
Towards fair, scalable, locking

Enrique Vallejo
1
, Sutirtha Sanyal

2
, Tim Harris

3
, Fernando Vallejo

1
, Ramón Beivide

1
, Osman

Unsal
2
, Adrián Cristal

2
 and Mateo Valero

2

1
University of Cantabria
Avda. Castros S/N
Santander, Spain
+34 942202039

{enrique, fernando,
mon}@atc.unican.es

2
Barcelona Supercomputing Center

C/Jordi Girona, 31
08034,Barcelona, Spain

+34 934137716

{sutirtha.sanyal, osman.unsal,
adrian.cristal, mateo.valero}@bsc.es

1
Microsoft Research
J J Thomson Avenue
Cambridge, UK
+44 1223 479000

tharris@microsoft.com

ABSTRACT

Without care, Hardware Transactional Memory presents several

performance pathologies that can degrade its performance. Among

them, writers of commonly read variables can suffer from

starvation. Though different solutions have been proposed for

HTM systems, hybrid systems can still suffer from this

performance problem, given that software transactions don’t

interact with the mechanisms used by hardware to avoid

starvation.

In this paper we introduce a new per-directory-line hardware

contention management mechanism that allows fairer access

between both software and hardware threads without the need to

abort any transaction. Our mechanism is based on “reserving”

directory lines, implementing a limited fair queue for the requests

on that line. We adapt the mechanism to the LogTM conflict

detection mechanism and show that the resulting proposal is

deadlock free. Finally, we sketch how the idea could be applied

more generally to reader-writer locks.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures.

General Terms
Design.

Keywords
Hardware Transactional Memory, reader starvation,

synchronization.

1. INTRODUCTION
Our work is looking at the problem of providing reader-writer

locking of data with the aim of supporting (i) fine-grained critical

sections that may perform only a small number of memory

accesses, (ii) longer critical sections during which threads may be

descheduled, (iii) scalable critical sections, in the sense that the

implementation should not introduce contention between

concurrent readers, or between access to distinct critical sections,

and (iv) fair access to critical sections, in the sense that writers

should not be starved by a changing set of concurrent readers.

Existing approaches to reader-writer locking do not provide all

four of these properties. For example, hardware transactional

memory (HTM) can be used to implement fine-grained scalable

critical sections by using hardware support to allow concurrent

readers to access data in parallel along with low overhead entry

and exit of critical sections. However, certain HTM

implementations can allow a “starving writer” pathology [1] in

which a set of readers continually prevents write access being

granted.

Software implementations of reader-writer locking provide the

flexibility to express different fairness properties, for example

Mellor-Crummey and Scott’s fair-MRSW queue-based locks [10]

do this by delaying read access to a lock when there is a waiting

writer. This policy prevents writer starvation. However, entering

and leaving a queue-based lock requires atomic compare-and-

swap operations on shared fields (e.g. to maintain a reader count

or to construct new queue nodes), causing contention in the lock’s

implementation and limiting its scalability for fine-grained critical

sections.

The approach we are investigating is to provide additional

hardware support to try to combine the four desirable properties

that we seek. In overview we wish to use LogTM-style HTM to

support fine-grained critical sections and to then fall back to using

explicit queue-based spin locks to support longer critical sections.

We thus hope to reduce the overheads of using queue-based spin

locks everywhere, while still providing the flexibility to express

different policies, integration between the lock implementation

and the scheduler, and so on.

In previous work we investigated this in the context of programs

written using transactions rather than explicit critical sections.

We examined, in simulation, a hybrid transactional memory using

LogTM in hardware for executing short-running transactions, and

falling back to Fraser’s STM built with queue-based spin-locks

for longer-running or larger transactions. The resulting system

proved to obtain a significant speedup over the baseline STM by

removing some of the inherent costs such as managing read-set

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EPHAM’08, April 6, 2008, Boston, Massachussetts, USA.

Copyright 2008, the authors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132530079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and write-set data structures and managing the queue-based locks

themselves.

In this paper we look at the other part of the problem: how to

control fairness within the HTM so that (for example) writers

cannot be starved. Our approach is to extend a directory-based

cache to record a single “reservation” for each line. The

reservation records which processor should be next to receive

access to the line. For example, a processor wishing to obtain

exclusive mode to the line, but finding itself starved by processors

holding the line in shared mode, can establish a reservation and,

after doing so, no subsequent shared mode access will be

admitted.

This is preliminary work: we are working on a simulation of the

technique, and we are also working on building queue-based spin-

locks directly over it (for use from programs that are written using

explicit locking, rather than our current focus on programs that

are written with transactions).

2. BACKGROUND: STALLS IN THE

BASELINE HTM
Eager update HTM systems update memory values “in place” and

maintain the previous contents in an undo-log so that they can be

written back to memory in case of conflict. Directory-based HTM

with eager conflict detection relies on the coherence requests to

detect a conflict with such a previously modified block. To

implement this correctly in an eager-eager directory based system

like LogTM [12] coherence requests are extended: whenever a

transactional request arrives at a given node, if the request

conflicts with the ongoing transaction a NACK (“Negative

Acknowledgement”) reply is sent to the coherence requestor,

temporarily denying access to the line. This prevents the requester

from reading or writing transactionally modified lines.

Thus, this NACKing mechanism effectively provides a hardware-

based lock on those lines read or modified during the transaction.

It can be either read-locking when a transaction reads a line, in

which case several transactions can concurrently access the line in

shared state; or write-locking if the line has been modified by a

transaction and is kept with exclusive coherence permissions.

This kind of multiple-reader, single-writer locking can lead to

writer starvation on frequently read lines, as previously presented

in [1]. This pathology is not specific to LogTM only, but to any

HTM with eager conflict detection that stalls the requestor of

conflicting addresses. This problem can occur if two processors

are continually running transactions that hold the same cache line

in their read set while a third processor is waiting to make a

transactional write to that line. The putative writer will be

continually NACKed while the readers continue executing

transactions. A pathological example is shown in the code in

Figure 1, where a is a shared variable initially set to 0, N is the

thread count and th_id<N is a per-thread id. When there are

enough threads running this code, execution never ends due to

writer starvation; In our experiments we found that, without

especial congestion management, four threads are enough to block

the system.

Figure 2 shows the coherence requests involved in this situation,

where processors A and B are the readers holding the line

containing a in shared mode, while C wants to update a. C sends a

GETX (“get exclusive”) message to the directory which is

forwarded to the line’s holders A and B. As long as A or B holds

the line and is running transactionally then it will send a NACK to

C. If A or B commits while the other remains in the transactional

state, and then starts a new transaction that reads a again before

the other’s commit, the situation will persist.

Figure 1: Example code that stalls due to writer starvation

The solution presented in [1] relies in writers detecting that they

are being starved and choosing to abort the readers that are

obstructing them. This can be done by maintaining timestamps.

While this removes the problem, it is only applicable to collisions

between different HW transactions, not those between HW

transactions and ordinary, non-transactional code. Also, the

timestamp-based approach can cause unnecessary transactional

aborts, as we will show later.

Hybrid Transactional Memory systems make use of HW

transactions when possible, and otherwise run the original STM

code. There are recent proposals (such as [2] and our own

subsequent work [15]) designed to make use of generic HTM

support. To allow for correct execution, HW transactions are

typically extended to read and write parts of the STM’s

concurrency-control data structures so that conflicts between HW

and SW transactions are detected. This can improve performance

over a pure-SW system because, when running in HW mode,

several aspects of the STM are unnecessary, such as read and

write set validation, commit copy of new values, and read and

write sets management. After one or several aborts, the

transactional mode of a processor is switched to software-only

(SW) to execute the conflicting transaction.

The previously presented writer starvation problem is even more

important in SW transactions in a hybrid system, given that the

solution presented in [1] wouldn’t allow them to proceed. We

have used our lock-based Hybrid TM system presented in [15] to

simulate a red-black tree microbenchmark. We found that, with 32

threads and 32 processors, after starting a couple of thousand

transactions, and depending on the program run, from 4 to 12

processors are stalling trying to modify some node which is

frequently read because of its location close to the root.

while (a < 1000){
 atomic{
 if ((a %N)==th_id) a++;
 }
}

Directory

A B

C

G
E
T
X

(a
)

Fw GETX(a)
Fw GETX(a)

NACK NACK

2

1

2

3 3

Figure 2: Writer Starvation in LogTM

This starvation does not happen in the original lock-based STM,

given that locks protecting STM objects are implemented using

fair queues [10]: Each thread wishing to acquire the lock in read

or write mode joins a queue of waiters in arrival order. The queue

management prevents a reader from acquiring the lock if there is a

previous writer waiting. This means that a thread wanting to

write-lock a lock currently in read mode will have to wait for

previous readers to finish, but no new read locks will be granted.

Of course, absent contention, the baseline performance of this

pure STM is poor compared with that of the HTM.

The idea in this work extends this fair queuing mechanism to the

access to memory lines in presence of a directory-based

implementation of HTM. We introduce Directory Reservations, a

novel mechanism that enables threads to “reserve” directory lines

access once they are NACKed by others, preventing any

newcomer from accessing the line before the reserver. We show

how this is equivalent to a limited form of fair queue, and present

an extension to provide stronger fairness guarantees. This

mechanism allows HW and SW transactions to coordinate access

to frequently read and modified lines, without the need to abort

remote transactions.

The rest of the paper is organized as follows. Section 3 presents

the general idea and details the hardware requirements. Section 4

introduces the specific details to make the directory reservations

idea work with a LogTM-based Hybrid TM model. Section 5

presents some related work and we conclude with further line of

work in section 6.

3. DIRECTORY RESERVATIONS:

GENERAL IDEA
The general idea of Directory Reservations is that NACKed

requests, such as those presented in Figure 2 (steps 1—3) will

issue a reservation (RESERV) request to the directory to reserve

the line. The directory is extended with new fields to support the

new functionality, as presented in Figure 3. Figure 4 shows the

new behavior: After receiving a reservation request (4) from

processor C, the directory sets the R flag for the line (R for

Reserved) and records the requestor processor id C in the

requestor field. An acknowledge message is sent to the requestor

(step 5). The fields read_count and W will be discussed later.

Figure 3: Directory additions

Whenever any other processor D issues a GETX (“get exclusive”)

or GETS (“get shared”) request for the same line (marked as step

6 in Figure 4), the request will arrive at the directory controller

where the R flag is already set. After checking this flag, the

directory controller will compare the requestor id, D, with the

saved requestor field containing C. Being different, the controller

determines that the current requestor is not the one that reserved

the line, and sends a NACK message (step 7) to D without any

need to forward the request to the current sharers.

However, if the requestor of the GETX or GETS is processor C

(i.e. the one that reserved the line), the request will be forwarded

to the corresponding processors (owner and sharers). If C receives

new NACK replies, such as presented in Figure 2, it will have to

repeat the request until it is successfully satisfied.

Eventually, in an idealized case, the blocking processors (A and B

in Figure 2) will commit their transaction. When this happens, no

new NACK will be issued to coherence requestor, so C will

receive the valid data with the valid permissions. In this point, the

final message from C to the directory clears both the R flag and

the current requestor, and finishes the reservation.

However, in practice we must be careful because the processors

executing A or B may themselves incur a conflict with a

transaction executing in D (for example, this may be due to the

transactions accessing different variables or objects that map to

the same cache lines, different from a). This would cause a

deadlock, e.g.: A waiting D, D waiting for C, and C waiting for A.

This can be addressed by extending the existing deadlock

avoidance mechanism used in the HTM. In Section 4 we will

specify how to combine our mechanism with the original deadlock

avoidance mechanism in LogTM.

3.1 Limited fair queuing
The proposal as previously described enables any writer to

proceed execution after the current holders of the line commit.

However, it does not implement any queue for the remaining

readers or writers. Once the reservation is cancelled, the rest of

the requests will race for the line. Now we describe an optional

alternative implementation providing a result equivalent to a

limited fair queue.

We make use of the optional read_count field and W flag in the

directory. Once the reservation has been set, any GETS request

for the same line will be NACKed as explained previously, and

the read_count will be incremented. To prevent counting the same

read request twice, every request message includes a nack_count

field1, which is increased by the requestor cache on every retry.

Only requests with nack_count = 0 increase the read_count in the

directory. On the first GETX request not coming from the original

requestor C, the W flag is set, and read_count is no longer

incremented.

This ensures that if the block is requested in exclusive mode

during a reservation, the read_count field will contain the count

1 In fact, a single bit is enough for this purpose, but we consider a

counter for future thread de-scheduling detection mechanisms.

 DATA status owner sharers R requestor

Added fields

 read_count

optional

 addr W

Directory

A

B G
E
T
X

(a
)

Fw GETX(a)

Fw GETX(a)

NACK
NACK

2

1

2

3

3

R
E
S
E
R
V

(a
)

4

C

A
C
K

 5

GETX(a)
6

D

NACK 7

Figure 4: Reservation mechanism

of previous read requests for the block, which will have to be

served before acknowledging any exclusive request. Once the

original reservation is served, the directory will continue to keep

the W flag set, and decrease read_count on every GETS request

served. When read_count reaches 0 and the W bit is set, only a

single GETX request will success (and, in case of a new conflict,

generate a new reservation). Meanwhile, exclusive requests are

NACKed by the directory.

This design does not implement a real queue, given that the

directory is not aware of the identity of read and write requestors.

Once the original reservation is served, only the amount of read

requests before any write request will be preserved. If new readers

try to access the line, nothing prevents them from doing so before

the next writer succeeds. If a new writer comes and wins the

request race, its request will be satisfied. However, this is enough

to make sure that the proportion of sharers and writers in the

queue is satisfied. We consider that this mechanism is fair in that,

on average, the waiting times for sharers and writers is the same

as it would be with a real queue.

3.2 Thread de-scheduling and migrating
Given that LogTM transactions block accesses that conflict with

its read or write set, thread descheduling is an important issue for

HW transactions. Signature-based solutions for this have been

proposed in [16].

However, in this section we present how to prevent starvation

when a thread waiting for a reserved line is de-scheduled. If the

thread holding the reservation is de-scheduled by the OS, when

the resource becomes free, there will be no request for the line.

This will prevent other threads from accessing the line.

This case does not generate a deadlock, but a temporal starvation;

in the same manner of thread de-scheduling for a thread which is

waiting in a queue. To cover this last case, in [8] a new

mechanism is proposed to detect threads that have been

descheduled. Waiting threads periodically “publish evidence” that

they are still iterating, in the form of a timestamp increase. If other

thread finds that this timestamp has not been increased in a long

time, it can “jump ahead” the queue.

In our case, we might consider a timer in the directory (not

depicted in Figure 3), which cancels the reservation when it

expires. This timer is reset on every GETX request received from

the processor holding the reservation. The timer duration will be

set to several times (2 or 3) the delay between requests, to cover

the case of network congestion delaying a request. A similar case

must be considered for readers and writers if using the limited fair

queuing proposed in section 3.1.

3.3 Directory compacting
The directory block presented in Figure 3 includes a significant

memory overhead for this mechanism: two new flags, the

requestor id field and a new counter on each memory block.

However, it can be simply reduced by adding an additional

Reservation Table (RT) in the directory to hold reservation

values. This RT, with a low amount of blocks would contain all

fields except the R flag, and would be addressed by the block

address. We consider that 8 or 16 entries will do the work most of

the time, as we expect that few processors hold reservations, and

only on a single line each, distributed across all of the directory

controllers. Figure 5 shows an example with a RT with three

entries.

With this design, when a given directory request finds the R flag

set, the RT is searched for an entry containing the given block

address, containing the remaining fields. If a new reservation

comes and there is no empty line, the reservation won’t be made.

The additional area overhead of the directory is minimal: one bit

per line. Moreover, the addition of the R bit doesn’t affect the

directory access time, given that its check can be made in parallel

with other fields, such as the status of the line. Delay is only

increased in the case of the reservation being active, which is the

uncommon case and not in the critical path. In that case,

considering that involved processors are waiting for each other,

which is a long wait by nature, the increase of a few cycles

shouldn’t affect performance significantly.

Finally, the amount of coherence messages in the network, and

thus the bandwidth used, are not seriously increased by the

mechanism. The reservation request (step 4 in Figure 4) is needed

to end the NACKed memory operation in the directory side.

Repeated requests that are NACKed while a line is reserved are

required to provide fairness, and the use of an exponential backoff

mechanism would reduce congestion in the access to the directory

controller. The rest of the messages correspond with the original

coherence requests.

4. DIRECTORY RESERVATIONS FOR

LOGTM-BASED HYBRID SYSTEMS
To integrate this mechanism with LogTM, some changes have to

be applied to the general idea in Section 3. First of all, the

processors that are sharing a line and NACKing a request (A and

B in Figure 4) need to invalidate their local copy of the line after

commit. Otherwise, they might start a new transaction after

commit that also reads the same line. To this end, we add a new

requested flag to the L1 caches, which is set by a directory

indication when the reserved block is requested. When the

processor commits, all of the requested lines in the local cache are

invalidated, or sent back to the directory if they have been

modified.

As commented in Section 3, the general scheme might deadlock

when used with LogTM. In the original LogTM proposal in [12]

the deadlock avoidance system is based on timestamps for each

transaction. The timestamp is, essentially, the clock cycle in which

a transaction begins, and is held for the whole transaction. Thus,

“older” transactions have lower timestamps. There is no

serialization or commit arbitration based on the timestamp; it is

used only to prevent deadlock. This mechanism works as follows:

 DATA stat. Own sharers R addr requestor read_count W addr

Directory Reservation Table (RT)

 DATA stat. Own sharers R addr

 DATA stat. Own sharers R addr

 DATA stat. Own sharers R addr

 requestor read_count W addr

 requestor read_count W addr

Figure 5: Compact directory implementation

if a given processor sends a NACK to other processor, and then

receives a NACK from another processor, there might be a

deadlock in the system. In this case, there will be at least one

processor in the dependency cycle having NACKed an older

processor, and having received a NACK from an older processor

(lower timestamp). In this case, this processor aborts its own

transaction. To detect this case, each processor has a given

possible_cycle bit which is set when the processor sends a NACK

to an older one, and in case of receiving a NACK from an older

processor with the bit set the processor aborts. This solves the

deadlock problem, without aborting all of the transactions in the

cycle. However, there are still some “false positive”, in the sense

that processors can still abort in the absence of any cycle in the

system, but this rate is low.

It is possible to adapt the general idea of Directory Reservations

to the deadlock avoidance mechanism in LogTM. Here we outline

the basic mechanism. Basically, the idea is to add a new field to

the Reservation structure containing a timestamp (not depicted in

Figure 5). The behaviour is handled as follows, considering the

example in Figure 4:

- When processor C requests a, it receives NACKs from

processors A and B. These replies contain A and B’s timestamps.

- In the reservation message, C sends the newest timestamp

received, which will be stored in the Reservation structure as the

“reservation timestamp”.

- Whenever any request for a is received in the directory:

- If the request comes from a processor not in HW

transactional mode, the request is NACKed by the directory

and the processor has to wait.

- If the request comes from a processor in a HW transaction,

there are two cases, depending on the request timestamp and

the reservation timestamp:

a) If the reservation timestamp is older than the

request, the processor is NACKed by the directory.

 b) If the request timestamp is older than the

reservation one, the request is granted.

This policy solves the deadlock case presented in Section 3. If D

was older than A or B, then D would not receive a NACK, it

would eventually finish and let A and B continue. Otherwise, D

would be NACKed by the directory with an older timestamp than

its current transaction timestamp. Given that D has already

NACKed A and B, its possible_cycle bit will be set, and D should

abort, thus allowing A and B to continue. This mechanism also

covers the case of A or B sharing the line and wanting to modify it

inside the transaction. There is a possibility of some reader

“ignoring” the reservation and accessing the line (case b above),

but that is needed to prevent a deadlock case as presented in

Section 3.

5. RELATED WORK
The LogTM HTM model was presented in [12]. The problem of

writer starvation in the LogTM model was presented in [1]

labelled STARVINGWRITER. In that work the authors propose an

improvement by which a starved transaction trying to write a

cache line shared by many others aborts the remote transactions.

Our approach is different in that we don’t need to abort remote

transactions, and we explicitly cover the case of both HW and SW

transactions using a hybrid system.

The first approach of a Hybrid Transactional Memory system that

can use any generic HTM as the HW acceleration substrate was

presented in [2]. This work used the LogTM model as the base

HTM, same as our base model. The extension in [9] proposes

different transaction execution phases for hybrid systems, such as

HARDWARE, HYBRID or SOFTWARE. While we don’t consider such

phase division, the proposal of this paper would be applicable to

the HARDWARE and HYBRID phases of execution, affecting the

orecs instead of the locks, and the modeIndicator variable which

is checked by all transactions and used to change the execution

mode. Even more, the paper also introduces the idea of using

scalable non-zero indicators instead of counters in the

modeIndicator variable; these would also suffer from strong

starvation in the general case. As a note, the authors indicate in

the paper that they modified the contention manager in LogTM,

changing the stalling mechanism addressed in this work. NZTM

[13] is another hybrid proposal (also with a modified contention

manager) that achieves zero-indirection STM, eliminating some of

the performance overheads of our base STM.

Contention management for TM has been previously considered

in many different works such as [2] or [13]. However, as far as we

know no other work has addressed cache-line contention

management for directory-based hybrid systems.

Many different HW mechanisms have been proposed to improve

the performance of shared-memory synchronization and

exclusion. Software reader-writer queue-based locks [10], as the

ones used in our base hybrid TM, reduce contention by using a

queue of waiters, at the cost of increased memory usage. QOLBY

[6] was the first proposal to improve shared-memory

synchronization, using hardware distributed queues. Memory-side

atomic operations, first used in the NYU Ultracomputer [7],

perform atomic operations in the memory controller rather than

the processors’ caches to prevent cache lines bouncing between

processors. Recently proposed Active Memory Operations [5]

extend the performance to streams of data. Active Messages [3] is

a software proposal to move computation to the owner node,

considering that the programmer knows where it resides. As we

comment in next section, we are considering the extension of

Directory Reservations to support fair access for explicit

synchronization. Although possible, we don’t know of any of

these works specifically addressing writer starvation in shared-

memory synchronization. Even more, the complexity of our

directory changes is much lower than any of the previous

mechanisms.

6. CONCLUSIONS AND FUTURE WORK
Directory Reservations properly used provide fair contention

management between SW and HW transactions in a hybrid

LogTM-based schema. We have analysed the memory cost of the

system, which is low (one bit per directory line and L1, and the

additional RT in the directory controller) and does not affect

directory access latency. The idea can implement with a very low

cost a limited fair queuing handled by the directory hardware.

Finally, we have proposed a LogTM-specific version in which

there is no deadlock, considering the specific mechanisms used in

the original LogTM proposal.

We are also looking at applying the Directory Reservations idea to

traditional locking. Considering a system with a Reservation

Table implemented, our idea is to allow the programmer to

explicitly reserve and release some lines, instead of leaving that

task to the coherence protocol when detecting conflicts with HTM

transactions. By carefully reserving selected lines in a locking

implementation, we believe that it is possible to provide fair

access with reduced contention in read-write locks. However, this

has to be handled carefully to ensure, for example, that

reservations don’t prevent current holders of the lock from

releasing it, generating a deadlock. Our initial sketches make us

consider that it might be possible to obtain a performance similar

to using memory-side atomic operations, exploiting the RT.

We are currently implementing the design in the GEMS simulator

[11], using the Hybrid Lock-based system presented in [15]. This

hybrid system presents writer starvation in the lock access, which

is handled by the Directory Reservations idea. However, we still

don’t have results to present in this workshop paper.

7. ACKNOWLEDGMENTS
This work is supported by the cooperation agreement between the

Barcelona Supercomputing Center National Supercomputer

Facility and Microsoft Research, by the Ministry of Science and

Technology of Spain and the European Union (FEDER funds)

under contracts TIN2004-07440-C02-01, TIN2007-60625 and

TIN2007-6802-C02-01, and by the European Network of

Excellence on High-Performance Embedded Architecture and

Compilation (HiPEAC). The authors would like to thank the

valuable comments received from the anonymous reviewers.

8. REFERENCES
[1] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M.

Swift and D. A. Wood, Performance Pathologies in

Hardware Transactional Memory. International Symposium

on Computer Architecture (ISCA), June 2007.

[2] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir

and Daniel Nussbaum. Hybrid transactional memory. 12th

Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, San Jose, CA, Oct. 2006.

[3] T. von Eicken, D. Culler, S. Goldstein and K. Schauser.

Active Messages: A mechanism for integrated

communication and computation. In Proc. of the 19th ISCA,

May 1992.

[4] F. Ellen, Y. Lev, V. Luchangco and M. Moir, SNZI: Scalable

Non-Zero Indicators. In Proceedings of the Twenty-Sixth

Annual ACM Symposium on Principles of Distributed

Computing. Portland, Oregon, USA, August 12 - 15, 2007.

[5] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim and M. A. Parker.

Active memory operations. In Proceedings of the 21st Annual

international Conference on Supercomputing. Seattle,

Washington, June 17 - 21, 2007.

[6] J. R. Goodman, M. K. Vernon and P. J. Woest. Efficient

syncrhonization primitives for large-scale cache-coherent

multiprocessors. In Proceedings of the 3rd international

conference on Architectural support for programming

languages and operating systems (ASPLOS’89), Boston,

MA, USA, 1989.

[7] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L.

Rudolph and M. Snir. The NYU multicomputer – designing a

MIMD shared-memory parallel machine. IEEE TOPLAS,

5(2):164–189, Apr. 1983.

[8] B. He, W. N. Scherer III and M. L. Scott. Preemption

Adaptivity in Time-Published Queue-Based Spin Locks. 11th

Intl. Conf. on High Performance Computing, Dec. 2005

[9] Y. Lev, M. Moir and D. Nussbaum. PhTM: Phased

Transactional Memory. Presented at The 2nd ACM

SIGPLAN Workshop on Transactional Computing

(TRANSACT 07), Portland, Oregon, August 16, 2007.

[10] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-

writer synchronization for shared-memory multiprocessors.

Proceedings of the 3rd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming.

Williamsburg, Virginia, 1991.

[11] M. M.K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,

M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D.

A. Wood Multifacet’s General Execution-driven

Multiprocessor Simulator (GEMS) Toolset. Computer

Architecture News, Sept. 2005.

[12] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill and D. A.

Wood, LogTM: Log-based Transactional Memory.

International Symposium on High Performance Computer

Architecture (HPCA), February 2006.

[13] W. Scherer and M. Scott. Advanced contention management

for dynamic software transactional memory. In Proc. 24th

Annual ACM Symposium on Principles of Distributed

Computing, 2005.

[14] F. Tabba, C. Wang and J. R. Goodman. NZTM: Nonblocking

Zero-Indirection Transactional Memory. Presented at The

2nd ACM SIGPLAN Workshop on Transactional Computing

(TRANSACT 07), Portland, Oregon, August 16, 2007.

[15] E. Vallejo, T. Harris, A. Cristal, O. Unsal and M. Valero.

Hybrid Transactional Memory to accelerate safe lock-based

transactions. 3rd ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT 2008). Salt Lake

City, Utah, USA, February 23, 2008.

[16] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M.

D. Hill, M. M. Swift and D. A. Wood. LogTM-SE:

Decoupling Hardware Transactional Memory from Caches.

International Symposium on High Performance Computer

Architecture (HPCA), February 2007.

