Commit on overflow

Srdan Stipi¢, Adria Armejach, Osman Unsal, Adridn Cristal, Mateo Valero
Barcelona Supercomputing Center, Spain
{srdjan.stipic, adria.armejach, osman.unsal, adrian.cristal, mateo.valero} @bsc.es

Abstract—Current commercial CPUs have hardware support
for speculative lock elision (SLE). SLE tries to elide the lock
by speculatively executing lock protected critical section. If the
speculation fails, SLE acquires the lock and re-executes the
critical section non-speculatively.

Latest Intel CPUs implement SLE and hardware transac-
tional memory (HTM) where SLE uses HTM transactions to spec-
ulatively execute critical sections. HTM only supports bounded
size transactions where non-conflicting transactions execute until
they overflow and abort. Bounded sized transactions impose the
limit on the size of SLE protected critical sections. Even worse,
the current SLE implementation execute large non-conflicting
critical sections twice; first time, speculatively in a transaction,
and second time, non-speculatively by acquiring the lock at the
beginning of the critical section. Ideally, SLE should execute all
non-conflicting critical sections exactly once.

This paper introduces a commit on overflow (COO) trans-
action abort policy which - instead of aborting — commits
overflowed transaction and continues executing it. We show the
usefulness of COO while executing large SLE protected critical
sections. Also, we show that our COO implementation preserves
atomicity of SLE protected critical sections.

I. INTRODUCTION

The contributions of this paper are:

e We propose a commit on abort (COO) transaction
abort policy which — instead of aborting — commits
the overflowed transaction and continues executing it.

e We show how to implement COO on top of current
SLE implementation with minimal hardware changes.

e We show how our COO implementation preserves
atomicity of SLE protected critical sections.

II. MOTIVATION - THE PROBLEM STATEMENT

Intel’s best effort HTM a.k.a. TSX (Transactional Synchro-
nization Extensions) implements HTM on top of the MESIF
cache coherence protocol. TSX extends MESIF with two
new cache-line states: transactionally-read and transactionally-
written states. When transaction starts, the CPU snapshots the
state of CPU’s register file so that transaction can restart in
the case of a transactional abort. During the execution of
a transaction, all the memory reads and writes access the
cache transactionally where the cache sets cache-line states to
transactionally-read and transactionally-written state, respec-
tively. When the transaction reaches the commit instruction,
the transactions commits by clearing all the transactional states
in the cache. A transaction can abort before reaching the
commit instruction due to transactional conflict or capacity

1 def lock_acquire(lock_addr, lock_value):

2 this.lock_addr = lock_addr

3 this.lock_value = lock_value

4 tx_status = tx_begin();

5 if tx_status == TX_STARTED:

6 this.lock_value_orig = tx_read(lock_addr)

7 else:

8 // Transaction aborted. Reexecute

9 // the critical section non-speculatively.
10 lock MEM[lock_addr] = this.lock_value

11
12 def lock_release(lock_addr, lock_value):
13 if in_tx():

14 // “‘lock release’’

15 if (this.lock_addr == lock_addr) &&

16 (this.lock_value_orig == lock_value):
17 tx_commit ()

18 else:

19 MEM[lock_addr] = lock_value

20

21 def abort (tx_status):

22 // tx_rollback () restores the register file
23 tx_rollabck (tx_status)

24 // from this point on,

25 // the execution continues

26 // in the body of tx_begin/()

Fig. 1: SLE lock acquire/release instructions and abort handler.
In the case of a transactional conflict, the CPU implicitly calls
the abort handler.

overflow!. The transactional conflict abort happens when some
other core invalidates the transactionally modified cache-line.
The capacity overflow abort happens when the current running
transaction evicts the transactionally modified cache-line from
its cache(s) (due to cache associativity limits or due to cache
capacity limits).

Speculative lock elision (SLE) uses HTM to elide locks and
execute critical sections speculatively in a transction. In the
case of a transaction abort, SLE executes critical section non-
speculatively by acquiring the lock. Figure 1 shows the im-
plementation of SLE lock_acquire and lock_release
instructions. At the beginning of the critical section, SLE
executes speculative lock instruction and starts a hardware
transaction. At the end of the critical section, SLE releases the
speculative lock and commits the transaction. The speculative
lock instruction never writes the value of the lock to the
memory (as if lock was acquired and released with the same
value). If the speculative execution of the critical section fails
(transaction aborts), the SLE restarts the critical section non-

IThe transaction can abort for other reasons but they are not relevant for
the discussion

speculatively. SLE acquires speculative lock non-speculatively
by writing the value of the lock to the memory. After the lock
acquisition, SLE executes critical section non-transactionally.
Non-speculative SLE execution guaranties that the critical
section executes atomically because SLE releases the lock at
the end of the non-speculative critical section.

A. Suboptimal execution

If the critical section is larger than the maximum hard-
ware transaction size, SLE performs worse than regular non-
speculative critical section. Particularly, SLE ties to execute
the large critical section speculatively, aborts, and re-executes
the critical section non-speculatively.

The following example shows a function that finds the
maximum value of the array inside of the critical section (the
lock protects the critical section):
def max(array, lock) {
curr_max = 0
lock_acquire (lock, SPECULATIVE=True)
for i = 0 array.size():

if array([i] > curr_max:

curr_max = array[i]
lock_relase (lock)

In the previous example, the array size (array.size ())
is bigger than the maximum hardware transaction
(critical_size). This creates wasted execution, because
the critical section tries to execute hardware transaction that
overflows. The wasted speculative execution behaves like the
following code:

def max(array, lock) {
curr_max = 0

1
2
3
4 // wasted execution
5
6
7
8

tx_begin ()
for 1 =0 critical_size:
if arrayl[i] > curr_max:
curr_max = array[i]
9 tx_abort () ;
10
11 // non-speculative critical section
12 lock_acquire (lock, SPECULATIVE=False)
13 for 1 =0 array.size():
14 if array[i] > curr_max:
15 curr_max = array[i]
16 lock_release (lock)

The function max executes the for loop twice; first time,
in the transactions that aborts, and second time, in the non-
speculative critical section. This creates wasted execution
(lines 5-9).

B. COO implementation

COO implements a commit-on-overflow abort policy by
modifying the abort handler. Figure 2 shows the abort handler
that implementations COO. When the transaction overflows
(and before any cache-line gets evicted from the cache), the

def abort (tx_status):
if tx_status == TX_OVERFLOW:
// acgquire the lock
tx_write (this.lock_addr, this.lock_value)
tx_commit ()
// from this point on, we hold the lock
else:
tx_rollabck (tx_status)

O Joy Ul W

Fig. 2: Modified abort instruction. The abort handler im-
plements commit-on-overflow abort policy. When transaction
overflows, the abort handler tries to acquire the lock (by
executing transactional write) an to commit the transaction. If
any of transactional write and commit can fail, the transaction
aborts and SLE restarts critical section non-speculatively.

abort handler tries to acquire the lock by executing transac-
tional write. Then, the abort handler tries to commit the trans-
action. If the transactional write or commit fail, the transaction
aborts and SLE restarts critical section non-speculatively.

C. COO discussion

At the beginning of SLE critical section, SLE executes
lock_acquire instruction that starts a transaction. Then,
SLE transactionally reads the value of the lock (Figure 1, line
6). The transactional read inserts the cache-line (containing the
lock) to CPU’s local cache. This ensures that currently running
transaction aborts when some other critical sections update the
same lock.

When a transaction overflows, the CPU executes the abort
handler. At this moment, the cache-line containing the lock is
still present in the cache because the CPU executes the abort
handler before any cache-line gets evicted from the cache. In
the abort handler, COO tries to acquire the lock (Figure 2), and
if successful, it tries to commit the transaction. The transaction
executing abort handler might abort only if the other caches
invalidate transactionally modified cache-lines in a time frame
between lock acquiring and transaction committing (Figure 2,
lines 4-5).

COO preserves the correct execution of the SLE critical
section because the critical section acquires the lock before
committing an overflowed transaction. This has the same effect
as if SLE acquired the lock at the beginning of the critical
section and executed non-speculatively to the point where the
overflow happened.

When executing previous max () function with COO, the
critical section executes as follows:

1 def max(array, mutex m) {

2 curr_max = 0

3

4 tx_begin ()

5 for 1 = 0 critical_size:
6 if arrayl[i] > curr_max:

7 curr_max = array[i]

8

9 lock_acquire(lock, SPECULATIVE=False)
10 tx_commit ();
11

12 for i = critical_size .. array.size():

13 if arrayl[i] > curr_max:
14 curr_max = array[i]
15

16 m.lock_release ()

This example shows that COO eliminates the unnecessary
re-execution of the critical section (lines 4-10).

(1]

REFERENCES

[11 W. J. Armstrong, C. S. Graham, S. M. Lambeth, D. F. Moertl, P. E.
Movall, G. M. Nordstrom, and T. R. Sand, “Interrupt and message
batching apparatus and method,” Jul. 4 2000, uS Patent 6,085,277.

