Locating domination in bipartite graphs and their complements

C. Hernando*
M. Mora ${ }^{\dagger}$
I. M. Pelayo ${ }^{\ddagger}$

Abstract

A set S of vertices of a graph G is distinguishing if the sets of neighbors in S for every pair of vertices not in S are distinct. A locating-dominating set of G is a dominating distinguishing set. The location-domination number of $G, \lambda(G)$, is the minimum cardinality of a locating-dominating set. In this work we study relationships between $\lambda(G)$ and $\lambda(\bar{G})$ for bipartite graphs. The main result is the characterization of all connected bipartite graphs G satisfying $\lambda(\bar{G})=\lambda(G)+1$. To this aim, we define an edge-labeled graph G^{S} associated with a distinguishing set S that turns out to be very helpful.

Keywords: domination; location; distinguishing set; locating domination; complement graph; bipartite graph.

AMS subject classification: 05C12, 05C35, 05C69.

[^0]
1 Introduction

Let $G=(V, E)$ be a simple, finite graph. The distance between two vertices v and w is denoted by $d_{G}(v, w)$. The neighborhood of a vertex $u \in V$ is $N_{G}(u)=\{v: u v \in E\}$. We write $N(u)$ or $d(v, w)$ if the graph G is clear from the context. For any $S \subseteq V, N(S)=\cup_{u \in S} N(u)$. A set $S \subseteq V$ is dominating if $V=S \cup N(S)$ (see [7]). For further notation and terminology, we refer the reader to [4].

A set $S \subseteq V$ is distinguishing if $N(u) \cap S \neq N(v) \cap S$ for every pair of different vertices $u, v \in V \backslash S$. In general, if $N(u) \cap S \neq N(v) \cap S$, we say that S distinguishes the pair u and v. A locating-dominating set, LD-set for short, is a distinguishing set that is also dominating. Observe that there is at most one vertex not dominated by a distinguishing set. The location-domination number of G, denoted by $\lambda(G)$, is the minimum cardinality of a locating-dominating set. A locating-dominating set of cardinality $\lambda(G)$ is called an $L D$-code [12, 13]. Certainly, every LD-set of a non-connected graph G is the union of LD-sets of its connected components and the location-domination number is the sum of the location-domination number of its connected components. Both, LD-codes and the location-domination parameter have been intensively studied during the last decade; see [1, 2, 3, [5, 6, 8, ,9, 10]. A complete and regularly updated list of papers on locating-dominating codes is to be found in [11].

The complement of G, denoted by \bar{G}, has the same set of vertices of G and two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. This work is devoted to approach the relationship between $\lambda(G)$ and $\lambda(\bar{G})$ for connected bipartite graphs.

It follows immediately from the definitions that a set $S \subseteq V$ is distinguishing in G if and only if it is distinguishing in \bar{G}. A straightforward consequence of this fact are the following results.

Proposition 1 (9$]$). Let $S \subseteq V$ be an $L D$-set of a graph $G=(V, E)$. Then, S is an $L D$-set of \bar{G} if and only if S is a dominating set of \bar{G};

Proposition 2 ([8]). Let $S \subseteq V$ be an LD-set of a graph $G=(V, E)$. Then, the following properties hold.
(a) There is at most one vertex $u \in V \backslash S$ such that $N(u) \cap S=S$, and in the case it exists, $S \cup\{u\}$ is an $L D$-set of \bar{G}.
(b) S is an $L D$-set of \bar{G} if and only if there is no vertex in $V \backslash S$ such that $N(u) \cap S=S$.

Theorem 1 ([8]). For every graph $G,|\lambda(G)-\lambda(\bar{G})| \leq 1$.

According to the preceding inequality, $\lambda(\bar{G}) \in\{\lambda(G)-1, \lambda(G), \lambda(G)+1\}$ for every graph G, all cases being feasible for some connected graph G. We intend to determine graphs such that $\lambda(\bar{G})>\lambda(G)$, that is, we want to solve the equation $\lambda(\bar{G})=\lambda(G)+1$. This problem was completely solved in [9] for the family of block-cactus.

In this work, we carry out a similar study for bipartite graphs. For this purpose, we first introduce in Section 2 the graph associated with a distinguishing set. This graph turns out to be very helpful to derive some properties related to LD-sets and the location-domination number of G, and will be used to get the main results in Section 3 .

In Table 1, the location-domination number of some families of bipartite graphs are displayed, along with the location-domination number of its complement graphs. Concretely, we consider the path P_{n} of order $n \geq 4$; the cycle C_{n} of (even) order $n \geq 4$; the star $K_{1, n-1}$ of order $n \geq 4$, obtained by joining a new vertex to $n-1$ isolated vertices; the complete bipartite graph $K_{r, n-r}$ of order $n \geq 4$, with $2 \leq r \leq n-r$ and stable sets of order r and $n-r$, respectively; and finally, the bi-star $K_{2}(r, s)$ of order $n \geq 6$ with $3 \leq r \leq s=n-r$, obtained by joining the central vertices of two stars $K_{1, r-1}$ and $K_{1, s-1}$ respectively.

Proposition 3 (9$])$. Let G be a graph of order $n \geq 4$. If G is a graph belonging to one of the following classes: $P_{n}, C_{n}, K_{1, n-1}, K_{r, n-r}, K_{2}(r, s)$, then the values of $\lambda(G)$ and $\lambda(\bar{G})$ are known and they are displayed in Table 1.

G	P_{n}	P_{n}	C_{n}	C_{n}
n	$4 \leq n \leq 6$	$n \geq 7$	$4 \leq n \leq 6$	$n \geq 7$
$\lambda(G)$	$\left\lceil\frac{2 n}{5}\right\rceil$	$\left\lceil\frac{2 n}{5}\right\rceil$	$\left\lceil\frac{2 n}{5}\right\rceil$	$\left\lceil\frac{2 n}{5}\right\rceil$
$\lambda(\bar{G})$	$\left\lceil\frac{2 n}{5}\right\rceil$	$\left\lceil\frac{2 n-2}{5}\right\rceil$	$\left\lceil\frac{2 n}{5}\right\rceil$	$\left\lceil\frac{2 n-2}{5}\right\rceil$
G	$K_{1, n-1}$	$K_{r, n-r}$	$K_{2}(r, s)$	
n	$n \geq 4$	$2 \leq r \leq n-r$	$3 \leq r \leq s$	
$\lambda(G)$	$n-1$	$n-2$	$n-2$	
$\lambda(\bar{G})$	$n-1$	$n-2$	$n-3$	

Table 1: The values of $\lambda(G)$ and $\lambda(\bar{G})$ for some families of bipartite graphs.
Notice that in all cases considered in Proposition 3, we have $\lambda(\bar{G}) \leq \lambda(G)$. Moreover, for every pair of integers (r, s), with $3 \leq r \leq s$ we have examples of bipartite graphs with stable sets of order r and s respectively, such that $\lambda(\bar{G})=\lambda(G)$ and such that $\lambda(\bar{G})=\lambda(G)-1$.

2 The graph associated with a distinguishing set

Let S be a distinguishing set of a graph G. We introduce in this section a labeled graph associated with S and study some general properties. Since LD-sets are distinguishing sets that are also dominating, this graph allows us to derive some properties related to LD-sets and the location-domination number of G.

Definition 1. Let S be a distinguishing set of cardinality k of a graph $G=(V, E)$ of order n. The so-called S-associated graph, denoted by G^{S}, is the edge-labeled graph defined as follows.
i) $V\left(G^{S}\right)=V \backslash S$;
ii) If $x, y \in V\left(G^{S}\right)$, then $x y \in E\left(G^{S}\right)$ if and only if the sets of neighbors of x and y in S differ in exactly one vertex $u(x, y) \in S$;
iii) The label $\ell(x y)$ of edge $x y \in E\left(G^{S}\right)$ is the only vertex $u(x, y) \in S$ described in the preceding item.

..

Figure 1: A graph G (left) and the graph G^{S} associated with the distinguishing set $S=$ $\{1,2,3,4,5\}$ (right). The neighbors in S of each vertex are those enclosed in brackets.

Notice that if $x y \in E\left(G^{S}, \ell(x y)=u \in S\right.$ and $|N(x) \cap S|>|N(y) \cap S|$, then $N(x) \cap S=$ $(N(u) \cap S) \cup\{u\}$. Therefore, we can represent the graph G^{S} with the vertices lying on $|S|+1=k+1$ levels, from bottom (level 0) to top (level k), in such a way that vertices with exactly j neighbors in S are at level j. For any $j \in\{0,1, \ldots, k\}$ there are at most $\binom{k}{j}$ vertices at level j. So, there is at most one vertex at level k and, if it is so, this vertex is adjacent to all vertices of S. There is at most one vertex at level 0 and, if it is so, this vertex
has no neighbors in S. The vertices at level 1 are those with exactly one neighbor in S. See Figure 1 for an example of an LD-set-associated graph.

Next, we state some basic properties of the graph associated with a distinguishing set that will be used later.

Proposition 4. Let S be a distinguishing set of $G=(V, E), x, y \in V \backslash S$ and $u \in S$. Then,
(1) S is a distinguishing set of \bar{G}.
(2) The associated graphs G^{S} and \bar{G}^{S} are equal.
(3) The representation by levels of \bar{G}^{S} is obtained by reversing bottom-top the representation of G^{S}.
(4) $x y \in E\left(G^{S}\right)$ and $\ell(x y)=u$ if and only if x and y have the same neighborhood in $S \backslash\{u\}$ and (thus) they are not distinguished by $S \backslash\{u\}$.
(5) If $x y \in E\left(G^{S}\right)$ and $\ell(x y)=u$, then $S \backslash\{u\}$ is not a distinguishing set.

G

G^{S}

Figure 2: $S=\{1,2,3\}$ is distinguishing, $S^{\prime}=\{1,2\}$ is not distinguishing and G^{S} has no edges.

The converse of Proposition 4 (5) is not necessarily true. For example, consider the graph G of order 6 displayed in Figure 2. By construction, $S=\{1,2,3\}$ is a distinguishing set. However, $S^{\prime}=S \backslash\{3\}=\{1,2\}$ is not a distinguishing set, because $N(3) \cap S^{\prime}=N([12]) \cap S^{\prime}=$ $\{1,2\}$, and the S-associated graph G^{S} has no edge with label 3 (in fact, G^{S} has no edges since the neighborhood in S of all vertices not in S have the same size).

As a straight consequence of Proposition 4 (5), the following result is derived.
Corollary 1. Let S be a distinguishing set of G and let $S^{\prime} \subseteq S$. Consider the subgraph $H_{S^{\prime}}$ of G^{S} induced by the edges with a label from S^{\prime}. Then, all the vertices belonging to the same connected component in $H_{S^{\prime}}$ have the same neighborhood in $S \backslash S^{\prime}$, concretely, it is the neighborhood in S of a vertex from the connected component lying on the lowest level.

For example, consider the graph shown in Figure 1. If $S^{\prime}=\{1,2\}$, then vertices of the same connected component in $H^{S^{\prime}}$ have the same neighborhood in $S \backslash S^{\prime}$. Concretely, the neighborhood of vertices [1234], [234], [134] and [34] in $S \backslash\{1,2\}$ is $\{3,4\}$; the neighborhood of vertices [13] and [3] in $S \backslash\{1,2\}$ is $\{3\}$; and the neighborhood of vertices [1245] and [245] in $S \backslash\{1,2\}$ is $\{4,5\}$ (see Figure 3).

Figure 3: If $S^{\prime}=\{1,2\}$, then $H^{S^{\prime}} \cong C_{4}+2 K_{2}$ has three components. Vertices of the same component in $H^{S^{\prime}}$ have the same neighborhood in $S \backslash S^{\prime}$.

Proposition 5. Let S be a a distinguishing set of cardinality k of a connected graph $G=$ (V, E) of order n. Let G^{S} be its associated graph. Then, the following conditions hold.

1. $\left|V\left(G^{S}\right)\right|=n-k$.
2. G^{S} is bipartite.
3. Incident edges of G^{S} have different labels.
4. Every cycle of G^{S} contains an even number of edges labeled v, for all $v \in S$.
5. Let ρ be a walk with no repeated edges in G^{S}. If ρ contains an even number of edges labeled v for every $v \in S$, then ρ is a closed walk.
6. If $\rho=x_{i} x_{i+1} \ldots x_{i+h}$ is a path satisfying that vertex x_{i+h} lies at level $i+h$, for any $h \in\{0,1, \ldots, h\}$, then
(a) the edges of ρ have different labels;
(b) for all $j \in\{i+1, i+2, \ldots, i+h\}, N\left(x_{j}\right) \cap S$ contains the vertex $\ell\left(x_{k} x_{k+1}\right)$, for any $k \in\{i, i+1, \ldots, j-1\}$.

Proof. 1. It is a direct consequence from the definition of G^{S}.
2. Take the sets $V_{1}=\left\{x \in V\left(G^{S}\right):|N(x) \cap S|\right.$ is odd $\}$ and $V_{2}=\left\{x \in V\left(G^{S}\right): \mid N(x) \cap\right.$ $S \mid$ is even $\}$. Then, $V\left(G^{S}\right)=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\emptyset$. Since $\|N(x) \cap S|-|N(y) \cap S| \|=1$ for any $x y \in E\left(G^{S}\right)$, it is clear that the vertices x, y are not in the same subset V_{i}, $i=1,2$.
3. Suppose that edges $e_{1}=x y$ and $e_{2}=y z$ have the same label $l\left(e_{1}\right)=l\left(e_{2}\right)=v$. This means that $N(x) \cap S$ and $N(y) \cap S$ differ only in vertex v, and $N(y) \cap S$ and $N(z) \cap S$ differ only in vertex v. It is only possible if $N(x) \cap S=N(z) \cap S$, implying that $x=z$.
4. Let ρ be a cycle such that $E(\rho)=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots x_{h} x_{0}\right\}$. The set of neighbors in S of two consecutive vertices differ exactly in one vertex. If we begin with $N\left(x_{0}\right) \cap S$, then each time we add (remove) the vertex of the label of the corresponding edge, we have to remove (add) it later in order to obtain finally the same neighborhood, $N\left(x_{0}\right) \cap S$. Therefore, ρ contains an even number of edges with label v.
5. Consider the vertices $x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{2 k}$ of ρ. In this case, $N\left(x_{2 k}\right) \cap S$ is obtained from $N\left(x_{0}\right) \cap S$ by either adding or removing the labels of all the edges of the walk. As every label appears an even number of times, for each element $v \in S$ we can match its appearances in pairs, and each pair means that we add and remove (or remove and add) it from the neighborhood in S. Therefore, $N\left(x_{2 k}\right) \cap S=N\left(x_{0}\right) \cap S$, and hence $x_{0}=x_{2 k}$.
6. It straightly follows from the fact that $N\left(x_{j}\right) \cap S=N\left(x_{j-1} \cap S\right) \cup\left\{\ell\left(x_{j-1} x_{j}\right)\right\}$, for any $j \in\{i+1, \ldots, i+h\}$.

In the study of distinguishing sets and LD-sets using its associated graph, a family of graphs is particularly useful, the cactus graph family. A block of a graph is a maximal connected subgraph with no cut vertices. A connected graph G is a cactus if all its blocks are either cycles or edges. Cactus are characterized as those connected graphs with no edge shared by two cycles.

Lemma 1. Let S be a distinguishing set of a graph G and $S^{\prime} \subseteq S$. Consider a subgraph H of G^{S} induced by a set of edges containing exactly two edges with label u, for each $u \in S^{\prime} \subseteq S$. Then, all the connected components of H are cactus.

Proof. We prove that there is no edge lying on two different cycles of H. Suppose, on the contrary, that there is an edge e_{1} contained in two different cycles C_{1} and C_{2} of H. Note that C_{1} and C_{2} are cycles of G^{S}, since $S^{\prime} \subseteq S$. Hence, if the label of e_{1} is $u \in S^{\prime} \subseteq S$, then by Proposition 5 both cycles C_{1} and C_{2} contain the other edge e_{2} of H with label u. Suppose that $e_{1}=x_{1} y_{1}$ and $e_{2}=x_{2} y_{2}$ and assume w.l.o.g. that there exist $x_{1}-x_{2}$ and $y_{1}-y_{2}$ paths in C_{1} not containing edges e_{1}, e_{2}. Let P_{1} and P_{1}^{\prime} denote respectively those paths (see Figure 4 a).

We have two possibilities for C_{2} : (i) there are $x_{1}-x_{2}$ and $y_{1}-y_{2}$ paths in C_{2} not containing neither e_{1} nor e_{2}. Let P_{2} denote the $x_{1}-x_{2}$ path in C_{2} in that case (see Figure 4 b); (ii) there are $x_{1}-y_{2}$ and $y_{1}-x_{2}$ paths in C_{2} not containing neither e_{1} nor e_{2} (see Figure 4 c).

In case (ii), the closed walk formed with the path P_{1}, e_{1} and the $y_{1}-x_{2}$ path in C_{2} would contain a cycle with exactly an edge labeled with u, which is a contradiction (see Figure 4 d).

In case (i), at least one the following cases hold: either the $x_{1}-x_{2}$ paths in C_{1} and in C_{2}, P_{1} and P_{2}, are different, or the $y_{1}-y_{2}$ paths in C_{1} and in C_{2} are different (otherwise, $C_{1}=C_{2}$).

Figure 4: All connected components of the subgraph H are cactus.

Assume that P_{1} and P_{2} are different. Let z_{1} be the last vertex shared by P_{1} and P_{2} advancing from x_{1} and let z_{2} be the first vertex shared by P_{1} and P_{2} advancing from z_{1} in P_{2}. Notice that $z_{1} \neq z_{2}$. Take the cycle C_{3} formed with the $z_{1}-z_{2}$ paths in P_{1} and P_{2}. Let P_{1}^{*} and P_{2}^{*} be respectively the $z_{1}-z_{2}$ subpaths of P_{1} and P_{2} (see Figure 4 e). We claim that the internal vertices of P_{2}^{*} do not lie in P_{1}^{\prime}. Otherwise, consider the first vertex t of P_{1}^{\prime} lying also in P_{2}^{*}. The cycle beginning in x_{1}, formed by the edge e_{1}, the $y_{1}-t$ path contained in P_{1}^{\prime}, the $t-z_{1}$ path contained in P_{2}^{*} and the $z_{1}-x_{1}$ path contained in P_{1} has exactly one appearance of an edge with label u, which is a contradiction (see Figure 4f). By Proposition 5. the labels of edges belonging to P_{1}^{*} appear exactly two times in cycle C_{3}, but they also appear exactly two times in cycle C_{1}. But this is only possible if they appear exactly two times in P_{1}^{*}, since H contains exactly to edges with the same label. By Proposition 5, P_{1}^{*} must be a closed path, which is a contradiction.

Next, we establish some properties relating parameters of bipartite graphs having cactus as connected components.

Lemma 2. Let H be a bipartite graph of order at least 4 such that all its connected components are cactus. Let $c c(H)$ denote the number of connected components of H. Then, $|V(H)| \geq \frac{3}{4}|E(H)|+c c(H) \geq \frac{3}{4}|E(H)|+1$.

Proof. Let cc (H) be the number of connected components and $\mathrm{cy}(H)$ the number of cycles of H. Since H is a planar graph with cy $(H)+1$ faces and cc (H) connected components, the equality follows from the generalization of Euler's Formula:

$$
(\operatorname{cy}(H)+1)+|V(H)|=|E(H)|+(\operatorname{cc}(H)+1)
$$

Let $\operatorname{ex}(H)=|E(H)|-4 \operatorname{cy}(H)$. Then,

$$
\begin{aligned}
|V(H)| & =|E(H)|-\operatorname{cy}(H)+\operatorname{cc}(H)=|E(H)|-\frac{1}{4}(\mid E(H)-\operatorname{ex}(H))+\operatorname{cc}(H) \\
& =\frac{3}{4}|E(H)|+\frac{1}{4} \operatorname{ex}(H)+\operatorname{cc}(H)
\end{aligned}
$$

But $\operatorname{cc}(H) \geq 1$, and $\operatorname{ex}(H) \geq 0$ because all cycles of a bipartite graph have at least 4 edges. Therefore,

$$
|V(H)|=\frac{3}{4}|E(H)|+\frac{1}{4} \operatorname{ex}(H)+\operatorname{cc}(H) \geq \frac{3}{4}|E(H)|+\operatorname{cc}(H) \geq \frac{3}{4}|E(H)|+1
$$

Corollary 2. Let S be a distinguishing set of a graph G. Consider a subgraph $H_{S^{\prime}}$ of G^{S} induced by a set of edges containing exactly two edges with label u for each $u \in S^{\prime} \subseteq S$. Let $r^{\prime}=\left|S^{\prime}\right|$. Then, $\left|V\left(H_{S^{\prime}}\right)\right| \geq \frac{3}{2} r^{\prime}+1$.

3 The bipartite case

This section is devoted to solve the equation $\lambda(\bar{G})=\lambda(G)+1$ when we restrict ourselves to bipartite graphs. In the sequel, $G=(V, E)$ stands for a bipartite connected graph of order $n=r+s \geq 4$, such that $V=U \cup W$, being U, W their stable sets and $1 \leq|U|=r \leq s=|W|$.

In the study of LD-sets, vertices with the same neighborhood play an important role, since at least one of them must be in an LD-set. We say that two vertices u and v are twins if either $N(u)=N(v)$ or $N(u) \cup\{u\}=N(v) \cup\{v\}$.

Lemma 3. Let S be an LD-code of G. Then, $\lambda(\bar{G}) \leq \lambda(G)$ if any of the following conditions hold.
i) $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$.
ii) $r<s$ and $S=W$.
iii) $2^{r} \leq s$.

Proof. If S satisfies item i), then the LD-code of G is a distinguishing set of \bar{G} and it is dominating in \bar{G} because there is no vertex in G with neighbors in both stable sets. Thus, $\lambda(\bar{G}) \leq \lambda(G)$.

Next, assume that $r<s$ and $S=W$. In this case, $\lambda(G)=|W|>|U|$ and thus U is not an LD-set, but is it a dominating set since G is connected. Therefore, there exists a pair of vertices $w_{1}, w_{2} \in W$ such that $N\left(w_{1}\right)=N\left(w_{2}\right)$. Hence, $W-\left\{w_{1}\right\}$ is an LD-set of $G-w_{1}$. Let $u \in S$ be a vertex adjacent to w_{1} (it exists since G is connected), and notice that $\left(W \backslash\left\{w_{1}\right\}\right) \cup\{u\}$ is an LD-code of G with vertices in both stable sets, which, by the preceding item, means that $\lambda(\bar{G}) \leq \lambda(G)$.

Finally, if $2^{r} \leq s$ then $S \neq U$, which means that S satisfies either item i) or item ii).
Proposition 6. If G has order at least 3 and $1 \leq r \leq 2$, then $\lambda(\bar{G}) \leq \lambda(G)$.
Proof. If $r=1$, then G is the star $K_{1, n-1}$ and $\lambda(\bar{G})=\lambda(G)=n-1$.
Suppose that $r=2$. We distinguish cases (see Figure 5).

- If $s \geq 2^{2}=4$ then, by Lemma 3, $\lambda(\bar{G}) \leq \lambda(G)$.
- If $s=2$, then G is either P_{4} and $\lambda\left(\overline{P_{4}}\right)=\lambda\left(P_{4}\right)=2$, or G is C_{4} and $\lambda\left(\overline{C_{4}}\right)=\lambda\left(C_{4}\right)=2$.
- If $s=3$, then G is either $P_{5}, \underline{K_{2,3}, K_{2}}(1,2)$, or the banner P, and $\lambda\left(\overline{P_{5}}\right)=\lambda\left(P_{5}\right)=2$, $\lambda\left(\overline{K_{2,3}}\right)=\lambda\left(K_{2,3}\right)=3,2=\lambda\left(\overline{K_{2}(1,2)}\right)<\lambda\left(K_{2}(1,3)\right)=3$, and $2=\lambda(\overline{\mathrm{P}})<\lambda(\mathrm{P})=3$.

	$\lambda(\bar{G})=\lambda(G)$	$\lambda(\bar{G})=\lambda(G)-1$
$r=1$	$\bullet<$	
$\begin{aligned} & r=2 \\ & s=2 \end{aligned}$	$\bullet \bullet \bullet$	
$\begin{aligned} & r=2 \\ & s=3 \end{aligned}$		

Figure 5: Some bipartite graphs with $1 \leq r \leq 2$.

From now on, we assume that $r \geq 3$.

Proposition 7. If $r=s$, then $\lambda(\bar{G}) \leq \lambda(G)$.

Proof. If G has an LD-code with vertices at both stable sets, then $\lambda(\bar{G}) \leq \lambda(G)$ by Lemma3. In any other case, G has at most two LD-codes, U and W.

If both U and W are LD-codes, then we distinguish the following cases.

- If there is no vertex $u \in U$ such that $N(u)=W$, then W is an LD-set of \bar{G}, and consequently, $\lambda(\bar{G}) \leq \lambda(G)$.
- Analogously, if there is no vertex $w \in W$ such that $N(w)=U$, then we derive $\lambda(\bar{G}) \leq$ $\lambda(G)$.
- If there exist vertices $u \in U$ and $w \in W$ such that $N(u)=W$ and $N(w)=U$, then $(U-\{u\}) \cup\{w\}$ would be an LD-set of \bar{G}, and thus $\lambda(\bar{G}) \leq \lambda(G)$.

Next, assume that U is an LD-code and W is not an LD-code of G. If there is no vertex $w \in W$ such that $N(w)=U$, then U is an LD-set of \bar{G}, and so $\lambda(\bar{G}) \leq \lambda(G)$. Finally, suppose that there is a vertex $w \in W$ such that $N(w)=U$. Note that W is not a distinguishing set of G (otherwise, it would be an LD-code because W is a dominating set of size r). Therefore, there exist vertices $x, y \in U$ such that $N(x)=N(y)$. In such a case, $(U \backslash\{x\}) \cup\{w\}$ is an LD-set of \bar{G}, and thus $\lambda(\bar{G}) \leq \lambda(G)$.

From Lemma 3 and Proposition 7 we derive the following result.
Corollary 3. If $\lambda(\bar{G})=\lambda(G)+1$, then $r<s \leq 2^{r}-1$ and U is the only LD-code of G.
Next theorem characterizes connected bipartite graphs satisfying the equation $\lambda(\bar{G})=$ $\lambda(G)+1$ in terms of the graph associated with a distinguishing set.

Theorem 2. Let $3 \leq r<s$. Then, $\lambda(\bar{G})=\lambda(G)+1$ if and only if the following conditions hold.
i) W has no twins.
ii) There exists a vertex $w \in W$ such that $N(w)=U$.
iii) For every vertex $u \in U$, the graph G^{U} has at least two edges with label u.

Proof. $\Leftarrow)$ Condition i) implies that U is an LD-set of G and, hence, $\lambda(G) \leq r$. Let S be an LD-code of \bar{G}. We next prove that S has at least $r+1$ vertices. Note that $S \neq U$, since U is not a dominating set in \bar{G}. Consider the graph G^{U} associated with U. Let $H_{U \backslash S}$ be the subgraph of G^{U} induced by the set of edges with a label in $U \backslash S \neq \emptyset$. By Corollary 1 , the
vertices of the same connected component in $H_{U \backslash S}$ have the same neighborhood in $U \cap S$. Besides, W induces a complete graph in \bar{G}. Hence, $S \cap W$ must contain at least all but one vertices of the same connected component of $H_{U \backslash S}$, otherwise \bar{G} would contain vertices with the same neighborhood in S. Therefore, $S \cap W$ has at least $\left|V\left(H_{U \backslash S}\right)\right|-c c\left(H_{U \backslash S}\right)$ vertices, where $c c\left(H_{U \backslash S}\right)$ is the number of connected components of $H_{U \backslash S}$. Lemmas 1 and 2 imply that $\left|V\left(H_{U \backslash S}\right)\right|-c c\left(H_{U \backslash S}\right) \geq \frac{3}{4}\left|E\left(H_{U \backslash S}\right)\right|$, and condition iii) implies that $\left|E\left(H_{U \backslash S}\right)\right| \geq 2|U \backslash S|$. Therefore,

$$
\begin{aligned}
|S| & =|S \cap U|+|S \cap W| \geq|S \cap U|+\left|V\left(H_{U \backslash S}\right)\right|-c c\left(H_{U \backslash S}\right) \\
& \geq|S \cap U|+\frac{3}{4}\left|E\left(H_{U \backslash S}\right)\right| \geq|S \cap U|+\frac{3}{2}|U \backslash S| \\
& =|U|+\frac{1}{2}|U \backslash S|>|U|=r .
\end{aligned}
$$

$\Rightarrow)$ By Corollary 3, U is the only LD-code of G and hence, U is not an LD-set of \bar{G}. Therefore, W has no twins and $N(w)=U$ for some $w \in W$. It only remains to prove that condition iii) holds. Suppose on the contrary that there is at most one edge in G^{U} with label u for some $u \in U$. We consider two cases.

If there is no edge with label u, then by Proposition 4, $U \backslash\{u\}$ distinguishes all pairs of vertices of W in \bar{G}. Let $S=(U \backslash\{u\}) \cup\{w\}$. We claim that S is an LD-set of \bar{G}. Indeed, S is a dominating set in \bar{G}, because u is adjacent to any vertex in $U \backslash\{u\}$ and vertices in $W \backslash\{w\}$ are adjacent to w. It only remains to prove that S distinguishes the pairs of vertices of the form u and v, when $v \in W \backslash\{w\}$. But $w \in N_{\bar{G}}(v) \cap S$ and $w \notin N_{\bar{G}}(u) \cap S$. Thus, S is an LD-set of \bar{G}, implying that $\lambda(\bar{G}) \leq|S|=|U|=\lambda(G)$, a contradiction.

If there is exactly one edge $x y$ with label u, then only one of the vertices x or y is adjacent to u in G. Assume that $u x \in E(G)$. Recall that $x, y \in W$. By Proposition $4, U \backslash\{u\}$ distinguishes all pairs of vertices of W, except the pair x and y, in \bar{G}. Let $S=(U \backslash\{u\}) \cup\{x\}$. We claim that S is an LD-set of \bar{G}. Indeed, S is a dominating set in \bar{G}, because u is adjacent to any vertex in $U \backslash\{u\}$ and vertices in $W \backslash\{x\}$ are adjacent to x. It only remains to prove that S distinguishes the pairs of vertices of the form u and v, when $v \in W \backslash\{x\}$. But $x \in N_{\bar{G}}(v) \cap S$ and $x \notin N_{\bar{G}}(u) \cap S$. Thus, S is an LD-set of \bar{G}, implying that $\lambda(\bar{G}) \leq|S|=|U|=\lambda(G)$, a contradiction.

Observe that condition $\mathbf{i i i}$) of Theorem 2 is equivalent to the existence of al least two pairs of twins in $G-u$, for every vertex $u \in U$. Therefore, it can be stated as follows.

Theorem 3. Let $3 \leq r<s$. Then, $\lambda(\bar{G})=\lambda(G)+1$ if and only if the following conditions hold:
i) W has no twins;
ii) There exists a vertex $w \in W$ such that $N(w)=U$;
iii) For every vertex $u \in U$, the graph $G-u$ has at least two pairs of twins in W.

We already know that it is not possible to have $\lambda(\bar{G})=\lambda(G)+1$ when $s>2^{r}$. However, the condition $s \leq 2^{r}-1$ is not sufficient to ensure the existence of bipartite graphs satisfying $\lambda(\bar{G})=\lambda(G)+1$. We next show that there are graphs satisfying this equation if and only if $\frac{3 r}{2}+1 \leq s \leq 2^{r}-1$.
Proposition 8. If $r \geq 3$ and $\lambda(\bar{G})=\lambda(G)+1$, then $\frac{3 r}{2}+1 \leq s \leq 2^{r}-1$.
Proof. By Corollary 3, we have that $s \leq 2^{r}-1$. Consider a subgraph H of G^{U} with exactly two edges with label u for every $u \in S$. Now inequeality $\frac{3 r}{2}+1 \leq s$ immediately follows from Proposition 2 and Corollary 2 .

Proposition 9. For every pair $(r, s), r, s \in \mathbb{N}$, such that $3 \leq r$ and $\frac{3 r}{2}+1 \leq s \leq 2^{r}-1$, there exists a bipartite graph $G(r, s)$ such that $\lambda(\bar{G})=\lambda(G)+1$.

Proof. Let $s=\left\lceil\frac{3 r}{2}+1\right\rceil$. Take the bipartite graph $G\left(r,\left\lceil\frac{3 r}{2}+1\right\rceil\right)$ such that $V=U \cup W$, $U=[r]=\{1,2, \ldots, r\}$, and $W \subseteq \mathcal{P}([r]) \backslash\{\emptyset\}$ is defined as follows (see Figure 33). For $r=2 k$ even:

$$
W=\{[r]\} \cup\{[r] \backslash\{i\}: i \in[r]\} \cup\{[r] \backslash\{2 i-1,2 i\}: 1 \leq i \leq k\}
$$

and for $r=2 k+1$ odd:

$$
W=\{[r]\} \cup\{[r] \backslash\{i\}: i \in[r]\} \cup\{[r] \backslash\{2 i-1,2 i\}: 1 \leq i \leq k\} \cup\{[r] \backslash\{r-1, r\}\} .
$$

Figure 6: The labeled graph G^{U}, for $G=G\left(r,\left\lceil\frac{3 r}{2}+1\right\rceil\right)$ and $U=\{1, \ldots, r\}$.

By construction, W has no twins, there is a vertex w such that $N(w)=U$ and the U-associated graph, G^{U} has at least two edges with label u for every $u \in U$. Hence, $\lambda(\bar{G})=$ $\lambda(G)+1$ by Theorem 2 .

For $s>\left\lceil\frac{3 r}{2}+1\right\rceil$, we can add up to $2^{r}-1-r$ vertices to the set W of the graph $G\left(r,\left\lceil\frac{3 r}{2}+1\right\rceil\right)$ taking into account that the neighborhoods in S of vertices in W must be different and non-empty.

References

[1] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, Eur. J. Combin., 25 (2004) 969-987.
[2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin., 39 (2007) 219-232.
[3] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, Locating-dominating codes: Bounds and extremal cardinalities, Appl. Math. Comput., 220 (2013) 38-45.
[4] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, fifth edition, CRC Press, Boca Raton (FL), (2011).
[5] C. Chen, R. C. Lu, Z. Miao, Identifying codes and locating-dominating sets on paths and cycles, Discrete Appl. Math., 159 (15) (2011) 1540-1547.
[6] F. Foucaud, M. Henning, C. Löwenstein, T. Sasse, Locating-dominating sets in twin-free graphs, Discrete Appl. Math., 200 (2016), 52?58.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[8] C. Hernando, M. Mora, I. M. Pelayo, Nordhaus-Gaddum bounds for locating domination, Eur. J. Combin., 36 (2014) 1-6.
[9] C. Hernando, M. Mora, I. M. Pelayo, On global location-domination in graphs, Ars Math. Contemp., 8 (2) (2015) 365-379.
[10] I. Honkala, T. Laihonen, On locating-dominating sets in infinite grids, Eur. J. Combin., 27 (2) (2006) 218-227.
[11] A. Lobstein, Watching systems, identifying, locating-dominating ans discriminating codes in graphs, https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
[12] D. F. Rall, P. J. Slater, On location-domination numbers for certain classes of graphs, Congr. Numer., 45 (1984) 97-106.
[13] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22 (1988) 445-455.

[^0]: *Departament de Matemàtiques. Universitat Politècnica de Catalunya, Barcelona, Spain, carmen.hernando@upc.edu. Partially supported by projects Gen. Cat. DGR 2014SGR46 and MINECO MTM2015-63791-R.
 ${ }^{\dagger}$ Departament de Matemàtiques. Universitat Politècnica de Catalunya, Barcelona, Spain, merce.mora@upc.edu. Partially supported by projects Gen. Cat. DGR 2014SGR46, MINECO MTM2015-63791-R and H2020-MSCA-RISE project 734922 - CONNECT.
 \ddagger Departament de Matemàtiques. Universitat Politècnica de Catalunya, Barcelona, Spain, ignacio.m.pelayo@upc.edu. Partially supported by projects MINECO MTM2014-60127-P, ignacio.m.pelayo@upc.edu.

