreases, and two blocks seems to be

the best choice. Notice that one block would lead the method to a plain branch-

and-cut, which might be computationally prohibitive. It has been observed that

many tables are (sub-optimally) protected through manipulation of half of their

sensitive cells in a fraction of the time needed if the whole set of sensitive cells

was considered (this fraction of time being signi�cantly less than 1/2).

Many tests indicate that rebuilding the partition of blocks at each iteration

is clearly preferable to keep some pre-determined division. Actually, the best

performances are obtained with a random division of the binary variables into

blocks; this is the main strategy considered.

A disadvantage of BCD is the need to �nd a feasible initial assignment of

directions to start the process (step 2 of algorithm of Figure 3.2), which may

be in itself a di�cult problem for large CTA instances. The heuristic approach

considered in [43], which relies on the Boolean Satis�ability problem, only focuses

on the constraints, and then it may provide poor quality solutions. Since FR

solutions take into account the objective function, we can use it as a good warm

start to BCD. This approach, named FR+BCD, will be computationally tested

and seen as a very e�cient option in Subsection 3.4.3.

3.4 Computational results

The FR and FR+BCD heuristics for CTA have been coded in C++, using the

state-of-the-art CPLEX 12.5 branch-and-cut solver for the solution of subprob-

lems (3.1). FR and FR+BCD were compared with the direct solution of (1.6)

through plain CPLEX branch-and-cut, which will be referred as BC.

All the runs were carried out on a Dell PowerEdge 6950 server with four

42 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

instance n s m nz
Symmetric instances

sym-40-50-5 29039 1421 1334 58793
sym-40-50-15 31753 46612 1388 64219
sym-40-50-30 29141 8556 1336 58997
sym-40-60-5 36990 1816 1521 74835
sym-40-60-15 34026 5011 1473 68906
sym-40-60-30 38040 11207 1539 76933
sym-50-50-5 40637 1989 1562 81988
sym-50-50-15 39596 5815 1541 79907
sym-50-50-30 38097 11190 1512 76908
sym-50-60-5 45555 2237 1662 91964
sym-50-60-15 44457 6550 1644 89768
sym-50-60-30 45835 13507 1666 92525

Asymmetric instances
asym-40-50-5 125661 6157 5677 254483
asym-40-50-15 126844 18646 5700 256850
asym-40-50-30 127000 37338 5703 257162
asym-40-60-5 151166 7431 6321 306114
asym-40-60-15 149641 22069 6296 303064
asym-40-60-30 150711 44454 6314 305203
asym-50-50-5 162561 7966 6400 328284
asym-50-50-15 159766 23487 6346 322694
asym-50-50-30 160171 47094 6354 323503
asym-50-60-5 191503 9415 6982 386789
asym-50-60-15 189718 27982 6953 383218
asym-50-60-30 188742 55676 6937 381266

Table 3.1: Characteristics of symmetric/asymmetric synthetic 1H2D instances.

3.4. Computational results 43

instance n s m nz
australia_ABS 24420 918 274 13224
bts4 36570 2260 36310 136912
cbs 11163 2467 244 22326
dale 16514 4923 405 33028
destatis 5940 621 1464 18180
hier13d4 18969 2188 47675 143953
hier13 2020 112 3313 11929
hier13x13x13a 2197 108 3549 11661
hier13x13x13b 2197 108 3549 11661
hier13x13x13c 2197 108 3549 11661
hier13x13x13d 2197 108 3549 11661
hier13x13x13e 2197 112 3549 11661
hier13x13x7d 1183 75 1443 5369
hier13x7x7d 637 50 525 2401
hier16 3564 224 5484 19996
hier16x16x16a 4096 224 5376 21504
hier16x16x16b 4096 224 5376 21504
hier16x16x16c 4096 224 5376 21504
hier16x16x16d 4096 224 5376 21504
hier16x16x16e 4096 224 5376 21504
nine5d 10733 1661 17295 58135
osorio 10201 7 202 20402
sbs2008_C 4212 1135 2580 13806
sbs2008_E 1430 382 991 4680
table1 1584 146 510 4752
table3 4992 517 2464 19968
table4 4992 517 2464 19968
table5 4992 517 2464 19968
table6 1584 146 510 4752
table7 624 17 230 1872
table8 1271 3 72 2542
targus 162 13 63 360
toy3dsarah 2890 376 1649 9690
two5in6 5681 720 9629 34310

Table 3.2: Characteristics of real instances.

44 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

1. Input: Number of clusters k ≥ 1
2. Set feasible initial values to y; initialize outer iteration counter: t← 0
3. while stopping criterion not satis�ed and t ≤ tmax do

4. Set inner iteration counter: i ← 0; divide y into k blocks: y =
{y1,i, . . . , yk,i}

5. while i < k do
6. Solve (1.6) with respect to block yi,i �xing yj,i for j 6= i: obtain (yi,i)∗

7. yi,i+1 ← (yi,i)∗; yj,i+1 ← yj,i for j 6= i
8. i← i+ 1
9. end while

10. t← t+ 1
11. end while

12. Return the best solution found

Figure 3.2: The block coordinate descent heuristic for the CTA problem.

dual core AMD Opteron 8222 3.0 GHZ processors (without exploitation of paral-

lelism capabilities) and 64 GB of RAM. Default values were used for the CPLEX

parameters, unless explicitly stated. For the computational tests we consid-

ered a set of real-world general and synthetic 1H2D tables. Real-world gen-

eral tables are standard instances used in the literature [12]. It is worth not-

ing that some real-world instances were not included in this set since they are

too di�cult for both heuristic and exact MILP approaches�no feasible solu-

tion was obtained within the time limit. Synthetic instances were obtained

with a generator of 1H2D tables. This generator is governed by several pa-

rameters, as, for instance, the number of rows in a subtable; the number of

columns per subtable; the depth of the hierarchical tree; the minimum and max-

imum number of rows with hierarchies for each subtable; and the probability

for a cell to be marked as sensitive. The 1H2D table generator is available

from http://www-eio.upc.es/~jcastro/generators_csp.html. We �xed all

parameters, but three: the number of rows per subtable (r ∈ {40, 50}), the num-
ber of columns per subtable (c ∈ {50, 60}) and the percentage of sensitive cells

(s ∈ {5, 15, 30}).

We considered either symmetric and asymmetric instances, i.e., instances

where uai = lai for all i ∈ N and uai 6= lai for some i ∈ N , respectively. Asym-

metric instances were obtained by considering uai = a · lai for all i ∈ N , where

a ∈ {2, 5, 10} is the asymmetry parameter. For each combination of parameters

we generated a sample of �ve instances varying the random generator seed. This

http://www-eio.upc.es/~jcastro/generators_csp.html

3.4. Computational results 45

amounted to 12 and 36 samples of �ve instances each one, for symmetric and

asymmetric instances respectively. Although the asymmetry parameter slightly

a�ects to the di�culty of the problem, both symmetric and asymmetric instances

will be grouped by r, c and s to simplify the exposition. The reported compu-

tational results are thus averaged on �ve and 15 replications for symmetric and

asymmetric tables, respectively.

Table 3.1 reports the characteristics of each set of symmetric/asymmetric

1H2D instances: the average number of cells (�n�), the average number of sen-

sitive cells (�s�), the average number of table relations (�m�) and the average

number of coe�cients in linear constraints (�nz�). Hierarchical synthetic tables

are identi�ed by the particular combination of parameters, i.e., sym-r-c-s for

symmetric instances and asym-r-c-s for asymmetric ones. Table 3.2 reports the

same information for real-world tables, though in this case the dimensions are

not averaged. The dimensions of the MILP problems (1.6) are 2n continuous

variables, s binary variables, and m+ 4s linear constraints.

3.4.1 Tuning the number of clusters in �x-and-relax

The performance of FR depends on the number of clusters k considered. We

performed an empirical study of the e�ect of k on two particular metrics: the

CPU time and the quality of the solutions provided by FR. This empirical analysis

was done considering values k ∈ K = {3, 5, 7, 10, 20, 30, 40, 50}, and using a subset
of asymmetric 1H2D instances. For each combination of parameters r-c-s we

considered a sample of three instances.

Each instance was solved |K| times, randomly partitioning the set S of sensi-

tive cells into k ∈ K subsets. In [43], di�erent strategies to partition the sensitive

cells were tested. The �rst strategy divides the set S randomly into a number

of blocks, keeping their sizes as similar as possible. The second strategy takes

account the tree structure of 1H2D tables and the sensitive cells are partitioned

according to their level. Curiously, this strategy was not satisfactory and the best

performances are obtained with a random division of the binary variables into

blocks; so this was the main strategy considered in FR framework. The stopping

criterion for all the runs, i.e., subproblems (3.1), was a 5% optimality gap, which

is computed by CPLEX as (UB−LB)/(|UB|+ 10−10), where UB is the best inte-

ger solution (upper bound) and LB is the best achievable value from the current

branch-and-cut tree (lower bound).

46 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

Figure 3.3 reports the CPU time (in seconds, averaged for the three instances

of each sample) used by FR for the di�erent k ∈ K number of clusters. Clearly, the

CPU time increases with k, and the heuristic becomes prohibitive if the number

of clusters is large.

The second metric, the quality of the solutions, was evaluated using the per-

formance pro�le proposed in [55]. Quality was measured as the value of the

objective function (thus, the lower, the better). Let Qtk be the quality of the

solution of instance t solved by FR with k clusters. Note that Qtk for CTA is

always strictly positive. The performance ratio is thus de�ned as

v(t, k) =
Qt,k

min{Qt,k : k ∈ K}
,

i.e., the ratio between the quality of the solution obtained when instance t is solved

by FR with k clusters over the strategy with the best (minimum) performance

for this instance. The (cumulative) distribution function Pk(q) : [1,∞) → [0, 1]

is de�ned as

Pk(q) =
|{t ∈ T : v(t, k) ≤ q}|

|T |
, q ≥ 1.

where T is the set of instances. Figure 3.4 shows the performance pro�les for

the di�erent k ∈ K. Pk(q) = 1 means FR with k clusters is able to solve all the

instances within a factor q of the best possible ratio. In our case k = 3 is the

�rst strategy to converge to 1 for q ≈ 1.45 (i.e., FR with 3 blocks solves all the

instances within a factor ≈ 1.45 of the best ratio). It can also be observed that

k = 3 provides the highest quality for 80% of the instances (P3(1) ≈ 0.8).

3.4.2 Comparison between �x-and-relax and plain branch-

and-cut

From the discussion of previous Subsection, k = 3 was set for FR. An optimality

gap of 5% was considered for all the optimization problems, either (1.6) or FR

subproblems (3.1). The time limit was set to two hours for both 1H2D and real-

world instances. Note that FR subproblems are also solved by CPLEX branch-

and-cut; therefore the comparison is between whether using or not the FR scheme.

We will refer to these two variants as FR and BC.

Tables 3.5 and 3.6 report an exhaustive comparison between FR and BC for

synthetic 1H2D and real-world instances, respectively. These tables report the

3.4. Computational results 47

01000200030004000

N
u
m

b
e
r

o
f
c
lu

s
te

rs

CPU Time

3
5

7
1
0

2
0

3
0

4
0

5
0

4
0
−

5
0
−

5

4
0
−

5
0
−

1
5

4
0
−

5
0
−

3
0

4
0
−

6
0
−

5

4
0
−

6
0
−

1
5

4
0
−

6
0
−

3
0

5
0
−

5
0
−

5

5
0
−

5
0
−

1
5

5
0
−

5
0
−

3
0

5
0
−

6
0
−

5

5
0
−

6
0
−

1
5

5
0
−

6
0
−

3
0

T
ab
le
3.
3:

C
P
U
ti
m
e
fo
r
di
�
er
en
t
nu
m
b
er

of
cl
us
te
rs
.

48 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

0.0 0.2 0.4 0.6 0.8 1.0

q
 v

a
lu

e
s

Pk(q)

357

1
0

2
0

3
0

4
0

5
0

T
able

3.4:
P
erform

ance
pro�le

of
the

quality
of

the
solution

for
di�

erent
num

b
er

of
clusters.

3.4. Computational results 49

FR CPU time (columns �TFR�); the primal gap of the solution reported by FR

(columns �GAPFR%�); the primal gap of the solution reported by BC after TFR
seconds of CPU time (columns �GAPBC%�), i.e., using the same time than FR;

the di�erence between both primal gaps (columns �∆(BC,FR)�); the primal gap

and CPU time needed by BC to compute a better solution than the feasible

solution found by FR (columns �GAP up
BC%� and �T upBC�); and �nally the di�erence

between the time needed by BC to improve the FR solution and the time needed

by FR to compute that solution (columns�∆(TFR, T
up
BC)�). Positive values at

column ∆(BC,FR) means that FR achieved a better solution than BC in the

same CPU time.

From Table 3.5 it can be concluded that FR is more e�cient than BC for

fast good feasible solutions of 1H2D tables. In several runs (marked with ‡) BC
could not �nd a better solution than FR within the time limit. It is worth noting

that for all the 1H2D instances FR provided solutions with gaps below 6%. For

the real-world general instances of Table 3.6 the situation is slightly di�erent.

These instances are not guaranteed to have a hierarchical structure, and this may

explain why FR is not as competitive as for 1H2D tables. FR provided a better

gap than BC within the same CPU time in 17 of the 34 instances, and both

FR and BC provided the same gap in six adittional cases. In six of these cases

BC could not improve the FR solution within the two hours time limit. In the

remaining instances BC outperformed FR.

3.4.3 Comparison between �x-and-relax with block coordi-

nate descent and plain branch-and-cut

As mentioned in section 3.3, since FR can provide good feasible solutions faster

in average than BC, BCD was warm started with the FR solution. This hybrid

approach was named FR+BCD.

The BCD algorithm performed in all cases a loop with two clusters, each

one with a half of the sensitive cells, partitioned at random. At exit, the CPU

computation time and the objective function value were saved. This CPU time

was added to the FR CPU time and compared to the CPU time used by BC. We

also took into account whether the sensitive cells had been correctly protected

in the �nal solutions, since accuracy errors might be present in some instances,

making actually infeasible the protected table. This accuracy errors are due to

50 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

instance TFR GAPFR% GAPBC% ∆(BC,FR) GAP up
BC% T upBC ∆(T upBC , TFR)

asym-40-50-5 72.76 2.52 †(40.70,5) †(38.18,5) ‡(1.20,13) ‡(87.76,13) ‡(15.00,13)

asym-40-50-15 158.75 3.55 86.67 83.11 ‡(1.94,13) ‡(465.84,13) ‡(307.09,13)

asym-40-50-30 210.51 5.60 99.98 94.38 1.84 1083.47 872.96
asym-40-60-5 95.40 2.40 †(0.88,5) †(−1.51,5) ‡(1.08,14) ‡(124.01,14) ‡(28.61,14)

asym-40-60-15 193.37 3.17 99.96 96.79 ‡(1.69,12) ‡(945.40,12) ‡(752.03,12)

asym-40-60-30 314.96 5.26 99.97 94.71 2.43 1107.84 792.88
asym-50-50-5 110.54 1.82 †(0.08,8) †(−1.74,8) ‡(0.62,14) ‡(135.65,14) ‡(25.11,14)

asym-50-50-15 186.95 3.11 86.66 83.54 ‡(1.02,11) ‡(804.02,11) ‡(617.07,11)

asym-50-50-30 333.50 5.94 99.94 93.99 2.21 1704.06 1370.55
asym-50-60-5 153.14 1.23 †(0.45,9) †(−0.78,9) ‡(0.85,13) ‡(163.61,13) ‡(10.46,13)

asym-50-60-15 282.79 3.05 93.33 90.28 ‡(1.46,13) ‡(1569.41,13) ‡(1286.62,13)

asym-50-60-30 406.42 5.52 99.92 94.40 2.39 1396.89 990.47
sym-40-50-5 8.99 2.43 12.69 10.26 ‡(1.61,2) ‡(15.09,2) ‡(6.10,2)

sym-40-50-15 115.34 4.31 45.79 41.48 ‡(2.56,4) ‡(443.91,4) ‡(328.57,4)

sym-40-50-30 371.35 4.61 63.90 59.29 ‡(4.36,3) ‡(2681.80,3) ‡(2310.45,3)

sym-40-60-5 10.52 2.79 14.44 11.65 1,33 37.76 27.24
sym-40-60-15 102.29 2.20 82.23 80.03 ‡(−,0) ‡(−,0) ‡(−,0)

sym-40-60-30 800.45 4.39 12.88 8.49 †(4.59,3) †(2870.02,3) †(2069.57,3)

sym-50-50-5 25.47 1.94 †(12.20,3) †(10.25,3) ‡(0.72,5) ‡(50.75,5) ‡(25.27,5)

sym-50-50-15 166.33 3.66 12.74 9.08 ‡(1.95,2) ‡(1434.04,2) ‡(1267.71,2)

sym-50-50-30 511.19 3.45 66.81 63.36 ‡(3.71,2) ‡(5049.30,2) ‡(4538.11,2)

sym-50-60-5 56.80 1.61 †(54.33,4) †(52.72,4) ‡(0.97,4) ‡(104.60,4) ‡(47.80,4)

sym-50-60-15 279.63 2.47 13.60 11.14 ‡(0.70,1) ‡(1055.10,1) ‡(775.47,1)

sym-50-60-30 833.45 3.95 47.62 43.66 ‡(4.38,2) ‡(3863.53,2) ‡(3030.08,2)

†(x,y) BC could not �nd a solution in y of the overall number of replications within TFR seconds;
x is the average value for the remaining successful runs.

‡(z,w) BC could not improve the FR solution in w of the overall number of replications within
the time limit;z is the average value for the remaining successful runs.

Table 3.5: Comparison between �x-and-relax and plain branch-and-cut for syn-
thetic asymmetric and symmetric 1H2D instances.

3.4. Computational results 51

instance TFR GAPFR% GAPBC% ∆(BC,FR) GAP up
BC% T upBC ∆(T upBC , TFR)

australia_ABS 6,05 73,87 3,84 -70,03 7,40 2,45 -3,6
bts4 6332,15 66,57 74,16 7,59 ‡ ‡ ‡
cbs 2,87 100,00 100,00 0,00 0,00 2,88 0,01
dale 595,85 48,44 48,44 0,00 48,44 7199,96 6604,11
destatis 204,32 19,53 99,97 80,44 1,80 706,48 502,16
hier13d4 6410,73 82,86 99,98 17,12 ‡ ‡ ‡
hier13 747,29 6,88 4,90 -1,98 4,90 159,24 -588,05
hier13x13x13a 542,72 5,22 5,22 0,00 4,94 690,15 147,43
hier13x13x13b 584,92 5,89 5,24 -0,65 5,24 369,13 -215,79
hier13x13x13c 542,86 5,63 4,99 -0,65 4,99 243,43 -299,43
hier13x13x13d 178,12 4,69 5,27 0,58 2,40 340,47 162,35
hier13x13x13e 336,72 5,39 4,40 -0,99 4,40 269,82 -66,9
hier13x13x7d 34,72 5,58 7,19 1,61 4,96 69,32 34,6
hier13x7x7d 2,71 4,82 12,35 7,53 ‡ ‡ ‡
hier16 4854,46 59,48 63,07 3,59 ‡ ‡ ‡
hier16x16x16a 2803,76 44,96 48,80 3,84 44,71 3706,65 902,89
hier16x16x16b 3401,2 33,49 99,95 66,46 31,89 6275,87 2874,67
hier16x16x16c 3488,27 40,86 50,40 9,54 39,62 4926,13 1437,86
hier16x16x16d 3776,81 57,66 63,32 5,66 57,07 5369,03 1592,22
hier16x16x16e 3862,21 46,55 46,87 0,32 ‡ ‡ ‡
nine5d 6133,25 67,69 99,99 32,30 ‡ ‡ ‡
osorio 1,86 0,00 0,00 0,00 0,00 1,03 -0,83
sbs2008_C 543,88 50,11 3,36 -46,75 21,77 32,24 -511,64
sbs2008_E 4,56 4,73 4,73 0,00 4,73 2,94 -1,62
table1 0,62 8,38 13,43 5,06 4,92 1,25 0,63
table3 1909,18 25,39 15,07 -10,32 17,11 408,3 -1500,88
table4 1196,86 25,39 17,30 -8,09 18,60 511,64 -685,22
table5 720,49 22,80 20,20 -2,60 20,25 216,19 -504,3
table6 1,01 7,77 39,32 31,54 3,36 2,17 1,16
table7 0,1 1,01 0,41 -0,61 0,41 0,02 -0,08
table8 0,18 2,44 0,00 -2,44 1,35 0,04 -0,14
targus 0,08 3,84 3,84 0,00 3,84 0,01 -0,07
toy3dsarah 25,47 0,34 7,29 6,94 0,34 37,46 11,99
two5in6 3010,89 66,04 99,99 33,95 63,91 7200,45 4189,56
‡ Time limit reached without improving the feasible FR solution.

Table 3.6: Comparison between �x-and-relax and plain branch-and-cut for real
instances.

52 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

Objective Function

FR+BCD < BC FR+BCD > BC
FR+BCD < BC

mean (sd) ∆F
max |∆F |
mean (sd) ∆T
max |∆T |
N [Nasym ; Nsym]

−1.24 (1.08)
−4.23
−1564 (1872)
−6641
58 [27; 31]

1.86 (1.46)
7.26
−883 (1281)
−6351
119 [93; 26]

Time FR+BCD > BC
mean (sd) ∆F
max |∆F |
mean (sd) ∆T
max |∆T |
N [Nasym ; Nsym]

−1.55 (1.43)
−3.89
146 (207)
508
5 [4; 1]

0.83 (1.07)
4.17
49 (38)
182
58 [56; 2]

∆F stands for 100(FFR+BCD − FBC)/FBC . ∆T stands for (TFR+BCD − TBC), in seconds.
�sd� stands for standard deviation.

Table 3.7: Summary of results for 1H2D instances, in the comparison between
FR+BCD versus BC.

the big-M constraints z+
i ≤ uzi yi and z

−
i ≤ −lzi(1− yi) of (1.6) and (3.1), since

uzi and −lzi can take very large values.

With regard to 1H2D instances, it has been observed that the extra time

needed by the BCD stage is related to the number of sensitive cells, although

with considerable variability especially if the table is large. The 16 tables with

more than 50,000 sensitive cells consumed between 114 and 492 seconds, with a

median time of 255 seconds. In 104 instances with less than 10,000 sensitive cells

the median time was 29.7 seconds. Compared to the time employed by the FR

stage, it took about 40% of that time (median proportion): in 18 instances out of

240 BCD lasted longer than FR, generally in tables with high density of sensitive

cells.

Sixty-one tables improved the objective function after the BCD stage, and the

others remained in the same value (not necessarily in the same solution). The

median change in the objective function with respect to the value attained by

FR was 3%, with a maximum of 10%. Improving the solution requires also more

time: 54.6% of FR time, instead of 37% for the tables not improved. We observed

a higher rate of success among the tables with high density of sensitive cells: an

odd of 33 versus 47 for tables with 30% of sensitive cells, compared to 28 versus

132 for tables with 15% or lower proportion. The table size or the asymmetry

degree in the protection levels were not related to improvement in the objective

function.

Table 3.7 summarizes the results with 1H2D instances for two factors: solu-

tion times (in rows) and objective function values (in columns) between BC and

3.4. Computational results 53

FR+BCD. The two categories for each factor are either FR+BCD outperfomed

BC (�FR+BCD < BC�, i.e., less CPU time or a lower objective function value)

or the opposite (�FR+BCD > BC�). Each of the four cells shows the number of

instances (�N�), and some statistics (mean, standard deviation, maximum) about

the change in both factors: ∆F is the percentage change in the objective function,

∆T is the absolute change in the time. Comparing left versus right columns, we

can see small di�erences between the percentage changes in objective function

values (they range from −4.23% to 7.26%). However, comparing above versus

below rows, we can see large di�erences with respect to solution times: 1564 and

883 seconds in favor of FR+BCD (177 cases) against 146 and 49 seconds (63

cases) in favor of BC.

For the real-world tables, FR+BCD got better solutions than FR in 18 in-

stances after a BCD cycle, whereas it did not improve the FR objective func-

tion in 16 cases. Table 3.8 reports the results obtained. Columns �F.� and �T.�

provide, respectively, the objective function and CPU solution times for each

method, BC, FR and FR+BCD or BCD. Column �∆(FFR, FFR+BCD)� provides

the relative change (as a percentage) in the objective function between the FR

and FR+BCD solutions. The rows are ordered by ∆(FFR, FFR+BCD); the �rst

instance shows a negative change because the solution reached by FR was ac-

tually not feasible, due to slight deviations in some sensitive cells beyond their

protection levels, but undetectable with the (already tight) infeasibility tolerance

in use by the solver (cf. big-M issue discussed above). In general, FR already

provided a good solution for instances which could not be improved by BCD; this

FR solution was close to the one obtained by BC, but it was computed faster.

On the other hand, it is remarkable that most of the instances where the BCD

cycle could improve the solution were di�cult for the BC scheme, which used to

exhaust the time limit.

Table 3.9 summarizes the results for the real-world instances with respect to

CPU time and objective function values. The structure of this table is similar to

that of Table 3.7, but with an additional central column. This central column

corresponds to instances without relevant di�erences in the objective function

value (i.e., (FFR+BCD − FBC)/FBC less than 5%). Each cell of Table 3.9 reports

the number and names of its instances. The �rst row includes the instances that

were solved faster with FR+BCD than with BC, and the instances that could

not be solved in the 2-hour time limit by BC, but they could by FR+BCD.

54 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

instance FBC FFR FFR+BCD TBC TFR. TBCD ∆(FFR, FFR+BCD)
table6‡ 28331962414 29686800000 29899600000 2.17 1 0.38 -0.72
dale 256 256 256 7199.96 595.9 596.62 0
hier13 434834824.5 444063000 444063000 1312.7 747.3 8.18 0
hier13d4 5.11488e+12 6143970000 6143970000 7201.23 6410.7 2769.53 0
hier13x13x13a 434834824.5 436127000 436127000 895.44 542.7 6.16 0
hier13x13x13b 44385.67 44865.8 44865.8 1444.94 584.9 7.14 0
hier13x13x13c 368036.2 370564 370564 1561.69 542.9 8.47 0
hier13x13x13d 414115.44 424074 424074 340.48 178.1 6.89 0
hier13x13x13e 4644973.87 4693570 4693570 269.83 336.7 6.83 0
hier13x7x7d 594401 593370 593370 29.19 2.7 0.24 0
hier16 591756145.8 556221000 556221000 7200.41 4854.5 130.81 0
hier16x16x16b 74891.53 76700.4 76700.4 7200.44 3401.2 121.52 0
osorio 13 13 13 1.8 1.9 1.35 0
sbs2008_E 109959.57 109960 109960 2.95 4.6 0.13 0
table7 9970266227 10031200000 10031200000 0.04 0.1 0.1 0
toy3dsarah 5.0747e+14 5.07506e+14 5.07506e+14 37.46 25.5 0.22 0
hier13x13x7d 1684140 1695250 1686430 241.81 34.7 2.59 0.52
table8 439 450 445 0.09 0.2 0.18 1.11
hier16x16x16a 529703489.9 532145000 525466000 7200.31 2803.8 372.61 1.26
targus 1103759.75 1103760 1088480 0.02 0.1 0.08 1.38
nine5d 6.20788e+12 1215790000 1191810000 7200.51 6133.3 2389.56 1.97
table5 10154665.5 11094800 10837600 7200.21 720.5 258.66 2.32
hier16x16x16c 604844.28 620633 601548 7200.39 3488.3 672.13 3.08
table4 10290147784 11843300000 11433900000 7200.27 1196.9 142.92 3.46
hier16x16x16e 9543201.06 9485820 9077750 7200.41 3862.2 692.34 4.3
table1 2.93185e+13 3.04227e+13 2.89576e+13 1.45 0.6 0.54 4.82
two5in6 707133564.8 751514000 713214000 7200.45 3010.9 169.86 5.1
hier16x16x16d 752648610.3 765577000 725869000 7200.31 3776.8 789.54 5.19
table3 1.20849e+12 1.39866e+12 1.29248e+12 7200.24 1909.2 171.17 7.59
destatis 234541294 286199000 241329000 2528.91 204.3 29.83 15.68
bts4 4114851966 3180710000 2592590000 7200.6 6332.2 6002.29 18.49
sbs2008_C 320835.46 621448 459655 66.34 543.9 0.43 26.03
australia_ABS 651 2396 746 2.91 6.05 4.46 68.86
cbs† 0 268 0 2.88 2.9 1.79 100
‡ This negative improvement is due to unprotected cells in FR solution.
† cbs instance has a global optimum of zero because all the sensitive cells have null weights
in the objective function.

Table 3.8: Comparison between plain branch-and-cut and FR+BCD with real-
world instances. Instances ordered by ∆(FFR, FFR+BCD).

3.4. Computational results 55

Objective Function

FR+BCD < BC FR+BCD ≈ BC FR+BCD > BC
FR+BCD < BC

bts4 hier16 nine5d
table3 table4 table5
[N=6]

dale destatis hier13
hier13d4 hier13x13x13a
hier13x13x13b
hier13x13x13c
hier13x13x13d
hier13x13x7d
hier13x7x7d
hier16x16x16a
hier16x16x16b
hier16x16x16c
hier16x16x16d
hier16x16x16e ta-
ble1 table6 toy3dsarah
two5in6
[N=19]

[N=0]

Time

FR+BCD > BC
[N=0] cbs hier13x13x13e

osorio sbs2008_E
table7 table8 targus
[N=7]

australia_ABS
sbs2008_C
[N=2]

Table 3.9: Summary of results for real instances, in the comparison between
FR+BCD versus BC.

Moreover, some instances were not suitably protected: bts4, dale, table1, table3,

table4, table5, table6 and table7 present some sensitive cells unprotected in the

BC solution; dale, table5 and table6 had the same problem with FR, and BCD

was in trouble as well with bts4 and table6: in general, FR+BCD dealt better

than BC with these di�cult instances.

Nine tables were solved faster with the pure BC scheme, but it is worth noting

that only two (sbs2008_C and hier13x13x13e) can be considered as challenging,

since they needed more than one minute to be solved, whereas four (osorio, table7,

table8 and targus) have few sensitive cells and could be solved very quickly by

both FR+BCD and BC.

To sum up, Table 3.9 shows that the combination FR+BCD is competitive

with BC in the solution's quality, and, in addition, it protects the table in signif-

icantly less time.

3.4.4 Comparison between �x-and-relax and other heuris-

tics

Current state-of-the-art MILP solvers can be turned into heuristic approaches by

tuning some of their pre-build heuristics. For a fair comparison, FR is tested

56 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

in this section against feasibility pump (FP), relaxation induced neighborhod

search (RINS), and FR+BC (warm starting CPLEX from the FR solution) with

and without polishing.

Fix-and-relax and feasibility pump heuristics

As we discussed in Chapter 2, FP [36] is considered an e�cient heuristic for the

fast computation of hopefully good initial feasible solutions to MILPs. We used

the objective feasibility pump (oFP) [2], which is more e�cient than FP in terms of

quality of the solution and the analytic center feasibility pump (AC-FP) [4], also

introduced in Chapter 2, as a good alternative in some MILP instances (either

in time or quality of the solution). Table 3.10 shows a comparison between FR

and these FP variants for real instances. It reports the primal gap of the FR

and FP solutions (columns �GAPFR%� and �GAPFP%�, respectively), the CPU

time required by FR and FP to compute the feasible solution (columns �TFR�

and �TFP �, respectively), and the di�erence between both methods in CPU times

and gaps (columns �∆(TFP , TFR)� and �∆(FP, FR)�, respectively). We ran both

oFP and AC-FP. Table 3.10 only shows the result of the best FP variant, i.e., the

one that provides the lowest gap, and in case of equal gaps, the fastest one. The

best FP variant is clearly marked in the table.

It is clearly seen that FR outperformed FP for CTA in terms of quality of the

solution. In most cases, FR provided a better gap than FP by a big di�erence.

Only in three instances FP was better. FP reached the time limit without a

feasible solution in two instances. However, FP is in general faster than FR in

order to �nd a feasible solution. It can be concluded that, for the CTA problem,

FR instead of FP should be used for �nding good feasible solutions within a

reasonable short time.

Fix-and-relax and RINS and local branching heuristics

RINS [22] is a heuristic that explores a neighborhood of the current incumbent

solution and the continuous relaxation at a node h of the BC tree to try to �nd a

new and improved incumbent. CPLEX BC incorporates RINS, allowing the user

to control how often to apply the heuristic through a frequency parameter f . A

value f > 0 means that RINS is applied at nodes h = 0, f, 2f, ... while for f = 0

CPLEX automatically decides when to apply the heuristic. The results of Table

3.6 were obtained with f = 0; as it was shown in that table, FR outperformed BC

3.4. Computational results 57

instance GAPFR% TFR GAPFP% TFP ∆(TFP , TFR) ∆(FP, FR)
australia_ABS 73,87 6,05 95,90AC−FP 26 19,95 22,03
bts4 66,57 6332,15 74,09oFP 552 -5780,15 7,52
cbs 100,00 2,87 100,00oFP 20 17,13 0,00
dale 48,44 595,85 98,52oFP 27 -568,85 50,08
destatis 19,53 204,32 21,93AC−FP 222 17,68 2,40
hier13d4 82,86 6410,73 † † † †
hier13 6,88 747,29 58,96oFP 126 -621,29 52,08
hier13x13x13a 5,22 542,72 63,36AC−FP 122 -420,72 58,14
hier13x13x13b 5,89 584,92 53,36AC−FP 235 -349,92 47,47
hier13x13x13c 5,63 542,86 54,01oFP 217 -325,86 48,38
hier13x13x13d 4,69 178,12 99,86oFP 132 -46,12 95,17
hier13x13x13e 5,39 336,72 99,87oFP 128 -208,72 94,48
hier13x13x7d 5,58 34,72 60,49AC−FP 13 -21,72 54,91
hier13x7x7d 4,82 2,71 73,56oFP 2 -0,71 68,73
hier16 59,48 4854,46 68,36AC−FP 2852 -2002,46 8,89
hier16x16x16a 44,96 2803,76 99,99oFP 4537 1733,24 55,03
hier16x16x16b 33,49 3401,2 99,91oFP 3742 340,8 66,42
hier16x16x16c 40,86 3488,27 99,93oFP 3937 448,73 59,07
hier16x16x16d 57,66 3776,81 66,88AC−FP 2706 -1070,81 9,22
hier16x16x16e 46,55 3862,21 81,19oFP 4430 567,79 34,64
nine5d 67,69 6133,25 † † † †
osorio 0,00 1,86 27,65oFP 0 -1,86 27,65
sbs2008_C 50,11 543,88 82,64oFP 12 -531,88 32,53
sbs2008_E 4,73 4,56 74,15oFP 2 -2,56 69,42
table1 8,38 0,62 2,17oFP 0 -0,62 -6,20
table3 25,39 1909,18 100,00oFP 323 -1586,18 74,61
table4 25,39 1196,86 96,81AC−FP 379 -817,86 71,42
table6 7,77 1,01 9,05oFP 0 -1,01 1,28
table7 1,01 0,1 69,21oFP 0 -0,1 68,20
table8 2,44 0,18 6,51oFP 0 -0,18 4,07
targus 3,84 0,08 0,92oFP 0 -0,08 -2,92
toy3dsarah 0,34 25,47 65,07oFP 5 -20,47 64,73
two5in6 66,04 3010,89 61,91AC−FP 5234 2223,11 -4,13
† Time limit reached without �nding a feasible feasibility pump solution.
oFP : best solution provided by oFP.
AC−FP : best solution provided by AC-FP.

Table 3.10: Comparison between �x-and-relax and feasibility pump for real in-
stances.

58 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

in a considerable percentage of real-world instances. Table 3.11 adds a comparison

between FR and BC with f = 50. The meaning of columns is the same as in

Table 3.6. The value of f , either 0 or 50, is reported in the new column RINSf .

We only considered the subset of real-world instances whose BC tree had more

than 50 nodes. From Table 3.11 it can be concluded that FR still outperforms

BC with the RINS heuristic using f = 50.

We additionally tried RINS frequencies f ∈ {100, 150, 200}, obtaining exactly
the same results (they are thus omitted in Table 3.11). As stated above, CPLEX

always applies the RINS heuristic at node 0 for any f > 0. We noted that, since

RINS is an expensive heuristic, it exhausted most of the allowed time (that of the

FR heuristic) at node 0, making irrelevant the particular value of f . Therefore,

at least for this particular application, RINS f = 0 seems to be the best choice.

Indeed, we noted that when f = 0 CPLEX does not apply RINS to node 0 in

many instances.

The local branching (LBr) heuristic also explores the neighborhood of an

incumbent solution, but by adding constraints based on the number of binary

variables �ipping their values with respect the incumbent [32]. Running CPLEX

with the LBr heuristic, and setting as time limit the CPU time of FR, we only ob-

served di�erences with RINS f = 0 for �ve instances of Table 3.11: hier13x13x7d

(solutions of 6.2% and 7.2% gaps for LBr and RINS, respectively), hier13x7x7d

(24.1% gap for LBr, 12, 4% gap for RINS), hier16 (61.2% for LBr, 63.0% for

RINS), hier16x16x16a (44.4% for LBr, 49.0% for RINS), and hier16x16x16d

(62.4% for LBr, 63, 0% for RINS). LBr only clearly outperformed RINS f = 0 in

hier16x16x16a; for that instance, LBr was also more e�cient than FR.

3.4.5 Using �x-and-relax to warm start branch-and-cut

Table 3.12 shows the results obtained with FR+BC (i.e., warm starting BC with

the FR solution) on 1H2D tables. The table reports the CPU computation time

and gap (as a percentage) of the FR solution (columns �TFR� and �GAPFR%�).

The same information is provided for the FR+BC solution using a 1% optimality

gap (columns �TFR+BC� and GAPFR+BC%); and for CPLEX BC without starting

point with the same 1% optimality gap (columns TBC and GAPBC%). Columns

∆(FR+BC,BC) and ∆(TFR+BC , TBC) give the di�erence in gap and CPU time

between the FR+BC and BC solutions. A time limit of one hour was considered

for these runs. Some FR+BC or BC executions were unable to �nd a solution of

3.4. Computational results 59

instance TFR GAPFR% RINSf GAPBC% ∆(BC,FR) GAP up
BC% T upBC ∆(TFR, T

up
BC)

bts4
6332,15 66,57

0 74,16 7,59 ‡ ‡ ‡
50 100 33,43 ‡ ‡ ‡

dale
595,85 48,44

0 48,44 0 48,44 7199,96 6604,11
50 48,44 0 ‡ ‡ ‡

destatis
204,32 19,53

0 99,97 80,44 1,8 706,48 502,16
50 99,97 80,44 1,78 3090,16 2885,84

hier13
747,29 6,88

0 4,9 -1,98 4,9 159,24 -588,05
50 99,98 93,1 4,9 1239,3 492,01

hier13x13x13a
542,72 5,22

0 5,22 0 4,94 690,15 147,43
50 99,99 94,77 4,94 1426,84 884,12

hier13x13x13b
584,92 5,89

0 5,24 -0,65 5,24 369,13 -215,79
50 99,98 94,09 4,87 2742,67 2157,75

hier13x13x13c
542,86 5,63

0 4,99 -0,65 4,99 243,43 -299,43
50 99,98 94,34 4,99 3405,16 2862,3

hier13x13x7d
34,72 5,58

0 7,19 1,61 4,96 69,32 34,6
50 38,93 33,34 4,84 158,96 124,24

hier13x7x7d
2,71 4,82

0 12,35 7,53 ‡ ‡ ‡
50 24,1 19,28 4,53 20,09 17,38

hier16
4854,46 59,48

0 63,07 3,59 ‡ ‡ ‡
50 100 40,52 ‡ ‡ ‡

hier16x16x16a
2803,76 44,96

0 48,8 3,84 44,71 3706,65 902,89
50 100 55,03 43,87 7200,57 4396,81

hier16x16x16d
3776,81 57,66

0 63,32 5,66 57,07 5369,03 1592,22
50 100 42,33 56,08 7200,59 3423,78

hier16x16x16e
3862,21 46,55

0 46,87 0,32 ‡ ‡ ‡
50 99,96 53,41 46,18 7200,52 3338,31

table3
1909,18 25,39

0 15,07 -10,32 17,11 408,3 -1500,88
50 100 74,61 16,78 2303,34 394,16

table4
1196,86 25,39

0 17,3 -8,09 18,6 511,64 -685,22
50 100 74,61 14,64 2163,97 967,11

table5
720,49 22,8

0 20,2 -2,6 20,25 216,19 -504,3
50 100 77,2 16,96 1441,96 721,47

‡ Time limit reached without improving the feasible �x-and-relax solution.

Table 3.11: Comparison between FR and BC with frequency RINS f equal to 0
and 50 for some real-world instances.

60 Chapter 3. Fix-and-relax approaches for Controlled Tabular Adjustment

instance
T
F
R

G
A
P
F
R

%
T
F
R

+
B
C

G
A
P
F
R

+
B
C

%
T
B
C

G
A
P
B
C

%
∆

(F
R

+
B
C
,B
C

)
∆

(T
F
R

+
B
C
,T

B
C

)
asym

-40-50-5
72.76

1.89
264.45

0.47
306.46

0.35
0.12

−
42.01

asym
-40-50-15

158.75
3.13

†
(1

2
2
3
.5

5
,1

)
0.71

†
(1

3
5
7
.1

5
,3

)
0.67

0.04
−

133.60

a
sy
m
-4
0
-5
0
-3
0

2
1
0
.5
1

5
.4
1
†

(1
6
0
6
.5
3
,2

)
0
.8
2
†

(2
0
6
2
.4
3
,3

)
1
.0
4

−
0
.2
3

−
4
5
5
.9
0

asym
-40-60-5

95.40
1.75

259.40
0.40

231.36
0.40

0.00
28.04

a
sy
m
-4
0
-6
0
-1
5

1
9
3
.3
7

3
.1
1
†

(1
3
5
2
.6
0
,2

)
0
.9
3
†

(1
4
3
0
.5
8
,4

)
1
.0
2

−
0
.0
9

−
7
7
.9
8

asym
-40-60-30

314.96
5.07

†
(2

1
8
1
.6

3
,6

)
1.40

†
(2

0
4
0
.0

4
,6

)
1.21

0.19
141.59

asym
-50-50-5

110.54
1.53

†
(5

6
0
.2

4
,1

)
0.43

476.49
0.35

0.08
83.75

a
sy
m
-5
0
-5
0
-1
5

1
8
6
.9
5

2
.8
6
†

(1
4
0
3
.8
5
,3

)
0
.9
0
†

(1
5
3
3
.7
8
,4

)
0
.9
3

−
0
.0
3

−
1
2
9
.9
3

asym
-50-50-30

333.50
5.81

†
(2

4
1
7
.9

1
,5

)
1.52

†
(2

2
8
4
.8

0
,5

)
1.74

−
0.22

133.11
asym

-50-60-5
153.14

1.06
268.43

0.64
286.51

0.48
0.16

−
18.08

a
sy
m
-5
0
-6
0
-1
5

2
7
8
.7
2

2
.7
3
†

(1
2
6
3
.5
2
,3

)
1
.2
4
†

(1
4
0
8
.7
2
,3

)
‡

(8
.6
7
,2

)
−
7
.4
3

−
1
4
5
.2
1

asym
-50-60-30

416.11
5.54

†
(2

7
6
8
.8

8
,8

)
1.60

†
(2

6
6
5
.5

3
,7

)
‡

(1
.7

4
,1

)
−

0.14
103.35

sym
-40-50-5

8.99
2.00

41.51
0.40

29.10
0.68

−
0.28

12.40
sym

-40-50-15
115.34

4.21
1114.50

0.75
720.22

0.80
−

0.06
394.29

sym
-40-50-30

371.35
4.62

†
(3

0
9
7
.9

8
,4

)
1.93

†
(3

1
3
1
.2

5
,3

)
1.77

0.16
−

33.27
sym

-40-60-5
10.52

2.68
32.82

0.63
60.05

0.52
0.11

−
27.23

sym
-40-60-15

102.29
2.16

1731.73
0.86

1381.75
0.82

0.04
349.98

sy
m
-4
0
-6
0
-3
0

8
0
0
.4
5

4
.4
0

†
(3

6
0
0
,5

)
3
.2
2

†
(3

6
0
0
,5

)
6
.5
5

−
3
.3
3

0
sym

-50-50-5
25.47

1.88
103.45

0.50
85.12

0.57
−

0.07
18.33

sym
-50-50-15

166.33
3.66

†
(2

3
7
0
.9

8
,1

)
0.97

†
(1

7
2
8
.6

3
,1

)
0.75

0.22
642.35

sy
m
-5
0
-5
0
-3
0

5
1
1
.1
9

3
.4
5

†
(3

6
0
0
,5

)
2
.5
4

†
(3

6
0
0
,5

)
4
.4
6

−
1
.9
2

0
sym

-50-60-5
56.80

1.59
80.64

0.54
134.79

0.36
0.17

−
54.15

sym
-50-60-15

279.63
2.46

2347.58
0.91

1894.95
0.74

0.17
452.63

sy
m
-5
0
-6
0
-3
0

8
3
3
.4
5

3
.9
3

†
(3

6
0
0
,5

)
3
.5
4

†
(3

6
0
0
,5

)
6
.3
1

−
2
.7
7

0

†
(x
,y

)
a
solution

w
ithin

1%
optim

ality
gap

could
not

b
e
found

in
y
of

the
overall

num
b
er

of
replications

w
ithin

the
tim

e
lim

it
of

3600
seconds;

x
is
the

average
C
P
U
tim

e
for

the
rem

aining
successful

runs.
‡

(z
,w

)
no

feasible
solution

w
as

found
in
w
of

the
overall

num
b
er

of
replications

w
ithin

the
tim

e
lim

it
of

3600
seconds;

z
is
the

average
gap

for
the

rem
aining

runs.

T
able

3.12:
U
sing

the
�x-and-relax

solution
to

w
arm

start
C
P
L
E
X
branch-and-cut.

3.4. Computational results 61

1% optimality gap within this time limit; these are clearly marked in Table 3.12.

BC could not �nd a feasible solution within the time limit for three instances,

which are also clearly marked in the table. In those situations the average gap

reported in Table 3.12 may be greater than 1%.

FR+BC provided a lower gap than BC in 12 of 24 cases. In addition, in six

of these 12 cases the CPU time of FR+BC was inferior. These six successful

FR+BC executions are marked in boldface in Table 3.12. These results are not

entirely satisfactory, since it could be expected that providing a good incumbent

from the beginning would signi�cantly reduce the computational burden for all

the instances, by pruning portions of the search space. In fact, we found re-

ported similar experiences. In http://www2.isye.gatech.edu/~rcarvajal3/

2012/2012-12-24_effect-of-information the author presents an experiment

with instances from MIPLIB 2010 [51] where providing the optimal solution as a

warm start can actually be harmful for the performance of the solver.

We also applied the CPLEX polishing heuristic to the FR starting point.

This heuristic, which can be very time consuming, tries to exploit an initial

feasible solution provided to BC by solving an alternative branch-and-cut. We

ran FR+BC with and withoug polishing. Activating the polishing the gap was

improved in 92% of the executions; however the average gap reduction was 0.4%.

On the other hand, in 83% of the executions the polishing signi�cantly increased

the CPU time: an average increment of 59%. In the remaining 17% of executions

the CPU time was reduced, in average, a 18%. From these �gures, it can be

concluded that the polishing is in general very time consuming for CTA, and it

is not worth the gap reduction provided.

http://www2.isye.gatech.edu/~rcarvajal3/2012/2012-12-24_effect-of-information
http://www2.isye.gatech.edu/~rcarvajal3/2012/2012-12-24_effect-of-information

Chapter 4

Stabilized Benders methods for

large combinatorial optimization

problems: applications to cell

suppression

In previous chapters we focused on heuristic techniques applied to challenging

MILPs. The current one deals with Benders decomposition which, although is

widely used in many real-world applications, it su�ers from well-known instability

issues that limit its e�ciency. Benders decomposition is an iterative method

which decomposes the original MILP in several smaller subproblems theoretically

easier to solve and provides the optimal solution after a �nite number of iterations.

Despite this, the convergence to the optimum is often too slow due to the fact that

the solutions tend to oscillate wildly among di�erent feasible regions by jumping

from a good point, i.e. close to optimality, to a much worse one. This chapter

addresses this issue and proposes a stabilized Benders decomposition (SBD) in

order to prevent this behaviour. In particular, we focus on �nding new solutions

inside trust feasible regions, i.e. neighbourhoods of well considered points, where

we expect to �nd better solutions.

The chapter is structured as follows: In Section 4.1 we recall the classical Ben-

ders algorithm. In Section 4.2 we present the SBD applied to MILP problems. In

section 4.3 we apply the SBD to the cell suppression problem. Finally, numerical

results are presented in Section 4.4, showing that stabilization techniques allow

to �nd better feasible solutions with the same computational e�ort.

63

64 Chapter 4. Stabilized Benders methods for large combinatorial optimization

4.1 Benders decomposition

Brie�y, Benders decomposition [5], is an iterative method that allows to decom-

pose the original MILP in several smaller subproblems (referred to relaxed master

and slaves) and after a �nite number of iterations the method provides an opti-

mal solution. Originally, this method was suggested for problems with two types

of variables where one of them are considered as �complicating variables�. In

MILP models complicating variables are the binary/integer ones. We consider

the following MILP primal problem (P) in variables (x, y):

(P)

min cTx+ dTy

s. to Dx+ Fy = b

x ≥ 0

y ∈ Y,

where y are the binary/integer complicating variables, c, x ∈ Rn1 , d, y ∈ Rn2 ,

D ∈ Rm×n1 and F ∈ Rm×n2 . For binary problems, we have Y = {0, 1}n2 . Problem

(P) can be formulated in the equivalent form:

(P ′) miny
{
dTy + minx

{
cTx|Dx = b− Fy, x ≥ 0,

}
y ∈ Y

}
.

Writing the dual form of the inner minimization problem, called slave problem:

(SPD) maxu
{
uT (b− Fy)|DTu ≤ c, u ∈ Rm

}
,

the problem (P') can be formulated as:

(P ′′) miny
{
dTy + maxu

{
uT (b− Fy)|DTu ≤ c, u ∈ Rm,

}
y ∈ Y

}
,

where the feasible region of (SPD) does not depend on the value of y, which only

a�ects the objective function. Depending on the result of the (SPD), we have

two possible scenarios:

1. If (SPD) is unbounded, for some y �xed, then there must exist an v ≥ 0

verifying DTv ≤ c for which vT (b−Fy) > 0; v is a ray or extreme direction

representing an unbounded direction in the dual polyhedron.

4.1. Benders decomposition 65

2. If (SPD) is feasible for a given y, then we get an extreme point u of the

dual polyhedron such that uT (b− Fy) ≤ 0.

Enumerating extreme points (u), rays (v) and introducing variable θ, one can

write the original problem (P) as follows:

(MP)

min θ

s. to θ ≥ dTy + uiT (b− Fy) i = 1, . . . , p

vjT (b− Fy) ≤ 0 j = 1, . . . , t

y ∈ Y.

Problem (MP) is impractical since p and t can be very large and in addition the

extreme points and rays are unknown. Instead, the method considers a relaxation

ofMP with a subset of the extreme points and rays. The relaxed Benders problem

(called master problem) is the following:

(RMPr)

min θ

s. to θ ≥ dTy + uiT (b− Fy) i ∈ I ⊆ {1, . . . , p}
vjT (b− Fy) ≤ 0 j ∈ J ⊆ {1, . . . , t}
y ∈ Y.

Although the subindex r, which denotes the iteration number, does not appear

in the de�nition of (RMPr), we keep it for a consistent notation with (RSMPr),

the stabilized master version, which is de�ned below. Initially I = J = ∅ and
iteratively new and non repeated constraints are added to the relaxed master

problem (RMPr): a feasibility cut vjT (b − Fy) ≤ 0 when (SPD) is unbounded,

and an optimality cut θ < dTy + uiT (b − Fy) if (SPD) is bounded but θ <

dTy + uiT (b − Fy). Otherwise, the optimal solution to original problem (P) is

found. In summary, the steps of the Benders algorithm are:

Benders algorithm

1: Initially I = ∅ and J = ∅. Let (θ∗r ,y
∗
r) be the solution of current master

problem (RMPr), and (θ∗,y∗) the optimal solution of (MP).

2: Solve master problem (RMPr) obtaining θ∗r and y
∗
r . At �rst iteration, θ∗r =

−∞ and yr is any feasible point in Y .

3: Solve subproblem (SPD) using y = y∗r .

4: if (SPD) has �nite optimal solution in vertex ui0 then

66 Chapter 4. Stabilized Benders methods for large combinatorial optimization

5: if θ∗r = dTy∗r + ui0T (b− Fy∗r) then
6: STOP. Optimal solution is y∗ = y∗r with cost θ∗ = θ∗r .

7: else if θ∗r < dTy∗r + ui0T (b− Fy∗r) then
8: This solution violates constraint θ > dTy + ui0T (b− Fy) of (MP).

9: Add this new constraint to (RMPr): I ← I ∪ {i0}.
10: end if

11: else if (SPD) is unbounded along segment ui0 + λvj0 then

12: This solution violates constraint vj0T (b− Fy) ≤ 0 of (MP).

13: Add this new constraint to (RMPr): J ← J ∪ {j0}.
14: Vertex may also be added: I ← I ∪ {i0}.
15: end if

16: Go to step 2.

Notice that, convergence of Benders decomposition is always guaranteed with a

maximum of r = p+ t number of iterations. In practice, the number of required

iterations may be excessive due, among other causes, to instability issues. In

order to overcome this drawback, we have developed a specialized stabilization

Benders decomposition. This strategy is described in detail next.

4.2 Stabilizing Benders through local branching

constraints

At each iteration of Benders decomposition, one solves the current master problem

relaxation and sends the optimal solution to the slave problem. Depending on the

result: 1) we stop because we have found the optimal solution; 2) if no optimal

solution is found, a cut is generated. The main cause for slow convergence is due to

the generation of weak Benders cuts as a result of obtaining �bad� points y∗r when

we solve the master problem (RMPr) [46]. The idea behind the stabilized Benders

decomposition is to search new solutions y∗r as close as possible to properly chosen

points, so called stability center points.

For binary MILPs, the stabilization can be done by adding linear constraints

that restrict the feasible region of relaxed master problems RMPr. This is made

possible by using the Hamming distance de�ned from a stability center point (ȳ),

not necessarily feasible, and a radius Kr ≥ 1 [59]. This restricted feasible region

of size Kr is called trust region (TR). Note that Kr can be either a constant

4.2. Stabilizing Benders through local branching constraints 67

or dynamically updated at each iteration r. TR is de�ned by a well-known

local branching constraint which limits the "switching" of binary variables only

at most Kr [32]. These local branching constraints prevent the master problem

solution from moving too far from the stability center point ȳ. The local branching

constraint is de�ned as follows:

4(y, ȳ) =
∑
j∈Ω

(1− yj) +
∑

j∈{1,...,n2}\Ω

(yj) ≤ Kr

where Ω := {j ∈ {0, 1}n2 : ȳj = 1}. The local branching constraint can be used as
a branching criterion within an enumerative scheme. Indeed, given the stabilized

center point ȳ, the feasible region space to explore can be partitioned by means

of the disjunction 4(y, ȳ) ≤ Kr or 4(y, ȳ) ≥ Kr + 1 (reverse local branching

constraints). Let us de�ne the new relaxed stabilized master problem as:

(RSMPr)

min θ

s. to θ ≥ dTy + uiT (b− Fy) i ∈ I ⊆ {1, . . . , p}
vjT (b− Fy) ≤ 0 j ∈ J ⊆ {1, . . . , t}
4(y, ȳ) ≤ Kr or 4 (y, ȳ) ≥ Kr + 1

y ∈ Y.

The main bene�ts of stabilization techniques are [3, 10, 38]:

• Reduction of the total computational time because fewer iterations are re-

quired. Moreover, relaxed master problems of smaller feasible region and

theorically easier need to be solved.

• The search for solutions around a good point considered increases the chance

of �nding better feasible solutions.

An outline of the stabilized Benders framework is shown in Figure 4.1. The

algorithm �nds an initial feasible solution (x∗0, y
∗
0) and an upper bound ρub =

cTx∗0 + dTy∗0 by solving the original problem (P) with a primal heuristic. This

point y∗0 is used as stability center. A local branching constraint, based on this

stability center and an initial 1 ≤ Kr ≤ |S|, is added to the master Benders

problem (RSMPr). At each iteration we solve the master (RSMPr) to obtain a

new solution y∗r and a lower bound θ∗r . Note that this lower bound is only local

because of a set of local branching constraints are present in the problem. If

68 Chapter 4. Stabilized Benders methods for large combinatorial optimization

(SPD) has �nite optimal solution in vertex ui0 and θ∗r = dTy∗r + ui0T (b−Fy∗r) we
delete the last local branching constraint based on the stability center ȳ because

there is no better solution in this trust region and we update the stability center

with the current y∗r (lines 25-26 of algorithm of Figure 4.1). A new local branching

constraint considering the new stability center is added (step 4 of algorithm of

Figure 4.1). However, if θ∗r < dTy∗r + ui0T (b− Fy∗r) an optimality cut θ > dTy +

ui0T (b − Fy) is added to master (RSMPr) (steps 29-30 of algorithm of Figure

4.1). In this case, we have to expand the space to explore. Adding the reverse

local branching constraint 4(y, ȳ) ≥ Kr + 1 (lines 12-13 of the algorithm of

Figure 4.1) we ensure that the master problem will not explore in the previous

neighborhood already explored. Hopefully, this makes the master problem easier

to solve because of reducing the feasible region. If (SPD) is unbounded along

segment ui0 +λvj0 a feasibility cut vj0T (b−Fy) ≤ 0 is added to master (RSMPr)

(steps 34-36 of algorithm of Figure 4.1). The convergence is only guaranteed

when Kr ≥ n2 and RSMPr is infeasible. At this point we'll have explored all

the feasible space and we have a global optimal solution. However a signi�cant

improvement has been carried out in our implementation. Every time we obtain

a better feasible solution we drop all the stabilization constraints (i.e, we solve

RMPr instead of RSMPr) in order to obtain a valid global lower bound (step

21 of algorithm of Figure 4.1). If we are in the optimal case, we can stop (step

23 of algorithm of Figure 4.1). We want to highlight one of the most important

steps of the algorithm, when a new Kr is chosen (step 11 of algorithm of Figure

4.1). This is a nontrivial step and there are di�erent possible rules according to

the problem at hand.

In [61], authors propose a di�erent stabilization technique based on level sta-

bilization where the new y∗r points are chosen within a certain level set: the new

value of the objective function is strictly better that the one we already have.

They de�ne a level parameter (LP) which forces to cTx+ dTy ≤ ρub − LP .

4.3 Application to data privacy: the cell suppres-

sion problem

In Chapter 1 we introduced the cell suppression problem (CSP), one of the most

used statistical disclosure control methods. As we have already discussed, CSP

formulates a very large MILP problem of n binary variables, 2n|S| continuous

4.3. Application to data privacy: the cell suppression problem 69

1. Initial Heuristic: Let (x∗0, y
∗
0) be the initial solution of the original problem

(P) by solving a primal heuristic (assuming (P) is feasible).
2. Let ρub = cTx∗0 + dTy∗0
3. Initialize stability center ȳ := y∗0, r = 1 and choose Kr ≥ 1
4. Add local branching constraint 4(y, ȳ) ≤ Kr to master (RSMPr)
5. Solve Master (RSMPr)
6. if (RSMPr) is infeasible then
7. if Kr ≥ n2 then

8. STOP. We have found the optimal solution ρup of (P) problem
9. end if

10. r ← r + 1
11. Choose Kr : Kr−1 ≤ Kr ≤ n2

12. Delete last local branching constraint 4(y, ȳ) ≤ Kr−1

13. Add the reverse local branching constraint 4(y, ȳ) ≥ Kr−1

14. GOTO line 4
15. else

16. Let (θ∗r , y
∗
r) be the solution of (RSMPr). θ∗r is a local lower bound

17. Solve subproblem (SPD) using y = y∗r
18. if (SPD) is feasible in vertex ui0 then
19. ρub = dTy∗r + ui0T (b− Fy∗r)
20. if θ∗r = ρub then
21. ρlb∗ = global lower bound by solving (RMPr) with current sets I and

J .
22. if ρlb∗ = ρub then

23. STOP. We have found the optimal solution ρup of (P) problem
24. end if

25. ȳ := y∗r
26. Delete last local branching constraint 4(y, ȳ) ≤ Kr

27. GOTO line 4
28. else if θ∗r < ρub then
29. This solution violates constraint θ > dTy + ui0T (b− Fy) of (MP)
30. Add this new constraint to (RSMPr): I ← I ∪ {i0}
31. GOTO line 7
32. end if

33. else if (SPD) is unbounded along segment ui0 + λvj0 then
34. This solution violates constraint vj0T (b− Fy) ≤ 0 of (MP).
35. Add this new constraint to (RSMPr): J ← J ∪ {j0}.
36. Vertex may also be added: I ← I ∪ {i0}.
37. GOTO line 5
38. end if

39. end if

Figure 4.1: The stabilized Benders method through local branching constraints

70 Chapter 4. Stabilized Benders methods for large combinatorial optimization

variables and 2(m + 2n)|S| constraints. Trying to solve it with state-of-the-art

MILP solvers becomes impractical even for tables of moderate size. Because of

that, a Benders decomposition approach was suggested in the past for its solution

[33]. The master Benders problem for CSP can be de�ned as:

min
n∑
i=1

wiyi

s. to ys = 1 ∀s ∈ S
yi ∈ {0, 1} i = 1, . . . , n

vj
T
y ≥ βj j ∈ J,

(4.1)

where vj ∈ Rn and βj ∈ R are the left and right hand sides of protection cuts

(initially J = ∅). Note that primary cells are always suppressed even for J = ∅.
The following slightly updated master CSP Benders is solved for the stabilized

variant:

min
n∑
i=1

wiyi

s. to ys = 1 ∀s ∈ S
yi ∈ {0, 1} i = 1, . . . , n

vj
T
y ≥ βj j ∈ J,

4(y, ȳ) ≤ Kr or 4 (y, ȳ) ≥ Kr + 1.

(4.2)

In order to guarantee that deviations xl,s and xu,s (supraindices are suppressed

to simplify the notation) satisfy the �rst group of constraints of (1.3) and that,

therefore, the suppression pattern yi, i = 1, . . . , n is safe, we solve a Benders

subproblem for each primary cell s ∈ S. Since variables xl,s and xu,s have no cost
in (1.3), the subproblems can be reduced to a feasibility problem. The subproblem

for lower protection is

min 0

s. to Ax = 0

xi ≥ (li − ai)yi i = 1, . . . , n

xi ≤ (ui − ai)yi i = 1, . . . , n

xs ≤ −lpls.

(4.3)

while for upper protection is

4.3. Application to data privacy: the cell suppression problem 71

max 0

s. to Ax = 0

xi ≥ (li − ai)yi i = 1, . . . , n

xi ≤ (ui − ai)yi i = 1, . . . , n

xs ≥ upls.

(4.4)

Alternatively, the two previous subproblems can be formulated as:

−lpls ≥ min xs

s. to Ax = 0 [λ]

xi ≥ (li − ai)yi i = 1, . . . , n [µl]

xi ≤ (ui − ai)yi i = 1, . . . , n [µu],

(4.5)

for lower protection and

upls ≤ max xs

s. to Ax = 0 [λ]

xi ≥ (li − ai)yi i = 1, . . . , n [µl]

xi ≤ (ui − ai)yi i = 1, . . . , n [µu],

(4.6)

for upper protection, λ, µl and µu being the set of Lagrange multipliers (also

known as dual variables) of each group of constraints. Problems (4.5) and (4.6)

have always a solution: (i) it is feasible, since x = 0 (no deviation) is a feasible

but non optimal solution; (ii) it is not unbounded, since xs ≥ ls−as > −∞ (e.g.,

if table is positive then ls = 0) and xs ≤ us − as < ∞. By LP duality, the dual

of (4.5) is:

max 0λ+
n∑
i=1

(li − ai)yiµli −
n∑
i=1

(ui − ai)yiµui =

=
n∑
i=1

((li − ai)µli − (ui − ai)µui) yi

s. to ATλ+ µl − µu = es

µl ≥ 0, µu ≥ 0,

(4.7)

where es is the s-th column of the identity matrix. The lower protection level of

72 Chapter 4. Stabilized Benders methods for large combinatorial optimization

primary cell s is satis�ed if

−lpls ≥
n∑
i=1

((li − ai)µli − (ui − ai)µui) yi. (4.8)

If (4.8) holds for all s ∈ S, then the suppression pattern y guarantees lower

protection levels. If, for some s ∈ S, (4.8) is not satis�ed, then it is added to

J , the set of protection constraints of the master problem. Similarly, we check

whether the suppression pattern yi, i = 1, . . . , n satis�es upper protection level

upls for each cell s ∈ S. If

upls ≤
n∑
i=1

(−(li − ai)µli + (ui − ai)µui) yi, (4.9)

is not satis�ed for some s ∈ S, (4.9) is added to J . Iteratively, Benders decom-

position applied to CSP solves the master problem in variables yi, i = 1, . . . , n

and provides a suppression pattern. The protection is checked by solving 2|S|
subproblems (lower and upper sense per primary cell). If all primaries are pro-

tected, then the suppression pattern is optimal. Otherwise, a feasibility cut is

added to the master problem, and the master is solved again. It is worth to note

the equivalence between either using (4.5), (4.6) or (4.3), (4.4). The standard

Benders or cutting plane procedure considers (4.3) and (4.4). Let's look at it in

the case of lower protection. Considering Lagrange multipliers λ̃ ∈ Rm, µ̃l ∈ Rn,

µ̃l ∈ Rn, and µ̃s ∈ R for the constraints of (4.3), its dual is:

max 0λ̃+
n∑
i=1

(li − ai)yiµ̃li −
n∑
i=1

(ui − ai)yiµ̃ui − (−lplsµ̃s) =

= lplsµ̃s +
n∑
i=1

((li − ai)µ̃li − (ui − ai)µ̃ui) yi

s. to AT λ̃+ µ̃l − µ̃u = esµ̃s

µ̃l ≥ 0, µ̃u ≥ 0, µ̃s ≥ 0.

(4.10)

To avoid an unbounded solution we have to impose that there is no extreme ray

in (4.10), that is,

lplsµ̃s +
n∑
i=1

((li − ai)µ̃li − (ui − ai)µ̃ui) yi ≤ 0. (4.11)

4.3. Application to data privacy: the cell suppression problem 73

Dividing (4.11) by µ̃s, and de�ning λ = λ̃/µ̃s, µl = µ̃l/µ̃s, µu = µ̃u/µ̃s, (4.11)

is equivalent to (4.8). Similarly, applying this change of multipliers, (4.10) is

equivalent to (4.7) (aside of the constant term lpls, which appears in the primal

formulation (4.5)).

4.3.1 Adding a normalization constraint to the subproblem

In this thesis we have considered an alternative selection criteria for Benders cuts.

Note that the classical Benders approach uses a completely random selection

policy, so many times the cuts generated are not the most e�ective. In [37], the

authors have considered an alternative selection criteria for Benders cuts based

on the correspondence between minimal infeasible subsystems of an infeasible LP

and the vertices of the so-called alternative polyhedron. Computational results

have shown a great performance. Following [37] we can apply this theory to our

CSP problem by adding a normalization constraint to the Benders subproblems.

Let's see it in the particular case of lower protection subproblem (4.10). Adding

the normalization constraint we obtain the following dual subproblem (tildes of

λ and µ are removed to simplify the notation):

max lplsµs +
n∑
i=1

((li − ai)µli − (ui − ai)µui) yi

s. to ATλ+ µl − µu − esµs = 0

µl ≥ 0, µu ≥ 0, µs ≥ 0
n∑
i=1

(wliµli + wuiµui) + w0µs = 1.

(4.12)

The normalization constraint in (4.12) has two main bene�ts: (1) it makes the

dual subproblem always bounded, such that it can be solved by any algorithm

(either simplex or interior-point�interior-point methods do not work well with

unbounded problems in this context since they do not provide a unbonded ray);

(2) the subproblem may provide a deeper Bender's cut depending on the weights

wli , wui , i = 1, . . . , n, and w0 in the normalization constraint.

By considering Lagrange multipliers x ∈ Rn and α ∈ R for, respectively, the

�rst group of equality constraints and the normalization constraint of (4.12), the

74 Chapter 4. Stabilized Benders methods for large combinatorial optimization

associated primal subproblem (the normalized variant of (4.3)) is:

min α

s. to Ax = 0

xi + wliα ≥ (li − ai)yi i = 1, . . . , n

xi − wuiα ≤ (ui − ai)yi i = 1, . . . , n

xs − w0α ≤ −lpls.

(4.13)

Thanks to the normalization constraint and variable α, (4.12) and (4.13) are,

never unbounded and infeasible, respectively, so their optimal objective values

coincide. Therefore,

• if the optimal solution α∗ is 0, then (4.13) is feasible (i.e., cell s is protected);

• if α∗ > 0, then (4.13) is infeasible and the optimal solution of (4.12) provides

a ray, thus a Bender's infesibility cut.

• if α∗ < 0, then (4.13) is also feasible (cell s is protected).

4.4 Computational results

In this section we describe a series of computational experiments designed to

empirically validate the e�ciency of the proposed stabilized Benders decompo-

sition for CSP. We have implemented all tested variants with GNU g++, using

the state-of-the-art solver CPLEX 12.5. All the runs were carried out on a Fu-

jitsu Primergy RX300 server with two 3.33 GHz Intel Xeon X5680 CPUs (each

CPU with 12 cores) and 144 GB of RAM, under a GNU/Linux operating system

(Suse 11.4), without exploitation of multithreading capabilities. Default values

were used for the CPLEX parameters, unless explicitly stated. The numerical

experiments have been performed on a set of real-world general and synthetic

1H2D tables. Real-world general tables are standard instances used in the liter-

ature [12]. We discarded some instances since they are too di�cult for all tested

variants (i.e, no feasible solution was obtained within the time limit). Synthetic

instances were obtained with a generator of random 1H2D tables. This generator

is governed by several parameters: the number of rows in a subtable; the number

of columns per subtable; the depth of the hierarchical tree; the minimum and

4.4. Computational results 75

maximum number of rows with hierarchies for each subtable; and the probabil-

ity for a cell to be marked as sensitive. The 1H2D table generator is available

from http://www-eio.upc.es/~jcastro/generators_csp.html. We �xed all

parameters, but three: the number of rows per subtable (r ∈ {40, 50, 60, 70}),
the number of columns per subtable (c ∈ {50, 60, 70, 80}) and the percentage of

sensitive cells (s ∈ {5, 10, 15}).
We considered asymmetric instances, i.e., instances where uai = a · lai for all

i ∈ N . The asymmetry parameter considered is a = 5. A total of 48 randomly

1H2D instances and 15 real-world tables were considered.

Tables 4.1 and 4.2 report the characteristics of each 1H2D synthetic and real

instances respectively: the number of cells (�n�), the number of sensitive cells

(�s�), the number of table relations (�m�) and the number of non zero coe�cients

in linear constraints (�nz�). Hierarchical synthetic tables are identi�ed by the

particular combination of parameters, i.e., r-c-s-a. The default optimality gap

of CPLEX was considered for all the optimization problems.

The parameter Kr takes the initial value of 1% of the total number of binary

cells and it is sequentially increased to Kr = [2%|S|, 50%|S|, 100%|S|] when ei-

ther an infeasible stabilized master problem (RSMPr) is obtained or an optimal

solution is already found within this trust region (note that this optimal solution

for RSMPr could not be feasible for the CSP problem). We consider the follow-

ing versions for the Benders subproblem (we only refer to subproblems for lower

protection to shorten the explanation, though it should be undestand that upper

protection subproblems are also solved):

• meth1, meth2: We solve the primal (4.5) and dual (4.7) subproblems,

obtaining in both cases optimality Benders cuts.

• meth3: We solve the unbounded dual subproblems (4.10) but setting a

�nite target f(µ̃s, µ̃l, µ̃u) ≤ ||∇f(µ̃s, µ̃l, µ̃u)|| where:

f(µ̃s, µ̃l, µ̃u) = lplsµ̃s +
n∑
i=1

((li − ai)µ̃li − (ui − ai)µ̃ui) yi.

This target actually allows us to avoid feasibility cuts.

• meth4: We solve the normalized subproblem (4.12) where the normaliza-

tion constraint is
∑n

i=1(wliµli + wuiµui) + w0µs = 1.

http://www-eio.upc.es/~jcastro/generators_csp.html

76 Chapter 4. Stabilized Benders methods for large combinatorial optimization

Instance n s m nz
40_50_10_5 7242 705 346 14637
40_50_5_5 7242 352 346 14637
40_60_10_5 10248 1002 412 20679
40_60_5_5 10248 501 412 20679
40_70_10_5 13916 1365 480 28045
40_70_5_5 13916 682 480 28045
40_80_10_5 11583 1136 467 23409
40_80_5_5 11583 568 467 23409
50_50_10_5 9639 940 393 19431
50_50_5_5 9639 470 393 19431
50_60_10_5 13725 1344 469 27633
50_60_5_5 13725 672 469 27633
50_70_10_5 9514 931 418 19241
50_70_5_5 9514 465 418 19241
50_80_10_5 17658 1736 542 35559
50_80_5_5 17658 868 542 35559
60_50_5_5 13923 680 477 27999
60_60_5_5 15494 759 498 31171
60_70_5_5 16685 819 519 33583
60_80_5_5 19926 980 570 40095
70_50_5_5 13515 660 469 27183
70_60_5_5 14945 732 489 30073
70_70_5_5 18247 896 541 36707
70_80_5_5 24786 1220 630 49815
40_50_15_5 7242 1057 346 14637
40_60_15_5 10248 1503 412 20679
40_70_15_5 13916 2047 480 28045
40_80_15_5 11583 1704 467 23409
50_50_15_5 9639 1410 393 19431
50_60_15_5 13725 2016 469 27633
50_70_15_5 9514 1396 418 19241
50_80_15_5 17658 2604 542 35559
60_50_10_5 13923 1360 477 27999
60_50_15_5 13923 2040 477 27999
60_60_10_5 15494 1518 498 31171
60_60_15_5 15494 2277 498 31171
60_70_10_5 16685 1638 519 33583
60_70_15_5 16685 2457 519 33583
60_80_10_5 19926 1960 570 40095
60_80_15_5 19926 2940 570 40095
70_50_10_5 13515 1320 469 27183
70_50_15_5 13515 1980 469 27183
70_60_10_5 14945 1464 489 30073
70_60_15_5 14945 2196 489 30073
70_70_10_5 18247 1792 541 36707
70_70_15_5 18247 2688 541 36707
70_80_10_5 24786 2440 630 49815
70_80_15_5 24786 3660 630 49815

Table 4.1: Characteristics of synthetic 1H2D instances.

4.4. Computational results 77

Instance n s m nz
hier13x13x13a 2197 108 3549 11661
hier13x13x13b 2197 108 3549 11661
hier13x13x13c 2197 108 3549 11661
hier13x13x13d 2197 108 3549 11661
hier13x13x13e 2197 112 3549 11661
hier13x13x7d 1183 75 1443 5369
hier13x7x7d 637 50 525 2401
hier16 3564 224 5484 19996
hier16x16x16a 4096 224 5376 21504
hier16x16x16b 4096 224 5376 21504
hier16x16x16c 4096 224 5376 21504
hier16x16x16d 4096 224 5376 21504
hier16x16x16e 4096 224 5376 21504
table4 4992 517 2464 19968
table5 4992 517 2464 19968

Table 4.2: Characteristics of real tables.

• meth5: As in meth4 but using the following normalized constraint:
∑n

i=1(wliµli+

wuiµui) + w0µs ≤ 1.

All the di�erent versions mentioned above are tested using the simplex (primal

and dual) and the barrier method. Notice that, we have c ∈ C possible combi-

nations depending whether: 1) we use meth1, meth2, meth3, meth4 or meth5;

2) we use primal, dual or barrier; and �nally 3) type of Benders master problem

used (RSMPr or RMPr). In order to compare all the combinations we will make

use of performance pro�les proposed in [55]. Quality was measured as the value

of the objective function (thus, the lower, the better) and CPU time. Let Qic be

the quality of the solution or total CPU time of instance i solved by combination

c. Note that Qic for CSP is always strictly positive. The performance ratio is

thus de�ned as:

v(i, c) =
Qi,c

min{Qi,c : c ∈ C}
,

i.e., the ratio between the quality of the solution or total CPU time obtained

when instance i is solved by combination c over the combination with the best

(minimum) performance for this instance. The (cumulative) distribution function

Pc(q) : [1,∞)→ [0, 1] is de�ned as:

Pc(q) =
|{i ∈ I : v(i, c) ≤ q}|

|I|
, q ≥ 1,

78 Chapter 4. Stabilized Benders methods for large combinatorial optimization

where I is the set of instances. Figures 4.2 and 4.3 show di�erent performance

pro�les based on quality of the solution and total cpu time, respectively. Pc(q) = 1

means combination c is able to solve all the instances within a factor q of the best

possible ratio. In terms of quality of the solution we can see in Figure 4.2 that

the best choice when we use primal simplex is meth1; meth4 and meth5 for dual

simplex; and clearly meth1 in the case of using barrier. It is important to highlight

that in all cases, the best option is to use the stabilized Benders decomposition.

In terms of total CPU time we can see in Figure 4.3 that the fastest variant for

simplex primal is meth1 using stabilization and meth4 using classic Benders with

simplex dual. Finally, the best option when we use the barrier solver is meth1

using stabilized Benders decomposition.

Selecting only the best combinations according to the performance pro�les

carried out previously (Figures 4.2 and 4.3), we do a last performance pro�le with

the aim of �nding the most e�ective combination. In our particular case, as we can

see in Figure 4.4, the best combination is the stabilized Benders decomposition

with meth1 using barrier. Clearly, this combination is the fastest and it provides

the highest quality for more than 90% of the instances.

Table 4.3 reports a comparison between stabilized Benders meth1 using the

barrier solver (meth1-stabilized-barrier) and the use of the state-of-the-art

classical Benders developed in [33]. Indeed, in the approach of [33] classical Ben-

ders cuts were embedded in a branch-and-cut tree. Table shows the gap (gapA)

and total CPU time (TTA) for stabilized strategy and gap (gapB) and total CPU

time (TTB) for the state-of-the-art classical Benders. Moreover, the columns

(∆(gapA, gapB) and (∆(TTA, TTB) show the di�erence gap and CPU time, re-

spectively, between both methods. A time limit of one hour was considered for

these runs.

From Table 4.3 it can be concluded that the stabilized Benders (meth1) using

the barrier solver is more e�cient than the state-of-the-art classical Benders de-

veloped in [33]. Notice that the average gap for stabilized Benders CSP is 0,87%

whereas for state-of-the-art classical Benders is 2,51% within the same CPU time

limit. We have to emphasize that stabilized strategy is 1.8 times faster than the

state-of-the-art classical Benders option. In nine of 48 instances (marked with †)
the state-of-the-art classical Benders did not �nd a feasible solution within the

time limit (3600 seconds). Only in four instances the state-of-the-art classical

Benders outperformed our stabilized Benders algorithm. In the remaining 92%

4.4. Computational results 79

(a) Primal simplex (b) Dual simplex

(c) Barrier

Figure 4.2: Performance pro�les for the di�erent combinations based on upper
bound

80 Chapter 4. Stabilized Benders methods for large combinatorial optimization

(a) Primal simplex (b) Dual simplex

(c) Barrier

Figure 4.3: Performance pro�les for the di�erent combinations based on CPU
time

4.4. Computational results 81

(a) PF based on upper bound

(b) PF based on CPU time

Figure 4.4: Performance pro�les for the most e�ective combinations based on
upper bound and CPU time

82 Chapter 4. Stabilized Benders methods for large combinatorial optimization

meth1-stabilized State-of-the-art
barrier (A) classical Benders CSP (B) Comparison A-B

Instance gapA TTA gapB TTB ∆(gapA, gapB) ∆(TTA, TTB)
40_50_10_5 0,00% 190,96 4,4% 3707,09 -4,44% 3516,13
40_50_5_5 1,42% 3501,72 1,7% 3742,58 -0,25% 240,86
40_60_10_5 0,01% 3600,01 0,4% 3704,29 -0,39% 104,28
40_60_5_5 0,83% 3600,05 6,3% 3716,31 -5,48% 116,26
40_70_10_5 0,00% 2962,3 0,8% 3654,57 -0,75% 692,27
40_70_5_5 2,08% 3600,12 1,7% 3673,18 0,36% 73,06
40_80_10_5 0,01% 3232,28 4,5% 3635,94 -4,53% 403,66
40_80_5_5 1,17% 3600,94 4,4% 4245,02 -3,26% 644,08
50_50_10_5 0,00% 3517,52 1,2% 3692,48 -1,21% 174,96
50_50_5_5 3,90% 3604,37 2,7% 3805,14 1,22% 200,77
50_60_10_5 0,89% 3605,38 2,6% 3651,88 -1,66% 46,5
50_60_5_5 0,95% 3606,32 5,9% 3673,98 -4,94% 67,66
50_70_10_5 0,00% 184,29 1,2% 3633,31 -1,18% 3449,02
50_70_5_5 5,98% 3600,06 † † † †
50_80_10_5 0,01% 143,58 † † † †
50_80_5_5 1,39% 3600,2 1,2% 3667,05 0,23% 66,85
60_50_5_5 2,64% 3605,02 10,9% 3675,43 -8,27% 70,41
60_60_5_5 0,23% 3602,64 1,4% 3661,03 -1,18% 58,39
60_70_5_5 3,01% 3600,03 7,0% 3643,12 -4,04% 43,09
60_80_5_5 0,17% 3600,04 1,0% 3667,78 -0,84% 67,74
70_50_5_5 6,74% 3606,18 15,6% 3690,57 -8,87% 84,39
70_60_5_5 2,83% 3601,47 5,2% 3665,87 -2,35% 64,4
70_70_5_5 0,18% 3603,38 0,7% 3753,13 -0,57% 149,75
70_80_5_5 2,36% 3605,29 † † † †
40_50_15_5 0,00% 36,06 0,1% 3714,27 -0,14% 3678,21
40_60_15_5 0,00% 129,86 0,4% 3644,78 -0,40% 3514,92
40_70_15_5 0,00% 85,43 0,1% 3656,03 -0,12% 3570,6
40_80_15_5 0,00% 60,37 0,1% 3627,67 -0,10% 3567,3
50_50_15_5 0,01% 298,78 0,8% 3651,9 -0,76% 3353,12
50_60_15_5 0,00% 68,75 1,8% 3635,97 -1,78% 3567,22
50_70_15_5 0,01% 651,86 0,6% 3643,28 -0,60% 2991,42
50_80_15_5 0,01% 49,15 0,1% 3630,19 -0,10% 3581,04
60_50_10_5 0,00% 2282,89 3,1% 3646,38 -3,05% 1363,49
60_50_15_5 0,01% 185,2 0,3% 3664,49 -0,28% 3479,29
60_60_10_5 1,45% 3600,02 3,9% 3644,95 -2,47% 44,93
60_60_15_5 0,00% 203,57 0,1% 3636,57 -0,08% 3433
60_70_10_5 0,24% 3608,02 1,2% 3647,35 -0,92% 39,33
60_70_15_5 0,00% 30,14 0,0% 3608,37 -0,05% 3578,23
60_80_10_5 0,01% 230,2 † † † †
60_80_15_5 0,01% 265,29 † † † †
70_50_10_5 0,59% 3607,47 1,6% 3661,02 -1,03% 53,55
70_50_15_5 0,00% 35,14 0,2% 3634,4 -0,22% 3599,26
70_60_10_5 2,46% 3604,34 0,8% 3654,57 1,67% 50,23
70_60_15_5 0,00% 129,71 1,9% 3640,4 -1,86% 3510,69
70_70_10_5 0,12% 3609,82 † † † †
70_70_15_5 0,01% 67,27 † † † †
70_80_10_5 0,00% 73,42 † † † †
70_80_15_5 0,01% 58,93 † † † †
† Time limit reached without �nding a feasible solution

Table 4.3: Comparison between stabilized Benders meth1, using the barrier solver
(meth1-stabilized-barrier) and the use of the state-of-the-art classical Ben-
ders software developed in [33], for random 1H2D instances.

4.4. Computational results 83

meth1 state-of-the-art
stabilized) classical Benders Comparison A-B
barrier (A) CSP(B)

Instance gapA gapB ∆(gapA, gapB)
hier16 99,17% 99,13% 0,04%
hier16x16x16a 99,10% 99,09% 0,00%
hier16x16x16b 88,80% 88,65% 0,15%
hier16x16x16c 92,33% 92,67% -0,34%

hier16x16x16d 99,02% 99,12% -0,10%

hier16x16x16e 100,00% 100,00% 0,00%
table4 15,94% 11,84% 4,10%
table5 16,92% 11,06% 5,86%
hier13x13x13a 98,86% 98,95% -0,09%

hier13x13x13b 28,92% 39,25% -10,33%

hier13x13x13c 40,41% 42,33% -1,92%

hier13x13x13d 63,16% † †
hier13x13x13e 42,10% 45,00% -2,90%

hier13x13x7d 54,08% † †
hier13x7x7d 17,25% 0,01% 17,24%
† Time limit reached without �nding a feasible solution

Table 4.4: Comparison between stabilized Benders meth1, using the barrier solver
(meth1-stabilized-barrier) and the use of the state-of-the-art classical Ben-
ders developed in [33] for a subset of real tables.

of instances, stabilized method outperformed state-of-the-art classical Benders.

The average gain of gap is about 1,95% so it is clearly seen that for synthetic

1H2D instances the stabilized Benders is a competitive approach to �nd good

feasible solutions.

For the real-world general instances of Table 4.4 the situation is slightly di�er-

ent. These instances are not guaranteed to have a hierarchical structure, and this

may explain why stabilized Benders decomposition is not as competitive as for

synthetic 1H2D tables. However, we have six instances (marked in bold) where

stabilized Benders improved the upper bound with an average gap of 2.61%. On

the other hand, in other six tables the state-of-the-art classical Benders CSP out-

performed stabilized Benders with an average gap of 4.57%. In two instances,

the state-of-the-art classical Benders did not �nd any feasible solution within the

time limit of 3600 seconds.

Finally, we have tried the Benders algorithm built in CPLEX 12.7 (CPLEX-

84 Chapter 4. Stabilized Benders methods for large combinatorial optimization

meth1-stabilized CPLEX-Benders CPLEX-Benders
barrier strategy 1 strategy 0

CPU time gap CPU time gap CPU time gap
20_25_15_5_1 51,44 0,01% 3596.43 0,09% 3596,5 0,48%
20_30_15_5_1 2297,58 0,01% 3596.50 1,05% 3596,44 1,32%
20_35_15_5_1 163,14 0,01% 3596.33 1,39% 3596,39 0,77%
25_25_15_5_1 3600,11 0,03% 3596.41 6,22% 3596,32 0,35%
25_30_15_5_1 54,87 0,01% 3596.56 93,51% 3596,5 5,68%
25_35_15_5_1 43,61 0,00% 3596.47 † 3596,55 94,98%
30_25_15_5_1 1128,73 0,01% 3596.25 0,34% 3596,38 0,33%
30_30_15_5_1 99,76 0,01% ‡ ‡ 3596,56 94,91%
30_35_15_5_1 568,42 0,01% ‡ ‡ ‡ ‡
† no feasible solution was found within the time limit of 3600 seconds;
‡ internal memory error provided by AMPL;

Table 4.5: Comparison between stabilized Benders meth1, using the barrier solver
(meth1-stabilized-barrier) and and CPLEX-Benders for a set of small 1H2D
instances.

Benders) using a set of small 1H2D instances. For this test CPLEX was interfaced

through AMPL, and we only considered the CPLEX solution time, not the model

generation time. Table 4.5 reports a comparison with stabilized Benders meth1

using the barrier solver (meth1-stabilized-barrier). The decision on the dis-

tribution of the continuous variables in the di�erent Benders subproblems can be

determined automatically by CPLEX (strategy 0, where all continuous variables

are in a single Benders subproblem) or for ourselves (strategy 1, where the con-

tinuous variables go to di�erent Benders subproblems). As the results show, it is

not competitive with the stabilized Benders. CPLEX-Benders always exhausted

the time limit (3600 seconds) and even failed in several instances. It is worth

noting that some instances were solved by stabilized Benders with a 0.00% gap

in 43 seconds, whereas CPLEX-Benders only provided a 94.98% gap solution in

3600 seconds.

Chapter 5

Conclusions and future directions

Along the preceding chapters we have presented di�erent methods of Operations

Research in order to �nd optimal or suboptimal good solutions of mixed integer

linear problems in a reasonable computational time, where even �nding a feasible

solution may be a challenging task for large instances. All methods have been

coded by ourselves in C++, using commercial state-of-the-art solvers, and they

were applied to real-world problems from the privacy in statistical databases �eld.

In particular we focused on statistical tabular data protection. However, they can

be applied to other real-world problems. Now is the time to summarize the main

conclusions and comment future research directions. We highlight the following

conclusions:

5.1 Conclusions

• This thesis contributes to improve two important �elds of mixed integer

optimization: (1) heuristic methods to �nd good initial feasible solutions in

a short computational time, although not optimal. (2) a successful contri-

bution to the exact Benders decomposition method.

• The �rst contribution (AC-FP) suggests an extension of the successful fea-

sibility pump heuristic (FP), applied to general mixed integer linear prob-

lems, where candidate points to be rounded are found in a segment of

feasible points, one of the extremes being the analytic center. The objec-

tive FP is a particular case where the endpoint associated to the solution

of the relaxed problem is selected as the point to be rounded. AC-FP is

85

86 Chapter 5. Conclusions and future directions

also compared with the recent analytic center feasibility method (ACFM),

which also uses the analytic center for obtaining MILP feasible solutions.

Computational results show that AC-FP may outperform FP and ACFM

in some MILP instances, either in solution time or quality of the solution.

The three approaches (FP, ACFM and AC-FP) have their own bene�ts

and disadvantages. FP is likely the fastest approach, and in general it pro-

vides good (if not the best) solutions in most instances; however it does

not exploit the concept of analytic center, which may be bene�cial in some

instances. ACFM seems to provide better points, but it is computationally

expensive and it was only possible to test on small instances. AC-FP is not

computationally as expensive as ACFM (it only needs to compute one an-

alytic center), and in some MILP instances outperforms FP (either in time

or quality of the solution); however, for binary problems AC-FP seems not

to be competitive against FP (the analytic center seems not to be helpful

when we optimize within the unit cube).

• The second contribution is the application of the �x-and-relax heuristic

(FR) to the statistical tabular data protection method named Controlled

tabular adjustment (CTA). FR, either alone or in combination with other

heuristics such as BCD, has shown to be an e�cient approach. FR has been

particularly successful applied to a class of hierarchical tables named 1H2D,

being competitive against plain CPLEX branch-and-cut (BC), feasibility

pump heuristic (FP) or RINS heuristics. For general real-world tables, FR

and FR+BCD outperformed BC in 73% of the instances tested. Promising

results were also obtained in a reduced set of instances by warm starting

BC with the FR solution.

• Stabilized Benders applied to CSP was shown to be an excellent strategy

compared to the state-of-the-art classical Benders of [30]. In 92% of the

synthetic 1H2D tables, stabilized Benders outperformed classical Benders

in terms of both CPU time and gap of the feasible solution found. With

stabilized strategy, the average GAP was 0.87% whereas for commercial

CSP Benders was 2.51%. Moreover, the stabilized Benders was 1.8 faster

than classical Benders. For real-world general tables the stabilized approach

was not as competitive as for the 1H2D case, probably due to the absence of

a hierarchical structure. However, it is worth noting that stabilized Benders

5.2. Future directions 87

can be a promising approach because, when applied to real-world tables,

the average gap was lower (2.61%) than for classical Benders (4.57%).

5.2 Future directions

We can mention the following points as future works:

• Combining FR with other heuristics, or embedding FR in exact approaches,

like Benders reformulation, is part of the further work to be done in this

�eld.

• All approaches in the thesis dealt with post-tabular data protection, i.e., the

protection methods are applied to the tables once they have been created.

It would be interesting to study if similar ideas to the ones developed in the

thesis are valid for: (1) pre-tabular data protection methods (which focus

on modifying the microdata �les, and then using this modi�ed micro�les to

create protected the tables); (2) microdata protection methods that solve

some sort of optimization problem (i.e., microaggregation).

• The application of classical and stabilized Benders for optimal CTA. Pre-

liminary works [14] for small-medium two-dimensional tables show that it

can be a promising approach for more complex tables.

• A di�erent line of research would be to apply the tools developed in this

thesis (in particular AC-FP and stabilized Benders) to problems from other

�elds (e.g., logistics, production planning, etc).

• The heuristic AC-FP could also be used with the recent rounding scheme

based on constraint propagation suggested in [34].

5.3 Our contributions

The following publications in peer-reviewed journals, scienti�c conferences and

research reports have been the base of this work and had resulted from this

thesis.

• Publications:

88 Chapter 5. Conclusions and future directions

� D. Baena, J. Castro, Using the analytic center in the feasibility pump,

Operations Research Letters, 39 (2011) 310-317. Corresponding to

Chapter 2.

� D. Baena, J. Castro, J. A. González, Fix-and-relax approaches for

controlled tabular adjustment, Computers & Operations Research, 58

(2015) 41-52. Corresponding to Chapter 3.

� D.Baena, J.Castro, A. Frangioni, Stabilized Benders methods for large

combinatorial optimization problems: applications to cell suppression,

working paper to be submitted. Corresponding to chapter 4.

• Scienti�c conferences:

� D. Baena, J. Castro, J.A. González, Fix-and-relax approaches for con-

trolled tabular adjustment, XXXV Congreso Nacional de Estadística

e Investigación Operativa, Pamplona, Spain, May 2015.

� D. Baena, J. Castro, A �x and relax heuristic for controlled tabular ad-

justment, 25th European Conference on Operational Research-EURO

2012, Vilnius University, Vilnius (Lithuania), July 2012. Invited pre-

sentation.

� D. Baena, J. Castro, The analytic center feasibility pump, XXXIII

Congreso Nacional de Estadística e Investigación Operativa, Madrid,

Spain, April 2012.

Bibliography

[1] ILOG CPLEX 12.1. User's Manual. IBM, 2010.

[2] T. Achterberg and T. Berthold. Improving the feasibility pump. Mathemat-

ical Programming, 4:77�86, 2007.

[3] H. Ben Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit sta-

bilizing terms in column generation. Discrete Applied Mathematics, 157(6):

1167�1184, 2009.

[4] D. Baena and J. Castro. Using the analytic center in the feasibility pump.

Operations Research Letters, 39:310�317, 2011.

[5] J.F Benders. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik, 4:238�252, 1962.

[6] H.Y. Benson. Mixed integer nonlinear programming using interior-point

methods. Optimization Methods and Software, 26:6:911�931, 2011.

[7] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for

general mixed-integer problems. Discrete Optimization, 4:63�76, 2007.

[8] N.L. Boland, A.C. Eberhard, F.G. Engineer, M. Fischetti, M.W.P. Savels-

bergh, and A. Tsoukalas. Boosting the feasibility pump. Mathematical Pro-

gramming Computation, 6:255�279, 2014.

[9] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossman, C.D.

Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A.Wachter. An algo-

rithmic framework for convex mixed integer nonlinear programs. Discrete

Optimization, 5:186�204, 2008.

89

90 Bibliography

[10] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Van-

derbeck. Comparison of bundle and classical column generation. Mathemat-

ical Programming, 113(2):299�344, 2008.

[11] J. Castro. Minimum-distance controlled perturbation methods for large-

scale tabular data protection. European Journal of Operational Research,

171:39�52, 2006.

[12] J. Castro. Recent advances in optimization techniques for statistical tabu-

lar data protection. European Journal of Operational Research, 21:257�269,

2012.

[13] J. Castro. On assessing the disclosure risk of controlled adjustment methods

for statistical tabular data. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 20:921�941, 2012.

[14] J. Castro and D. Baena. Using a mathematical programming modeling lan-

guage for optimal CTA. Lecture Notes in Computer Science, 5262:1�12,

2008.

[15] J. Castro and S. Giessing. Testing variants of minimum distance controlled

tabular adjustment. In: Monographs of O�cial Statistics, Eurostat-O�ce

for O�cial Publications of the European Communities, Luxembourg, 92-79-

01108-1:333�343, 2006.

[16] J. Castro and J.A. González. Assessing the information loss of controlled

tabular adjustment in two-way tables. Lecture Notes in Computer Science,

8744:11�23, 2014.

[17] J. Castro, J.A. González, and D. Baena. User's and programmer's manual

of the RCTA package. Technical Report DR 2009/01, Dept. of Statistics and

Operations Research, Universitat Politècnica de Catalunya, 2009.

[18] J. Castro, A. Frangioni, and C. Gentile. Perspective reformulations of the

CTA problem with l2 distances. Operations Research, 62(4):891�909, 2014.

[19] L.H. Cox and J.A. George. Controlled rounding for tables with subtotals.

Annals of Operations Research, 20:141�157, 1989.

Bibliography 91

[20] J. Czyzyk, S. Mehrotra, M. Wagner, and S.J. Wright. PCx: an interior-

point code for linear programming. Optimization Methods and Software, 11:

397�430, 1999.

[21] R.A. Dandekar and L.H. Cox. Synthetic tabular data: an alternative to

complementary cell suppression. Manuscript, Energy Information Adminis-

tration, U.S. Department of Energy, 2002.

[22] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced

neighborhoods to improve MIP solutions. Mathematical Programming, 102:

71�90, 2005.

[23] C. Dillenberger, L.F. Escudero, A. Wollensak, and W. Zhang. On practi-

cal resource allocation for production planning and scheduling with period

overlapping setups. European Journal of Operational Research, 75:275�286,

1994.

[24] J. Domingo-Ferrer and L. Franconi. Lecture Notes in Computer Science.

Privacy in Statistical Databases. Privacy in Statistical Databases, 4302, 2006,

Springer, Berlin.

[25] J. Domingo-Ferrer and Y. Saigin. Lecture Notes in Computer Science, 5262,

2008, Springer, Berlin.

[26] J. Domingo-Ferrer and J. Soria-Comas. Anonymization in the time of big

data. Lecture Notes in Computes Science, 9867:57�68, 2016.

[27] J. Domingo-Ferrer and V. Torra. A critique of the sensitivity rules usu-

ally employed for statistical table protection. Int. J. of Unc.,Fuzziness and

Knowledge Based Systems, 10:545�556, 2002.

[28] J. Domingo-Ferrer, J. Mateo-Sanz, and V. Torra. Comparing SDC methods

for microdata on the basis of information loss and disclosure risk. Proceedings

of ETK-NTTS, Eurostat, pages 807�826, 2001.

[29] G. Duncan, S. Keller-McNulty, and S.Stokes. Disclosure risk vs. data utility:

the R-U con�dentiality map. Technical Report, Statistical Sciences Group,

Los Alamos National Laboratory, 2001.

92 Bibliography

[30] L.F. Escudero and J. Salmerón. On a �x-and-relax framework for a class of

project scheduling problems. Annals of Operations Research, 140:163�188,

2005.

[31] D. Ferreira, R. Morabito, and S. Rangel. Relax and �x heuristics to solve

one-stage one-machine lot-scheduling models for small-scale soft drink plants.

Computers & Operations Research, 37:684�691, 2010.

[32] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:

23�47, 2003.

[33] M. Fischetti and J.J. Salazar-González. Solving the cell suppression problem

on tabular data with linear constraints. Journal of the American Statistical

Association, 95:916�928, 2000.

[34] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Program-

ming, 1:201�222, 2009.

[35] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical

Programming, 104:91�104, 2005.

[36] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical

Programming, 104:91�104, 2005.

[37] M. Fischetti, D. Salvagnin, and A. Zanette. A note on the selection of benders

cuts. Mathematical Programming, 124:175�182, 2010.

[38] A. Frangioni and B.Gendron. A stabilized structured dantzig-wolfe decom-

position method. Mathematical Programming, 140:45�76, 2013.

[39] S. Giessing. Pre-tabular perturbation with controlled tabular adjustment:

some considerations. Lecture Notes in Computer Science, 8744:48�61, 2014.

[40] S. Giessing and J. Höhne. Eliminating small cells from census counts tables:

some considerations on transition probabilities. Lecture Notes in Computer

Science, 6344:52�65, 2010.

[41] F. Glover, L.H. Cox, R. Patil, and J.P. Kelly. Integrated exact, hybrid

and metaheuristic learning methods for con�dentiality protection. Annals of

Operations Research, 183:47�73, 2011.

Bibliography 93

[42] GNU. Linear Programming Kit v. 4.43. Reference Manual, 1997.

[43] J.A. González and J. Castro. A heuristic block coordinate descent approach

for controlled tabular adjustment. Computers & Operations Research, 38:

1826�1835, 2011.

[44] D. Gray. Precision threshold and noise: An alternative framework of sensi-

tivity measures. Lecture Notes in Computes Science, 9867:15�27, 2016.

[45] M.S. Hernández and J.J. Salazar-González. Enhanced controlled tabular

adjustment. Computers & Operations Research, 43:61�67, 2014.

[46] J.B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization

algorithms ii. Springer-Verlag, pages 45�76, 1996.

[47] A. Hundepool. The Argus software in CENEX. Lecture Notes in Computer

Science, 4302:334�346, 2006.

[48] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, R. Lenz, J. Nay-

lor, E.S Nordholt, G. Seri, and P.P. De Wolf. Handook on statisti-

cal disclosure control. Network of Excellence in the European Statistical

System in the �eld of Statistical Disclosure Control. Available on-line at

http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf, 1.2, 2010.

[49] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E.S Nordholt,

K. Spicer, and P.P. De Wolf. Statistical Disclosure Control. Wiley, 2012.

[50] J.P. Kelly, B.L. Golden, and A.A. Assad. Cell suppression: disclosure pro-

tection for sensitive tabular data. Networks, 22:28�55, 1992.

[51] T. Koch et al. Miplib 2010. mixed integer programming library version 5.

Mathematical Programming Computation, 3:103�163, 2011.

[52] J.E. Mitchell. Fixing variables and generating classical cutting planes when

using an interior point branch and cut method to solve integer programming

problems. European Journal of Operational Research, 97:139�148, 1997.

[53] J.E. Mitchell and M.J. Todd. Solving combinatorial optimization problems

using Karmarkar's algorithm. Mathematical Programming, 56:245�284, 1992.

94 Bibliography

[54] H. Mittelmann. Decision tree for optimization software.

http://plato.asu.edu/guide.html, 2014.

[55] J.J. Moré. Benchmarking optimization software with performance pro�les.

Mathematical Programming, 91:201�213, 2002.

[56] J. Naoum-Sawaya and S. Elhedhli. An interior point cutting plane heuristic

for mixed integer programming. Computers & Operations Research, 38 (9):

1335�1341, 2011.

[57] D.A Robertson and R. Either. Cell suppression: experience and theory.

Lecture Notes in Computes Science, 2316:8�20, 2002.

[58] J.J. Salazar-González. Controlled rounding and cell perturbation: statistical

disclosure limitation methods for tabular data. Mathematical Programming,

105:583�603, 2006.

[59] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro. A stochastic pro-

gramming approach for supply chain network design under uncertainty. Eu-

ropean Journal of Operational Research, 167(1):96�115, 2005.

[60] K. Soininvaara, T. Oinonen, and A. Nissinen. Balancing con�dentiality and

usability: protecting sensitive data in the case of inward foreign a�liates

statistics (FATS). Lecture Notes in Computer Science, 8744:338�349, 2014.

[61] W. van Ackooij, A. Frangioni, and W. de Oliveira. Inexact stabilized benders'

decomposition approaches, with application to chance constrained problems

with �nite support. Computational Optimization and Applications, 65(3):

637�669, 2016.

[62] L. Willenborg and T. de Waal. Elements of Statistical Disclosure Control.

Lecture Notes in Statistics, 155, 2000.

[63] Y. Ye. Interior Point Algorithms. Theory and Analysis. Wiley, 1997.

[64] L. Zayatz. Work session on statistical data con�dentiality. U.S. Census

Bureau, communication at Joint UNECE/Eurostat, 2009, Bilbao (Basque

Country, Spain).

	Agraïments-Acknowledgments
	Abstract
	Statistical disclosure control
	Introduction
	Motivations
	Microdata protection
	Tabular data protection
	Contributions

	 Using the analytic center in the feasibility pump
	Introduction
	The feasibility pump heuristic
	The original feasibility pump
	The modified objective feasibility pump

	The analytic center feasibility method (ACFM)
	The analytic center feasibility pump (AC-FP)
	The analytic center
	Using the analytic center in the feasibility pump heuristic

	Computational results

	Fix-and-relax approaches for Controlled Tabular Adjustment
	Introduction
	Fix-and-relax
	Outline of block coordinate descent
	Computational results
	Tuning the number of clusters in fix-and-relax
	Comparison between fix-and-relax and plain branch-and-cut
	Comparison between fix-and-relax with block coordinate descent and plain branch-and-cut
	Comparison between fix-and-relax and other heuristics
	Using fix-and-relax to warm start branch-and-cut

	Stabilized Benders methods for large combinatorial optimization problems: applications to cell suppression
	Benders decomposition
	Stabilizing Benders through local branching constraints
	Application to data privacy: the cell suppression problem
	Adding a normalization constraint to the subproblem

	Computational results

	Conclusions and future directions
	Conclusions
	Future directions
	Our contributions

	Bibliography

