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Abstract

We formulate a mesh morphing technique as mesh distortion minimization problem constrained to weakly satisfy the imposed
displacement of the boundary nodes. The method is devised to penalize the appearance of inverted elements during the optimization
process. Accordingly, we have not equipped the method with untangling capabilities. To solve the constrained minimization
problem, we apply the augmented Lagrangian technique to incorporate the boundary condition in the objective function using
the Lagrangian multipliers and a penalty parameter. We have applied the proposed formulation to mesh moving and mesh curving
problems. The results show that the method has the ability to deal with large displacements for 2D and 3D meshes with non-uniform
sizing, and mesh curving of highly stretched 2D high-order meshes.
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1. Introduction

In several applications such as large deformations and high-order mesh curving techniques, it is needed to deform
an initial mesh in order to adapt it to a new configuration determined by a boundary displacement. Usually, it is
necessary to recover a valid mesh in which the position of the boundary nodes is the prescribed one. There are different
techniques to morph [1] a valid mesh, based on solid mechanics analogies [2–4], optimization-based methods [5–12],
and solution of PDE’s [13–15].

One critical step is how to impose the boundary displacement condition for the mesh morphing problem. When
the mesh is subject to large displacements, the techniques to perform the mesh morphing process may not converge
if inverted elements are originated during the procedure. In particular, the mesh morphing technique may require the
capability of untangling to recover from invalid configurations and obtain a final valid mesh. For instance, in mesh
distortion minimization methods [5,6,9,10], it is necessary to use a regularized distortion measure [6,16] to remove the
singularities of the objective function. In [11,12], it is introduced a moving log-barrier to repair the inverted elements.
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In [3,4] the authors propose to incrementally move the mesh boundary. Other methods solve a non-linear PDE [13,14]
in which the initial condition of the boundary nodes may impact the performance of the non-linear solver. Note that
these different treatments arise because of the imposition of the boundary condition.

In this work, we propose to incorporate the boundary condition into a minimization problem. To this end, we
pose a constrained minimization problem in which we optimize the mesh distortion, constrained to the boundary
condition. To solve this non-linear minimization problem, we apply the augmented Lagrangian method [17], in
which the boundary condition is incorporated into the target function by means of the Lagrangian multipliers and a
penalty parameter. Then, we solve a series of minimization problems with increasing penalty parameter and better
approximation of the Lagrangian multipliers. The algorithm finishes when the boundary constraint is satisfied within
a prescribed tolerance.

The proposed method has several advantages. The mesh boundary is not fixed during the optimization process
since it is driven by the penalty parameter and the Lagrange multipliers. Thus, similarly to the incremental moving
methods, the boundary condition is only satisfied at the end of the optimization process. However, it is worth to point
out that in our method we do not impose the trajectory of the boundary nodes during the deformation process, since it
is automatically computed by the augmented Lagrangian method. Moreover, since the mesh is valid during the whole
minimization, it is not necessary to feature untangling capabilities. We propose to use a global non-linear solver, in
which the nodes of the mesh are moved at the same time. To this end, we use a backtracking line-search method [17]
in which the advancing direction is computing using Newton’s method and the step length is selected according to
the Wolfe condition. We point out that to perform Newton’s method we use the analytical derivatives of the objective
function.

The rest of the paper is structured as follows. In Section 2, we review the existing literature related to the presented
work. In Section 3, we formulate the constrained minimization problem and detail the implemented augmented
Lagrangian method. In Section 4 ,we present several examples to show the features of the proposed method. Finally,
in Section 5, we detail the conclusions and the future work.

2. Related work

In some applications, mesh untangling and smoothing can be required to repair invalid elements and improve the
overall mesh quality when applying a mesh morphing technique. In this cases, the boundary nodes are displaced to a
new position, and it is necessary to recover a new mesh composed of valid elements. There are different formulations
to define a mesh morphing technique. For instance, in the solid mechanics approach, the mesh is moved using linear
or non-linear elasticity analogies [2–4]. Other approaches consist on minimizing an objective function that measures
a quantity of interest of the mesh, such as the mesh distortion [5,6,18], the minimum Jacobian of the iso-parametric
mapping [11], or by formulating a variational minimization problem [14]. Finally, it is possible to define the mesh
morphing process in terms of a PDE [13]. In all these approaches, it is necessary to fix the position of the boundary
nodes in order to satisfy the prescribed mesh morphing displacement. Usually, it is introduced as a boundary condition
for the mesh morphing problem. In the most common approach, the position of the boundary nodes is fixed, and then,
the location of inner nodes is computed accordingly. However, when the boundary nodes are displaced in the initial
step, invalid elements may appear, and they could hinder the convergence of the mesh morphing method, specially
when complex geometries or non-uniform element sizes are present.

In reference [19], the authors propose to solve a constrained minimization problem in which the constraint is the
final position of the boundary nodes. To this end, they apply a penalty method to solve a series of optimization
problems to enforce the constraint. Other approaches first project the boundary nodes to the CAD model, and then
pose an unconstrained minimization problem in which the boundary nodes can slide along the geometric entity they
belong to [10,11,20]. In this case, the imposition of the boundary condition is more flexible than prescribing a fixed
nodal value. The only requisite is that the boundary nodes are located on the required geometric entity. In [12], the
authors combine a mesh curving technique with a geometric accuracy measure into a single functional. The boundary
nodes are free to slide along the geometric entities taking into account the geometric accuracy.

In reference [21], the authors introduce a geometric accuracy measure, and it is later combined with a mesh curving
technique in [22]. In this approach, all the nodes of the mesh are free to move in the space, while the boundary nodes
take into account the geometric error. In the proposed optimization process, the geometric accuracy term is treated as a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.820&domain=pdf
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pose a constrained minimization problem in which we optimize the mesh distortion, constrained to the boundary
condition. To solve this non-linear minimization problem, we apply the augmented Lagrangian method [17], in
which the boundary condition is incorporated into the target function by means of the Lagrangian multipliers and a
penalty parameter. Then, we solve a series of minimization problems with increasing penalty parameter and better
approximation of the Lagrangian multipliers. The algorithm finishes when the boundary constraint is satisfied within
a prescribed tolerance.

The proposed method has several advantages. The mesh boundary is not fixed during the optimization process
since it is driven by the penalty parameter and the Lagrange multipliers. Thus, similarly to the incremental moving
methods, the boundary condition is only satisfied at the end of the optimization process. However, it is worth to point
out that in our method we do not impose the trajectory of the boundary nodes during the deformation process, since it
is automatically computed by the augmented Lagrangian method. Moreover, since the mesh is valid during the whole
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in which the advancing direction is computing using Newton’s method and the step length is selected according to
the Wolfe condition. We point out that to perform Newton’s method we use the analytical derivatives of the objective
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new position, and it is necessary to recover a new mesh composed of valid elements. There are different formulations
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boundary condition of the mesh curving problem by means of a penalty method. In this approach, the boundary nodes
are not restricted to move along the geometric model. Instead, the boundary mesh approximates the CAD model in a
weak sense.

References [3,13,23] propose an incremental displacement of the boundary nodes form the initial position to the
target one. In this manner, inverted elements may not appear, and the optimization process is more robust. To this
end, the optimization method tries a full step to the target position. If the optimization process fails, the step is divided
until the optimization converges. This approach is iterated until the final position of the nodes is reached.

In incremental stepping methods [1,3,4] invalid intermediate boundary configurations might appear hampering the
capability to recover a valid volume mesh. This is not the case with our method, since the boundary conditions are
weakly imposed and we penalize the appearance of inverted elements during the optimization process. To avoid the
appearance of invalid boundary configurations it is also possible to constrain the boundary nodes to move on top of
the CAD entities and incorporate untangling capabilities [10,12,24]. On the contrary, in this work the boundary nodes
are not constrained to be on top of the boundaries and the we do not need untangling capabilities. There are other
methods, proposed for linear meshes, where the boundary condition is incorporated in the minimization functional
[7,15,19]. However, these approaches do not use an augmented Lagrangian formulation to incrementally impose the
boundary conditions as we propose here. Furthermore, we have checked our method not only for large displacements
but for non-uniform sizing, highly stretched elements, and curved high-order meshes.

3. Formulation of the problem

In this section, we first review the point-wise distortion measure used in this work. Following, we detail the new
technique that we use to prescribe a displacement of the mesh boundary. The goal is to obtain a valid mesh with
optimal quality featuring no inverted elements during the deformation process.

3.1. Point-wise shape distortion measure

In this work, we use the point-wise shape distortion measure, introduced in [18,25]. It is defined in terms of a
mapping φ that transforms a given ideal mesh, MI , to a physical mesh, MP, using the shape distortion measure
introduced in [5,26] as

η(Dφ(y)) =
|Dφ(y)|2

nσ(Dφ(y))2/n , (1)

where y is a point in the ideal mesh, Dφ is the Jacobian of φ, σ(·) is the determinant, n is the space dimension and
| · | =

√
(·, ·) is the Frobenius norm of matrices. The point-wise distortion measure is equal to one when the mapping

φ is locally a rotation, a translation or a scaling, and it is equal to infinity when the mapping is degenerated.
The point-wise distortion measure presents asymptotes when σ(Dφ(y)) = 0. This prevents its use in a continuous

optimization procedure. To overcome this drawback, in [6,16] a regularization of Equation (1) is introduced as

ηδ(Dφ(y)) =
|Dφ(y)|2

nσδ(Dφ(y))2/n , (2)

where

σδ(Dφ(y)) =
1
2

(
σ +
√
σ2 + 4δ2

)
, (3)

and the value of the δ parameter depends on the required amount of regularization. For a further analysis on the
selection of δ for high-order meshes, see [18,27–29]. In the case of linear meshes, the δ parameter can be chosen
according to [6,30–32]. From now on, we can set δ = 0 since we want to detect if a given element goes from a valid
to an invalid configuration. However, we do not need untangling capabilities. Degenerated or inverted elements are
detected since they feature an infinite value of distortion [33].
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3.2. Optimization framework

Given an initial ideal mesh, MI , we want to characterize a morphed mesh, MP, in terms of a diffeomorphism
φ∗. This diffeomorphism has to satisfy the morphing boundary condition, and should present optimal point-wise
distortion. That is,

Mφ∗ = 1, ∀y ∈ MI ,

φ∗ = gD, ∀y ∈ ∂MI , (4)

where gD is a known and fixed Dirichlet boundary condition in ∂MI and

Mφ∗(y) = ηδ(Dφ∗(y))

is the point-wise distortion measure, Eq. (1), of the mapping φ∗ betweenMI andMP at each point y ∈ MI .
Note that for a given initial mesh, MI , and boundary condition, gD, it may not exist a mapping φ∗ such that

Equation (4) is verified. For this reason, we impose the optimality condition in a least-squares sense by means of a
constrained minimization problem:

min
φ
‖Mφ − 1‖2,

constrained to:
φ = gD ∀y ∈ ∂MI , (5)

where
‖Mφ − 1‖2 =

∑
eI∈MI

∫
eI

(Mφ(y) − 1)2 dy,

denoting by eI the elements of the ideal meshMI , herein named ideal elements.
Equation (5) defines a constrained minimization problem in which we minimize the point-wise distortion of the

mesh while the boundary condition is treated as a constraint. To solve this constrained minimization problem, we
use the augmented Lagrangian technique, see [17]. The key idea of the augmented Lagrangian method is to solve
a series of unconstrained minimization problems until the constraint is satisfied within a tolerance. The augmented
Lagrangian functional associated with problem (5) is

Eλ,µ(φ) = ‖Mφ − 1‖2 − (λ, cD)∂MI
+

1
2
µ2‖cD‖2∂MI

, (6)

where cD = (φ−gD)/‖1‖∂MI
is the boundary constraint scaled by the measure of the boundary, µ is a penalty parameter

and λ are the Lagrange multipliers associated to the constraint cD.
The scalar product (·, ·)∂MI

and its associated norm, ‖ · ‖∂MI
, are defined as

(λ, cD)∂MI
=
∑

fI∈∂MI

∫
fI

1
h
λ · cD dΓ, ‖cD‖2∂MI

=
∑

fI∈∂MI

∫
fI

1
h

cD · cD dΓ,

being fI the elemental faces that are located at the boundary of the mesh, and h a measure of the boundary face size.
By taking into account the element size of the boundary elements in the boundary integrals, we balance the distortion
and the constraint contributions in the augmented Lagrangian functional.

Note that φ is expressed in terms of the physical nodes as follows

φ =
nN∑
i=1

xiNi,

where nN is the number of nodes in the mesh, and {Ni}i=1,...,nN is a Lagrangian basis of element-wise polynomial
shape functions continuous at the element interfaces. Thus, the augmented Lagrangian functional only depends on the
position of the physical nodes:

Eλ,µ(φ) = Eλ,µ(x1, . . . , xn).
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to an invalid configuration. However, we do not need untangling capabilities. Degenerated or inverted elements are
detected since they feature an infinite value of distortion [33].
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3.2. Optimization framework

Given an initial ideal mesh, MI , we want to characterize a morphed mesh, MP, in terms of a diffeomorphism
φ∗. This diffeomorphism has to satisfy the morphing boundary condition, and should present optimal point-wise
distortion. That is,

Mφ∗ = 1, ∀y ∈ MI ,

φ∗ = gD, ∀y ∈ ∂MI , (4)

where gD is a known and fixed Dirichlet boundary condition in ∂MI and

Mφ∗(y) = ηδ(Dφ∗(y))

is the point-wise distortion measure, Eq. (1), of the mapping φ∗ betweenMI andMP at each point y ∈ MI .
Note that for a given initial mesh, MI , and boundary condition, gD, it may not exist a mapping φ∗ such that

Equation (4) is verified. For this reason, we impose the optimality condition in a least-squares sense by means of a
constrained minimization problem:

min
φ
‖Mφ − 1‖2,

constrained to:
φ = gD ∀y ∈ ∂MI , (5)

where
‖Mφ − 1‖2 =

∑
eI∈MI

∫
eI

(Mφ(y) − 1)2 dy,

denoting by eI the elements of the ideal meshMI , herein named ideal elements.
Equation (5) defines a constrained minimization problem in which we minimize the point-wise distortion of the

mesh while the boundary condition is treated as a constraint. To solve this constrained minimization problem, we
use the augmented Lagrangian technique, see [17]. The key idea of the augmented Lagrangian method is to solve
a series of unconstrained minimization problems until the constraint is satisfied within a tolerance. The augmented
Lagrangian functional associated with problem (5) is

Eλ,µ(φ) = ‖Mφ − 1‖2 − (λ, cD)∂MI
+

1
2
µ2‖cD‖2∂MI

, (6)

where cD = (φ−gD)/‖1‖∂MI
is the boundary constraint scaled by the measure of the boundary, µ is a penalty parameter

and λ are the Lagrange multipliers associated to the constraint cD.
The scalar product (·, ·)∂MI

and its associated norm, ‖ · ‖∂MI
, are defined as

(λ, cD)∂MI
=
∑

fI∈∂MI

∫
fI

1
h
λ · cD dΓ, ‖cD‖2∂MI

=
∑

fI∈∂MI

∫
fI

1
h

cD · cD dΓ,

being fI the elemental faces that are located at the boundary of the mesh, and h a measure of the boundary face size.
By taking into account the element size of the boundary elements in the boundary integrals, we balance the distortion
and the constraint contributions in the augmented Lagrangian functional.

Note that φ is expressed in terms of the physical nodes as follows

φ =
nN∑
i=1

xiNi,

where nN is the number of nodes in the mesh, and {Ni}i=1,...,nN is a Lagrangian basis of element-wise polynomial
shape functions continuous at the element interfaces. Thus, the augmented Lagrangian functional only depends on the
position of the physical nodes:

Eλ,µ(φ) = Eλ,µ(x1, . . . , xn).
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Algorithm 1 Augmented Lagrangian method.

Input: MeshMI , ω
∗ ,ε∗, µ0, ω0, ε0

Output: MeshMP
1: function meshOptimization

2: φ← Id
3: λ0 ← 0
4: m0 ← 10
5: m1 ← m0, µ1 ← µ0
6: ω1 ← ω0, ε1 ← ε0
7: while ‖cD‖2∂MI

> ε∗ and ‖∇Eλk ,µk (φ)‖ > ω∗ do
8: optimizeFunction(Eλk ,µk (φ), ωk)
9: if ‖cD‖2∂MI

≤ εk then
10: λk+1 ← λk − µkcD

11: mk+1 ← mk

12: µk+1 ← µk

13: εk+1 ← εk/m0.9
k+1

14: ωk+1 ← ωk/µk+1
15: else
16: λk+1 ← λk

17: mk+1 ← 100mk

18: µk+1 ← µ0/(m0/mk+1)
19: εk+1 ← ε0/(m0/mk+1)0.1

20: ωk+1 ← ω0/(m0/mk+1)
21: end if
22: end while
23: MP ← φ

(
MI

)
24: end function

Moreover, we approximate the Lagrange multipliers, λ, in a similar manner as

λ =
mN∑
j=1

λ jNb
j ,

where mN is the number of boundary nodes, and {Nb
j } j=1,...,mN is a Lagrangian basis of element-wise polynomial shape

functions continuous at the element interfaces, defined at the boundary of the mesh. In our application, we use the
same polynomial degree to define the physical mesh and the Lagrange multipliers.

Algorithm 1 details the proposed implementation of the augmented Lagrangian method adapted for mesh smooth-
ing with prescribed boundary displacement.

The input of the algorithm is an initial mesh,MI , the tolerances for optimization of the non-linear objective function
and the boundary condition, ω∗ and ε∗, respectively, and the parameters of the augmented Lagrangian method. The
algorithm stops when a solution is found that satisfies

‖cD‖2∂MI
< ε∗, ‖∇Eλk ,µk (φ)‖ < ω∗.

We initialize φ to the identity mapping, Id. That is, we start the optimization process using the initial mesh. Note
that the identity mapping is optimal with respect to the distortion measure. However, it does not satisfy the boundary
constraint. Then, we initialize the multipliers in Line 3, the penalty parameter in Line 5, and the tolerances to check
the evolution of the non-linear problem and the constraint in Line 6. Lines 7–22 define the main loop of the augmented
Lagrangian method. This loop is performed until the stopping criteria are satisfied. In Line 8 we optimize Functional
(6) using the current λ and µ parameters. The stopping criterion of this non-linear solver is ‖∇Eλk ,µk (φ)‖ < ωk. Then,
we update the values of λ and µ according to the current value of the constraint cD. If the constraint norm is small
enough, Line 9, we update the values of λ, keep the value of µ, and tighten the tolerances. On the contrary, if the
constraint norm is too high, Line 15, we increase the value of µ, keep the current value of λ, and tighten the tolerances
accordingly.

Note that the only unknowns of Functional (6) are the nodal coordinates, while λ and µ are parameters that are
selected according to the augmented Lagrangian method, see Lines 9–21. Thus, we minimize Functional (6) with
respect to the position of the mesh nodes, given the penalty parameter µ, and the Lagrange multipliers of the boundary
nodes λ1, . . . , λmN .

To optimize each non-linear problem, we use a backtracking line-search method in which the advancing direction
is selected using Newton’s method, and the step length is set according to Wolfe condition, see [17] for further
details. The linear systems related to the Newton’s method iterations are solved using the GMRES iterative method
preconditioned using an incomplete LU decomposition without any levels of fill-in.
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Fig. 1. Non-uniform size mesh colored by distortion: (a) initial, (b) optimized, (c) detail, (d) Lagrange multipliers on the boundary points, and (e)
elemental distortion color legend.

Our method is devised to favor that at each optimization step, a valid mesh is deformed to a valid mesh. To this
end, two main ingredients have been considered. First, Functional (6) penalizes inverted elements by taking an infinite
value. Second, we have incorporated a backtracking line search to Newton’s method. Thus, if a Newton full step was
deforming a valid mesh to an invalid mesh, the backtracking line-search would decrease the step length to recover a
valid mesh.
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selected according to the augmented Lagrangian method, see Lines 9–21. Thus, we minimize Functional (6) with
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nodes λ1, . . . , λmN .
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Our method is devised to favor that at each optimization step, a valid mesh is deformed to a valid mesh. To this
end, two main ingredients have been considered. First, Functional (6) penalizes inverted elements by taking an infinite
value. Second, we have incorporated a backtracking line search to Newton’s method. Thus, if a Newton full step was
deforming a valid mesh to an invalid mesh, the backtracking line-search would decrease the step length to recover a
valid mesh.
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Fig. 2. Evolution of the constraint norm over the augmented Lagrangian iterations for the mesh moving of a circle.

4. Examples

This section presents several examples to show the capabilities of the presented mesh morphing method. Specifi-
cally, we show two examples of large displacements for two- and three-dimensional geometries, and one example of
high-order mesh curving. Finally, in Table 2, we present for each example the evolution of the relative mesh quality
with respect to the initial mesh during the augmented Lagrangian optimization process, defined as q = ‖1‖

‖Mφ‖ . At the
first iteration, the mesh is optimal with respect to the mesh quality. Note that in all the cases, in the next iterations, the
optimization process adapts the boundary mesh without hampering the mesh quality.

4.1. Displacement of an inner boundary: non-uniform size mesh

The challenge for this example is to deal with a large displacement of a non-uniform size mesh where we move a
circular inner boundary, see Figure 1(a). The inner and outer radius are 1 and 21 units, respectively, and the applied
displacement of the inner circle is 8 units. The mesh is composed of 1642 linear triangles and 841 nodes. The
element size is not uniform and ranges from 0.2 to 0.02 in the inner circle, and it is constant to 16.5 at the outer
boundary. Figure 1(b) shows the final mesh after applying the proposed augmented Lagrangian solver. The mesh is
composed of valid elements, and the maximum distortion is around 2.1 (minimum quality of 1/2.1 over a maximum
of 1). Moreover, the constraint norm at the final iteration is of the order of 10−7. While the proposed method does not
locate the nodes exactly at the constrained position, the user can control the constraint norm by selecting the required
constraint tolerance.

Figure 1(c) presents a detailed view of the mesh around the inner circle. The elements around the circle are
stretched in order to accommodate the displacement of the circular boundary. In this case, the maximum distortion is
located at the rear part of the circle. Finally, Figure 1(d) shows the Lagrange multipliers obtained using the proposed
augmented Lagrangian method. The Lagrange multipliers can be interpreted as the force required to locate the nodes
at the final position while keeping a valid mesh.

Figure 2 shows the evolution of the constraint norm in logarithmic scale over the iterations of the proposed aug-
mented Lagrangian solver. That is, we show the accuracy of the boundary representation during the optimization
process. We plot using white dots the iterations where the augmented Lagrangian updates the Lagrangian multiplier,
and with black dots when the penalty parameter is updated. In this case, the constraint norm decreases in every iter-
ation, and only six iterations of the augmented Lagrangian method are necessary to obtain a valid mesh that satisfies
the boundary condition.

We perform a scaling analysis in order to determine the execution times of the proposed augmented Lagrangian
optimizer. To this end, we solve the linear systems with a sparse direct solver and we perform several levels of
refinement to the initial mesh shown in 1(a). In each refinement, we divide all the triangles of the mesh into four
triangles. For each refinement level, we compute the execution time, the mesh quality and the number of augmented
Lagrangian iterations, see Table 1. Note that at each step, the number of elements is multiplied by four, according
to the refinement rule, while the number of nodes is roughly multiplied by four. It is worth to notice that the mesh
quality and the number of augmented Lagrangian iterations is almost constant in all the executions. Finally, in order
to compare the execution times of each case, we show them in Figure 1(a). Note that as the number of elements and
nodes increase, the execution time also increases. This is because we have to build and solve a larger sparse linear
system with more unknowns.
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Table 1.
mesh augmented Lagrangian

elements nodes time (s) quality iterations
1642 841 1.11 0.936 6
6568 3324 3.56 0.937 5

26272 13216 14.29 0.937 6
105088 52704 101.94 0.937 6
420352 210816 546.66 0.937 6
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Fig. 3. Execution times for morphing the refined meshes of the circle.

(a) (b)

Fig. 4. Initial linear mesh with a boundary layer around the inner circle: (a) full view, (b) detailed view.

4.2. Mesh curving of a wall boundary: highly stretched triangles

In this example the main difficulty is to curve a high-order mesh of polynomial degree four with highly stretched
elements. The initial mesh is generated for a domain determined by an exterior and internal circumference centered
at the origin and with radius 21 and 1, respectively, see Figure 4(a). The mesh is composed by 697 nodes and 1368
elements and features a boundary layer next to the inner circumference. The boundary layer, see Figure 4(b), is
composed of 42 levels determined by a growing ratio of 1.3, a wall size of 10−5, and a tangential size of 0.524. Note
that this determines a maximum element stretching ratio around 1 : 50000.

The proposed constrained minimization process is applied to obtain a valid curved mesh composed of high quality
elements. Figure 5(a) shows the curved boundary elements and the Lagrange multipliers associated with the constraint.
Note that the Lagrange multipliers are approximated using continuous element-wise polynomials of degree four. That
is, we use the same polynomial degree of the mesh to approximate the Lagrange multipliers.
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ation, and only six iterations of the augmented Lagrangian method are necessary to obtain a valid mesh that satisfies
the boundary condition.
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Fig. 5. Final curved boundary layer mesh of polynomial degree 4 and Lagrange multipliers. The mesh is colored by distance to the wall: (a) initial,
(b) optimized, (c) Lagrange multipliers on the boundary nodes, (d) detail, and (e) color legend in logarithmic scale for the distance to the wall.
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Fig. 6. Evolution of the constraint norm over the augmented Lagrangian iterations for the mesh curving of a circle.

Figures 5(a) to 5(d) present the mesh colored according to the wall distance in logarithmic scale. We highlight
that the wall distance is still preserved by the final curved high-order mesh. Note that the wall distance is correctly
reproduced near the inner circle and therefore, the boundary layer elements have been correctly curved. To optimize
this mesh, the execution time of the augmented Lagrangian solver is 11.13 seconds.
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Fig. 7. Non-uniform size mesh of an aircraft colored by distortion: (a) initial, (b) optimized, and (c) distortion color legend.

The evolution of the constraint norm over the iterations of the augmented Lagrangian method is shown in Figure 6.
The augmented Lagrangian method converges in six iterations to obtain the optimal mesh. Similarly to the previous
example, we depict with black dots the iterations when the penalty parameter is updated, and with white dots when
the Lagrangian multipliers are updated. The norm of the constraint decreases at each iteration of the solver, since we
have obtained a good approximation of the Lagrange multipliers. At the final iteration, the constraint norm is of the
order of 10−7.

4.3. Displacement of an aircraft: non-uniform size tetrahedra over a complex geometry

The objective of this example is to show that the proposed method is able to handle large displacements of complex
geometries without generating inverted elements. To this end, we generate a mesh for the exterior domain of an
aircraft corresponding to the geometry provided by the Drag Prediction Workshop, see Figures 7(a) and 8(a). The
mesh contains 20192 nodes and 97868 linear tetrahedra. The length of the aircraft is two units, and we apply a
displacement of four units. Figure 7(b) shows a general view of the final mesh, and Figure 8(b) shows a detailed view
of the mesh around the aircraft.

Figures 9(a) and 9(b) show the distribution of the Lagrange multipliers magnitude at the aircraft. Note that the
magnitude of the Lagrange multipliers varies between 10−4 and 105, thus there are nine orders of magnitude between
the minimum and the maximum magnitude.

Finally, in Figure 10 we show the evolution of the constraint norm over the augmented Lagrangian iterations. The
full minimization process using the augmented Lagrangian method has taken nine iterations. The initial constraint
norm is equal to four, and in the first iteration it is reduced to 10−5. Then, in the following iterations, the optimization
process further reduces the norm of the constraint up to 10−6.

5. Conclusions

In this work we have shown a method to gradually impose the boundary displacement condition in a mesh mor-
phing technique. The proposed method is formulated in terms of a constrained minimization problem. Specifically,
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(b) optimized, (c) Lagrange multipliers on the boundary nodes, (d) detail, and (e) color legend in logarithmic scale for the distance to the wall.
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Figures 5(a) to 5(d) present the mesh colored according to the wall distance in logarithmic scale. We highlight
that the wall distance is still preserved by the final curved high-order mesh. Note that the wall distance is correctly
reproduced near the inner circle and therefore, the boundary layer elements have been correctly curved. To optimize
this mesh, the execution time of the augmented Lagrangian solver is 11.13 seconds.
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Finally, in Figure 10 we show the evolution of the constraint norm over the augmented Lagrangian iterations. The
full minimization process using the augmented Lagrangian method has taken nine iterations. The initial constraint
norm is equal to four, and in the first iteration it is reduced to 10−5. Then, in the following iterations, the optimization
process further reduces the norm of the constraint up to 10−6.

5. Conclusions

In this work we have shown a method to gradually impose the boundary displacement condition in a mesh mor-
phing technique. The proposed method is formulated in terms of a constrained minimization problem. Specifically,
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Fig. 8. Detail of the aircraft mesh colored by distortion: (a) initial, (b) optimized, and (c) distortion color legend.
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(c)

Fig. 9. Detail of the optimized non-uniform size mesh of an aircraft and surface colored by Lagrange multiplier magnitude: (a) top view, (b)
perspective view, (c) and logarithmic scale color legend for the Lagrange multiplier magnitude.

we minimize the mesh distortion, constrained to the position of the boundary nodes. To solve the constrained mini-
mization problem, we use the augmented Lagrangian method. Thus, we obtain an approximation of the Lagrangian
multipliers associated to the boundary constraint, and we approximate them using polynomials of the same degree
as the element-wise representation of physical mesh. We show that the mesh morphing technique does not produce
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Fig. 10. Evolution of the constraint norm over the augmented Lagrangian iterations for the mesh moving of an aircraft.

Table 2. Evolution of the mesh quality during the iterations of the augmented Lagrangian optimization process, and the execution time for each
example.

example case relative mesh quality time (s)
circle displacement 1.0 0.937 0.936 0.936 0.936 0.936 0.936 0.73
mesh curving 1.0 0.999 0.999 0.999 0.999 0.999 0.999 26.9
aircraft displacement 1.0 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 476.25

inverted elements at any stage of the process and thus, the optimization does not need to feature untangling capabili-
ties. We have applied the proposed formulation to mesh moving and mesh curving problems. The proposed method
is able to handle large displacements for 2D and 3D meshes with non-uniform sizing. Moreover, it can also handle
the curving of highly stretched high-order meshes.

The differences in the evolution of the augmented Lagrangian methodology are originated by the different nature
of the proposed examples. In general terms larger displacements might induce more updates of the constraint penalty.
This is only the case of the first example which features the largest imposed displacement. In the other examples the
boundary constraint is fulfilled in the first iterations and thus, the process is mainly driven to update the Lagrange
multipliers.

We have shown in the examples that the constraint is reproduced with high accuracy, even though the nodes are
not exactly placed on the target position. Nevertheless, it is possible to project the nodes on the target position,
although the error of reproducing the constraint would increase. That is, interpolative conditions feature zero error at
the interpolation nodes, and non-zero residual at intermediate points.

To solve the non-linear problem of each augmented Lagrangian solver, we use a backtracking line-search method
in which the advancing direction is computed using Newton’s method, and the step length using the Wolfe conditions.
Note the we are solving the full non-linear problem at each iteration and therefore, we solve a sparse linear system at
each Newton iteration. In the near future, we consider to parallelize the code in order to improve the computational
efficiency of the proposed method, and be able to apply it to more computationally demanding mesh moving and
curving problems.
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[9] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Distortion and quality measures for validating and generating high-order tetrahedral

meshes. Engineering with Computers, 31(3):423–437, 2015.
[10] E. Ruiz-Gironés, X. Roca, and J. Sarrate. High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD

representation. Computer-Aided Design, 72:52–64, 2016.
[11] T. Toulorge, C. Geuzaine, J.-F. Remacle, and Jonathan Lambrechts. Robust untangling of curvilinear meshes. J. Comput. Phys., 254:8 – 26,

2013.
[12] T. Toulorge, J. Lambrechts, and J.F. Remacle. Optimizing the geometrical accuracy of curvilinear meshes. Journal of Computational Physics,

2016.
[13] M. Fortunato and P.E. Persson. High-order unstructured curved mesh generation using the winslow equations. Journal of Computational

Physics, 307:1–14, 2016.
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[28] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Inserting curved boundary layers for viscous flow simulation with high-order tetrahedra.

In Research Notes, 22nd Int. Meshing Roundtable. Springer International Publishing, 2013.
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lateral and hexahedral meshes using an object-oriented framework. Advances in Engineering Software, 80:12–24, 2015.
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