
Technical Report UPC-DAC-RR-CAP-2011-9:
Circuit Design of a Dual-Versioning L1 Data Cache for Optimistic Concurrency

Azam Seyedi†‡ Adrià Armejach†‡
Adrián Cristal†� Osman S. Unsal† Ibrahim Hur† Mateo Valero†‡

†BSC-Microsoft Research Centre ‡Universitat Politècnica de Catalunya
�IIIA - Artificial Intelligence Research Institute CSIC - Spanish National Research Council

{azam.seyedi, adria.armejach, adrian.cristal, osman.unsal, ihur, mateo.valero}@bsc.es

ABSTRACT
This paper proposes a novel L1 data cache design with dual-
versioning SRAM cells (dvSRAM) for chip multi-processors
(CMP) that implement optimistic concurrency proposals.
In this new cache architecture, each dvSRAM cell has two
cells, a main cell and a secondary cell, which keep two ver-
sions of the same data. These values can be accessed, modi-
fied, moved back and forth between the main and secondary
cells within the access time of the cache. We design and
simulate a 32-KB dual-versioning L1 data cache with 45-
nm CMOS technology at 2GHz processor frequency and 1V
supply voltage, which we describe in detail. We also intro-
duce three well-known use cases that make use of optimistic
concurrency execution and that can benefit from our pro-
posed design. Moreover, we evaluate one of the use cases
to show the impact of the dual-versioning cell in both per-
formance and energy consumption. Our experiments show
that large speedups can be achieved with acceptable overall
energy dissipation.

Categories and Subject Descriptors
B.3.2 [Memory Structure]: Design Styles

General Terms
Performance, Design, Experimentation, Verification

Keywords
Data cache design, optimistic concurrency, parallelism

1. INTRODUCTION
Tremendous progress in architecture has made chip multi-

processors increasingly common. To benefit from the addi-
tional performance offered by these multi-core chips, vari-
ous novel architecture implementations have been proposed,
such as speculative multithreading [10], lock elision [13], or
hardware transactional memory [9]. All of these proposals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

leverage optimistic concurrency, by assuming that conflict-
ing data accesses will not occur; in case a conflict occurs
all tentative data updates have to be undone. Thus, mul-
tiple versions of the same data have to be maintained by
the L1 data cache. However, the circuit design of such a
cache which supports all these different proposals has not
been proposed yet.

In Section 2 we introduce a detailed circuit design of a
novel 32-KB dual-versioning SRAM (dvSRAM) L1 data ca-
che with 4-way set associativity, 64B data lines, 2 clock cycle
access time and 45-nm Predictive Technology Model [1] at
2 GHz processor frequency and 1V supply. The main char-
acteristic of the dvSRAM cache is the inclusion of two bits
in each cell, primary value and secondary value. These two
values can be accessed separately or synchronously, modified
and exchanged within the cache access time using defined
operations supported by the cache. We simulate both the
dvSRAM and the typical SRAM array with Hspice 2003, de-
sign the layouts [2], and calculate dynamic and static power
consumptions and access times for all the operations.

In Section 3 we discuss how the aforementioned optimistic
concurrency based systems can benefit from the efficient
dual-versioning provided by the dvSRAM. Moreover, we eva-
luate one of the systems using state-of-the-art baseline and
benchmarking suite and show that significant speedups are
achieved with an acceptable overall energy consumption.

In Section 4 we disscus the related work, and finally we
conclude in Section 5.

2. dvSRAM DESIGN DETAILS
In this section, we start with dvSRAM cell design. We

describe the cell circuit, and we introduce the available op-
erations of the dvSRAM array structure. Then we describe
the different blocks that form the dvSRAM array structure
in detail.

2.1 Dual-Versioning Cell Design
Figure 1 depicts the structure of our proposed dvSRAM

cell, which is composed of two typical standard 6T SRAM
cells [12]: the main cell and the secondary cell. Each of them
keeps different versions of the same data. These two cells are
connected via two exchange circuits. The idea of exchange
circuit design is based on utilizing tri-state inverters [12] and
transistor stacks [16]. We want to completely separate the
main and the secondary cells from each other. The only
time they are not isolated is when the exchange circuits are
active, and the data of the main cell stores to the secondary
cell, or the data of the secondary cell restores to the main

cell. When these exchange circuits are not active and signals
dvRstr and dvStr are low; more than one ’off’ transistor in
the nMOS or pMOS stacks in the exchange circuits leads to
a significant reduction in leakage current [16].

BLB

BL

WL_En1

Q

QB

WL_En2VDD

Exchange circuitsMain cell Secondary cell

P

PB

VDD

dvRstrB dvRstr

MPS3 MNS4

dvStrB dvStr

MPS1 MNS2

Figure 1: Circuit schematic of the proposed dvS-
RAM cell: a main cell with a secondary cell and
exchange circuits.

Operation Description
Write Writing to a main cell by activating WL En1

Read
Reading from a main cell by activating
WL En1

dvStr
∼Q→P: Storing the main cell to the secondary
cell by activating dvStr

dvRstr
∼PB→QB: Restoring the secondary cell to the
main cell by activating dvRstr

dvWrite
Writing to the secondary cell by activating
WL En2

dvRead
Reading from the secondary cell by activating
WL En2

dvBWrite
Writing to both cells simultaneously by acti-
vating WL En1 and WL En2

dvStrAll
Storing all main cells to their secondary cells
simultaneously

Figure 2: Brief description of the dvSRAM cell op-
erations.

In Figure 2, we briefly explain dvSRAM cell operations.
Read and Write act like read and write operations in a typ-
ical SRAM cell. Other operations are created based on our
goal in this paper. When dvStr is high, transistors MPS1
and MNS2 are turned on, and the exchange circuit acts as
an inverter by inverting Q to P. The secondary cell keeps the
value of P when dvStr is low, and it inverts P to PB, so that
PB has the same value as Q. Similarly, when dvRstr is high,
PB in the secondary cell is inverted to QB and converted to
Q, so that previously saved data in the secondary cell can
be recovered. Note that dvStr operation acts just for a line;
when we need to store all the cells to their secondary cells
simultaneously, we use dvStrAll operation. We use dvRead
to read the data from the secondary cell and dvWrite to
write to the secondary cell. Finally, we use dvBWrite to
write to both main and secondary cells simultaneously. In
Section 2.2.2, we describe how these signals are generated.

Sub-array

Sub-array

Sub-array

Sub-array

Sub-arraySub-array

Sub-arraySub-array

Drivers and data & address

 wires
Drivers and data & address

 wires

D
e

c
o

d
e

r &
 c

o
n

tro
l s

ig
n

a
l

g
e

n
e

ra
to

r u
n

its

Sub-bankSub-bank

MatMat

Figure 3: dvSRAM array with two sub-banks, one
mat in each of them with four identical sub-arrays.
Decoder and control signal generator units are in
the middle part.

512

data-in

 bits

8 address bits &

necessary control

signals
512

data-out

 bits

1
2

8
 c

o
lu

m
n

s

64 rows

A
d

d
re

s
s
 a

n
d

 d
a

ta
 b

u
ffe

rs

64 rows

C
o

n
tro

l s
ig

n
a

l g
e

n
e

ra
to

r u
n

its
 &

 a
d

d
re

s
s
 d

e
c
o

d
e

r

1
2

8
 c

o
lu

m
n

s

Sub-array

Driv.

D
riv

.

D
riv

.

D
riv

.

D
riv

.

D
riv

.

D
riv

.

Driv.

Driv.

Sub-array

Driv.

Sub-array

Driv.

Driv.

D
riv

.

Driv.

D
riv

.

D
riv

.
D

riv
.

Sub-array

D
riv

.

Driv.

Sub-array

D
riv

.

D
riv

.

D
riv

.

128

128

128

128

128

128

128
128

256256

256

256

64

12

Sub-bank

mat

To another

sub-bank

From

another

sub-bank

Address

and

control

signals to

another

sub-bank

D
riv

.
D

riv
.

Figure 4: A view of one dvSRAM sub-bank and the
middle part of array: four identical sub-arrays, each
with 64 rows and 128 columns.

2.2 dvSRAM Array Structure Design
In this subsection we describe the high-level organization

of the dvSRAM array, considering each part of its structure.

2.2.1 Brief description of the whole array structure
We use Cacti 5 [14] to determine the optimal number and

size of the array components. For the L1 data cache con-
figuration we assume 32-KB, 4-way, 64-byte lines, 2 clock
cycle access time; and we use the 45-nm Predictive Tech-
nology Model (high performance model) [1] with 1V supply
voltage. For a one bank array, Cacti suggests two identical
sub-banks, one mat for each sub-bank and four sub-arrays
in each mat as can be seen in Figure 3. The address decoder
and control signal generator units are placed in the middle
part of the array and necessary drivers and data and address
wires in middle part of each sub-bank.

Figure 4 shows a view of one sub-bank of the dvSRAM
array and the middle part, decoder and control signal gen-
erator units. Our sub-bank design is based on Cacti sug-

A4 A5A3

 Predecoder

3 to 8

1 8

A6

Address

decoder
B

u
ff
e

r
g

ro
u

p

 Predecoder

3 to 8

A6
81

A0 A1 A2

T
o

 rig
h

t s
u

b
-b

a
n

k

T
o

 le
ft s

u
b

-b
a

n
k

To left sub-bank

To left sub-bank

Cotrol signals &

addresses

a
b
c

mvStr

mvRstr

WL_En1

WL_En2

mvStrAll

CSt

PC

Clock

OEt

IEt

CS

PCB

Write

Read

Clk

OE

IE

Wr

Rd

Control signal

generator unit 1

Control signal

generator unit 2

Figure 5: Middle part of dvSRAM array: address
decoders, control signal units, and tri-state buffers.
Boolean functions: dvStr = abc, dvRstr = abc,
WL En1 = abc + abc, WL En2 = abc + abc, dvStrAll
= abc.

gestions and the SRAM configuration that Wang et al. [15]
proposed. Considering the cache structure of our system,
i.e., 32KB size, 64B lines and four-way set associativity, we
need seven address bits to address a line in the array, so
these seven bits and the necessary control signal bits which
we describe later, enter to the up side of Figure 4. Dur-
ing an access, only one of the two sub-banks is activated;
hence the numbers of bits that deal with decoder and pro-
duce word-line addresses are six; so 64 word-line addresses
and 12 control signals enter to the sub-bank from the left
side as can be seen in Figure 4. 512 data-in and 512 data-
out bits are routed from the up side of the sub-bank. The
four identical sub-arrays of a mat are activated during an
access, therefore each sub-array holds a part of the cache
line, so 128 of the 512 data bits (64B) are distributed to
each sub-array. We put necessary optimized drivers (chain
of two series inverters) in paths to reach their related loads
in the sub-arrays. Each wire and its related drivers have
same greyscale in this Figure. We describe the details later
in this section.

2.2.2 Middle part of the array
Figure 5 depicts the address decoder, control signal units,

and tri-state buffers that reside in the center of the dvS-
RAM array. To generate 64 word-line addresses from six
address bits, A0. . . A5, we design a two-level decoder simi-
lar to the design of Amrutur [4]. Two 3-to-8 pre-decoders
produce partially decoded products, and the main decoder
generates 64 word-line addresses from their outputs. We use
the highest value bit, A6 bit, as an enable signal to select
the sub-bank which is activated during the access time. 64
word-line addresses are connected to both sub-banks via two
tri-state buffer groups with enable signals A6 and A6. Con-
trol signal units are responsible to generate the necessary
signals for executing the operations and have a synchronous

Data-out
Data-in

OE

IE

Sense
Amplifier

Write
Circuit

Write

Read
CS

PCB

dvRstr

WL1

IE OE

dvStr

dvStrAll
Precharge

circuit

WL_En1

WL_En2

VDD VDD

BLBEQBL

PCB

BLBBL

Data

Write

BLB BLVDD VDD

128 Columns

dvSRAM

Cell

dvSRAM

Cell

dvSRAM

Cell

dvStr

dvRstr

WL0

WL_En2

WL_En1

W
o

rd
-lin

e
 b

u
ffe

rs

dvStr

dvRstr

WL63

WL_En2

WL_En1

W
o

rd
-lin

e
 b

u
ffe

rs

VDD
CS

BL BLB
Read

P

Q

Out

Figure 6: The structure of one sub-array.

flow-thru SRAM [3]. Control signal generator unit 1 consists
of some optimized inverter chains that regulate the signals
to control the dvSRAM sub-array circuits such that main
cell operations, typical read and write can be operated cor-
rectly. Control signal generator unit 2 is a 3-to-8 decoder,
generating dvStr, dvRstr, WL En1, WL En2 and dvStrAll
signals according to its input signals level, a, b and c.

2.2.3 Sub-array structure description
Figure 6 shows the structure of one sub-array that con-

sists of 2D matrix of memory cells, data-in, data-out, word-
line address buffers, and associated peripheral circuitry. On
the left side of Figure 6, we can see the word-line address
buffers and a set of NOR and inverter gates. Each word-
line address enters to its corresponding line via one of four
buffers. Control signal generator unit 2 generates signals
dvStr, WL En1, WL En2, and dvRstr to enable word-line
address buffers; it also generates dvStrAll. When dvStrAll is
activated, all the main cells of whole sub-array are stored to
their secondary cells simultaneously. Data-in and data-out
buffers are typical data buffers that isolate a sub-array with
interconnected wires and reduce injected noise effects. We
use typical precharge [4] and write circuits [17], and sense
amplifiers [17]; the control signal generator unit 1 gener-
ates signals to control these circuits. Similar to Thoziyoor
et al.’s [14] implementation, a layer of multiplexing can be
added, before output buffers, at the outputs of sense ampli-
fiers; but, for simplicity, we waive this option, and the signal
CS (from control signal generator unit 1, form Figure 5) in
the sense amplifiers selects the correct cache set. We show
the simulation waveform of dvSRAM for all operations later.

2.2.4 Data and address signals distribution
Figure 7 shows the distribution of address, data and con-

trol signals, the equivalent wire resistance and capacitance
and necessary optimized drivers for one sub-array. 64 lines
of word-line addresses, 128 data-in, 128 data-out, and 12
control signal wires are routed to the sub-array from the left
side of the Figure. These are long wires with considerable

2

wireC

wireR

2

wireC

2

wireC

wireR

2

wireC

2 w
ir
e

C

w
ir
e

R

2 w
ir
e

C

2

wireC

wireR

2

wireC

2

wireC

wireR

2

wireC

2w
ir

e
C

w
ir

e
R

2w
ir

e
C

2 w
ir
e

C

w
ir
e

R

2 w
ir
e

C

2 w
ir
e

C

w
ir
e

R

2 w
ir
e

C

Word-line

addresses

Data-in

signals

Control signals

Data-out

signals

Sub-array

2

Cwire

wireR

2

wireC

wireR

2

wireC

2

wireC

wireR

2

wireC

2

Cwire

128

128

64

12

Data-in

drivers

Data-out

drivers

Word-line

address

drivers

Control signal

drivers

Figure 7: The distribution of address and data
drivers in a sub-array. The equivalent resistance
and capacitance of each wire is shown in lumped
Π model. Each triangle in the driver groups is rep-
resenting eight drivers (two series inverters).

RC delay constant and big propagation delay. For compen-
sating the voltage drop, reflection effect and for driving big
word-line capacitances, we divide the wires to shorter length
and put drivers (two series inverters) at the end of each piece
of wire. For instance, for each data-in (data-out) wire, we
put two stages of drivers in the path to reach each sub-array
and one driver just in the sub-array (to drive the bit-line
capacitances) as can be seen in this Figure. We optimize
the sizes of these drivers by considering resistance and ca-
pacitance of wire sections and sub-array circuit sizes. For
64 word-line address and 12 control signal wires, we put one
stage of drivers in the path to reach each sub-array and one
another driver just in sub-array as can be seen in this Figure.

We can place the drivers of each stage in one line as
Cacti suggests [3] but it leads to high area and un-optimized
area floor-plan so we use an optimal allocation of each stage
drivers that we explain as follows for both data-in and data-
out wires. Instead of locating all the drivers (512 drivers) of
one stage in one line, we divide them into four groups of 128
drivers, each group for one sub-array and then we put these
128 drivers in four lines and rotate them 90 degree under
clockwise as can be seen in Figure 7. Setting word-line ad-
dress and control signal drivers is easier and we locate them
in one line at each stage. In the Figure, for simplicity, all
related drivers and wires have the same greyscale.

2.3 Design Methodology and Analysis
We construct, for one array of dvSRAM and one array of a

typical SRAM, Hspice transistor level net-lists that include
the complete decoder, control signal units, and two sub-
banks with necessary drivers and equivalent capacitances
and resistances of wires. The high-level structure of a typical
SRAM array is the same as of dvSRAM array, but with 6T
typical SRAM cells, related word-line address buffers and
control signal generator units. We simulate and optimize
both the dvSRAM and typical SRAM array with Hspice

Operation Energy (pJ) Access time (ps)
SRAM dvSRAM SRAM dvSRAM

Read 90.4 112.4 480 616
Write 80.2 99.3 736 832
dvRead - 114.4 - 374
dvWrite - 101.1 - 401
dvBWrite - 122.6 - 370
dvStr - 114.9 - 670
dvRstr - 112.9 - 832
dvStrAll - 1123.2 - 371
Static 35.1 51.4 - -

Figure 8: Typical SRAM and dvSRAM energy con-
sumption and access time per operation.

Sub-array

Sub-array

Sub-array

Sub-array

Sub-array Sub-array

Sub-arraySub-array

Decoders, wires,drivers

Decoders, wires,drivers

Figure 9: Typical SRAM (top) and dvSRAM
(down) layouts. Showing one sub-bank, address de-
coders.

2003.03 using HP 45-nm Predictive Technology Model for
VDD=1V, 2 GHz processor clock frequency and T=25◦C.
We calculate the access time, dynamic energy and static en-
ergy per access for all operations in dvSRAM and SRAM
and present it in Figure 8. Our analysis indicates that our
dvSRAM design meets, as the typical SRAM, the target
access time requirement of two clock cycles and acceptable
power and area increase. Figure 9 shows the layouts [2] for
both dvSRAM and the typical SRAM arrays. They include
one sub-bank, address decoders, address and data wires, and
the control signals; the second symmetric sub-bank is omit-
ted due to space constrains. After adding PADs and I/O
interfaces [7], the area increase of the dvSRAM compared
to the typical SRAM is 46%. The area devoted to L1Ds in
state-of-the-art CMPs is small compared to the entire die,
for example, in Power 7 [11] it is less than 1%, therefore the
dvSRAM area overhead in die size is modest.

Figure 10 shows the simulation waveform for a sequence of
eleven operations that take 11ns for the first cell at the last
raw of one sub-array. Q63, P63 and Out63 are internal nodes
and dvStr63, dvRstr63, WL63 En1 and WL63 En2 are the
outputs of the last word-line address buffers. Signals PC,
CS, CLK, OE, IE, a, b, c are omitted for space concerns
and their behaviors are similar to the signals in a typical
SRAM array.

3. USE CASES
In this section we discuss several use cases for the proposed

dvSRAM. Moreover, a short evaluation for one of the use
cases follows to show the impact of the dvSRAM.

P63

Out63

Read

Q63

Write

Data

WL63_En1

WL63_En2

dvRstr63

dvStr63

W
rite

 0

R
e

a
d

 0

W
rite

 1

d
v
B

W
rite

 0

W
rite

 1

R
e

a
d

 1

d
v
R

s
tr 0

d
v
R

e
a

d
 0

W
rite

 1

d
v
S

tr 1

d
v
W

rite
 0

Figure 10: The simulation waveform of dvSRAM
array for a sequence of eleven operations for the first
cell of the last raw of one sub-array. The operations
are shown on top.

Speculative Multithreading (SpMT): SpMT [10] is
a concurrency mechanism that attempts to speedup sequen-
tial executions by partitioning the workload in two threads.
The second thread executes the bottom half of the sequen-
tial program optimistically. By using a mechanism like the
dvSRAM, each thread can use one of the independent cells,
providing an easy and efficient versioning management and
a fast in-place conflict detection mechanism with state bits.

Transactional Memory (TM): TM [9] is a promising
technique that helps with parallel program development by
abstracting away the complexity of managing shared data.
TM uses optimistic concurrency, assuming that conflicting
data accesses will not occur; in case a conflict occurs then
one or more transactions must abort, undoing all tentative
data updates. This requires a multiversioning mechanism
to restore previous state. By using the dvSRAM, a partial
snapshot of the past state of the system can be maintained at
L1D level, leveraging a fast mechanism to restore previous
state, and rely in slower mechanisms only if it is strictly
necessary.

Speculative Lock Elision (SLE): In SLE [13] the sys-
tem tries to avoid waiting in a lock when it might not be
necessary by predicting potential non conflicting executions,
allowing several threads to execute the same critical sec-
tion optimistically. Similarly to TM, SLE has to deal with
speculative updates and can benefit from the efficient dual-
versioning management of the dvSRAM.

In Figure 11 we illustrate how the dvSRAM is used in
an optimistically concurrent system like the ones described
above. The example shows one possible way to use the dvS-
RAM, even though others might be more convenient depend-
ing on the applicability. As we can see, when an optimistic
execution (speculation) starts, the system creates copies in
the secondary cells by using the dvStrAll operation (Fig-
ure 11a). During the speculative section, new lines can be
added to the dvSRAM upon a miss (Figure 11b), and modifi-
cations are done in the main cell (Figure 11c). If the system
has to abort due to a conflict, it rolls-back its state by us-
ing fast dvRstr operations (Figure 11d). A comprehensive

xxxxxxxx{
zzzzzzzz

xxxxxxxx

{

a) begin speculation

@A

@B
zzzzzzzz

d
v
S

trA
ll

xxxxxxxx{ xxxxxxxx

{

b) load miss (replacement)

@A

yyyyyyyy

d
v
W

rite

@C
yyyyyyyy

{ xxxxxxxx

{

c) store

@A

yyyyyyyy

W
rite

@C
yyyyyyyy

xx44xxxx { xxxxxxxx

{

d) abort speculation

@A

yyyyyyyy

d
v
R

str

@C
yyyyyyyy

xxxxxxxx

Figure 11: Simple usage example of the dvSRAM
in an optimistically concurrent system. Black back-
ground indicates state changes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Base DV Base DV Base DV Base DV

N
o

rm
al

iz
ed

 e
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 o
f

L
1

 d
at

a
ca

ch
e

Benchmark

Genome Intruder Kmeans Yada

dvStoreAll

dvRestore

dvBWrite

dvRead

Write

Read

Static

Figure 12: Normalized energy consumption break-
down of L1 data cache.

Base — Baseline-HTM; DV — Dual-Versioning-HTM

proposal of the TM use case is discussed in [5].

3.1 Results: Transactional Memory
State-of-the-art HTM proposals [18] can be adapted to

work with the dual-versioning cache. In particular, we eva-
luate in a full-system simulation environment a state-of-the-
art log-based HTM as baseline (labeled Base), and a modi-
fied version of the baseline that uses our proposed dvSRAM
and logs as a fall-back mechanism only for cachelines that
overflow the L1D cache (labeled DV). We selected four ap-
plications of the STAMP [6] benchmark suite, which repre-
sent different amounts of contention, to evaluate the dvS-
RAM TM applicability in both performance and power con-
sumption. In general, highly contended benchmarks scale
poorly due to a larger number of aborts. This is the case of
Intruder which performs 6.31× better when using the dvS-
RAM. Yada with moderate contention also shows a signif-
icant speedup of 2.24×, while low contention benchmarks
like Genome and KMeans show 1.15× and 1.09× speedups
respectively. This is achieved by completely avoiding the use
of software logs in a large percentage of transactions (over

90% on average).
Regarding power consumption, as can be seen in Fig-

ure 12, two applications are less energy efficient compared to
a typical SRAM cache, while the other two are more energy
efficient due to larger execution time speedups. In addi-
tion, for all the applications, the amount of energy spent
in specific dual-versioning operations is not significant com-
pared to the usual (Read, Write) operations and the static
energy. Note that the energy results are considering only
L1 energy consumption, and the L1 data cache accounts for
a very small fraction of an entire processor, as discussed in
Section 2.3. Thus, the energy impact considering an entire
processor would be palliated.

4. RELATED WORK
Ergin et al. [8] proposed similar work using a shadow-cell

SRAM design for checkpointed register files. In that tech-
nique, each bit-cell has a shadow-copy cell to store the tem-
poral value which can be recovered later. They use two cells,
consisting of two back to back inverters, connected to each
other using two pass transistors and two inverters. Even
when both ”check point” and ”recover” signals (the enable
signals copy the data to the shadow-copy cell and recover it
later) are inactive, pMOS transistors or nMOS transistors of
these inverters are always ”on”leading to power consumption
increase. Moreover, if we want to modify this structure for
our purpose, we should make upper inverters of cells bigger
to mitigate the imbalance of this structure. While the situ-
ation is a bit better when we replace the inverters and pass
transistors with each other, we still have imbalance problem
which cause instability issues. All these problems lead to
design a new cell with more capabilities that we can use in
L1 data cache for optimistic concurrency. In our dvSRAM
structure, both cells, the main cell and the secondary cell
are isolated from each other with two exchange circuits and
this leads to lower static power consumption. Also, there
are no unnecessary ’on’ transistors in the active mode. We
calculate and compare the static power for our dvSRAM
cell and Ergin’s proposed cell to prove our discussion. The
static power of the dvSRAM cell is 28.35µW compared to
the 51.08µW of Ergin’s cell [8].

We can use single-electron transistors and implement L1
data cache with multi-valued SRAM [19] which has much
smaller area compared to our circuit; but this technique is
too complex for our purpose because of complicated input
and output circuitries for each cell.

5. CONCLUSIONS
In this paper, we propose a new L1 data cache with dual-

versioning SRAM cells (dvSRAM) that aims to overcome
the data versioning problem present in optimistic concur-
rency mechanisms. We present the design details and its
available operations. We calculate the power consumption,
access time and design the layout. We introduce three use
cases that can benefit from our proposed design. We evalu-
ate one of them, Hardware Transactional Memory, to show
our design impact in terms of performance and energy con-
sumption. Our experiments show that the dvSRAM allows
for significant performance gains with acceptable costs in
power, delay and area.

6. ACKNOWLEDGMENTS

This work is supported by the cooperation agreement be-
tween the Barcelona Supercomputing Center and Microsoft
Research, by the Ministry of Science and Technology of
Spain and the European Union (FEDER funds) under con-
tracts TIN2007-60625 and TIN2008-02055-E, by the Euro-
pean Network of Excellence on High-Performance Embed-
ded Architecture and Compilation (HiPEAC) and by the
European Commission FP7 project VELOX (216852).

7. REFERENCES
[1] Predictive technology model. http://ptm.asu.edu/.

[2] The Electric VLSI Design System.
http://www.staticfreesoft.com.

[3] Understanding Static RAM Operation. Technical
Report IBM Application Notes, IBM, 1997.

[4] B. S. Amrutur. Design and Analysis of Fast Low
Power SRAMs. PhD thesis, 1999. Stanford University.

[5] A. Armejach, A. Seyedi, et al. ShadowHTM: Using a
dual-bitcell L1 Data Cache to Improve Hardware
Transactional Memory Performance. Technical Report
UPC-DAC-RR-2010-49, UPC, 2010.

[6] C. Cao Minh et al. STAMP: Stanford transactional
applications for multi-processing. In IISWC, 2008.

[7] S. Cosemans et al. A Low-Power Embedded SRAM for
Wireless Applications. IEEE JSSC, 2007.

[8] O. Ergin et al. Early Register Deallocation
Mechanisms Using Checkpointed Register Files. IEEE
Trans. Computers, 2006.

[9] T. Harris et al. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 2010.

[10] V. Krishnan et al. A Chip-Multiprocessor Architecture
with Speculative Multithreading. IEEE Trans.
Computers, 1999.

[11] J. Pille et al. A 32kB 2R/1W L1 data cache in 45nm
SOI technology for the POWER7TM processor. In
ISSCC, 2010.

[12] J. M. Rabaey et al. Digital integrated circuits - A
design perspective. Prentice Hall, 2nd edition, 2004.

[13] R. Rajwar and J. R. Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. In MICRO, 2001.

[14] S. Thoziyoor et al. CACTI 5.1. Technical Report
HPL-2008-20, HP Laboratories, Palo Alto, 2008.

[15] Y. Wang et al. A 1.1 GHz 12 µA/Mb-Leakage SRAM
Design in 65 nm Ultra-Low-Power CMOS Technology
With Integrated Leakage Reduction for Mobile
Applications. IEEE JSSC, 2008.

[16] Y. Ye, S. Borkar, and V. De. A new technique for
standby leakage reduction in high-performance
circuits. In Symp. on VLSI Circuits, 1998.

[17] A. F. Yeknami. Design and Evaluation of A
Low-Voltage, Process-Variation-Tolerant SRAM
Cache in 90nm CMOS Technology. Master’s thesis,
2008. Linköping University, Sweden.

[18] L. Yen et al. LogTM-SE: Decoupling hardware
transactional memory from caches. In HPCA, 2007.

[19] Y. Yu et al. Multi-valued static random access
memory (SRAM) cell with single-electron and
MOSFET hybrid circuit. Electronics Letters, 2005.

