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Abstract. We derive a convenient model for broad aperture micro-lasers, such as microchip lasers, broad
area semiconductor lasers, or VCSELs, taking into account several longitudinal mode families. We provide
linear stability analysis, and show characteristic spatio-temporal dynamics in such multi-longitudinal mode
laser models. Moreover, we derive the coupled mode model in the presence of intracavity refraction index
modulation (intracavity photonic crystal).

1 Introduction

Transverse pattern formation in broad area lasers and
laser like systems (nonlinear resonators) gained a huge
popularity since late 80s and early 90s (see the pioneer-
ing works [1–13], as well as more recent reviews [14,15]).
The numerical studies in the most of “laser pattern
forming” studies were performed on the basis on the
single-longitudinal mode family Maxwell-Bloch Equations
(MBE):

∂E

∂t
=

[− (1 + iω) + id∇2 + iV (r⊥)
]
E + P, (1a)

∂P

∂t
= −γ⊥ [P + ED] , (1b)

∂D

∂t
= −γ||

(
D − D0 (r⊥) +

EP ∗ + E∗P
2

)
. (1c)

Here the complex-valued fields E(r⊥, t) and P (r⊥, t) are
the envelopes of the electromagnetic (optical) field and
material polarization, defined in space r⊥ = (x, y) perpen-
dicular to the optical axis of the laser, and evolving in time
t. D(r⊥, t) is the real-valued distributions of the popula-
tion inversion which, in the absence of the field in the res-
onator, equals to the pump distribution D0(r⊥). γ⊥ and γ‖
are the decay rates of the polarization and population in-
version respectively normalized to photon decay rate. ω0 is
the resonator detuning (the resonator resonance frequency
with respect to the center of the gain line) normalized to
the photon decay rate as well. The time is normalized to
photon lifetime τ = Lf/c, L is the full (roundtrip) length
of the resonator, and f is the cavity finesse. V (r⊥) is the
“trap potential” for the light due to the curved (parabolic)
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cavity mirrors, or in case of planar cavity micro-laser, due
to thermal lensing, V (r⊥) = βD0(r⊥). d is the diffraction
constant which can be expressed through the parameters
of the resonator: d = Lλf/(4π).

The system (1) is the most basic one: in real situations
it includes extra ingredients. For instance for semicon-
ductor laser (1) contains a frequency shift of polarization
depending on the inversion (the linewidth enhancement
factor αH) [16,17]. The (1) can be supplemented by intra-
cavity saturable absorption, or by intracavity Kerr media,
depending on the situation [18–20].

Another widespread model is the Lugiato-Lefever
model [2], which could be derived from the MBE (1) in
a “passive limit” D0(r⊥) → 0, including linewidth en-
hancement factor αH , and adding an external drive. The
Lugiato-Lefever model is also used to describe a vari-
ety of dynamical phenomenon, like spatial soliton forma-
tion [21,22], formation of extended passive patterns [6–8],
spatial “rocking” [23], and many others, which is also a
single-longitudinal-mode model. Multi-longitudinal-mode
models presented below in this article are applicable to
Lugiato-Lefever model as well.

The electromagnetic part of the MBE, the (1a), is de-
rived from the field equation:

1
c2

∂2E

∂t2
−∇2E = ε0μ0

∂2P

∂t2
, (2)

where c = (ε0μ0)
−1/2 is the speed of light. To derive (1)

the field E(r, t) and the material polarization P (r, t) is ex-
pressed in terms of slowly varying envelopes in transverse
space: E(r, t) = exp(iω0t) exp(2πimz/L)E(r⊥, t) + c.c.,
and the limit of fast carrier oscillations is considered:
ω0|E| � |∂E/∂t|, ω0 |P | � |∂P/∂t|, k0 |E| � |∇E| to
eliminate the space-time derivatives except for those of
lowest (dominating) order. The transverse coordinate r⊥
spans the two-dimensional space transverse to the optical
axis (the diffraction term is id∇2

⊥ = id(∂2
/
∂x2+∂2

/
∂y2)),
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Fig. 1. (a) Double-comb of frequencies for multi-longitudinal multi-transversal mode lasers: the longitudinal mode separation
is Δω‖ and transverse mode separation is Δω⊥. Longitudinal mode families are indicated by inclined dashed lines. (b) Alter-
native interpretation of the mode structure of multimode laser: the inter- section of the longitudinal modes (dashed lines, or
corresponding planes with k‖ = 2Pn/L) results in resonant transverse wavenumbers (tilted waves), or in Fresnel rings in case
of two transverse dimensions.

and the longitudinal dependence of the fields is not taken
into account. Therefore the (1) describes the lasers with
single-longitudinal mode family, i.e. the two-dimensional
field distributions slowly evolving in time.

The single longitudinal-mode MBE (1), although thou-
sands of times used in literature, is, strictly speaking, not
applicable for simulations of real lasers. A single excep-
tion is perhaps the Vertical Cavity Surface Emitting Laser
(VCSELS), where the cavity is so short (of the order of
single wavelength), that only one longitudinal mode family
exists. The modifications of the model (1) were success-
fully applied for a study of various cavity-soliton formation
regimes in VCSELS [16,17]. However for the other types
of lasers, even for the micro-lasers, like the microchips or
broad area semiconductor diodes (edge emitting lasers),
where the resonator length is typically of order of mil-
limeter, the resonator supports thousands of longitudinal
mode families, and the MBE model (1) is not applicable in
a strict sense. On the other extreme, the fiber lasers, typ-
ically of meter- and kilometer length resonators (see e.g.
revue [24]), is completely out of the scope of applicability
of the single-longitudinal-mode MBE models (1).

Sometimes it is erroneously assumed that a very nar-
row gain line (small values of γ⊥) can justify the valid-
ity of the single longitudinal mode model (1). For in-
stance if the gain line is narrower than the free spec-
tral range (the frequency separation of the longitudinal
modes), γ⊥ � Δω⊥, which for instance is the case in typi-
cal gas-lasers, then the single longitudinal mode approach
is considered legitimate. This is correct only for the case
of also single, or very few, transverse modes (for instance
if the higher order transverse modes are suppressed by the
aperture in the resonator), however it is incorrect for the
broad-aperture lasers. Figure 1 illustrates the situation.
Each longitudinal mode family contains many transverse
modes (which degenerates into a continuum of modes in
in the case of infinitely broad aperture), and the longitu-
dinal mode families overlap in frequency domain. I.e., as
follows from the Figure 1, even extremely narrow gain line

can support simultaneous emission on several longitudinal
mode families.

The situation illustrated in Figure 1 is typical for many
micro-lasers. Therefore for a correct description of the field
dynamics in such lasers, the single mode MBE model (1)
is to be revisited.

One possibility to solve the problem is the use more
complete models, where the field propagation along the
resonator is explicitly considered. Technically the time
evolution operator in (1a) is to be substituted by ∂/∂t →
∂/∂t± c∂/∂z for the forward-backward propagating field
components, and the boundary conditions are to be con-
sidered to link the forward-backward fields on the cavity
mirrors. The round-trip model showed itself to be suc-
cessful to simulate the fields in broad area edge-emitting
micro-lasers [25,26], where only one transverse coordinate
(and of course longitudinal coordinate) is relevant. How-
ever for the fully 3D lasers, like for instance microchip
lasers, where one should consider the field distributions
in both transverse directions, the full MBE simulations
are hardly possible (with some small exceptions, for in-
stance [27] for the passive nonlinear optical systems).
Moreover, the round-trip models, because of their struc-
tural complexity, do not allow analytical insights on the
pattern formation.

Another approach is based on the introduction of field
delays in the right side of MBE (1a) which in principle
allows multi-longitudinal mode treatment [28,29], however
is also not very convenient from the viewpoint of numerical
simulations, nor for the analytical insights.

Here we propose a relatively simple modification of
MBE (1) for the multi-longitudinal mode lasers, such as
microchips, extending it into the case of several longitu-
dinal mode families. The model could be extremely use-
ful for the lasers with spatially modulated cavities, i.e. for
the cavities containing inside the photonic crystals [30,31],
which up to now were simulated using complicated and
time consuming models.
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2 Multi-longitudinal mode MBE

We expand the electromagnetic field into set of longitudi-
nal mode families:

E(r, t) = exp(iω0t)
∑
m

Em(r, t)

× exp(2πimz/L)E(r⊥, t) + c.c., (3)

the complex envelopes of each field component depend
only on transverse coordinates r⊥ = (x, y), but no more
on the longitudinal coordinate. Generally, one could ex-
pand the polarization P (r, t) and the population inversion
D(r, t) as well, in analogous way as (3), which at the end
results in a coupled equation system for each longitudi-
nal mode component (see for instance [1]). This however
does not reduce the complexity of the problem: instead of
explicit dependence of the fields on z-coordinate one has
just their expansions in Fourier series. However, for the
case of typical microchip lasers the amplifying media is
a thin slice, significantly thinner than the length of the
resonator, the material fields (polarization, population in-
version) can be considered as two-dimensional functions
within this slice. Under the latest assumption, the MBE
can be written in a relative simple way:

∂Em

∂t
=

[− (1 + iωm) + id∇2 + iV (r⊥)
]
Em + P, (4a)

∂P

∂t
= −γ⊥ [P + ED] , (4b)

∂D

∂t
= −γ||

(
D − D0 +

EP ∗ + E∗P
2

)
, (4c)

with E(r, t) =
∑
m

Em(r⊥, t), which is simply the expan-

sion (3), choosing without the loss of generality the ref-
erence coordinate z = 0 on the narrow slice of the active
media. Note, that in (4a) each field component contains
a different detuning, ωm = ω0 + mΔω⊥, therefore the (4)
cannot be further simplified by simple addition of the field
components in (4a).

The rest of the article is devoted to the study of (4)
for the case of several longitudinal mode families. In some
situations, the dynamics of multi-longitudinal-mode case
does not lead to principal differences from single longi-
tudinal mode dynamics (where only the nearest-to-axis
transverse modes are considered), in particular in cases
when the radiation on other longitudinal mode families
is suppressed, however in some cases the multimode ef-
fects are important. The multi-longitudinal mode effects
are especially important in case of intracavity scattering
between different mode families, due to for instance in-
tracavity photonic crystal, or the intracavity diffraction
grating [30,31]. The latter situation is shortly considered
in the concluding part of the article.

3 Important simplifications

In many relevant cases the (4) allows convenient simpli-
fications. One important class of the lasers is when the

polarization is fast compared with the relaxation of the
optical field, and population inversion: γ⊥ � 1, γ||. For in-
stance semiconductor lasers fell into that class. In this case
polarization can be adiabatically eliminated from (4b),
∂P
∂t = −γ⊥ [P + ED], leading to:

∂Em

∂t
=

[− (1 + iωm) + id∇2 + iV (r⊥)
]
Em + ED, (5a)

∂D

∂t
= −γ||

(
D − D0 + D |E|2

)
. (5b)

Here as above, E(r, t) =
∑
m

Em(r⊥, t).

Another important limit is the class-A laser, when the
relaxation of population inversion is also fast, γ⊥, γ|| � 1.
Then (4) and (5) further reduces to:

∂Em

∂t
=

[− (1 + iωm) + id∇2 + iV (r⊥)
]
Em +

ED0

1 + |E|2 ,

(6)
or in case of cubic approximation: 1/(1 + |E|2) ≈ 1− |E|2
valid close to the lasing threshold, (D0 − 1) � 1:

∂Em

∂t
=

[− (1+iωm)+id∇2+iV (r⊥)
]
Em+D0E−E|E|2,

(7)
which is an analog of the Complex Ginzburg-Landau
Equation (CGLE) derived for a single longitudinal mode
laser [4,6,9,10]. Here (7) comprises a system of CGLEs
mutually coupled through the term D0E = D0

∑
Em

as well through the saturating nonlinearity E |E|2 =
(
∑

Em)2
∑

E∗
m. Each of the CGLEs in a system has dif-

ferent (equidistantly distributed) detunings ωm = ω0 +
mΔω||, like in original multi-longitudinal mode MBE (4).

Note, that the multi-longitudinal mode CGLE (7) in
the passive cavity limit D0 → 0, with additional injection
term, could be called by multi-longitudinal mode Lugiato-
Lefever model.

4 Linear stability analysis

We consider the zero solution of (4a), (4b): Em = 0,
P = 0, D = D0 (the point of the switching-on of a
laser), and perturb it by the modes of spatial modula-
tion: Em = em exp(ikx), P = p exp (ikx), em, p � 1. The
evolution matrix for the perturbation modes in (4) reads:

M̂ =⎡
⎢⎢⎢⎢⎢⎣

−γ⊥ γ⊥D0 γ⊥D0 . . . γ⊥D0

1 −1 − iω1 − idk2 0 . . . 0

1 0 −1 − iω2 − idk2 . . . 0

. . . . . . . . . . . . . . .

1 0 0 . . . −1 − iωN − idk2

⎤
⎥⎥⎥⎥⎥⎦

,

(8)

which is a matrix of rank (N + 1) for the N longitudinal
mode families. Note that the (4c) decouples from the rest
of (4), and the corresponding variable does not appear
in (8), i.e. the rank is not (N+2). The perturbation column
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Fig. 2. Linear stability analysis showing the multiple instabil-
ity areas corresponding to multiple longitudinal mode families.
The calculations for single mode lasers at the same detuning
is shown for comparison by red curve. Parameters used: d = 1,
ω0 = 2, Δω‖ = 5, D0 = 2, γ⊥ = 0.1.

vector is (p, e1, e2, . . . , en)T . Calculation of the eigenvalues
of (8) leads to the following implicit expression:

∑
m=1,N

γ⊥D0

(1 + λ + iωm + idk2)
− γ⊥ − λ = 0. (9)

The eigenvalues can be calculated numerically solving
the (9), which leads directly to the multiple instability
areas (see Fig. 2), which are compatible with the initial
intuition, illustrated in Figure 1.

5 Numerics

First, we simulated an idealized case of infinitely large
aspect ratio laser without flat cavity mirrors, and with
homogeneous pump profile. The radiation then fills the
complete transverse space. Technically, it is convenient
to use periodic boundary conditions in the lateral direc-
tion, which naturally occur due to discrete Fourier space
in split-step method used.

Such numerical simulations first at all reproduce the
multiple instability areas, following from the linear stabil-
ity analysis. We simulate the 2D case, and the collection
of results is presented in Figure 3. In particular, the mul-
tiple rings are visible in the far fields in Figure 3, where
we show the snapshots of far field in a transient stage for
the amplifying noise above the generation threshold.

Most frequently the final nonlinear patterns (the pump
above the threshold, after the transients) show nothing
spectacular with respect from single-longitudinal-mode
model. Depending on the situation (the pump level, re-
laxation rates), one eventually obtains tilted wave pat-
terns, with the tilt angle depending on the detuning [10],
or square vortex lattices [32,33]. If in single longitudinal
mode laser the different domains of tilted waves always be-
long to the same longitudinal mode family (they have dif-
ferent orientation), now sometimes the tilted waves from
different domains sometimes can belong to different mode.
Typically the tilted wave belonging to the most close to
resonance longitudinal mode family survives and domi-
nates the asymptotic regime. The scenarios in general is
quite similar to the ones found in single-longitudinal mode

models in this simplest case of infinitely extended “pure”
laser [34].

In the case of parabolic resonator mirrors, which cor-
respond to the trapping parabolic potential in transverse
domain, the scenario is usually more involved. One can
distinguish between the weakly nonlinear regimes occur-
ring for the pump level close above the generation thresh-
old, which essentially are the transverse modes or coupled
states of modes of the cavity, Figure 4 the upper row. For
the pump values stronger above the generation threshold
one observes the “essentially nonlinear” patterns, where
the field distributions are different from the superposition
of small number of transverse modes. The essentially non-
linear patterns are the domains of tilted waves, Figure 4,
bottom row shows typical pictures of multi-longitudinal
mode laser emission, where the transverse modes from
different longitudinal mode families lock to the patterns
dominated by tilted waves. In this case, due to symmetry a
stationary concentric travelling wave pattern is obtained,
or sometimes containing a vortex in the middle.

6 Intracavity modulation

Typically the multi-longitudinal-mode laser does not leads
to spectacular differences from the single longitudinal
mode cases, since the different longitudinal mode families
compete, and most frequently finish with single longitudi-
nal mode. In some cases, however, the multi-longitudinal
mode study is more important, for instance, when the re-
fraction index in the cavity is spatially modulated. Spatial
modulation can couple the modes from the several longi-
tudinal mode families, and in some cases, especially when
the coupling is resonant, this can lead to essentially multi-
longitudinal-mode. We consider for simplicity a particular
case of factorable modulation in transverse and longitu-
dinal directions ε (r) = ε⊥ (r⊥) · ε|| (z). In particular we
consider periodic modulation in transverse space, and the
arbitrary modulation along the resonator axis. In simplest
case it could be considered as diffraction grating in the
cavity.

Using the same expansion (3), the (4a) modifies to:

∂Em

∂t
=

[− (1 + iω) + id∇2 + iV (r⊥)
]

× Em + P +
iπLfε⊥(r⊥)

λ

∑
l

ΓlmEl. (10)

The last right side term is responsible for the coupling
between the mode families, where the coupling coefficient
matrix is given by:

Γlm =
∫

Al(z)ε‖(z)A∗
m(z)dz, (11)

where the longitudinal mode functions Am (z) ∝
exp (im2πz/L) of unperturbed resonator ε|| (z) = 1 are
normalized so that Γll = 1.

http://www.epj.org


Eur. Phys. J. D (2017) 71: 257 Page 5 of 6

Fig. 3. Near-far field patterns (a), (c), (e) and their corresponding far field patterns (b), (d), (f) in different times in infinitely
broad aspect-ratio lasers with flat cavity mirrors and homogeneous pump profile. The parameters as in Figure 2. Starting from
a random distribution, the field evolves into multi-ring structure (five rings, as five longitudinal modes were considered). In the
course of evolution the highest longitudinal mode (the ring of smallest radio) survives. The integration was performed on a grid
(128 × 128) with the size of integration region 32 with d = 1.

Fig. 4. Patterns for multi-mode lasers with parabolic mirrors. (a–d) Near threshold patterns (at different detunings), which are
identic with the corresponding patterns in single-longitudinal mode laser. The row is essentially single transverse modes (a, b),
or combinations of modes belonging to degenerated higher order transverse mode families. (e, g) Together with corresponding
far field distributions (f, h) are the patterns dominated by tilted waves at higher pump-above-threshold values. The parameters
are as in Figure 3, except for the parabolic mirrors, which result in separation between transverse modes Δω⊥ = 0.3.

The coupling matrix explicitly written has the
structure:

Γlm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ0 γ1 γ2 γ3 . . .

γ∗
1 γ0 γ1 γ2 . . .

γ∗
2 γ∗

1 γ0 γ1 . . .

γ∗
3 γ∗

2 γ∗
1 γ0 . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Note that the coupling matrix possess symmetries: Γlm =
Γ ∗

ml as ε|| (z) is real valued, and Γlm = γl−m (a multi
diagonal-like structure). In limiting case, when the index
is modulated on an infinitesimally thin plate ε|| (z) = 1 +
Δε · δ (z) (thin diffraction grating), the matrix elements
are equal Γij = γi−j = Δε for all i and j.

The detailed analysis of (10) is out of scope of the
present article. It is provided here just with the purpose to
demonstrate that the multi-longitudinal mode approach
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can be extended to more complicated cases of the modu-
lated resonances.

7 Conclusions

In conclusion we have presented an extension of the single-
longitudinal-mode MBE model for the multi-longitudinal-
mode case. We proofed the derivation by calculation of
basic cases: the linear stability analysis, and the simplest
tilted-wave and mode patterns. We also provided the hi-
erarchy of multi-longitudinal-mode models, starting from
the full MBE, then simplifying it in the case of fast relax-
ation of polarization (e.g. semiconductor laser models),
and finally to multi-longitudinal-mode CGLE and multi-
longitudinal-mode Lugiato-Lefever model in cases of class-
A lasers.

Finally, we proposed that the approach can be use-
ful to treat the complicated cases when the intracavity
material is modulated on a wavelength scale, which could
result in coupling between the longitudinal and transverse
modes. This would be a convenient model for a row of new
phenomena in the latest situation (laser with intracav-
ity photonic crystal), the situation inaccessible by single-
longitudinal mode models.
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985048), from Spanish Ministerio de Ciencia e Innovación, and
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