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Abstract— Achieving accurate, high-rate pose estimates from
proprioceptive and/or exteroceptive measurements is the first
step in the development of navigation algorithms for agile
mobile robots such as Unmanned Aerial Vehicles (UAVs). In this
paper, we propose a decoupled multi-sensor fusion approach
that allows the combination of generic 6D visual-inertial (VI)
odometry poses and 3D globally referenced positions to infer
the global 6D pose of the robot in real-time. Our approach
casts the fusion as a real-time alignment problem between the
local base frame of the VI odometry and the global base frame.
The quasi-constant alignment transformation that relates these
coordinate systems is continuously updated employing graph-
based optimization with a sliding window. We evaluate the
presented pose estimation method on both simulated data and
large outdoor experiments using a small UAV that is capable to
run our system onboard. Results are compared against different
state-of-the-art sensor fusion frameworks, revealing that the
proposed approach is substantially more accurate than other
decoupled fusion strategies. We also demonstrate comparable
results in relation with a finely tuned Extended Kalman Filter
that fuses visual, inertial and GPS measurements in a coupled
way and show that our approach is generic enough to deal with
different input sources in a straightforward manner, as well as
able to run in real-time.

I. INTRODUCTION

Navigation and control of Unmanned Aerial Vehicles
(UAVs) requires precise and timely knowledge of the six
degree-of-freedom robot pose (position and orientation)
within space at any time. Though a plethora of systems
and algorithms have been proposed in the past to address
robot pose estimation, they are usually tailored to a single
input source or to a very specific sensor suite. This makes
them very sensitive to individual sensor failure modes and
do not guarantee 100% availability necessary in real-world
conditions.

As a result, literature has turned to more sophisticated
approaches for multi-sensor data fusion. In this context, re-
cent advances in robot state estimation combining cues from
cameras and Inertial Measurement Units (IMU) have shown
promising results for enabling robots to operate in mostly
unstructured scenarios [1], [2]. However, these Visual-Inertial
(VD) odometry algorithms accumulate errors in position and
heading over time due to sensor noise and modelling errors.
While the effect of such drift might be insignificant for small
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Fig. 1: The top view of the environment where the experiments
presented in this paper were carried out. The red line represents the
trajectory of one of the performed flights. The platform used is the
AscTec Neo hexacopter, shown in the inset.

trajectories, reliable large-distance operation requires com-
plementing VI odometry with localization measurements in
a global reference frame. As in most state-of-the-art robotics
systems, in this work we address this problem using global
position measurements, such as GPS, to introduce globally
referenced information into the proposed pose estimation
framework.

VI odometry and global pose sources offer complemen-
tary properties, which make them particularly suitable for
fusion. On the one hand, VI odometry measurements are
usually available at high frequencies, locally smooth and
do not require previous knowledge about the environment.
However, as aforementioned, these accumulate drift with
growing distance from the starting point and they are not
globally referenced (only an estimate of the robot pose with
respect to the starting point of the trajectory is supported).
On the other hand, estimates from global pose sources are
globally referenced and their error is independent of the
travelled distance. However, they are usually available at low
frequencies, provide more noisy pose estimates and require
previous knowledge (reference maps) or artificial modifica-
tion (satellite placement, need of ground stations, etc.) of the
environment. Combining both types of measurements in a
graph-based multi-sensor fusion framework, our goal here is
to estimate a trajectory, which is locally smooth and globally
referenced at the same time.



In this paper, we present an approach for multi-sensor data
fusion that decouples pose estimation from sensor fusion and
can be executed online and in real-time. Pose estimation
is formulated as a base frame alignment problem between
local frame of the VI odometry and the global coordinate
frame. The estimation of the transformation that relates both
reference frames is continuously updated by running a sliding
window graph-based optimization, leading to the maximum
likelihood estimate over the joint probability distribution of
robot poses in the current window. Our framework deals with
multi-rate, generic sources, non-constant input frequencies
and time-varying latencies in a simple and effective manner.

In brief, the main contributions of this paper are:

« anovel, efficient and accurate localization system based
on the fusion of generic VI odometry 6D pose and
global 3D position inputs,

o a novel graph construction strategy that is especially
designed to achieve reliable global orientation estimates
when only 3D global position measurements are avail-
able,

e an evaluation of the system’s performance in both
simulated and large outdoor flights over 1km, and

o demonstrated improvement of 1.5x to 3x in pose estima-
tion accuracy when comparing our approach with two
of the most popular state-of-the-art VI-SLAM systems.

II. RELATED WORK

Most multi-sensor data fusion for navigation systems that
currently appear in the literature can be categorised into
filtering-based or smoothing approaches.

Conventional filtering-based approaches usually employ
some variant of the Kalman filter. For example, in the context
of small UAVs, Weiss et al. [3] propose an Extended Kalman
Filter (EKF) to fuse inertial measurements with GPS data and
a camera-based pose estimate. Their work is generalized by
Lynen et al. [4] to a modular multi-sensor fusion framework
based on the iterated EKF formulation. In both cases, the
propagation step is driven by high frequency inertial mea-
surements, making the IMU an indispensable sensor on the
system, and a lot of effort is put to align all other, potentially
delayed, sensor readings with the states. With the same goal
of achieving precise knowledge of position and orientation,
especially in highly dynamic operation of robots, Bloesch et
al. [1] propose an EKF-based VI odometry framework able to
correct its pose estimate by integrating external pose updates,
such as GPS measurements. Though all of these works report
satisfactory results, the filtering-based approaches have in
common that they restrict the state vector to the most recent
state, hence marginalizing all older information, and it is
mainly due to this reason that they perform suboptimally
when compared to smoothing, as revealed in [5].

In contrast to filtering techniques, smoothing approaches
formulate sensor fusion as a graph-based nonlinear least
squares optimization problem. Using all past measurements
up to the current one and optimizing the entire trajectory
is commonly referred to as online batch estimation. This
leads to a maximum likelihood estimate over the joint

probability of robot poses and produces statistically optimal
results. Despite that incremental smoothing techniques, such
as iSAM2 [6], are able to keep the problem computationally
tractable, an important drawback of this approach lies with
the fact that the full state vector is kept in memory over
the entire trajectory, thus limiting its applicability to systems
without memory constraints or having short operation times.

An alternative to incremental smoothing techniques are the
so-called sliding window filters, which keep the size of the
state vector bounded by marginalizing out older states. In this
context, Rehder et al. [7] propose a sliding window graph-
based approach capable of localizing a vehicle in the global
coordinate frame by using inertial measurements, long range
visual odometry and sparse GPS information. Similarly,
Merfels and Stachniss [8], [9] use a sliding window pose
graph to fuse multiple odometry and global pose sources
for self-localization of autonomous cars. The method that
we present in this paper is closest to these approaches in
the sense that it treats the fusion problem as a non linear
optimization over a history robot poses with a graphical
representation. However, after each optimization cycle we do
not directly output the most recent estimated state. Instead,
following the methodology presented in [10] and [11], we use
the optimal solution to infer a base frame transformation that
constantly realigns the local base frame of the VI odometry
with the global base frame. The advantage of the approach
we present here, over [10] and [11], is its ability to achieve
global localization without previous knowledge about the
environment (e.g. a reference map).

With the proposed method, the global pose of the robot
can be estimated whenever a VI odometry pose measurement
becomes available by simply applying the transformation
that aligns it with the global coordinates, thus introducing
minimal delay with respect to the time that the measure-
ment is acquired. Taking advantage of the fact that the VI
odometry measurements tend to be locally precise (meaning
that the transformation between the VI odometry and the
global frames stays quasi-constant over short periods of
time), the proposed framework allows reducing the frequency
of the optimization cycles w.r.t. the output rate of pose
estimation without significantly diminishing accuracy. This is
not possible in most state-of-the-art graph-fusion systems [7],
[8], [9], in which the required output frequency determines
also the frequency of the optimization cycles.

II1. METHODOLOGY

Similarly to [10] and [11], we formulate the global lo-
calization task as a rigid base frame alignment problem
between a local coordinate frame (VI odometry reference
frame) and the global coordinate frame. In our case, this is
addressed by posing a sliding window graph-based multi-
sensor fusion problem that constantly seeks the most recent
N optimal, globally referenced, robot states. The solution of
each optimization cycle is used to update the quasi-constant
transformation between the local and the global base frames,
thus allowing a smooth realignment of the VI odometry pose
estimates to the global base frame.
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Fig. 2: The frame setup of our pose estimation system.

Figure 2 depicts the frame setup of our pose estimation
system. Each frame is connected with a certain homogeneous
transformation 7" to another frame. The global base frame G
is world fixed and serves as the origin for all global position
measurements. The local base frame L forms the origin of
the VI odometry pose estimates and is originally placed at
the starting point of the trajectory. The body frame B is
rigidly attached to the robot’s centre of mass and the camera
frame C' is centred in the respective sensor of the robot.

Based on visual and inertial information, the VI odometry
estimates the transformation Tz between the local base
frame L and the body frame B. For the purpose of this
section, we assume that the transformation g7~ between
the body frame and the camera frame is calibrated online
by the VI odometry. Additionally, a GPS sensor provides
the 3D position of the body frame in global coordinates,
apB- The final goal of the online localization is to estimate
the transformation 7'z in real-time. This transformation
can also be expressed as the product of the quasi-constant
transformation between the global and local base frames,
a7, which is calibrated online by our multi-sensor fusion
framework, and the input VI odometry pose estimate, ;7T3.

Using this approach, we are able to output a globally refer-
enced pose estimate each time a VI-odometry measurement
is available and with minimal delay with respect to the time it
is acquired. This allows us to decouple the output rate of the
localization system from the frequency of the optimization
cycles, as they are only used to update the transformation
between the global and the local base frames, ¢77,. Since
the VI odometry pose estimates are supposed to be locally
precise, the frequency of the optimization cycles can be
slightly lower than the output rate of the localization system
without inducing considerable losses in accuracy. This way,
we are able to achieve accurate, real-time global localization
with less frequent optimization cycles than conventional
approaches, which directly output the most recent optimal
state each time a graph optimization is performed.

Below we describe each stage in the process of estimating
the base frame transformation ;77 by means of a sliding
window graph-based multi-sensor fusion approach.

A. Time alignment of input data

Integrating input sources with unknown time behaviour
is not straightforward as we have to deal with multi-rate
sources, non-constant input frequencies and out-of-sequence

estimates. Similarly to [8] and [9], our approach consists in
buffering all incoming data before the next graph construc-
tion phase. Sorting the data by time allows integrating of
out-of-sequence data in a natural way.

At the start of each cycle and in order to force a proper
graph structure to solve the multi-sensor fusion problem, the
buffered local and global measurements need to be time-
aligned. To achieve that, we match each available global
measurement with the VI odometry pose estimate that has
the closest timestamp and we make them virtually point to
a same instant in the past. This strategy is based on the
assumption that the output rate of the VI odometry is much
higher than the output rate of the GPS sensor. As detailed
in section IV, we design a specific experimental setup, in
which the VI odometry pose estimates and the GPS readings
are provided at frequencies of 100Hz and 5Hz, respectively,
meaning that the maximum expected delay between matched
measurements is Sms.

B. Graph construction

Our approach to multi-sensor fusion consists in construct-
ing and solving a nonlinear optimization problem over a
limited history of sensor measurements and robot states that
can be represented as a sliding window pose graph. The
graph consists of a set of nodes that represent past, globally
referenced robot poses at discrete points in time. Sensor
measurements induce constraints on these robot poses and
are modelled as edges connecting the nodes of the graph.

In contrast to related graph-based approaches [7], [8],
[9], we do not generate a node every time a VI odometry
pose estimate is available nor tie its generation to a specific
time step, which requires lots of interpolations between
measurements [8]. Instead, we generate a new node only
when a pair of time-aligned local and global measurements is
found. By doing this, we increase the temporal resolution of
the graph, thus reducing both the number of nodes contained
in each window and the time needed to solve the optimization
problem.

1) The conventional graph structure: A common way to
construct the graph is to distinguish between local mea-
surements (VI odometry), that induce edges between two
successive nodes, and global measurements (GPS), which
impose constraints on the position in a global coordinate
frame. By introducing a virtual zero node G at the origin
of the coordinate system into the graph (see Figure 3),
both classes of constraints can be treated in a unified way
[7]. However, as we demonstrate in section IV, if only 3D
positions are available as global measurements, this approach
is prone to yield wrong global orientation estimates.

2) Adding an extra virtual node to restrict orientations:
In order to constrain absolute orientation, Rehder et al. [7]
employ accelerometers as inclinometers. Here, we propose
to add a second virtual node £ at the origin of the local
coordinate system, which is constrained in the global coordi-
nate frame by the current estimation of the rotation between
the local and the global base frames. In this new approach,
VI odometry measurements induce two types of constraints:



Fig. 3: Comparison between the conventional graph structure (top)
and the structure proposed in this paper (bottom). Green arrows
represent the constraints generated by global position measure-
ments, whereas magenta arrows represent the constraints generated
by VI odometry pose estimates. Note that in our approach VI
odometry measurements induce two types of constraints: position
constraints between consecutive nodes and orientation constraints
between each node and the virtual £ node. The virtual £ node
tracks the orientation between the VI odometry local frame and
the global reference frame, thus providing a prior to obtain reliable
global orientation estimates.

orientation constraints between the virtual £ node and each
other node in the graph, and position constraints between
consecutive nodes. A comparison between the conventional
graph structure and the one that is proposed in this work is
illustrated in Figure 3.

During each graph construction phase, the constraint relat-
ing the virtual G and £ nodes is updated with the £ optimal
pose obtained in the previous optimization cycle, which
stores the optimal rotation between the local and global
base frames given the history of measurements contained
in the sliding window. This strategy requires a method to
initialize the mentioned constraint in the first graph con-
struction phase. For that, we formulate a standard least-
squares fitting problem between two sets of time aligned
global and local 3D position measurements acquired during
an initialization period. The solution, which can be obtained
using the approach based on singular value decomposition
proposed in [12], is the optimal transformation between the
local and the global base frames after the initialization period
and thus can be applied as a constraint between the virtual
G and £ nodes in the first graph construction phase.

C. Graph optimization

Once the graph is built, optimizing it consists in finding
the configuration of nodes that best fits all the available
measurements, which are subjected to noise. We assume this
noise to be additive, white and normally distributed with zero
mean.

Our approach exploits the well-established graph-based Si-
multaneous Localization and Mapping (SLAM) formulation
[13], but applies it to the case of sensor data fusion. Let

x = (x1, ...,xm)T be the state vector, where x; = (pi,q;)
describes the global pose of the node ¢, with p; being the
position and q; the orientation of the robot. Consider also
a set of measurements, with z;; = (p;;, q;;) and Q;; being
the mean and the information matrix, respectively, of a single
measurement relating the node ¢ and the node j (we denote
by p;; and q;; the translation and rotation both measured
from node ¢ to node j). The least squares estimation seeks
the state x* that best explains all observations given the /5
norm. This is equivalent to solving the following equation:

x* = argmin Z eg;ﬂijeija (1
(i,7)€C

where C denotes the set of pairs of indices, for which a
measurement is available and e;; = e (x4, Xj, Z; j) is a vector
error function that measures how well the constraint from
the measurement z,; is satisfied. In our case, the information
matrices {2;; are the inverses of the measurement covariance
matrices. Additionally, in order to increase the robustness
against outliers, we apply the Pseudo-Huber cost function to
all constraints.

The solution of (1) can be found by linearising the
equation around an initial guess X, which leads to iteratively
solving a linear system with the system matrix H and the
right-hand side vector b such that

H= Y J; %" Q,J; %), 2)
(i.5)ec
bT = Z eg;—ﬂij.]l‘j (5(), (3)
(i,5)€C

where J;; (X) is the Jacobian of the error function computed
in X. For a more detailed explanation, we refer the reader
to [13]. To effectively solve the non-linear optimization
problem, we use the Google Ceres Solver [14].

D. Base frame transformation estimation

After each optimization cycle, instead of sending out the
most recent optimal robot pose, we perform an additional
step that realigns the VI odometry frame to the global coor-
dinate frame. The transformation between the VI odometry
and the global coordinate frames is captured by estimation
of a base frame transformation 477, that can be expressed
as

¢Tr =¢ T Tg", )

where T denotes the most recent optimal, globally ref-
erenced robot pose and ;T is the VI odometry local pose
estimate that is time-aligned with this most recent state.

In a practical sense, the quasi-constant base frame trans-
formation 477, captures the unobserved global position and
orientation and the drift of the VI odometry. By running
the optimization cycles at a sufficiently high frequency, our
approach provides a way to realign the VI odometry pose
estimates with the global reference frame and correct the
mentioned drift in a smooth way.



E. Graph update

At the beginning of a new graph construction phase,
we generate as many new nodes as the number of global
measurements acquired during the previous cycle. To keep
the size of the graph constant, we simply discard older nodes
that do not lay inside the sliding window at the current time.
The virtual nodes G and £ are always maintained in the
graph.

After adding the new nodes into the graph, the time-
aligned local and global measurements received in the previ-
ous cycle are mapped as edges between them. Additionally,
the constraint relating the virtual nodes G and £ is updated
with the £ optimal transformation obtained in the previous
cycle. Finally, the optimal poses obtained in the previous
cycle are used as initial guess in the new optimization
problem. This leads to an effective and efficient solution in
practice as very few optimization steps are usually sufficient
to integrate the new information of the current time step.

IV. EVALUATION

This section presents our experimental evaluation of the
proposed framework. We first introduce a brief description
of the pose estimation system that has been used in this work
and then we evaluate the performance of our algorithm on
both simulated and real data.

A. Overview of the pose estimation system

Figure 4 shows the online pose estimation system with
which all the experiments presented in this paper have been
conducted. In a first step, based on the information provided
by a camera and an IMU mounted together on a single
visual-inertial sensor attached to the UAV, the VI odometry
estimates the pose of the camera in local coordinates. We
test the performance of the system with both OKVIS [2], a
keyframe-based VI odometry framework that uses nonlinear
optimization, and ROVIO [1], an EKF-based VI odometry
approach. Secondly, the Multi Sensor Fusion Framework [4]
(MSF) fuses the camera pose from the VI odometry with the
measurements acquired by the UAV’s IMU and estimates
the pose of the UAV body frame in local coordinates.
This is what we refer to as our VI odometry input in the
following subsections. Finally, our GOMSF framework fuses
the local UAV poses provided by MSF with GPS position
measurements and estimates the pose of the UAV in global
coordinates. We also run the pose estimation framework
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Fig. 4: Overview of the proposed pose estimation system, which is
referred to as GOMSF(OKVIS/ROVIO) in the following subsections.
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Fig. 5: Overview of the sensor fusion approach based on the MSF
EKF for global pose estimation, using ROVIO as VI odometry
input. Experiments performed with this pose estimation framework
are labelled as MSF(ROVIO) in the following subsections.
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Fig. 6: Overview of the sensor fusion approach based on the
ROVIO EKEF for global pose estimation. Experiments performed
with this pose estimation framework are labelled as ROVIO+GPS
in the following subsections.

using the conventional graph-based sensor fusion approach
(CGSF) showed in Figure 3 to demonstrate the benefits of
adding the virtual £ node in the graph, as proposed in this
paper. The overall system runs in real time at the frequencies
detailed in Figure 4.

To test the accuracy of the proposed system, we compare
our results against the solution obtained with two state-
of-the-art, filtering-based sensor fusion strategies: the first
one consists in fusing the UAV’s IMU measurements, the
VI odometry pose estimates and the GPS readings together
in the MSF, as proposed in [3], whereas the second one
consists in integrating the GPS position updates directly into
ROVIO and fusing its output with the UAV’s IMU readings
by means of the MSF, as presented in [15]. Diagrams of
these alternative approaches are shown in Figures 5 and 6,
respectively.

B. Experiments with synthetic input data

The following experiments are designed to show that the
proposed multi-sensor fusion framework is able to effectively
estimate the global 6D pose of the UAV given a set of
locally referenced 6D poses and 3D global positions. We
also demonstrate that adding the virtual £ node in the graph
notably increases accuracy.

To carry out the experiments, we use inertial data and exact
6D ground truth extracted from simulated flights generated
with the gazebo simulator!. Visual data is created in blender?
by exporting the simulated trajectories into a virtual 3D
scenario. Finally, global position estimates are generated at

lhttp: //gazebosim.org
2https ://www.blender.org
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Fig. 7: The virtual scenario used to generate visual data.

runtime with a frequency of 5SHz by adding Gaussian noise
to the ground truth positions.

We evaluate the online pose estimation on five different
simulated flights performed with the camera pointing forward
and over the same virtual scenario: a mining quarry (Figure
7) of approximately 250m x 200m. In all of these experi-
ments we run OKVIS to get the VI odometry pose estimates.
The standard deviation of the noise used to generate the
global position estimates is 0.5m in the X and Y axes and
0.75m in the Z axis.

An example of our framework’s input and output data
corresponding to flight 2 is shown in Figure 8. As explained
above, our inputs are noisy GPS 3D position measurements
and VI odometry 6D pose estimates that accumulate drift
with the travelled distance. The output of GOMSF is a set
of globally referenced poses that follow the ground truth
closely, providing more accuracy and smoothness than the
simulated GPS raw measurements, while diminishing the VI
odometry drift effects.

Figures 9 and 10 illustrate the temporal evolution of
the position and orientation errors obtained when running
GOMSF in flight 2. Additionally, we plot the errors that are
obtained using the conventional graph-based sensor fusion
strategy (CGSF), that is, representing the 6D pose mea-
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Fig. 8: Input data (left) and estimated global trajectory (right)
compared against exact ground truth for flight no. 2. Note that VI-
odometry pose estimates (obtained by running OKVIS and MSF)
have been aligned with the ground truth at the beginning of the
trajectory to facilitate the visualization of the drift.
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Fig. 9: Comparison between the position errors obtained using the
conventional graph structure (no £ node) and our approach in flight
2. Also GPS position errors are plotted to provide an insight of how
noisy GPS measurements are.
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Fig. 10: Comparison between the orientation errors obtained using
the conventional graph structure (no £ node) and our approach in
flight 2. Orientation errors are expressed using the roll-pitch-yaw
(¢, 6, 1) convention.

surements as constraints between successive nodes without
adding the virtual £ node in the graph (see Figure 3). Note
that, in the latter case, we obtain frequent wrong orientation
estimates that also induce significant errors in the estimate
of the robot global position.



Flight 1 2 3 4 5

Travelled dist. [m] | 765.5 | 737.6 | 850.9 | 758.4 | 996.6
mean X error [m] 0.15 0.14 0.21 0.28 0.16
std X error [m] 0.11 0.13 0.18 0.18 0.13
mean Y error [m] 0.23 0.37 0.25 0.20 0.35
std Y error [m] 0.18 0.36 0.23 0.19 0.27
mean Z error [m] 0.13 0.15 0.14 0.14 0.14
std Z error [m] 0.10 0.12 0.11 0.10 0.11
mean ¢ error [°] 0.35 0.53 0.38 1.50 0.44
std ¢ error [°] 0.30 0.37 0.29 0.67 0.64
mean 6 error [°] 0.86 0.95 0.40 1.18 0.90
std 0 error [°] 0.34 0.49 0.26 0.91 0.90
mean ) error [°] 1.19 1.18 1.41 2.53 7.72
std 1) error [°] 0.57 0.74 0.95 1.74 6.16

TABLE I: Mean and standard deviation of the absolute position
and orientation (roll-pitch-yaw) errors in all five evaluated flights
using GOMSF(OKVIS). A sliding window containing the 25 most
recent robot states and updated each 0.3 s is used in all experiments.

Analysing the performance of GOMSF on all five tra-
jectories (Table I), we can see that the mean translation
error lies below 0.4 m in all three axes. Orientations are
estimated with a mean error which is below 1.5° in most
cases except in flights 4 and 5, corresponding to zig-zag
trajectories, where bigger errors in the yaw angle estimates
are obtained. With the approach we propose in this paper, the
output of the sensor fusion framework improves compared
to the individual input sources in all simulated flights (the
mean errors of the GPS raw measurements are approximately
0.4m in the X and Y axes and 0.6m in the Z axis).

C. Experiments in large outdoor flights

The following experiments are conducted on real input
data and are designed to test the generality of GOMSF in
dealing with different VI odometry systems and its ability
to run online on a UAV in comparison to the state-of-the-art
sensor fusion approaches.

In this case, we present the results obtained with three
datasets that were recorded in previous work [11] by per-
forming flights over a vegetable field of 100m x 60m
with the camera pointing downwards. A top view of the
environment and a representation of the trajectory performed
in flight 3 is shown in Figure 1. The visual-inertial data
was collected with the VI-Sensor [16], which is equipped
with two WVGA monochrome cameras running at 20Hz
and an ADIS 16448 MEMS IMU running at 200Hz. Body-
referenced inertial and global position measurements were
acquired by the on-board IMU (200Hz) and GPS (5Hz)
modules of the AscTec Neo hexacopter, carrying the VI-
Sensor. Finally, accurate ground truth 3D positions were
acquired using a Leica Nova TM50 ground station, which
is able to track a prism mounted on the UAV with sub-
centimetre accuracy.

For each dataset, we run GOMSF to fuse the GPS mea-
surements with OKVIS or ROVIO (see Figure 4). We also
run the framework using the conventional graph-based sensor
fusion strategy (CGSF) showed in Figure 3 to demonstrate
that our approach, which adds the virtual £ node in the
graph, leads to better accuracy. Additionally, we compare
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Fig. 11: Temporal evolution of the position errors obtained with
four different sensor fusion systems on dataset 3 of [11].

GOMSF’s performance against the setup of Figure 5 to fuse
ROVIO, GPS and the UAV’s IMU in the MSF and the setup
of Figure 6 to integrate the GPS position updates directly
into ROVIO. In all cases, we evaluate the results against the
Leica ground truth positions (note that we have no way of
capturing orientation ground truth in the real experiments).

Figure 11 shows the temporal evolution of the position
errors obtained when running all systems using ROVIO for
VI odometry on the longest trajectory, which corresponds to
flight 3. A detailed analysis of the mean and the standard
deviation of the absolute translation errors obtained in all
experiments with the tested datasets is provided in Table II.

Though all compared localization systems are able to
provide globally referenced position estimates, results vary
from one approach to another. In all tested datasets, the
lowest mean translation errors are achieved with our graph-
optimization based sensor fusion approach, specially when
OKVIS is used for VI odometry. However, the most interest-
ing interpretation of the results derives from the comparison
between the experiments performed with ROVIO, which
show that, using the same inputs, our algorithm achieves
more accurate pose estimates than the two EKF-based ap-
proaches. With a generic method for fusing 6D locally refer-
enced pose estimates and 3D global position measurements,
we not only outperform the generic MSF framework, but
also ROVIO, which was specifically designed to fuse visual-
inertial data with external position updates. This reinforces
the findings of [5], that non-linear optimization is preferable
to filtering-based methods.

Following this experimental analysis, we observe that any
errors arising with GOMSF during online pose estimation are
mainly obtained in regions where the drift of the VI odometry



Flight 1 2 3

Travelled dist. [m] | 404.1 | 483.3 | 1033.5
MSF mean transl. error [m] 0.69 0.82 0.85
(ROVIO) std transl. error [m] 0.33 0.52 0.53
ROVIO mean transl. error [m] 0.42 0.44 0.64
+GPS std transl. error [m] 0.17 0.20 0.30
mean transl. error [m] 1.01 1.12 0.95
CGSF std transl. error [m] 0.92 1.15 0.79
(ROVIO) | mean comp. time [ms] 11.3 11.7 14.3
std comp. time [ms] 5.8 8.7 18.9
mean transl. error [m] 0.38 0.37 0.46
GOMSF std transl. error [m] 0.22 0.20 0.26
(ROVIO) | mean comp. time [ms] 8.2 8.3 8.5
std comp. time [ms] 2.1 2.1 2.0
mean transl. error [m] 0.97 0.86 0.92
CGSF std transl. error [m] 0.99 0.90 0.78
(OKVIS) | mean comp. time [ms] 8.6 9.0 8.8
std comp. time [ms] 5.7 5.0 5.1
mean transl. error [m] 0.33 0.29 0.43
GOMSF std transl. error [m] 0.16 0.13 0.20
(OKVIS) | mean comp. time [ms] 6.2 6.1 6.2
std comp. time [ms] 1.1 0.8 1.0

TABLE II: Mean and standard deviation of the absolute translation
errors for all experiments in the three evaluated flights. Also the
mean and the standard deviation of the computation time, which
comprises the time needed to build and solve a graph-optimization
problem, is included in the experiments in which GOMSF and
CGSF are used.

increases substantially within a short interval of time. This
issue appears quite frequently when running ROVIO with
the datasets presented here, and it is mainly due to this
reason that the performance of GOMSF is better when paired
with OKVIS instead of ROVIO. This implies that our online
pose estimation could still be improved with a strategy to
detect such fast drifting modes of the VI odometry early and
decrease the corresponding weights during optimization.

In Table II, for the experiments in which the graph-based
sensor fusion approaches (GOMSF and CGSF) are run, we
also include the mean and the standard deviation of the
time needed for constructing and optimizing the graph in
each cycle, which we sum up as computation time. All
GOMSF and CGSF experiments shown here have been
performed using a sliding window with the 25 most recent
UAV states (nodes) and running a new optimization cycle
each 0.25 seconds (approximately each time a new GPS
measurement is available). Note that, for this sliding window
size, the GOMSF’s mean computation time is lower than
10ms (i.e. more than 20 times smaller than the period of
the optimization cycles) in all experiments, which ensures a
consistent behaviour of the framework.

V. CONCLUSIONS

The multi-sensor fusion approach GOMSF presented in
this paper is motivated by the need of accurate, high-rate
pose estimates during long-term operations performed with
UAVs in unstructured outdoor environments. We fulfil these
requirements by proposing a sliding window graph-based
optimization scheme that continuously realigns the odometry
pose estimates with the global reference frame. Furthermore,
we describe a particular graph structure that allows us to

obtain reliable global orientation estimates given only 3D
globally referenced positions.

The proposed system is first evaluated on simulated flights
revealing its ability to infer reliable global position and
orientation estimates. Tests on real outdoor flights against
popular state-of-the-art VI-SLAM approaches reveal consis-
tently more robust and accurate performance of GOMSEF,
especially when the system runs together with a key-frame
based VI odometry framework (OKVIS).

Future directions will focus on detecting significant drift in
the VI odometry pose estimates and account for this during
optimization.

REFERENCES

[1] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust Visual
Inertial Odometry Using a Direct EKF-Based Approach,” in Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015.

[2] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research (IJRR), vol. 34,
no. 3, pp. 314 — 334, 2015.

[3] S. Weiss, M. W. Achtelik, M.Chli, and R.Siegwart, “Versatile Dis-
tributed Pose Estimation and Sensor Self-Calibration for an Au-
tonomous MAV,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2012.

[4] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
Robust and Modular Multi-Sensor Fusion Approach Applied to MAV
Navigation,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013.

[5] H. Strasdat, J. Montiel, and A. J. Davison, “Visual SLAM: Why filter?”
Image and Vision Computing, vol. 30, no. 2, pp. 65-77, 2012.

[6] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iISAM2: Incremental Smoothing and Mapping Using the Bayes
Tree,” International Journal of Robotics Research (IJRR), vol. 31,
no. 2, pp. 217-236, 2012.

[7]1 J. Rehder, K. Gupta, S. Nuske, and S.Singh, “Global Pose Estimation
with Limited GPS and Long Range Visual Odometry,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2012.

[8] C. Merfels and C. Stachniss, “Pose Fusion with Chain Pose Graphs
for Automated Driving,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

[9] C. Merfels and C. Stachniss, “Sensor Fusion for Self-Localisation of
Automated Vehicles,” Journal of Photogrammetry, Remote Sensing
and Geoinformation Science (PFG), vol. 85, no. 2, pp. 113-126, 2017.

[10] H. Oleynikova, M. Burri, S. Lynen, and R. Siegwart, “Real-Time
Visual-Inertial Localization for Aerial and Ground Robots,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015.

[11] J. Surber, L. Teixeira, and M. Chli, “Robust Visual-Inertial Localiza-
tion with weak GPS priors for Repetitive UAV Flights,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[12] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting
of Two 3-D Point Sets,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 9, no. 5, pp. 698-700, 1987.

[13] G. Grisetti, R. Kmmerle, C. Stachniss, and W. Burgard, “A Tutorial
on Graph-Based SLAM,” IEEE Intelligent Transportation Systems
Magazine, vol. 2, no. 4, pp. 31-43, 2010.

[14] S. Agarwal, K. Mierle, et al. Ceres Solver. http://ceres-solver.org.

[15] R. Bhnemann, D. Schindler, M. Kamel, R. Siegwart, and J. Nieto,
“A Decentralized Multi-Agent Unmanned Aerial System to Search,
Pick Up, and Relocate Objects,” in IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2017.

[16] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. Furgale,
and R. Siegwart, “A Synchronized Visual-Inertial Sensor System with
FPGA Pre-Processing for Accurate Real-Time SLAM,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2014.


http://ceres-solver.org

Contact

Vision for Robotics Lab
LEEH

IRIS, D-MAVT, ETH Zurich
Leonhardstrasse 21
CH-8092 Zurich
Switzerland

www.v4rl.ethz.ch

© ETH Zurich, September 2017



	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Time alignment of input data
	Graph construction
	The conventional graph structure
	Adding an extra virtual node to restrict orientations

	Graph optimization
	Base frame transformation estimation
	Graph update

	EVALUATION
	Overview of the pose estimation system
	Experiments with synthetic input data
	Experiments in large outdoor flights

	CONCLUSIONS
	References

