
CUsched: Multiprogrammed Workload Scheduling
on GPU Architectures

UPC-DAC-RR-CAP-2013-7 Technical Report, March 2013.

Ivan Tanasic1, Isaac Gelado1, Javier Cabezas1,
Nacho Navarro1,2, Alex Ramirez1,2, and Mateo Valero1,2

1Barcelona Supercomputing Center
2Universitat Politècnica de Catalunya

first.last@bsc.es

Abstract—Graphic Processing Units (GPUs) are currently
widely used in High Performance Computing (HPC) applications
to speed-up the execution of massively-parallel codes. GPUs
are well-suited for such HPC environments because applications
share a common characteristic with the gaming codes GPUs
were designed for: only one application is using the GPU at
the same time. Although, minimal support for multi-programmed
systems exist, modern GPUs do not allow resource sharing among
different processes. This lack of support restricts the usage of
GPUs in desktop and mobile environment to a small amount of
applications (e.g., games and multimedia players).

In this paper we study the multi-programming support avail-
able in current GPUs, and show how such support is not
sufficient. We propose a set of hardware extensions to the current
GPU architectures to efficiently support multi-programmed GPU
workloads, allowing concurrent execution of codes from different
user processes. We implement several hardware schedulers on top
of these extensions and analyze the behaviour of different work
scheduling algorithms using system wide and per process metrics.

I. INTRODUCTION

Graphics Processing Units (GPUs) used to be fixed-func-
tion circuits designed to speedup the execution of graphic
manipulation tasks commonly required by gaming and video
processing applications. Currently, GPUs have become fully
programmable many-core processors [16] that are able to
efficiently execute both, traditional graphics workloads, and
general purpose codes, such as media processing, medical
imaging, and High Performance Computing (HPC) applica-
tions [18].

GPU applications, both graphic and general purpose, as-
sume exclusive access to the GPU resources. This is a rea-
sonable assumption in most existing scenarios. Desktop and
laptop users do not play video games while watching a movie.
Supercomputer job schedulers are configured to grant each
user process with exclusive access to each compute node.
Hence, GPU designers have safely assumed that only one user
process will be using the GPU at the same time. However,
new scenarios where several applications concurrently access
to a single GPU are starting to appear. Many MatLab users
have discovered that their system becomes unresponsive when
MatLab is using GPU for computations. HPC application
programmers underutilize the CPU by restricting the number
of MPI processes spawn on each node to match the number of

attached GPUs. Cloud computing providers do not offer virtual
GPU servers1 due the inability of effectively sharing GPUs
among several processes. Furthermore, with the integration of
programmable GPUs into mobile Multi-Processor System on
Chip (MPSoC) [4], [1], [2], GPU sharing is very likely to
happen. For instance, consider a GPS application recalculating
a route in the background while the user is using a video
conference application. These real and hypothetical scenarios
lead us to believe that the exclusive-access assumption in the
GPU design needs to be reconsidered.

Traditionally, the interface between the GPU and the CPU
was based on a single hardware queue where different user
processes pushed commands (i.e., kernel invocations and/or
DMA transfers). The Operating System (OS) GPU driver
ensured exclusive access to this hardware queue: a user process
cannot start issuing commands to the GPU until the hardware
queue has become empty, and the OS driver has saved the GPU
state of the previous user process (i.e., GPU context switch).
The GPU hardware inspects this input queue, and redirects
each command to the input command queue of the appropriate
hardware engine (execution or DMA), if no dependencies
with previously issued commands exist. Such design allows
independent commands from the same user process to be
executed concurrently, as long as each command is executed
by a different hardware engine, e.g., DMA transfers and
kernels can be executed concurrently in most modern GPUs.
However, commands sent to the input queue of each engine are
always executed in batches, i.e., a kernel cannot start executing
until the previous kernel has finished execution or has been
fully submitted2.

Modern GPU architectures, such as the NVIDIA Kepler
GK110, implement several hardware command queues, i.e.,
NVIDIA Hyper-Q technology [17]. This GPU interface allows
different processes to issue commands to the same GPU
without the need of the OS driver to context switch the
GPU each time a command from a different process is
issued. It enables the GPU to concurrently execute DMA
transfers and kernels from different processes, but the GPU

1Notice that dedicated GPU servers are indeed offered which shows the
demand for this type of service.

2NVIDIA Fermi and Kepler architectures allow work from a kernel to be
scheduled for execution once all the work from the previous kernel has been
issued. Please refer to Section II for detailed explanation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132530208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

still requires exclusive per-process access to each of the GPU
engines. In this paper we go one step further to remove
such restriction and enable concurrent multi-process execution
on the GPU computational engine, completely removing the
exclusive-access constraint from the GPU design. We present
a novel light-weight GPU preemption scheme to enable fine
grained GPU resource sharing across several user processes
and show how it introduces minimal overhead in return for
great flexibility in realistic workloads. We exploit the GPU
programming model and hardware characteristics to preempt
kernel execution at the thread-block (i.e., task) granularity, and
DMA transfers at the PCI-express packet boundary. We extend
a NVIDIA Kepler-like base architecture with a minimal set of
hardware logic and structures to implement our proposed pre-
emption scheme. We build upon this hardware modifications
to implement several FCFS scheduling schemes, preemptive
and nonpreemptive priority queues schedulers, and the token
scheduler. We also show how these schedulers can accomplish
GPU time sharing, spatial sharing and prioritization in multi-
programmed environments and how different policies affect
different metrics.

Our experimental evaluation shows that the hardware sup-
port for multi-programmed scheduling introduced in this paper
allows scheduler implementations that on average for eight co-
scheduled applications improve the overall system throughput
by 20%, fairness by 85%, decrease normalized turnaround
time by 38% and decrease the normalized turnaround time
of high priority applications 3x.

This paper is organized as follows. Section II presents the
necessary background and motivation for this work. Section III
presents the hardware modifications required to add multi-
programming support to existing GPU architectures. In this
section we also present the design of a token scheduler to
illustrate the trade-offs and intricacies of fine grained schedul-
ing on GPUs. The experimental methodology and results
are discussed in Section IV. Related work is presented in
Section V, while Section VI concludes this paper.

II. BACKGROUND

This section introduces the background material and moti-
vates the work proposed in the rest of the paper.

A. Base GPU Architecture

The base GPU architecture we assume in this paper is
depicted in Figure 1. In its simplest form, the GPU interface,
similar to the one implemented by NVIDIA Fermi GPUs,
has one queue which is used by the host to issue commands
(i.e., DMA transfers and kernel launches) to the GPU. Com-
mands from the same context are processed by the command
dispatcher, which inspects the top of the queue, separates
independent commands (i.e., commands from different CUDA
streams or OpenCL command queues) and redirects them to
the corresponding engine. Data transfer commands are sent to
the data transfer engines via DMA upstream and downstream
queues while kernel calls are sent to the execution engine via
the execution queue. This allows overlapping of data transfers
with kernel execution. The command dispatcher ensures that

Fig. 1. Single Process GPU architecture.

commands coming from the same stream are executed sequen-
tially, following the semantics of the programming model.

The GPU also includes a set of global control registers (i.e.,
GPU context), used by the execution and data transfer en-
gines. This control registers hold process-specific information,
such as the location of the virtual memory structures (e.g.,
page table), the GPU kernels registered by the process, or
the graphics buffers (e.g., OpenGL images) allocated by the
process. When a single command queue is implemented by
the GPU interface, there is only one active GPU context used
by all execution engines in the GPU, limiting the hardware
to only execute commands from a single user process. GPU
sharing among user processes is done by the OS kernel GPU
driver by performing a GPU context switch. First, the OS code
ensures that the GPU command queue is empty. Then, the
OS code saves the current GPU context into system memory,
and loads the new GPU context. Finally, commands from the
new process are submitted to the GPU command queue. This
heavy-weight GPU context switch procedure introduces large
performance overheads if several processes are contending for
the GPU.

The GPU architecture we build upon in this paper assumes
several GPU command queues, and thus several GPU context
data structures, to mimic the Hyper-Q technology implemented
in the latest GK110 NVIDIA chips [17]. Hyper-Q removes
the performance overheads due to false serialization and GPU
context switching, and overlaps transfers with computation
of different processes. However, Hyper-Q does not support
concurrent execution of commands from different processes
on the same engine, i.e., only kernels from the same user
process can be concurrently executed.

B. Base GPU Execution Engine

The base GPU execution engine assumed in this paper is
shown in Figure 2. It reads one entry at a time from the input
queue, and sets up the Kernel Status Registers (KSR), with
the control information (e.g., number of work units to execute,
kernel parameters, . . .). The contents of these registers, as well
as the global GPU control registers, are used to setup the GPU
cores (i.e., Streaming Multiprocessors in CUDA terminology).
Then, the scheduler starts sending work items (thread blocks
in CUDA terminology) to each GPU core (SM), until they are
fully utilized (i.e., run out of hardware resources). Whenever

3

Fig. 2. Baseline execution unit.

a SM finishes executing a thread block, the scheduler gets
notified and schedules a new thread block to that SM.

Because of its legacy as graphics accelerator, the GPUs are
designed to maximize the computation throughput of a single
process: SMs are only configured just before a new kernel
starts its execution and thread blocks are scheduled as soon
as hardware resources become available. Depending on the
number of threads in the thread block and the static usage
of registers and shared memory, a limited number of thread
blocks3 can be scheduled to one SM. Once a thread block is
scheduled to an SM, the SM can execute only thread blocks
from the same kernel and will not be released until all the
thread blocks from the running kernel have been scheduled.
This policy means that thread blocks from one kernel can
easily occupy all the available SMs, forcing other independent
kernels (i.e., associated to a different stream) to stall. As a
result, concurrent execution among kernels is possible only if
the kernel that was scheduled first does not have enough thread
blocks to occupy all SMs or the scheduled kernel is finishing
its execution and SMs are becoming free again.

C. Motivation

GPU resource sharing can lead to better utilization of avail-
able resources (e.g., global memory bandwidth) and optimiz-
ing the system wide metrics [10], [9], [5]. Two ways of sharing
a GPU are possible: time sharing, i.e., using the resources
in turns, and spatial sharing, i.e., splitting the resources.
Existing GPUs implement a very limited form of spatial
sharing, as discussed earlier, while time sharing can be only
done with kernel granularity. This time sharing granularity,
however, might not be fine enough. For instance, in the NAMD
molecular dynamics application [3] the application critical
path requires waiting for boundary data to arrive through
the network, via Message Passing Interface (MPI), executing
a GPU kernel, and sending the output data through MPI.
Execution on this critical path tends to get delayed because
when the boundary data arrives to the node, the GPU is already
busy executing the bulk computation of the simulation and,
thus, the GPU kernel in the critical path needs to wait for this
much larger kernel to finish. If the code is modified to delay
the execution of the big GPU kernel until the MPI message
arrives, the bulk computation becomes the critical path and,
indeed, takes longer to execute than the previous approach.

3Up to sixteen in the NVIDIA Kepler GK110 architecture.

(a) Single queue scheduling.

(b) Priority scheduling with multiple priority queues.

(c) Preemptive priority scheduling.

Fig. 3. Kernel scheduling.

If the GPU would allow launching a high-priority kernel
that can concurrently execute with the bulk computation, the
application execution time would significantly decrease.

Figure 3 illustrates how existing GPUs are not suitable to
execute soft real-time applications. In this example, a soft real-
time application requires executing the kernel K3 while other
applications are executing kernels K1 and K2. Figure 3(a)
illustrates the case of a GPU with a single command queue,
where kernels are executed in the order they were issued. In
this case, the kernel K3 needs to wait until all previous kernels
finish executing before being scheduled to run. A minor modi-
fication to the architecture with multiple queues (i.e., Hyper-Q)
could easily allow to define different execution priorities for
these queues. In that case, illustrated in Figure 3(b), the high-
priority kernel execution latency decreases, since it can be
scheduled to run as soon as the kernel K1 finishes execution.
However, the execution latency of K3 is still unpredictable
since it depends on the execution time of a kernel previously
issued by another user process. The mechanisms we present
in this paper allow decreasing this latency further, resulting
in the timeline shown in Figure 3(c). In this case, as soon as
K3 is issued, the GPU starts scheduling thread-blocks for this
kernel to the GPU as resources become available. Although
the execution time for K3 still depends on the GPU load, a
maximum latency before K3 fully occupies the GPU can be
given, which suffices for most soft real-time applications.

D. Multi-Programmed Scheduling

Many different scheduling algorithms (e.g., round-robin,
priority scheduling, lottery scheduling, etc.) have been pro-
posed for multi-programmed systems, where computational
resources (e.g., CPUs) are time-shared among several user
processes. However, scheduling on general purpose systems
significantly differs from GPUs because of different design
trade-offs.

4

Schedulers aim to optimize some given metric, i.e.,
throughput (number of work units finished per unit of time),
turnaround time (total time between a submit and its comple-
tion), response time (time between a submit and its processing
starts) and fairness (how time assigned is proportional to
assigned priorities)[8]. In most cases, the optimization of
one metric tends to harm the others (e.g., throughput vs.
turnaround time) so schedulers try to find the correct trade-
off for the specific system where they are deployed. For
instance, turnaround time and/or response time tend to be
prioritized over the other metrics on interactive systems). In
this paper we focus on the scheduling mechanisms, rather
than scheduling policies. However, to justify the proposed
mechanisms and show their effectiveness, we compare several
different scheduling policies, explain their implementation and
analyze their effects on these metrics.

Three schedulers (in several variations) that are suitable for
a hardware implementation on the GPU are explored in this
paper: First Come First Served, Preemptive Priority Queues
and Token Based schedulers. The first two are well known
schedulers. Token scheduler assigns a number of tokens to
each running kernel and every time an SM is assigned to
the kernel, the token count is decremented. Thread blocks are
selected from a kernel with the higher token count.

III. GPU ARCHITECTURE WITH MULTI-PROGRAMMING
SUPPORT

The multiple queue GPU architecture (i.e., Kepler GK110)
described in Section II keeps track of several GPU contexts (up
to the number of queues it has), but only one can be active in
each unit: one in execution unit and one per each DMA engine
available in the GPU. To further support concurrency in the
execution unit, it has to be extended to allow commands from
multiple contexts to be issued concurrently and SMs need to
be extended to keep track of the context they are assigned to.

A. Execution Engine Multi-Programming Support

With only one active context in the execution unit, all the
architectures described in the Section II need an execution
engine with only one command queue and one KSR. To enable
concurrent execution of kernels from different contexts we
extend the command dispatcher and GPU execution engine
and connect them with multiple command queues (as many as
there are contexts in the system). We also extend the execution
engine to include as many KSRs as there are SMs in the system
and augment each KSR with the identifier of the GPU context
where the kernel is being executed. Anywhere between zero
and all SMs can be assigned to each context. Notice that in
some implementations, GPU context information still needs to
be a global GPU structure since the data transfer engine also
accesses this information. Besides these modification, each
scheduler also has to implement the additional data structures
required by the particular scheduling policy.

Any scheduling mechanism implemented in the GPU needs
to deal with the ability of SMs to execute several thread blocks
in an interleaved fashion. SMs are based on static hardware
partitioning, so all the available registers, shared memory and

Fig. 4. Architecture of the multi-kernel execution engine.

threads are split among all the thread blocks in the SM4. The
resource usage of all the thread blocks from a kernel are the
same and known in advance. The number of issued thread
blocks is thus determined by the first fully used resource.
This parameters have to be setup in each SM to partition the
hardware resources before the first thread block is scheduled
to run. Static hardware partitioning implies that only thread
blocks from the same kernel can be scheduled to concurrently
run on the same SM. Hence, a thread block can be scheduled
to a given SM only if:

1) The thread block belongs to the same kernel that is being
executed on that SM and there are hardware resources
available for more thread blocks.

2) There are no thread blocks being executed by the SM.

Adhering to these rules, however, gives little scheduling
freedom. Like in general purpose systems, execution pre-
emption is a third option that could create more scheduling
opportunities. A potential approach to preempt the current
kernel execution, in the very same way as operating systems do
on the CPU. This approach, currently used in GK110 chips to
implement dynamic parallelism, presents one major drawback
when applied to GPU scheduling: the SMs keep a very large
state (e.g., a 48KB scratch-pad memory and 512KB register
file per SM in the latest GK110 chip), which would make
the context switching a very long latency operation, possible
longer than the kernel execution itself.

The mechanisms we propose in this paper allow a less
expensive option: preemption of kernel execution on a thread
block boundary. The scheduler can drain the SM by not issuing
thread blocks to the given SM until all the previously issued
work to that SM finishes. When the SM becomes idle, the
scheduler can set it up for the new kernel and start issuing
thread blocks to it. Thus, a scheduler can implement time
sharing, spatial sharing, prioritization or any combination of
the three. Lower utilization of the execution engine due to
the SM draining and setup overhead are important trade-offs
in the scheduling decision: scheduling thread blocks from the
same kernel minimizes the overheads, but prevents the GPU
resources to be shared across all the contexts.

4Available resources of the GK110 chip are given in the Section IV

5

B. Streaming Multiprocessor Multi-Programming Support

Since in the baseline GPU architecture only one GPU
context is actively executing kernels, GPU context information
can be easily extracted from the global GPU control structures.
Now that we have enabled the execution engine to be shared
by multiple contexts, we modify the baseline SM architecture
by extending its state to include a GPU context id register,
a base page table register, and a texture register. The GPU
work scheduler sets the values of these registers during the SM
setup, before the issue of the first thread block. The base page
table register is used to configure the memory management
unit (MMU) of the SM (notice that there is only one MMU
per SM). The content of the base page table register is used on
a TLB miss to walk the per-process page table stored in global
memory. This is in contrast to the base GPU architecture,
where a single page-table walker sufficed, since the same
page table was used by all SMs. Similarly, the contents of
the texture register are used to index the per-process texture
table when textures are fetched by the texture unit. Finally,
the GPU context id register is used when GPU objects (e.g.,
OpenGL images) are accessed by the SM. We extend the
context of the SM, rather than using global GPU structures
to prevent them from having many read ports (one per SM).
The extra silicon area required for these modifications is
negligible; on a 64-bit SM, 192 bytes of extra storage are
required, which represents a 0.07% of the size of the register
file. No modifications are required to the memory hierarchy
because SMs in most modern GPUs implement a virtually
indexed, physically tagged first-level cache memory. Hence,
any memory requests coming in and out of the L1 cache use
physical memory addresses.

C. Example: Token Scheduler

The GPU architecture described in this paper allows differ-
ent work schedulers to be implemented on top of it. Now we
discuss the implementation and design trade-offs of a token
based scheduler to illustrate most of the intricacies of work
scheduling on GPUs.

A token scheduler is designed to perform dynamic spatial
sharing of GPU resources (SMs). This scheduler allows the OS
and runtime system to assign a number of tokens to each GPU
context. The token count of each GPU context is incremented
when an SM is assigned to it, and decremented when an SM is
deassigned. The lowest initial value for the token count is zero,
so its value can reach negative numbers up to the number of
SMs in the GPU. On scheduling points (details to follow), the
scheduler selects the kernel with the highest token count, looks
for free SMs, assigns them to the GPU context and decrements
its token count accordingly. If all SMs are busy, the scheduler
starts draining those SMs executing kernels with lower token
counts, and schedules the kernel to them. The token count
for each kernel is decremented as soon as an SM is assigned
to it, and incremented as soon as an SM is deassigned. This
algorithm ensures that in steady state the token count for all
active kernels is the same.

Figure 5 shows the block diagram for the GPU token sched-
uler. This scheduler requires two additional data structures to

Fig. 5. Block Diagram for a Token Scheduler.

keep the control information:
a) Active Queue: this is a circular queue where the

Kernel Status Register indexes of the kernels being executed
are stored. This queue has as many entries as KSRs are in the
system and each valid entry contains a KSR index. Any other
control information for the kernel (e.g., current token count)
is kept in the KSR itself. When there are free entries in the
active queue the fetch logic pops one entry from the execution
engine input queues to the corresponding KSR. Besides the
KSR index, an extra bit is needed to mark busy and free queue
entries.

b) SM Status Registers (SMSR): this is a register file with
as many entries as SMs in the system. The contents of each
register are updated by the SM Driver. Each entry contains
the KSR index of the kernel the SM is executing, the state
of the SM (Idle, Running or Reserved), number of running
thread blocks and the KSR index of the next kernel (when in
Reserved state).

The scheduling logic is divided in two main components:
the SM Partitioner, and the SM Driver. The SM partitioner
logic uses the contents of the SMRSs, and the active queue
to partition the available SMs among the running kernels.
When a new kernel is inserted in the active queue, or one
running kernel gets removed from the running queue (finishes
the execution), the SM partitioning procedure is triggered.
The SM partitioner picks the kernel with the highest current
token count and checks if there are any Idle SMs in the
system by reading the SMSRs. If there are, the token count
is decremented and the SM driver can setup the SM and
start issuing the thread blocks to that SM. If no idle SMs
are available, the partitioner finds the running kernel with the
lowest current token count and switches the state of one of
its assigned SMs from Running to Reserved in the SMSR,
starting the process of draining the SM. It also increments the
token count of the kernel that is being drained from the SM

6

CPU GPU
Clock: 2.8 GHz Clock: 706 MHz
Cores: 4 # Cores: 13 (32 pipelines each)
L1 Cache (per core): L1 Cache (per core):

32 KB D + 32 KB I 16 KB (128 bytes line)
L2 Cache (shared): 12 MB 64-way 50 cycles
Memory Clock: 1066 MHz L2 Cache (shared):
PCIe Bus 768 KB (32 bytes line)

64-way 150 cycles
Clock: 500 MHz GDDR3 Memory:
Lanes: 32 Clock: 1546 MHz
Burst: 4 KB Width: 512 bits

6 Banks
Registers (per SM): 65536
Thread Blocks (per SM): 16
Threads (per SM): 2048

TABLE I
SIMULATION PARAMETERS USED IN THE EXPERIMENTAL EVALUATION.

and decrements the token count of the newly assigned kernel.
This procedure is repeated until all the active kernels have the
same current token count.

The SM driver is in charge of issuing the thread blocks.
Thread blocks are issued when the new partitioning occurs or
whenever a SM notifies the driver that a thread block has been
finished executing. The SM driver checks the state field of the
corresponding SMSR which can be in one of the following
states:

c) Running: the SM is requesting a new thread block
from the running kernel. If there are pending thread blocks
from the kernel, the driver schedules the next thread block.
This is a fast operation which only requires the SM to add a
new entry in its active thread block list and start executing.
If there are no pending thread blocks the state field for the
SMSR is set to Idle and the SM partitioner is notified that
the kernel has finished execution, triggering the previously
discussed scheduling procedure.

d) Reserved: if there are no thread blocks running on the
GPU core (i.e., the count field in the SMSR is zero), the SM
requests the driver to schedule a thread block from the kernel
which reserved the GPU core (i.e., next field in the SMSR) in
a previous scheduling round. Otherwise, no new thread blocks
are scheduled.

e) Free: the SM is configured with the kernel control
information stored in the KSR: page table base address,
program counter, and dimensions (i.e., number of threads in
the thread block, number of register used, and amount of
scratch-pad memory required). After the SM is configured,
the SM driver can start issuing the thread blocks to that SM.

IV. EXPERIMENTAL EVALUATION

In this section we present the experimental results that
show that extensions and ideas presented in this paper allow
efficient hardware scheduler implementations that enable the
programmers and the operating systems to optimize the system
performance measured with both system level and user level
metrics.

A. Methodology

For the experimental evaluation of the proposals presented
here we use an in-house trace-driven simulator that models a

Kernel Number of Avgerage Thread Thread Block
Mnemonic Launches Exec. (us) Blocks Average Exec.
textbfs

BFSmultiblkinGPU 1 35855.01 14 2561.07
BFSinGPU 2 13006.62 1 13006.62

cutcp
cutpotentiallattice 11 1519.54 121 12.56

histo
histofinal 20 70.37 42 1.68
histoprescan 20 22.46 64 0.35
histointermediates 20 79.77 65 1.23
histomain 20 372.47 84 4.43

lbm
StreamCollide 100 2906.77 18000 0.16
binningReconstruction 1 2026.69 5188 0.39

mri-gridding
scaninter1kernel 9 8.49 29 0.29
scanL1kernel 8 826.98 2084 0.40
uniformAdd 8 128.44 2084 0.06
reorderReconstruction 1 2540.83 5188 0.49
splitSort 7 3843.89 2594 1.48
griddingGPUsample 1 191356.28 65536 2.92
splitRearrange 7 1622.76 2594 0.63
scaninter2kernel 9 9.97 29 0.34

mri-q
ComputeQGPU 2 3391.58 1024 3.31
ComputePhiMagGPU 1 5.82 4 1.46

sad
largersadcalc8 1 8139.52 8040 1.01
largersadcalc16 1 1519.52 8040 0.19
mbsadcalc 1 15452.74 128640 0.12

sgemm
mysgemmNT 1 3713.92 528 7.03

spmv
spmvjds 50 290.41 765 0.38

stencil
block2Dregtiling 100 2230.80 256 8.71

tpacf
genhists 1 14604.03 201 72.66

TABLE II
DESCRIPTION OF THE BENCHMARKS AND KERNELS USED IN THE

EXPERIMENTAL EVALUATION.

multi-core CPU connected to a GPU through a PCIe bus using
the parameters from Table I. This simulator performs a coarse
grained modeling of the CPU, using timing measurements
gathered on an Intel Core i7 930 chip. CPU traces consist of a
starting and ending time stamp for each API call to the CUDA
runtime library. We perform a cycle accurate simulation of
the PCIe bus and the GPU using execution traces of each
GPU kernel. For the GPU simulation, we used parameters
from Table I which are taken from Baghsorkhi et al. [6].
Applications are simulated from the first call to the CUDA
runtime until the end of the application, capturing all the
memory transfer, kernel execution and CPU execution phases.

We use the full Parboil benchmark suite to evaluate our
proposals. Table II shows the GPU kernels (with slightly short-
ened names) executed by each of the benchmark applications.
Included are the number of kernel calls, average execution
time of the kernel, number of thread blocks and average thread
block execution time for each of the kernels.

We create multi-programmed workloads as combinations
of several benchmark applications chosen randomly, which
we use in all experiments. To evaluate different workload
characteristics, we categorize each benchmark as short running
or long running, based on the average execution time of the

7

bfs cutcp histo lbm
mri-gridding mri-q sad

sgemm spmv
stencil tpacf

GMEAN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

de
cr

ea
se

 o
f t

ur
na

ro
un

d
tim

e
ov

er
 F

CF
S-

S

2 processes, FCFS-M
4 processes, FCFS-M
8 processes, FCFS-M

2 processes, Token
4 processes, Token
8 processes, Token

Fig. 6. Relative turnaround time improvement over FCFS-S.

thread blocks when running in isolation and we ensure that
each experiment includes a uniform distribution of combi-
nations for each category (short-short, long-long and short-
long). We run all benchmarks in each combination until
completion. Because some benchmarks end much earlier than
others, we replay benchmarks as soon as they finish executing
until all benchmarks have been executed once, as proposed
in [22], while gathering statistics for the first execution of
each benchmark only.

Three different scheduler configurations are used in most
experiments. FCFS-S is a First-Comes-First-Served scheduler
with the single active context in the execution engine, similar
to current GPUs (including the Kepler GK110). FCFS-M
is the FCFS scheduler with multiple active contexts in the
execution engine enabled by the hardware extensions proposed
in Section III. Token is the token scheduler described in detail
in section III. Unless stated otherwise, all three schedulers are
setup so that all contexts have the same priority. For the token
scheduler, this means that the tokens are evenly distributed
among applications while keeping their total number smaller
or equal to the number of SMs in the GPU. When appropriate
for the particular experiment, we define other scheduling
schemes and describe them before using in the experiments.
All the metrics used in the experiments are calculated as
suggested by Eyerman et al. [8].

B. Multi-Programmed GPU Benchmarks Performance

We first evaluate the impact of co-scheduling on the ex-
ecution time of applications when using different schedulers.
Figure 6 shows the speedup of the turnaround time of FCFS-M
and token over the default FCFS-S.

We identify two clear patterns in our experimental results.
The token scheduler decreases the performance of those bench-
marks with long-running kernels (i.e., bfs, mri-gridding, sad,
and tpacf), while FCFS-M improves its performance. As the
concurrency level grows, these benchmarks start sharing the
GPU resources when using token and, thus, the kernel execu-
tion time increases. This also explains why the performance of
mri-gridding and tpacf, the two benchmarks with the longest
running kernels (notice the long average execution time in

Table II) decreases when using the token scheduler. FCFS-M
improves the performance of bfs, and tpacf as the concurrency
level grows. This improvement is due to the ability of this
scheduler to start executing thread-blocks for this benchmarks
as soon as GPU resources become available.

The second pattern is the large benefits of the token sched-
uler for benchmarks with short-running thread-blocks (histo,
spmv, and stencil). In this case, both FCFS-S, and FCFS-M
hold the execution of these short-running kernels for relatively
long periods of time if a long-running kernel has been previ-
ously scheduled to run. However, token starts executing thread-
blocks for this benchmarks as soon as the kernel is issued. As
a result, the execution time for each individual thread-block
is longer than when using FCFS schedulers, but the wait time
in the execution time is much shorter.

Cutcp presents an interesting behaviour when using the to-
ken scheduler. If only two processes are running, the execution
time is similar for all schedulers; this behaviour is due to
the lack of contention on the GPU, i.e., only one kernel is
active in the GPU. When we increase the level of concurrency
to four processes, token produces large speedups because of
the short-running kernels which benefit from the shorter wait
time in the GPU when there is contention. However, when
cutcp is executed with seven other benchmarks, the contention
in the GPU execution engine increases, and cutcp gets one
or two SMs, which in this benchmark can only execute one
thread-block. Moreover, the execution time of thread-blocks in
cutcp is relatively long. Due to these two factors, the kernel
execution time is heavily affected by the amount of thread-
blocks that can be executed concurrently in the GPU.

In addition to the turnaround time which is an appli-
cation oriented metric, it is useful to evaluate the effects
of schedulers on the overall system performance. The first
system oriented metric we evaluate is the fairness. Fairness is
the measure of equal progress of co-scheduled applications
relative to their isolated execution. It is a higher-is-better
metric with fairness of one meaning that all the co-scheduled
applications experience exactly the same progress while fair-
ness of zero shows that some application completely starve.
Figure 7 shows the average system fairness achieved with

8

2 4 8
Number of processes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Fa

irn
es

s

FCFS-S
FCFS-M
Token

Fig. 7. Average scheduler fairness.

2 4 8
Number of processes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

th
ro

ug
hp

ut
 im

pr
ov

em
en

t o
ve

r F
CF

S-
S

FCFS-M
Token

Fig. 8. System throughput improvement over FCFS-S.

different schedulers when all the co-scheduled applications in
a workload are assigned equal priorities. When there are only
two applications running in the GPU, fairness is relatively
high with all schedulers due to the low contention of the
execution engine. Still, the token scheduler has close to 5%
and 9% improvement in fairness over FCFS-S and FCFS-
M, respectively. As the number of co-scheduled applications
grows, so does the contention and the fairness improvement
of token over the other two schedulers. Token achieves higher
fairness because equal application priorities (equal number of
tokens assigned) mean that SMs are partitioned among the
running kernels and that an application will always be able to
progress. Still, when there are less concurrent kernels running
in the execution engine than co-scheduled applications, the
rest of the SMs is equally divided among the running kernels.
The token scheduler improves the fairness around 46% when
four applications are co-scheduled and 85% and 63% when
eight applications are co-scheduled, compared to FCFS-S and
FCFS-M.

Another important system oriented metric is the system
throughput, defined as number of applications completed per
unit of time. Average system throughput is shown in Figure 8.

1 2 4 8
Number of processes

0

10

20

30

40

50

60

Ex
ec

ut
io

n
en

gi
ne

 o
cc

up
an

cy
[%

]

FCFS-S
FCFS-M
Token

Fig. 9. Execution engine occupancy.

C. GPU Execution Analysis

A potential drawback of the design of token is that when a
new kernel is scheduled, the logic reserves some GPU cores
to schedule work groups of the new kernel. Once a GPU core
becomes reserved, the scheduler logic needs to wait until all
work groups being executed finish to start scheduling work
groups for the new kernel. During this period of time, the
GPU core is not fully utilized. This underutilization of the
GPU hardware might degrade the overall system performance.
To measure the impact of this effect, we analyze the occupancy
of the GPU cores during the whole application execution.

Figure 9 shows the occupancy for FCFS-S, FCFS-M, and
token. There is a variation of less than 0.1% among all three
schedulers in all cases. These results show that the occupancy
of the GPU cores is similar in all scheduling policies, so the
effect of reserving GPU cores is negligible. This is because
most benchmarks spawn a large number of work groups on
each kernel invocation, so once a GPU core is assigned to
a given kernel, a relatively large number of work groups are
scheduled to run on it. As a result, the periods of time when
GPU cores are underutilized due to reservations is very small
compared to the total execution time.

We also study the effect of running multi-programmed
workloads on the GPU DMA controller, which we do not
show for brevity. DMA occupancy for data transfer from the
CPU to the GPU increases as we increment the number of
concurrent benchmarks. This is an expected result, since each
benchmark requires sending its input data to the GPU memory
prior calling the GPU kernels. Typically the input data for each
kernel is quite large, and thus the occupancy of the downlink
increases. This is in contrast to the uplink (i.e., DMA transfers
from the GPU to the CPU), where the occupancy does not
vary significantly as we increase the number of benchmarks
being executed concurrently. This is due to the combination
of two different effects. First, the output data from kernel
invocations tends to be much smaller than the input data.
Second, benchmarks take longer to execute when we increase
the level of concurrency. As a result, the increment in the
amount of data transferred from the GPU to the CPU gets
compensated by the longer execution time, giving a mostly
constant DMA uplink occupancy.

9

bfs cutcp histo lbm
mri-gridding mri-q sad

sgemm spmv
stencil tpacf

GMEAN
0

1

2

3

4

5

Re
la

tiv
e

im
pr

ov
em

en
t o

f t
ur

na
ro

un
d

ov
er

 k
ep

le
r

2 processes, FCFS-PQ
4 processes, FCFS-PQ
8 processes, FCFS-PQ
2 processes, Token
4 processes, Token

8 processes, Token
2 processes, FCFS-PPQ
4 processes, FCFS-PPQ
8 processes, FCFS-PPQ

Fig. 10. Speedup of turnaround time of the high priority process over its nonprioritized execution.

D. Enforcing Priorities

System software uses priorities to favorize higher priority
processes over the low priority ones, improves the response
time of selected processes and allow soft real-time systems
to achieve the given constraints. In section Section II, we
illustrated on an example how being able to prioritize a task
can be useful in GPU systems. Here, we evaluate the speedup
when the application is prioritized compared to nonprioritized
execution. We asign the high priority to one application per
workload while others have equal lower priority. The token
scheduler is setup so that the high priority application gets
all the SMs, which means that other application fairly share
the SMs when the high priority application is not running
in the execution engine. In this experiment, we evaluate two
additional schedulers. Priority Queues (FCFS-PQ) is the FCFS
scheduler with one active context in the execution unit and
different priorities assigned to each context. In this scheme,
when the running kernel finishes its execution, a kernel from
the context with the highest priority is scheduled to run in
the GPU. This scheduling scheme could relatively easily be
implemented on a multi-queue GPU architecture like Kepler.
Preemptive Priority Queues (FCFS-PPQ) is also a FCFS
scheduler but with multiple active contexts and preemptive
kernel execution, implemented on top of the extensions pro-
posed in the paper. As soon as the high priority kernel is
launched, scheduler starts draining the SMs that execute lower
priority kernels. Once the high priority kernel is executed,
other, lower priority kernels can continue with the execution.
Figure 10 shows the speedup of prioritized applications when
using different scheduling schemes. As expected from the
descriptions of the schedulers, all of them provide the im-
provement over FCFS-S on average. The simplest scheme with
priorities (FCFS-PQ) provides the significant improvement
for eight concurrent processes because only this case has
relatively large number of on-flight kernels waiting in the
queue. The token scheduler provides improvement even with
the small number of applications because of its ability to
preempt the low priority kernels once the high priority kernel is
issued. However, in FCFS-PPQ in general provides the biggest
speedup in turnaround time (up to 3x for eight processes)
because it has the same ability to preempt the low priority

running kernel but introduces the scheduling overhead smaller
than the token. Note that the token scheduler, unlike the other
FCFS based evaluated schedulers can also be setup so that
it assigns the resources (SMs) proportional to the priorities
given, which means that lower priority applications do not
have to starve while the high priority application is running.

V. RELATED WORK

Several researchers have noticed that sharing GPU resources
among several applications could improve the system per-
formance but current GPUs have limited sharing capabilities
which usually limits the implementation of their proposal. Best
to our knowledge, we are the first to propose mechanisms
that allow transparent, fine grained GPU resource sharing and
scheduling among multiple user processes.

To be able to better utilize available processing units in
the existing GPUs, previous work has proposed using kernel
fusion, a fusion technique that statically transforms the code
of two, possible completely unrelated, kernels into one that
is launched with the appropriate number of thread blocks.
Fused kernel contains an if statement to checks which one
of the original computations is to be performed. Because
kernels use their thread and block id to find inputs and
produce outputs, ids have to be recalculated to accommodate
this scheme. Guevara et al. [10] proposed a runtime system
for CUDA which chooses between running the fused kernel
or running the kernels sequentially. Wang et al. [23] used
a similar technique to reduce the energy consumption and
improve power efficiency by achieving higher utilization of
hardware resources. Gregg et al. [9] implemented an OpenCL
scheduler that occupies the whole GPU with a scheduler kernel
that dynamically invokes kernels to be executed.

Several approaches have been proposed for processes or
applications to share a GPU. Pegasus [11] and the approach
taken by Li et al. [15] introduce a virtualization layer.
GERM [7] and TimeGraph [13] focus on graphics applications
and provide a GPU command-driven scheduler integrated in
the device driver. RGEM [12] is a runtime system that allows
the preemption of memory transfers by splitting them into
smaller chunks and thus creating the preemption points and
provides separate queues to demultiplex data transfers and

10

computation. Gdev [14] is built around these principles, but
it integrates the runtime support for GPUs into the OS to
provide system level management of the GPU resources and
GPU virtualization.

In [5], the authors make a case for spatial sharing of the
GPU execution engine by simulating execution of several
kernels from different applications in parallel on statically
partitioned processing units among applications. Partitioning
is chosen by the user and is performed at the beginning of
the simulation, at the simultaneous launch of all benchmark
applications, and cannot be changed after that. Furthermore,
compute units are not reassigned to another application once
the application executing on them completely finishes.

Ravi et al. [20] rely on the molding technique (changing
the dimensions of grid and thread block while preserving
the correctness of the computation) and propose a method
to compute the potential improvements of co-scheduling to
achieve dynamic spatial sharing of the GPU execution en-
gine when native applications have such configurations that
otherwise would not permit concurrent execution. Molding
however, is not a generic technique, and can be only applied
to a small number of existing kernels, without transforming
the code. Pai et al. [19] propose a similar technique and asso-
ciated code transformation based on iterative wrapping [21].
Their transformation produces an elastic kernel which can
use whatever physical grid it was launched with to execute
the original logical grid and is used to shape the grid in
such a way that exploits the concurrent execution features of
the underlying hardware. This transformation however suffers
from performance issues due to the increased register usage
and reduced number of thread blocks with a potential drop in
throughput as the result.

Compared to all the previously published related work, our
approach is the only one that is generic and transparent, and
does not have the limitations of software-only approaches.
Further more, our extensions allow actual implementation of
some of the mechanisms and policies proposed previously.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed the first GPU architecture
with support for multi-programmed workloads. This support
allows efficient sharing of a single GPU among several user
processes, enabling system software and application program-
mers to adapt the GPU behaviour to the characteristics of the
workloads being executed, and maximize the GPU utilization
by allowing several user processes to concurrently use the
GPU resources.

We have also presented a novel kernel preemption technique
that exploits the characteristics of the GPU programming
model to efficiently hand off GPU resources from one user
process to another one. This technique enables the imple-
mentation of fine grained schedulers in the GPU that allow
concurrent execution and scheduling of multiple kernels on
the GPU. We have explored the unique trade-offs of work
scheduling on GPUs, where hardware resources are able to
concurrently execute several work groups from the same GPU
kernel.

The techniques and architectural support presented in this
paper enable GPUs to be used in new computing environments,
other than HPC and desktop systems. We plan to explore
new GPU scheduling policies to bring soft and hard real time
capabilities to GPUs. We also plan to study further hardware
modifications to enable fair partitioning of shared resources
other than computing logic, such as main memory bandwidth
and shared cache memories.

REFERENCES

[1] “Amd a-series processor-in-a-box,” 2012. [On-
line]. Available: http://www.amd.com/us/products/desktop/processors/a-
series/Pages/a-series-pib.aspx

[2] “Haswell microarchitecture,” 2012. [Online]. Available:
en.wikipedia.org/wiki/Haswell (microarchitecture)

[3] “Namd - scalable molecular dynamics,” 2012. [Online]. Available:
http://www.ks.uiuc.edu/Research/namd/

[4] “Samsung exynos,” 2012. [Online]. Available:
www.samsung.com/exynos

[5] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte, “The case for
gpgpu spatial multitasking,” in HPCA 2012, feb. 2012, pp. 1 –12.

[6] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-m. W. Hwu, “Efficient
performance evaluation of memory hierarchy for highly multithreaded
graphics processors,” in PPoPP 2012. New York, NY, USA: ACM,
2012, pp. 23–34.

[7] M. Bautin, A. Dwarakinath, and T. Chiueh, “Graphic engine resource
management,” in SPIE 2008, vol. 6818, 2008, p. 68180O.

[8] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” Micro, IEEE, vol. 28, no. 3, pp. 42–53, 2008.

[9] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained re-
source sharing for concurrent gpgpu kernels,” in HotPar 2012. Berkeley,
CA, USA: USENIX Association, 2012, pp. 10–10.

[10] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron, “Enabling task
parallelism in the cuda scheduler,” 2009.

[11] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ranganathan, “Pegasus:
coordinated scheduling for virtualized accelerator-based systems,” in
USENIX 2011. USENIX Association, 2011, pp. 3–3.

[12] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “Rgem: A responsive gpgpu execution model for runtime
engines,” in RTSS 2011, 29 2011-dec. 2 2011, pp. 57 –66.

[13] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in USENIX
2011. USENIX Association, 2011, pp. 2–2.

[14] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: first-class
gpu resource management in the operating system,” in USENIX 2012.
Berkeley, CA, USA: USENIX Association, 2012, pp. 37–37.

[15] T. Li, V. Narayana, E. El-Araby, and T. El-Ghazawi, “Gpu resource
sharing and virtualization on high performance computing systems,” in
ICPP 2011, sept. 2011, pp. 733 –742.

[16] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” Micro, IEEE, vol. 28,
no. 2, pp. 39–55, 2008.

[17] NVIDIA, “Next generation cuda computer architecture kepler gk110,”
2012.

[18] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[19] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in ASPLOS 2013. ACM, 2013, p. 3x.

[20] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Supporting gpu
sharing in cloud environments with a transparent runtime consolidation
framework,” in HPDC 2011. ACM, 2011, pp. 217–228.

[21] J. Stratton, S. Stone, and W.-m. Hwu, “Mcuda: An efficient implemen-
tation of cuda kernels for multi-core cpus,” LCPC 2008, pp. 16–30,
2008.

[22] N. Tuck and D. M. Tullsen, “Initial observations of the simultaneous
multithreading pentium 4 processor,” in PACT 2003. IEEE, 2003, pp.
26–34.

[23] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for
better power efficiency on multithreaded gpu,” in CPSCom 2012, dec.
2010, pp. 344 –350.

