
Per-task Energy Accounting in Computing Systems
Qixiao Liu1,2, Victor Jimenez1,2, Miquel Moreto1,2, Jaume Abella2, Francisco J. Cazorla2,3, Mateo Valero1,2

1Universitat Politècnica de Catalunya 2Barcelona Supercomputing Center 3Spanish National Research Council (IIIA-CSIC)

Abstract— We present for the first time the concept of per-task energy accounting (PTEA) and relate it to per-task energy metering
(PTEM). We show the benefits of supporting both in future computing systems. Using the shared last-level cache (LLC) as an example:
(1) We illustrate the complexities in providing PTEM and PTEA; (2) we present an idealized PTEM model and an accurate and low-cost
implementation of it; and (3) we introduce a hardware mechanism to provide accurate PTEA in the cache.

1. INTRODUCTION

Energy is one of the most – if not the most – expensive resources in
computing systems used in markets ranging from embedded to data
centers. In the case of data centers, energy already accounts for 20%
of the total cost of ownership in a large-scale computing facility [8]
and this cost doubles if we add the cost for the cooling infrastructure,
implying that the total energy-related cost is already in the same order
of magnitude as hardware-related cost (servers). Energy consumption
is also of prominent importance in the PC and embedded markets due
to the limited energy stored in batteries, which calls for techniques
to use it efficiently.

With the increasing number of computing cores in processor archi-
tectures, the number and heterogeneity of the tasks that will coexist
in a chip will increase. In smartphones for instance, the diversity of
the applications coming from different providers increases in every
new generation. Data centers will observe a similar trend with the
increasing number of offered cloud services. In this evolving scenario,
we make a case for accurate per-task energy metering and accounting.
Given a workload composed by n tasks Ti, T2, ..., Tn running in
a processor with n cores, we define per-task energy metering and
accounting as follows. Per-task energy metering (PTEM) consists
in tracking the energy that a given task, Ti, consumes during a
given period of time. Per-task energy accounting (PTEA) consists in
deriving for a given task Ti, the energy that Ti would have consumed
if it had run in isolation with a fair share of the hardware resources.
Both, per-task energy metering and accounting, are complex to
derive with the increasing number of hardware shared resources that
can serve requests from different tasks concurrently using different
resources and/or with different latencies.

Accurately metering and accounting the energy consumed by
each task in a computer has important applications across different
computing domains including, but not limited to, the following:
1) Selection of appropriate co-runners. Task interaction in hardware
shared resources may negatively affect tasks hurting performance and
increasing energy requirements. Metering per-task energy can help
the OS/runtime scheduler to decide which task to run and when,
reducing systems’s energy profile.
2) Energy/Performance optimization. Metering the energy consumed
per task would allow finding the processor setup (e.g. number of
cores) and software setup (e.g. mapping) that leads to the lowest
system energy consumption.
3) In any power-capped system, when the system is reaching its power
threshold, instead of reducing the activity and hence the energy and
power of all tasks, a more fair capping could be implemented with
PTEA by capping those tasks using more energy than that they would
have consumed with a fair share of the resources.
4) Billing. Data centers charge users for the use of their resources.
The fact that costs will be dominated by energy, makes billing directly
dependent on the energy consumed by users’ running jobs. In this
scenario, ensuring consistent billing is a must. This requires PTEA
such that a user running several times the same application with the
same input data set will receive always the same billing regardless
of the applications running in the other cores.

In recent years there has been an increasing interest for energy
metering in different environments from data centers [3], [9] to

smartphones [6], [16], [17]. In the case of smartphones the main focus
is obtaining the overall system energy consumption or break it down
per component (e.g. memory, chip). Many proposals [4], [13], [18]
use performance monitoring counters (PMCs) or system events (such
as OS system calls) to perform such breakdown. Power models are
based on collecting data from a set of PMCs, voltage and temperature,
and using predefined weights derived through correlation. Although
previous approaches have shown to be very accurate in metering per-
component and overall system’s energy consumption, they neither
provide per-task energy measurements nor allow performing per-
task energy accounting, which are the focus of this paper. It is
our position that as processor design moves towards multi- and
many-core processors, in which an increasing number of different
applications simultaneously run on the same chip, providing per-task
energy metering and accounting becomes increasingly important.

In this paper, we make a case for accurate online per-task energy
metering and accounting. We introduce both terms, show their
differences and relate them. Next, using the shared LLC as illustrative
example, we propose a model to derive the energy that should be
metered to a task when running with other tasks simultaneously
sharing several hardware resources. To that end, we break down
resources into different types based on their energy profile and show
how per-task energy metering is quite sensitive to the type of the
resources under consideration. Finally, we motivate the need for
providing hardware support for energy accounting and the importance
of ensuring that the energy accounted to a task is always the same
regardless of the other tasks it runs with. We also propose an initial
model to perform per-task energy accounting for a shared LLC.

2. FORMALIZING THE DEFINITION OF PER-TASK ENERGY ME-
TERING AND ACCOUNTING

We break energy into its main three components. Dynamic energy
corresponds to the energy spent to perform those useful activities
that circuits are intended to do, including short-circuits from sup-
ply to ground when switching gates. Static energy corresponds to
the energy consumed due to useless activity not triggered by the
program(s) being run (e.g. bitline precharge if no access occurs)1.
Leakage corresponds to the energy wasted due to imperfections of
the technology used to implement the circuit. Thus, leakage energy
includes all energy wasted due to undesired current leaks.

2.1. Per-Task Energy Metering
Per-task energy metering consist in tracking the energy that a given

task consumes during its execution. This requires deriving the energy
consumed per task in private hardware components (i.e. components
only used by the task in a given point in time) such as the cores in
a multicore CPU, and shared resources, such as caches.

The difficulty with shared resources resides on the fact that they can
serve requests from different tasks concurrently, and each request type
may generate different internal activity in the resource with variable
duration. This seriously challenges per-task energy metering. Current

1The energy consumed due to an access corresponding to a useless
instruction (e.g., a misspeculated instruction) is considered as dynamic energy
despite such activity is useless because the action has been triggered by the
program(s) under execution

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132530211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

methods for energy metering focus mostly on time-shared resources
(e.g. CPUs) and are based on usage time and allocated resources.
This may be adequate if leakage and static power dominate the total
power consumption. However, this is no longer true with the shift
towards energy-proportional systems [2] where most of the energy
consumed by an application - and hence, its cost - is due to its activity.
Hence, in an energy proportional system two customers that incur
different utilizations across similarly allocated resources for similar
usage time, will be accounted the same energy consumption while
in reality their energy consumption profiles can be quite different.
In [9] authors run several homogeneous programs in isolation on the
same platform for a fixed period of time. Results show that power
dissipation across these homogenous programs with similar resource
and time allocation may vary more than 20%. More heterogeneous
workloads including database processing, I/O-intensive applications
as well as high-performance ones exhibit higher power variations.

Our view is that, the energy metered to a given task should be
proportional to its resource usage. This includes the number and type
of accesses to the different resources and, for stateful resources (e.g.,
Branch Target Buffer, caches and TLBs) the fraction of the space
occupied by the task. The accuracy in per-task metering depends on
the characteristics of the hardware resources used and the hardware
support enabled for energy metering. Note that energy metering for
multithreaded tasks (applications) simply consists in adding up the
energy consumed by each of its constituent threads.

Per-task leakage energy metering: Splitting leakage energy among
running tasks requires considering two different types of resources.
Those whose leakage is proportional to time and those whose leakage
is proportional to both time and space. Under the former type we find
resources like logic blocks in cores that consume leakage energy
proportionally to the time they are enabled. Under the latter type we
find resources like caches or memory, where leakage is proportional
to the fraction of the resource that a task demands and the duration
that fraction of the resource is used.

Per-task static energy metering: Static energy is consumed by
useless activities in idle resources. It must be attributed to tasks
depending on the amount of space they occupy if those resources
are stateful (e.g. caches). However, if resources are stateless, one
fair way to meter such energy across different tasks is distributing it
uniformly since no task triggers on-going activity in those resources.

Per-task dynamic energy metering: In order to split dynamic energy
across running tasks we consider the number and type of accesses
that each task performs to each resource. This requires per-task access
counters and the energy consumption per access to be provided by
the chip vendor. While this is highly accurate it may be costly to
track, so simpler and higher-level approaches based on tracking CPU
utilization may also correlate well with dynamic power consumption.

2.2. Per-Task Energy Accounting
The concept of Energy Accounting is inherited from CPU account-

ing that was first introduced in [11] and then develop for multicores
in [10], [12] and for SMTs in [7]. CPU accounting measures the
CPU utilization of a given task during a period of time when it runs
in a multicore processor. CPU utilization depends on both the time
the task is scheduled in the CPU and the progress (or slowdown)
the task does in the multicore processor. The latter is computed
by determining which accesses of a given task are delayed due to
conflicts with other running tasks. For instance, if a task runs for a
period of 1,000 cycles in which it suffers a slowdown of 30% (hence
its progress is 70%) with respect to its execution with a fair share of
the resources, it is only accounted 1, 000× 0.7 = 700 cycles.

Let’s assume that a given task TA runs for a period of X cycles
executing Y instructions. Per-task energy accounting consists in

determining, while task TA runs concurrently with other tasks, the
energy TA would have consumed to execute the same Y instructions
with a fair share of the multicore processor resources. For instance,
in a 4-core processor with private data and instruction caches and
shared L2, if we run a workload composed by 4 tasks, we want to
determine the energy each of those tasks would have consumed with
a single core, 1

4
of the L2 cache, 1

4
of the memory bandwidth and 1

4

of the on-chip interconnection network bandwidth.
We aim at maintaining the same Principle of Accounting that rules

when measuring CPU accounting [11]: the energy accounted to a task
should be independent from the workload in which this task runs.

Performing accurate per-task energy accounting requires a per-task
energy metering mechanism. Given a task Ti for which we can derive
its energy metering EMTi and its energy accounting EATi we define
the Energy Accounting ratio (EAratio) as EAratio = EMTi

EATi
. If

EAratio > 1, the task has consumed more energy than it would
have consumed with a fair share of the resources. This may happen
for instance if task Ti gets less than 1

4
L2 space in the example above

because other tasks make an intense use of L2, making Ti running
longer than with a fair share of the resources. If EAratio < 1, Ti

has consumed less energy than with its fair share of the resources.
This may be caused because Ti is using more resources than its fair
share which speeds up Ti.

One of the major difficulties in deriving per-task energy accounting
resides in the fact that there is not a direct relation between the
amount of resources used by a task and its performance. For instance,
a task receiving x% more resources than its fair share can decrease
its execution time much more (or much less) than x%.

The principle of PTEA is inherited from Per-task CPU accounting
though with CPU accounting mechanisms the same functionality
that PTEA achieves cannot be provided. In that sense, the concept
of PTEA bases on two main pillars: PTEM and Energy Metering
Modulation (EMM). The former derives the actual energy consumed
by a given task when it runs as part of a workload. The latter,
modulates the figure obtained with the PTEM mechanism in order to
derive the actual energy that the task would have consumed with a
fair share of the resources (e.g. by using the EAratio defined above).
One of the ways to achieve EMM is through CPU accounting. CPU
accounting by itself provides the time it would have taken a given
task ti to execute a certain set of instructions Ij with a fair share
of the resources. Interestingly, it can be the case that a task ti that
executes Ij can take x% longer to execute than with a fair share of
the resources if (1) either ti receives lower bandwidth to the shared
bus or if (2) its LLC lines are evicted. However, in the latter case
ti consumes more energy than in the former since every miss in the
LLC leads to energy-hungry memory accesses. Hence, under both
scenarios the CPU accounting for the task is the same though its
energy profiles may significantly vary.

Note that PTEA dynamically derives the energy that a task would
have consumed with a fair share of the resources, while such task
runs as a part of a workload. This removes the need for any profiling.

3. PER-TASK ENERGY METERING FOR A SHARED CACHE

We focus on the case of a shared cache as it is a good representative
of the challenges to address when carrying out per-task energy
metering and accounting. We assume a multicore architecture where
each core has private data and instruction first level caches plus a
shared on-chip Last-Level Cache (LLC). Note that many multicore
architectures in the high-performance and embedded domains include
an on-chip shared LLC, such as the Aeroflex Gaisler NGMP and the
IBM POWER7 processors.

We now present our idealized utilization-based model for per-task
energy metering for the LLC. Next we present a first approach of

hardware support for per-task energy metering.

1) Idealized Per-Task Energy Metering: The dynamic energy
consumption in the shared LLC for a given task i is proportional
to the number of accesses. It is computed as follows:

ELLC
dyn,total(tki) =

K∑
k=1

#actionLLC
k (tki)× ELLC

actionLLC
k

(1)

where ELLC
actionLLC

k
stands for the energy per LLC access of

type k, which is assumed to be available in this idealized model.
#actionLLC

k (tki) stands for the number of LLC accesses of type
k performed by the task i. Access types include: read hits, read
misses evicting a dirty line, write hits, invalidations, etc. The energy
consumption of an access changes depending on the characteristics
of the access. For instance, a read hit will consume less energy than
a read miss that evicts a dirty line.

Static energy is consumed when resources are idle. We use cache
occupancy as a proxy to measure static energy: We assume that those
cache regions (lines) not occupied by a given task could be turned off
so that they would not incur any energy consumption [1]. The total
static LLC energy consumption for a task is obtained as follows:

ELLC
st, total(tki) = OccLLC(tki)× ELLC

st × IdleT ime(LLC) (2)

where OccLLC(tki) stands for the average fraction of cache lines
owned by task i, ELLC

st is the static energy per cycle consumed by
the LLC when no access is performed, and IdleT ime(LLC) stands
for the number of idle cycles for the LLC (no access to LLC). ELLC

st

is assumed to be provided under the ideal model.
Leakage energy is proportional to the cache occupancy and can be

easily computed as follows, where ELLC
leak is the leakage energy per

cycle consumed by the LLC. This value is also an input parameter
for the idealized model:

ELLC
leak,total(tki) = OccLLC(tki)× ELLC

leak × ExecT ime(tki) (3)

2) Hardware Support for Per-Task Energy Metering: The ideal
model for the LLC tracks two main per-task parameters: access
(activity) counts per access type and cache occupancy. Our hardware
support for the LLC relies on the fact that LLC accesses are not
frequent, so they can be tracked with full accuracy. Conversely,
tracking cache occupancy, which is required for static and leakage
energy estimation, would require counting how many cache lines each
task owns every cycle, which is expensive. Tracking the ownership
of cache lines requires: (1) tagging each cache line with a task id,
(2) keeping a counter per task with the number of owned cache lines
(instant counter), and (3) updating such counters on a replacement
based on the ownership of the evicted and fetched cache lines,
increasing the counter of the owner of the fetched line and decreasing
the one of the owner of the evicted cache line.

In general, LLC access patterns and occupancy do not change
abruptly. Similarly, the occupancy per set is quite homogeneous for
any particular program [14]. Therefore, we propose sampling the LLC
occupancy in two different ‘directions’. First, only some cache sets
will be monitored [19], so they will be the only ones for whom cache
line ownership will be tracked. In order to avoid clustering effects due
to contiguous allocation of data in memory for any particular task,
sampled sets are located at a particular stride (e.g. only those sets
whose x lowermost index bits are zero are monitored). How many
x lowermost bits are considered depends on the desired sampling
granularity. Second, the counters accumulating instant occupancy are
not updated every cycle, but at a lower frequency.

We assume that the number of cycles that a program takes to
run is measured by an existing performance monitoring counter of
the processor. Based on this hardware support LLC occupancy is
obtained as follows:

OccLLC(tki) =
OccLLC

cum (tki)× SmpFreq × SmpSets

#SetsLLC × ExecT ime(tki)
(4)

Fig. 1. LLC energy metering error with sample distance and sets

where SmpFreq is the sampling frequency (256 cycles in the
example), SmpSets is the set sample granularity (16 in the example)
and #SetsLLC is the number of total sets (1,024 in the example).
The impact of sampling in both time and sets is analyzed next.

3) Results: We use an enhanced version of SMTSim [20] extended
with power models analogous to those of Wattch [5]. Wattch-like
power models are built on top of CACTI 6.5 simulation tool [15]. We
consider a multicore setup in which each core has its private 32KB 4-
way instruction and data L1 caches, while the 16-way 2MB L2 cache
is shared among all cores. We use traces collected from the SPEC
CPU 2006 benchmarks. For this experiment, we construct 16 varying-
behavior 4-task workloads, all including the astar benchmark.

Figure 1 shows the effect of sampling sets and period on the
average LLC energy prediction accuracy for astar in all 16 workloads.
The y-axis represents the sample period measured in processor cycles
(e.g., 10K stands for 10,000 cycles). The x-axis is the sampling set
configuration. For instance, 1e8 means that we sample 1 every 8 sets.

We observe that the curve has a higher slope in the x-axis (set
sampling). For instance, for a sampling distance of 10K cycles, the
prediction error rate raises from less than 1% to almost 8% as the
sample set reduces from 1e1 to 1e512 sets. Instead, the sample period
(y-axis) has limited effect on accuracy. With 1e8 sampled sets, the
prediction error only raises 0.2% as the period increases from 1K to
10M cycles.

4. PER-TASK ENERGY ACCOUNTING FOR A SHARED CACHE

In order to evaluate our PTEA mechanism we ran experiments
with SPEC CPU 2006 benchmarks. We focus on 3 representative
benchmarks: namd, a pure CPU-bound benchmark, with negligible
LLC usage; astar, a benchmark with medium cache usage but whose
performance is sensitive to cache space; libquantum, a cache-hungry
benchmark. We study each benchmark as part of 4 different work-
loads composed by libquantum (L) and namd (N). The benchmark
under study is labeled as X. Then the particular workloads studied
are (X,N,N,N), (X,L,N,N), (X,L,L,N), and (X,L,L,L). In all 4 cases, we
measure and account X’s LLC energy consumption.

The gray bars in Figure 2 show the energy metered to all three
benchmarks under study in the LLC normalized to their LLC en-
ergy consumption in isolation with a fair share of the resources
(Eshared
Efairshare

). We observe that depending on the workload, the energy
measured to X varies significantly. The main reason for this behavior
corresponds to the shared LLC interaction. For instance, namd gets
very little LLC space if it runs with cache-hungry benchmarks
in the workload, which decreases its static and leakage energy.
Meanwhile, its few extra LLC misses barely affect its LLC energy
consumption. Conversely, astar suffers an increase in LLC misses
due to inter-task interferences. It increases its dynamic energy due
to extra accesses to replace cache lines and also executes longer,
which increases its leakage and static energy consumption in the
LLC. In contrast, it occupies significantly less LLC space, leading
to lower power consumption. libquantum demands high LLC space;

Fig. 2. LLC energy metered and accounted to namd, astar, and libquantum
when they use a fair share of resources and as part of different workloads. L
stands for libquantum and N for namd

however, it suffers few extra misses because of its extremely high
miss rate. libquantum decreases total static energy in all workloads
with plentiful LLC accesses (thus fewer idle cycles). Anyway, its
static and leakage energy increase due to its high LLC occupancy.

Although not analyzed in this paper, note that execution time
variations due to LLC interaction will also have an impact in the
leakage and static energy consumed in other resources.

In our solution for computing the LLC energy a task would
consume with a fair share of the resources, we combine the proposed
per-task energy metering mechanism with hardware support for fair
CPU accounting [7], [10]–[12]. In particular, we use ITCA, the
technique proposed in [12] that focuses on the progress a task would
have with a fair share of the resources. ITCA makes use of dedicated
hardware monitoring support to track the interferences between tasks
running in different cores. This hardware support tracks through an
Auxiliary Tag Directory, the conflicts in the LLC.

Our approach to compute per-task energy accounting scales leak-
age, static and dynamic energy according to the LLC behavior in
isolation. Since static and leakage LLC energy are proportional to
occupancy and depend on execution time, we scale these values

with the factor
OccLLC

fairshare

OccLLC
shared

·ProgressTi, where ProgressTi is the
progress done by the task with a fair share of the resources. If the task
in isolation occupies more LLC space or runs faster, these values are
scaled accordingly. The dynamic energy depends on the LLC activity,
so we scale energy based on the factor given by the number of
accesses since hits perform a single LLC access and misses two (the

actual miss and the cache line fill):
HitsLLC

fairshare+2·MissesLLC
fairshare

HitsLLC
shared

+2·MissesLLC
shared

.
The CPU mechanism proposed in [12] provides the progress of
each task ProgressTi. Further, its deployed Auxiliary Tag Directory
(ATD) could easily provide the hits (HitsLLC

fairshare) and misses
(MissesLLC

fairshare), and the occupancy OccLLC
fairshare under the setup

with a fair share of the cache in this work.
The black bars in Figure 2 show the results of applying our solution

for per-task energy accounting. We observe that the predicted LLC
energy accounting is really close to the fair energy metered across all
benchmarks under study: 2.1% average error. In contrast, the energy
metered has a 44.7% average error.

5. OTHER RESOURCES

PTEA and PTEM are to be applied to the main energy-
consumption contributors such as cores, caches, memory and storage
devices (e.g., disks), which is part of our current work. The principles
we have presented for the LLC can be generalized for other resources.
Dynamic energy requires activity counters per resource (e.g., logic
blocks in cores, storage device accesses). Static/leakage requires

tracking occupancy whenever unused parts can be put into a low
power state (e.g., LLC if lines/banks can be turned off). Static/leakage
energy requires tracking the power state induced by each running task,
so that tasks keeping devices in active state are metered higher energy
than those accessing devices in bursts so that devices would remain
in a low power state for long periods. The way in which each of
these requirements can be accomplished for the resources with high
energy profiles in a computing system is part of our future work.

6. CONCLUSIONS

The increasing cost of energy calls for accurate per-task energy
metering and per-task energy accounting. The advent of multicores
challenges both since co-running tasks share (and interact in) shared
hardware resources which affects their energy profiles.

To our knowledge, this is the first paper presenting the concept of
per-task energy accounting on multicores and relating it to energy me-
tering. We illustrate how to perform both by proposing and evaluating
new models for the case of a representative resource like a shared
cache. In particular, we present several proof-of-concept mechanisms
to compute the energy that a task consumes in a multicore when it
runs as part of a workload (metering) and a mechanism to derive
the energy that task would have consumed if executed the same
instructions with a fair share of the resources (accounting).

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Ministry of
Science and Innovation under grant TIN2012-34557 and the HiPEAC
Network of Excellence. Qixiao Liu has also been funded by the
Chinese Scholarship Council under grant 2010608015.

REFERENCES

[1] J. Abella et al. IATAC: a smart predictor to turn-off L2 cache lines.
ACM TACO, 2005.

[2] L. Barroso and U. Holzle. The case for energy-proportional computing.
IEEE Computer, 40:33–137, October 2007.

[3] R. Bertran et al. Energy accounting for shared virtualized environments
under DVFS using PMC-based power models. FGCS, 2012.

[4] W. Bircher and L. John. Complete system power estimation: A trickle-
down approach based on performance events. In ISPASS, 2007.

[5] D. M. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In ISCA, 2000.

[6] A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In USENIX Annual Technical Conference, Jun 2010.

[7] S. Eyerman and L. Eeckhout. Per-thread cycle accounting in smt
processors. In ASPLOS, 2009.

[8] J. Hamilton. Internet-Scale Service Infrastructure Efficiency. In ISCA,
2009.

[9] V. Jiménez et al. Energy-aware accounting and billing in large-scale
computing facilities. IEEE Micro, 31(3):60–71, 2011.

[10] C. Luque, M. Moreto, F. Cazorla, and M. Valero. Fair CPU time
accounting in cmp+smt processors. In HiPEAC, 2013.

[11] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
and M. Valero. CPU accounting in cmp processors. In IEEE Computer
Architecture Letters(CAL), volume 9, 2009.

[12] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
and M. Valero. Cpu accounting for multicore processors. IEEE Trans.
Comput., 161, 2012.

[13] J. McCullough et al. Evaluating the effectiveness of model-based power
characterization. In USENIX Annual Technical Conference, 2011.

[14] M. Moreto, F. Cazorla, A. Ramirez, and M. Valero. MLP-aware dynamic
cache partitioning. In HiPEAC, 2008.

[15] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. CACTI 6.0: A
tool to understand large caches. HP Tech Report HPL-2009-85, 2009.

[16] Nokia. Energy profiler. S60 platform: Effective power and resource
management v3.1, 2007.

[17] A. Pathak et al. Fine-grained power modeling for smartphones using
system call tracing. In EuroSys, 2011.

[18] K. Pusukuri, D. Vengerov, and A. Fedorova. A methodology for devel-
oping simple and robust power models using performance monitoring
events. In WIOSCA, 2009.

[19] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. MICRO 39, 2006.

[20] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In ISCA, 1995.

