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Abstract

Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have
found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing
complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified
the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-
frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse
(CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current
and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized
by the standard deviation, the skewness and the kurtosis) allows to distinguish among noise, LFFs and CC, and to
quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal
analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter
regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model
are in good qualitative agreement with the observations.
Keywords— optical chaos, time-delay feedback, semiconductor lasers, time series analysis, high-dimensional chaos,
ordinal analysis

Complex dynamical systems often show
sudden or gradual transitions between distinct
dynamical regimes. Examples include deserti-
fication transitions as precipitation decreases,
population extinctions when food becomes
scarce, bistable visual perceptions, sleep–wake
transitions and epileptic seizures. The last
years have seen a rapid increase of data–driven
approaches aimed at gaining deeper insights
into the detection and prediction of regime
transitions. Here we study an experimental op-
tical system (a diode laser with time-delayed
optical feedback) that displays a gradual tran-
sition from noise to chaos, as the control pa-
rameters (the laser current and the feedback
strength) are varied. We demonstrate that sta-
tistical and symbolic data analysis tools clearly
identify the onset of different regimes, despite
the gradual nature of the transitions. These
tools can be valuable for analyzing regime tran-
sitions in many complex systems.

1 Introduction

Semiconductor lasers with optical feedback are impor-
tant practical devices and their chaotic output has found
many applications [1–6]. In addition, the dynamics gen-
erated by optical feedback is relevant from the com-
plex systems’ perspective. The laser dynamics is nonlin-
ear (due to light-matter interaction in the laser cavity),
stochastic (due to spontaneous emission noise, thermal

and electrical noise) and high-dimensional (due to the
feedback delay time) [7–10]. Thus, the output intensity
emitted by a semiconductor laser with optical feedback
is very attractive for testing a variety of data analysis
tools [11–20].

Several of us have recently investigated experimentally
the transition, as the pump current is increased, from op-
tical noise to chaos [21]. The onset of the chaotic regime
is accompanied by a drastic enhancement of the laser
line-width and relative intensity noise [22–25]; however,
in the time domain the transition is gradual: starting at
the lasing threshold (optical noise), as the laser pump
current is increased there is a continuous transition dur-
ing which the intensity starts displaying dropouts, which
become increasingly regular (a regime known as low-
frequency fluctuations –LFFs), and then gradually be-
come faster and irregular [26]. When the dropouts are
too fast to be distinguished as individual events, the dy-
namics is referred to as fully developed coherence col-
lapse (CC). In [21] we have shown that three diagnostic
tools (the standard deviation of the intensity time series,
the number of threshold-crossing events, and symbolic
ordinal analysis [27]) provide complementary informa-
tion about the properties of these regimes and allow to
quantitatively distinguish between optical noise, LFFs
and CC. Remarkably, the three diagnostic tools consis-
tently identified the noise, LFFs and CC regimes occur-
ring in the same intervals of the experimental control
parameter, the laser pump current.

An open question is how the feedback strength affects
the properties of the noise–LFF and LFF–CC transi-
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tions, and in particular, how the transition points depend
on the feedback strength. A recent study has mapped
these regimes when the feedback strength and the laser
current are varied [28]. The study was performed in the
so-called short cavity regime, when the external cavity
is short enough to yield a feedback delay time, τ , that
is shorter than the natural laser relaxation oscillation
period, Tro [29–31]. Here, as in [21], we consider the
long cavity regime in which τ >> Tro. We experimen-
tally record the intensity dynamics with different feed-
back levels and show that both, the shape of the inten-
sity distribution (characterized by the standard devia-
tion, the skewness and the kurtosis) and the temporal
correlations among consecutive inter-dropout intervals
(characterized by using symbolic ordinal analysis) clearly
distinguish, in the parameter space (pump current, feed-
back strength), the regions of noise, LFFs and CC. Sim-
ulations of the time-delayed Lang-Kobayashi model [32]
are in good qualitative agreement with the experimental
observations.

This paper is organized as follows: Sec. 2 presents the
experimental setup; Sec. 3 presents the diagnostic tools
and Sec. 4 presents the experimental results. Sec. 5
presents the Lang-Kobayashi model and the numerical
results. Finally, Sec. 6 summarizes the conclusions.

2 Experimental setup

The experimental setup is as in Ref. [21]. A 685
nm semiconductor laser (AlGaInP multi-quantum well
HL6750MG), with solitary threshold current Ith,sol =
26.74 mA has part of its output intensity fed back to
the laser cavity by a mirror. The length of the exter-
nal cavity is 70 cm which gives a feedback delay time of
about 5 ns. The laser temperature and current were sta-
bilized using a combi-controller (Thorlabs ITC501) with
an accuracy of 0.01 C and 0.01 mA, respectively. During
the experiments the temperature was set to T = 18 C.

A 90/10 beam-splitter in the external cavity sends
light to a photo-detector (DET10A/M Silica based pho-
todetector) that is connected to an amplifier (FEMTO
HSA-Y-2-40) and a 1 GHz digital storage oscilloscope
(Agilent Technologies Infiniium DSO9104A).

A set of 9 neutral density filters (NDFs with optical
densities OD=0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.5, 2 [dB]) in
the external cavity allowed to vary the strength of the
feedback from 18.15% to 2.6% threshold reduction. A
LabVIEW program was used to control the experiment.
The pump current was varied from 20.50 mA to 34 mA
in 92 steps. For each set of (pump current, NDF OD),
N = 107 data points were recorded with sampling rate
of 2 GS/s (temporal resolution of 0.5 ns), allowing an
observation time of 5 ms. It it important to note that the
intensity dropouts are the envelope of fast, pico-second
pulses, which can be detected by using a much faster
detection system [33].

3 Diagnostic tools

The first diagnostic tool is based in quantifying changes
in the shape of the intensity probability distribution
function (pdf) as the laser current or the feedback

strength are varied. We use the standard deviation,
σ, the skewness, S, and the kurtosis, K, to distinguish
among noise, LFFs and CC. While σ quantifies the width
of the intensity pdf, S and K measure the degree of
asymmetry and the degree of flatness, respectively.

We remark that the amplifier used in the experimental
detection system removes the mean value of the inten-
sity time series. Thus, for each intensity time series,
{I1, . . . , Ii, . . . IN} with 〈Ii〉 = 0, σ, S, and K are calcu-
lated as

σ2 =

∑
i I

2
i

N − 1
(1)

S =

∑
i I

3
i

(N − 1)σ3
(2)

K =

∑
i I

4
i

(N − 1)σ4
. (3)

The second diagnostic tool is based in the symbolic
analysis of the time intervals, {∆T1, . . . ,∆Ti = ti −
ti−1, . . .}, between consecutive intensity dropouts (inter-
dropout intervals, IDIs). To define the timing of the
dropouts two thresholds are used [21]: ti is defined as
the time when the intensity falls below a predefined de-
tection threshold; then, the intensity has to grow above
a second threshold, 〈Ii〉 = 0, before the next dropout can
be detected. This second threshold is needed in order to
avoid detecting as dropouts the fluctuations that occur
during the recovery process.

Because the amplitude of the intensity fluctuations
(and in particular, the depth of the intensity dropouts)
varies with the control parameters (pump current, feed-
back strength), in order to use a uniform criterion for
defining “dropouts”, the detection threshold is chosen to
be proportional to σ. To select an appropriate detec-
tion threshold we need to take into account that too low
thresholds have the drawback of missing many dropouts
(the intensity falls, but not deep enough to cross the
threshold), while too high thresholds detect not only
dropouts, but also, many noisy fluctuations. A detailed
analysis of the influence of the threshold was presented
in [21]. Here we use a threshold −1.5σ because it pro-
vides a good compromise between filtering noise while de-
tecting a sufficiently large number of dropouts: with this
threshold the intensity time series contains more than
104 dropouts, depending on the laser current and feed-
back strength [see Fig. 1(b)].

The resulting sequence of inter-dropout intervals is an-
alyzed by using the ordinal methodology [27], which con-
sists of transforming the sequence of time intervals into
a sequence of ordinal patterns (OPs), defined by consid-
ering the relative length of D consecutive intervals. For
D = 3 there are six OPs:

∆Ti < ∆Ti+1 < ∆Ti+2 gives 012,
∆Ti < ∆Ti+2 < ∆Ti+1 gives 021,
∆Ti+1 < ∆Ti < ∆Ti+2 gives 102,
...
∆Ti+2 < ∆Ti+1 < ∆Ti gives 210.
In this work we only consider D = 3 OPs because

it is sufficient to detect a certain degree of determin-
ism in the IDI sequence. As D increases the number of
OPs increases as D!. Because the IDI sequence is noisy,
very long sequences of dropouts are needed in order to
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detect patterns whose probability significantly deviates
from 1/D! [34], i.e., patterns that appear in the sequence
more often (or less often) than expected in the null hy-
potesis that all patterns are equally probable.

This ordinal approach has the drawback that two very
different types of intensity dynamics can give a similar
set of ordinal probabilities. First, when the intensity
dropouts are fully irregular, the IDI time series is also
fully irregular; in this case the ordinal sequence will be
random and the six probabilities will be within the inter-
val of values which are consistent with 1/6. On the other
hand, when the intensity dropouts are almost periodic,
the IDIs will fluctuate around a well-defined mean value
(the period of the dropouts), and if the fluctuations are
uncorrelated, the six patterns will also be expressed in
the ordinal sequence with equal probability.

4 Experimental results

Figure 1(a) displays the parameter regions where the
noise, LFF and CC regimes are identified in the plane
(pump current, feedback strength), and well defined
boundaries are observed. To obtain this map, the fol-
lowing criteria were used to classify each time series in
one of the three regimes:

1) We identify noisy emission by comparing the inten-
sity distribution with a Gaussian distribution: when the
skewness of the intensity pdf is below a threshold (cho-
sen equal to the maximum skewness observed for the
intensity pdf of the solitary laser) and the kurtosis of the
intensity pdf is within the interval [3–3.3] (i.e., it differs
up to 10% from the kurtosis of a Gaussian), then the in-
tensity pdf is considered consistent with a Gaussian pdf
and the time series is classified as noise.

2) If the first criterion is not fulfilled, then, as in [21],
the variation of σ with the laser current (keeping the
feedback strength constant) is used to distinguish be-
tween LFF and CC: if dσ/dI > 0, then the time series is
classified as LFFs, else, as CC.

The resulting map is robust with respect to small vari-
ations of the skewness or kurtosis thresholds, and is in
good agreement with previous observations [16, 25]. As
shown in Fig. 2, in the region identified as noisy emis-
sion the intensity distribution is well fitted by a Gaus-
sian, while in the regions identified as LFFs or CC, it
significantly deviates from a Gaussian.

Figure 3 displays examples of the intensity dynamics in
the different regions, and the corresponding distributions
in log scale [the parameters are indicated with arrows and
a dot in Fig. 1(a)]. Clear differences are observed both,
in the dynamics and in the shape of the distribution,
which are captured by the classification criteria described
above.

In Fig. 4 we analyze the variation of σ with the laser
current, for various feedback strengths. In [21] the cur-
rent value for which σ is maximum (indicated with a dot)
was identified as the onset of the LFF–CC transition. We
note that, for strong feedback, the LFF-CC transition
moves to higher pump currents as the feedback increases;
in contrast, for weak feedback (OD between 0.6 and 1.2)
the pump current at which the LFF-CC transition occurs
remains nearly constant as the feedback increases.

Figure 1: (a) Experimental map representing the oc-
currence of different dynamical regimes (noisy intensity
fluctuations, low frequency fluctuations –LFFs, and co-
herence collapse –CC) in the parameter space (laser cur-
rent in mA, feedback strength in units of the optical den-
sity of the neutral density filter). The arrows and the red
dot indicate the parameters used in Fig. 3 and the white
dots indicate the threshold of the laser with feedback
(measured from the LI curve). (b) Number of dropouts
in each time series: number of times the intensity falls
below -1.5σ (with σ being the standard deviation of the
intensity pdf).
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Figure 2: Experimental intensity pdfs as a function of the laser current and feedback strength. The solid lines indicate
the fit to a Gaussian distribution.

In Fig. 4(a) we also note that, at fixed current, σ
grows with the feedback, except for the strongest feed-
back. The increase of σ with the feedback is consis-
tent with previous observations by Hong and Shore [35]
that found an increase of the relative mean dropout am-
plitude, (〈Pmax〉 − 〈Pmin〉)/ 〈Pmax〉, with the feedback
strength (here 〈Pmax〉 and 〈Pmin〉 are the mean levels
between which the intensity falls during the dropouts).
In Fig. 4(b) we note that when the current is normal-
ized to the threshold of the laser with feedback, Ith, the
shape of the curve σ vs. I/Ith is very similar for all the
feedback strengths, except for the highest one. This also
occurs for the plot of S and K vs. I/Ith (not shown).

Complementing the analysis of the intensity distribu-
tion, we next analyze the ordinal probabilities computed
from the inter-dropout intervals (IDIs). As shown in
Fig. 1(b), the threshold -1.5σ allows to detect, in each
time-series, a large number of dropouts. A clear bound-
ary can be observed between the noisy and LFF regimes
(that is fully consistent with the boundary detected with
the analysis of the intensity distribution); however, the
number of dropouts varies smoothly during the LFF –
CC transition and in this figure the two regimes can not
be quantitatively distinguished.

Figure 4(a) displays the six ordinal probabilities when
the laser current is varied while the feedback strength
is kept constant. The gray region represents probability
values that are consistent with equally probable ordinal
patterns [34]. The variation of the six probabilities is
consistent with previous observations [15,21]. The onset
of the LFF regime is identified as the lowest pump cur-
rent at which at least one probability is outside the gray

region. This captures the emergence of temporal correla-
tions associated to the first regime transition: from noise
to LFFs. The onset of the CC regime is identified as the
pump current value where the probability, P , of pat-
tern 210 (i.e., three consecutive intervals being increas-
ingly shorter) is maximum, because above this value, the
gradual decrease of P (210) uncovers the gradual disap-
pearance of temporal correlations.

Figure 4(b) displays P (210) in color code vs. the laser
current and feedback strength. We chose this pattern be-
cause it is, in general, the one that differs the most from
the 1/6 value expected for equally probable patterns [36].

In Fig. 4(b) we note that the red area where P (210)
is maximum (and thus indicates the LFF–CC bound-
ary) moves, with increasing feedback, to higher values of
the laser current. We also note that the two criteria em-
ployed to identify the laser current at which the LFF–CC
transition occurs –the maximum of the intensity stan-
dard deviation, σ, and the maximum of probability of
pattern 210, P (210)– give consistent results, regardless
of the feedback strength.

In Fig. 4(b) the gray areas represent parameter re-
gions where P (210) is consistent with 1/6 [34]. Compar-
ing Figs. 1(a) and 4(b) we note that the noise region in
Fig. 1(a) is a gray region in Fig. 4(b), as expected for
uncorrelated fluctuations. In Fig. 4(b) we also note two
gray regions, one that corresponds in Fig. 1(a) to LFFs,
and the other, which corresponds to coherence collapse.
In the gray LFF region, an inspection of the intensity
time series reveals that the dropouts are regular, with
well defined periodicity, and in this region all ordinal
probabilities are ∼ 1/6 [see Fig. 4(a)]. In the gray CC re-
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Figure 3: Experimental intensity time series (normal-
ized to 〈Ii〉 = 0 and σ = 1) and histograms for two pump
currents and two feedback strengths. (a) noisy and LFF
regimes (pump current 24.56 mA and NDF OD=0.2 and
0.6 [dB], respectively); (b) LFF and CC regimes (pump
current 29.51 mA and NDF OD=0.2 and 0.6 [dB] re-
spectively). These parameters are indicated with arrows
in Fig. 1(a). In (c) fully developed coherence collapse is
observed for pump current 32.02 mA and NDF OD=1
[dB]. This set of parameters is indicated with a dot in
Fig. 1(a)

.

Figure 4: (a) Standard deviation of the experimental
intensity time series vs. the laser current, normalized
to the solitary threshold, Ith,sol, for various feedback
strengths. The dots indicate where σ is maximum, which
identifies the onset of the LFF–CC transition. We note
that at fixed current, σ grows with the feedback strength
(except for the strongest feedback, OD=0). In (b) the
laser current is normalized to the threshold of the laser
with feedback, Ith. Here we note that, except for the
strongest feedback, the shape of the curve σ vs. I/Ith is
similar for all feedback strengths.

gion in the top-right corner of Fig. 4(b) (for high current
and high optical density of the neutral density filter, i.e.,
weak feedback strength) the intensity dynamics resem-
bles noisy fluctuations and the ordinal probabilities are
close to (or within the interval of values consistent with)
1/6. In this region P (210) does not identify clear sig-
natures of determinism in the sequence of inter-dropout
intervals.

5 Model and numerical results

To demonstrate the robustness of the experimental ob-
servations we performed simulations of the Lang and
Kobayashi (LK) rate equations [32] for the slowly vary-
ing complex electric field E and the carrier density N .
The model equations are:

dE

dt
= k(1 + α)(G− 1)E + ηE(t− τ)e−iω0τ

+
√

2βsp ξ (4)

dN

dt
=

1

τN

(
µ−N −G |E|2

)
(5)

where k is the cavity losses, α is the linewidth enhance-
ment factor, τN is the carrier lifetime, G = N/(1+ε |E|2)
is the optical gain (with ε a saturation coefficient). τ is
the feedback delay time, τ = 2L/c, with L being the
length of the external cavity and c the speed of light. ω0

is the solitary laser frequency, ω0τ is the feedback phase,
βsp is the noise strength, representing spontaneous emis-
sion, and ξ is a Gaussian distribution with zero mean
and unit variance.
µ is the pump current parameter, which is propor-

tional to the experimental control parameter, the laser
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Figure 5: Ordinal analysis of experimental sequences
of inter-dropout-intervals. (a) Probabilities of the six
D = 3 ordinal patterns vs. the normalized pump current,
I/Ith for a constant feedback strength (NDF OD=0.4).
The gray region indicates the interval of probability val-
ues that are consistent with the uniform distribution [34].
(b) Probability of pattern 210 vs. the laser current
and feedback strength. In the red/blue regions P (210)
is significantly higher/lower than expected if the pat-
terns are equally probable; in the gray region P (210) is
within the interval of probability values that are consis-
tent P (210) = 1/6.
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Figure 6: Numerical map that is obtained by using the
same criteria as in Fig. 1(b) to classify the simulated
intensity time series as either noise, LFF and CC.

current I. At the threshold of the solitary laser, µ is
equal to the normalized current, I/Ith,sol, both being
equal to 1 [37]. η is the feedback coefficient and η2 is
the feedback strength, which is inversely proportional to
the optical density (OD) of neutral density filter (NDF)
used in the experiments.

The model equations were simulated with parameters
as in [21], where a qualitative good agreement model–
experiments was reported: α = 4.0, k = 300 ns−1, τN =
1 ns, ε = 0.01, βsp = 10−4 ns−1 and ω0τ is a random
value in (0,2π). To fit the experimental situation, τ = 5
ns.

For these parameters the LFFs are a transient dynam-
ics with a duration that increases with the pump current
and decreases with the feedback strength [38,39]. In or-
der to simulate the finite bandwidth of the experimental
detection system, a simple filter is applied (a moving av-
erage over a time-window of ∆t = 5 ns). The influence of
∆t is discussed below. We use a simple moving window
because this is sufficient to obtain a reasonable, but only
qualitative, agreement with the experimental observa-
tions. As the LK model is well established, we speculate
that a more advanced filtering method (that more pre-
cisely mimics the high-pass filtering performed by the
detection system) will result in an improved quantita-
tive agreement. In order to generate a sufficiently large
number of dropouts, for each set of parameters (pump
current, feedback strength) 20 trajectories of 100 µs each
were generated from random initial conditions.

The regions of noise–LFF–CC dynamics are identified
by using the same criteria as in the experimental data.
Figure 5 displays the obtained map, and we can note a
good qualitative agreement with the experimental map
displayed in Fig. 1(a).

Figure 5 displays the standard deviation of the sim-
ulated intensity time series, σ, vs. the pump current
parameter, µ, for different feedback strengths. We note
that the shape of the curve σ vs. µ is in good qualita-
tive agreement with the one observed experimentally in
Fig. 4. Figure 5 displays P (210) as a function of µ and
η2 and here again we see a reasonably good agreement
with the experimental map, Fig. 4(b).

We conclude the analysis by discussing the influence of
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Figure 7: (a) Standard deviation of the simulated inten-
sity time series vs. the laser current parameter, µ, for
various feedback strengths. In panel (b) µ is normalized
to the threshold of the laser with feedback, µth,fb.

the experimental sampling rate, which, as explained be-
fore, was mimicked by averaging the simulated intensity
time series over a moving window of size ∆t. Figure 5(a)
displays σ vs. µ for various values of ∆t. We note that
for low µ (in the noise or in the LFF regimes) σ remains
rather unaffected by ∆t, while for high µ (in the CC
regime) σ decreases with ∆t. These two qualitatively
different behaviors are shown in detail in panel (b).

This observation can be used to determine, from a sin-
gle simulated intensity time series, if parameters are in
the CC regime or not, without the need of comparing
the value of σ of the time series with the value of σ of
two “neighboring” time series. By plotting the value of
σ vs. ∆t we can determine if parameters are in the CC
regime (σ decreases with ∆t) or not (σ remains nearly
constant when ∆t is varied). Figure 10 displays the re-
sult of the analysis of the experimental intensity time
series, when the standard deviation is computed after
averaging the intensity data values in a moving window
of length ∆t. A clear qualitative agreement is observed
with the simulations presented in Fig. 5(b). The order
of magnitude difference between numerical simulations
and experiments are due to the simple moving averag-
ing technique applied to the numerical data in order to
mimic the experiments. We might obtain a better quali-
tative agreement by using a more precise high-pass filter
detection system.

6 Conclusions and discussion

We have analyzed different dynamical regimes in the out-
put of a semiconductor laser with optical feedback, as a
function of the laser current and the feedback strength.
We have shown that the shape of the probability distri-
bution of intensity values (characterized by the standard
deviation, the skewness and the kurtosis) complemented
by ordinal analysis of the inter-dropout time intervals,
allow to quantitatively distinguish among noisy inten-
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Figure 8: Probability of the ordinal pattern 210, com-
puted from the simulated intensity time series. We note
a reasonably good agreement with the experimental map,
Fig. 4(b).
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Figure 9: (a) Standard deviation of the simulated in-
tensity time series as a function of the laser current pa-
rameter, µ, for various values of the length of the mov-
ing window, ∆t, that mimics the experimental detection
bandwidth. (b) Standard deviation of the simulated in-
tensity time series vs. ∆t for various values of µ. In both
panels η = 30 ns−1.

Figure 10: Experimental standard deviation of the in-
tensity time series vs. ∆t for various values of the laser
current, normalized to the solitary laser threshold. The
optical density of the NDF is 0.6 [dB].
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sity fluctuations, low-frequency fluctuations and coher-
ence collapse. In particular we found that the two cri-
teria employed to identify the laser current at which the
LFF–CC transition occurs (the maximum of the inten-
sity standard deviation, and the maximum of probability
of pattern 210) give consistent results, for all the range
of feedback strengths studied (2.6% to 18.15% threshold
reduction). Simulations of the well-known time-delayed
Lang-Kobayashi model were found to be in good quali-
tative agreement with the observations.

It is interesting to compare our results with the results
of Toomey and Kane [16], that applied ordinal analysis to
raw intensity time-series (without applying a threshold
to detect the dropouts), and mapped the permutation
entropy (that is Shannon’s entropy computed from the
ordinal probabilities) as a function of the laser current
and the feedback strength. Low entropy regions were in-
terpreted as due to the emergence of well-defined period-
icity at the external cavity frequency, while high entropy
regions were associated to either noise or coherence col-
lapse [Fig. 2(b) of Ref. [16]]. Our results are consistent
with those of Toomey and Kane [16] and also allow to
quantitatively distinguish between the different regimes.

As future work it would be interesting to apply these
analysis tools to the dynamics induced by filtered opti-
cal feedback in a high power multi-mode laser. By map-
ping experimentally the dynamics as a function of the
feedback strength and pump current, Baladi et al. [40]
recently found two distinct types of LFF regimes, distin-
guished by either intensity dropouts or jump-ups. It will
also be interesting to analyze the so-called short cavity
regime (where the feedback delay time is shorter than
the solitary relaxation oscillation period of the laser),
and to compare the maps obtained with the diagnostic
tools used here, with the maps presented by Karsaklian
Dal Bosco et al. [28], where LFF and CC regimes were
distinguished by considerations based on the amplitude
of the peaks in the RF spectra.
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Phys. Rev. A 81, 033820 (2010).

[40] F. Baladi, M. W. Lee, J-R Burie et al., Opt. Lett.
41, 2950 (2016).

9


	1 Introduction
	2 Experimental setup
	3 Diagnostic tools
	4  Experimental results
	5  Model and numerical results
	6 Conclusions and discussion

