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The largest eigenvalue of a network’s adjacency matrix and its associated principal eigenvector are key
elements for determining the topological structure and the properties of dynamical processes mediated
by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given
network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its
immediate neighbors and the densely connected set of nodes with maximum K-core index. We validate this
formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic
and real-world topologies. We also present evidence of the consequences of these findings for broad classes
of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of
heterogeneous networks built according to the linear preferential attachment model are qualitatively

different from those of their static counterparts.
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I. INTRODUCTION

The spectral properties of complex topologies [1] play a
crucial role in our understanding of the structure and function
of real networked systems. Various matrices can be con-
structed for any given network, their spectral properties
accounting for different topological or functional features.
Thus, for example, the Laplacian matrix is related to diffusive
and random walk dynamics on networks [2], the modularity
matrix plays a role in community identification on networks
[3], and the nonbacktracking or Hashimoto matrix governs
percolation [4]. Among all matrices associated with networks,
the simplest and possibly most studied is the adjacency matrix
A;j, taking the value 1 whenever nodes i and j are connected,
and zero otherwise. Particular interest in this case is placed on
the study of the principal eigenvector { f;} (PEV), defined as
the eigenvector of the adjacency matrix with the largest
eigenvalue A, (LEV). This interest is twofold. On the one
hand, the PEV is one of the fundamental measures of node
importance or centrality [5]. The centrality of a node can be
defined based on the number of different vertices that can be
reached from it, or the role it plays in connecting different
parts of the network. From a more sociological point of view, a
node is central if it is connected to other central nodes. From
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this definition, we get the notion of eigenvector centrality of a
node [6], which coincides with the corresponding component
of the PEV. On the other hand, the LEV plays a pivotal role in
the behavior of many dynamical systems on complex net-
works, such as epidemic spreading [7], synchronization
of weakly coupled oscillators [8], weighted percolation on
directed networks [9], models of genetic control [10], or the
dynamics of excitable elements [11]. In these kinds of
dynamical processes, the LEV is related, through different
analytical techniques, to the critical point at which a transition
between different phases takes place: In terms of some generic
control parameter A, a critical point 4, is found to be, in
general, inversely proportional to the LEV A,,.

The possibility of knowing the position of such transition
points in terms of simple network topological properties is
of great importance, as it allows us to predict the system’s
macroscopic behavior or optimize the network to control
processes on it. This has triggered intense activity [12—15],
particularly in the case of networks with heterogeneous
topology, such as power-law distributed networks with a
degree distribution of the form P(g) ~ g7 [16]. Among
these efforts, in their seminal work [17], Chung, Lu, and
Vu (CLV) have rigorously proven, for a model with power-
law degree distribution, that the LEV can be expressed in
terms of the maximum degree ¢, present in the network
and the first two moments of the degree distribution. This is
a remarkable achievement, as it allows us to make pre-
dictions in the analysis of dynamics on networks.

Here, we show that while the CLV theory provides,
in some cases, an excellent approximation to the LEYV,
especially in the case of random uncorrelated networks,
it can fail considerably in other cases. In order to provide
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better estimates, we reinterpret the CLV result in terms of
the competition among different subgraphs in the networks.
This insight leads to the formulation of a modified form of
the CLV theory that captures the behavior of the LEV more
generally, including the case of real correlated networks,
and asymptotically reduces to the CLV form in the case of
random uncorrelated networks. We show that our gener-
alized expression perfectly predicts the LEV for linear
preferential attachment (LPA) growing networks (for which
the original CLV form fails) and provides an excellent
approximation for the LEV of real-world networks. Finally,
we show that our modified expression reliably predicts
the critical point of dynamical processes on a large set of
synthetic and real-world networks, with no exception.
The paper is organized as follows: In Sec. II, we review the
original expression for the largest eigenvalue from Ref. [17]
and show how it can lead to large errors in real correlated
networks. In Sec. III, we present physical arguments sub-
stantiating a new generalized expression for the largest
eigenvalue, whose validity is checked against a large set of
real networks. In Sec. IV, we discuss in detail the case of
growing linear preferential attachment networks, which turn
out to be a remarkable benchmark for the plausibility of our
new generalized expression. We discuss the effects of our
prediction in the estimation of the critical point in epidemics
and synchronization dynamics in Sec. V. Finally, we present
our conclusions and future avenues of work in Sec. V1. Several
appendixes provide details and additional information.

II. CHUNG-LU-VU FORMULA FOR THE
LARGEST EIGENVALUE

In Ref. [17], the authors consider a class of network
models with a given expected degree distribution. In other
words, starting from a predefined degree distribution P(g),
one generates expected degrees ¢; for each node, drawn from
P(q), and creates an actual network by joining every pair of
nodes i and j with probability g;,;/>,g,. The resulting
network has a degree distribution with the same functional
form as the imposed P(g) and lacks degree correlations
since the condition g7 < Y_,§, is imposed in the construc-
tion [17,18]. This algorithm is a variation of the classical
configuration model [14], cast in terms of a hidden variables
model [19]. For this model network, and any arbitrary degree
distribution, the authors in Ref. [17] rigorously prove that the
largest eigenvalue of the corresponding adjacency matrix
takes the form (see also Ref. [20])

G > (5 (V)

A — al\/ d'max if (q) (1)
M — 2 . 2
L i L > S In(N),

D 1g)
where N is the network size, ¢, 1 the maximum degree in
the networks, and a; are constants of order 1. In the case
of scale-free networks, the maximum degree is a growing
function of N, which, for uncorrelated networks [21], takes

the value g, ~N'/? for y <3 and g, ~ NV for
y > 3 [18]. The algebraic increase of ¢, allows us to
disregard the logarithmic terms in Eq. (1) in the limit of
infinite-size networks, leading to the simpler expression [22]

Ay~ max{\/Gmax- (%) /{(q)}. (2)

valid for any value of y. For power-law distributed networks,
the second moment of the degree distribution scales as
(q%) ~ g fory < 3and (¢?) ~ constfory > 3. Combining
this result with the expression for the maximum degree, we
can write the more explicit result

Vmax ify>5/2
Ay ~ 3
Tl <5 G)

It is important to remark that while Eq. (2) holds for
asymptotically large networks, its applicability to networks
of finite (yet huge) size should not be taken for granted. The
exact Eq. (1) does not provide predictions for a wide (size-
dependent) range of values of the ratio (¢?)/[(q) /Gmax)- AS
shown in Appendix A, uncorrelated power-law distributed
networks fall within this range for the span of network sizes
usually considered in computer simulations, so Eq. (1) does
not provide predictions about any uncorrelated power-law
networks that can be numerically simulated. Nevertheless,
Eq. (2), which is a nonrigorous generalization of the exact
Eq. (1), turns out to be very accurate for random uncorrelated
static networks even of small size. Indeed, in Fig. 1(a), we
present a scatter plot of A,, computed using the power
iteration method [23] in random uncorrelated power-law
networks generated with the uncorrelated configuration
model (UCM) [24], for different values of the degree
exponent y and network size N, as a function of the
numerically estimated value of max{,/Gma. (¢%)/(q)}-
The agreement with Eq. (2) (in the following denoted
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FIG. 1. (a) Largest eigenvalue A, as a function of

max{\/dmax. (¢>)/(g)} in uncorrelated power-law UCM net-
works with different degree exponent y and network size N.
(b) Inverse participation ratio Y4(N) as a function of N in
uncorrelated power-law UCM networks with different degree
exponent y. Each point in both graphs corresponds to an average
over 100 independent network realizations. Error bars are smaller
than symbol sizes. Networks have a minimum degree m = 3.
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FIG. 2. (a) Largest eigenvalue A, as a function of

max{\/Gmax- (¢*)/(q)} computed for 109 different real-world
networks. (b) Largest eigenvalue A, as a function of
max{/qmax- (9) k, } computed for the same real-world networks.
Networks are ordered by increasing network size.

as CLV theory) is almost perfect, with only very small
deviations for the smallest network sizes.

In order to test the generality of CLV theory beyond
uncorrelated networks, we have also considered a large
set of 109 real-world networks (the same as considered in
Ref. [25]; see this reference for network details), of widely
different origin, size, and topological features. In Fig. 2(a),
we plot the LEV of these networks as a function of the
numerically estimated quantity max{,/Gma. (¢*)/(q)}-
The result is quite clear: While in some cases the CLV
prediction works well, in others it provides an overesti-
mation of the actual value of the LEV that can be larger
than one order of magnitude. This discrepancy is particu-
larly strong in the case of the Zhishi, DBpedia, and
Petster, cats networks, but it is considerable in a large
number of other cases.

III. GENERALIZED FORMULA FOR THE
LARGEST EIGENVALUE

We can understand the origin of the violations of the
CLV formula observed in Fig. 2(a) and provide an
improved version by reconsidering the observations made
in Refs. [26,27]. In these works, it is shown that the two

types of scaling of the LEV in the CLV formula for
uncorrelated networks (either proportional to (g%)/{g) or
t0 \/Gmax) are the manifestation of the two alternative ways in
which the PEV can become localized in the network (see
Appendix B). For y > 5/2, the PEV is localized around the
node with the largest degree in the network (the hub), and the
scaling of Ay is given by /Gy for y < 5/2, on the other
hand, the PEV becomes localized (in the sense discussed
in Ref. [27]) on the core of nodes of maximum index K, in
the K-core decomposition of the network [28,29] (see
Appendix C); the associated LEV is then given by
(g*)/{q). This picture is confirmed in Fig. 1(b), where we
study the localization of the PEV, of components {f;}
assumed to be normalized as >, f7 = 1, in random uncorre-
lated networks. The analysis is performed by plotting the
inverse participation ratio [27,30,31] Y4(N) as a function of
the network size (see Appendix B). As we can check, for
y > 5/2, Y4(N) goes to a constant for N — oo, indicating
localization in a finite set of nodes that coincide with the hub
and its immediate neighbors. On the other hand, fory < 5/2,
the inverse participation ratio decreases algebraically with
network size, with an exponent « smaller than 1, indicating
localization in a subextensive set of nodes, which coincide
with the maximum K-core [27]. Additional evidence is
presented in Appendix D.

This observation can be interpreted in the following way:
The actual value of the LEV in the whole network is the
result of the competition among two different subgraphs.
The node with the largest degree ¢, (the hub) and its
immediate neighbors form a star graph, which, in isolation,

has a largest eigenvalue given by Ag‘? = \/dmax- On the
other hand, the maximum K-core, of index K, is a densely
interconnected, essentially degree-homogeneous subgraph
[26]. As such, its largest eigenvalue is given by its internal

average degree, Ang )~ (@), In the case of uncorrelated
networks, this average degree is well approximated by
(g*)/{q) [29]. These two subgraphs, and their respective

largest eigenvalues, Al(lf;) and A,(‘,[fM), compete in order to set
the scaling of the LEV of the whole network: The global
LEV coincides with the subgraph LEV that is larger.

We hypothesize that for generic networks, including
correlated ones, the same competition sets the overall
LEV value. The largest eigenvalue of the star graph centered
around the hub is trivially still equal to /G- What changes
in general topologies, and, in particular, in correlated net-
works, is the expression of the largest eigenvalue associated
with the maximum K-core. One can realistically assume that
the maximum K-core is, in general, degree homogeneous
(see the heterogeneity parameter of the maximum K-core or
real-world networks in Table 1 in Ref. [32], which is, except
in one case, smaller than 1). What cannot be taken for
granted, in general, is the identification between (q) g, and

(¢*)/{q). We thus conjecture that the LEV in generic
networks can be expressed as

041024-3



CASTELLANO and PASTOR-SATORRAS

PHYS. REV. X 7, 041024 (2017)

Ay~ max{/Grmax )k, I (4)

Equation (4) is the central result of our paper. Note that
Eq. (4) is valid in full generality for any network if the
approximation sign = is replaced by >, as Rayleigh’s
inequality guarantees that the largest eigenvalue of any
subgraph is a lower bound for the LEV of the whole network
[1]. Our conjecture here is that this lower bound is also a very
good approximation, in the sense that A, differs at most from
the lower bound by a factor of the order of a few units.

Note that Eq. (4) includes Eq. (2) as a particular case
when (q)x, =~ (¢?)/(g), which is true in uncorrelated
networks [29]. Moreover, Eq. (4) is in agreement with
some known exact results for specific classes of networks.
A simple example is provided by random g-regular graphs.
They have LEV equal to ¢, which is also the average degree
of the max K-core, and it is larger than /Gu. = /4.
A less trivial example is given by random trees grown
according to the linear preferential attachment rule (see
Sec. IV). Bhamidi et al. [33] show that, in this case, the
LEV is exactly /g,y the value predicted by Eq. (4) since,
by construction, (g)g, = 2. Another related exact result
concerns the G(N, p) (Erdds-Rényi) random network, for
which Krivelevich and Sudakov [34] have proven that
Ay = (14 0(1)) max{,/qmax. Np}, where the term o(1)
tends to zero as the max{, /¢y, Np} tends to infinity and
Np is the average degree (g). According to Ref. [29], for
Erdos-Rényi networks, the highest K-core is linear with the
average degree, K, ~0.78(¢q), and the mean degree of
the K-core depends weakly on the core and (g)x = (g).
Hence, our Eq. (4) agrees with the result of Krivelevich and
Sudakov for Erdos-Rényi networks.

In Fig. 2(b), we check the validity of the proposed
generalized scaling for the LEV in the case of the 109
real-world networks considered above. Comparing with
Fig. 2(a), the generalized formula provides a much better
overall fit to the real value of the LEV than the original
CLV expression and therefore represents a better prediction
for the behavior of this quantity. The overall improvement
of our prediction versus the original CLV one can be
established by comparing the absolute relative errors, with
respect to actual measured LEVs, of the values predicted by
Egs. (2) and (4), respectively. The average relative error for
Eq. (2) is 1.213, with standard deviation 3.285, and a
maximum of 26.686; for Eq. (4), the average is 0.282, with
standard deviation 0.154 and maximum 0.719. We con-
clude that Eq. (4) provides an excellent approximation for
the LEV value of an extremely broad variety of networks.
Additional evidence of its predictive power is presented in
the next section.

Despite this vast generality, there are, however, particular
classes of networks for which the lower bound is not tight
and Eq. (4) is not a good approximation. These cases are
examined in our discussion, Sec. VI.

IV. CASE OF LINEAR PREFERENTIAL
ATTACHMENT NETWORKS

Growing network models provide a particularly interest-
ing test bed for the conjecture presented above. We focus,
in particular, on LPA networks [16,35], generated starting
from a fully connected nucleus of m + 1 nodes and adding
at every time step a new node with m new edges connected
to m old nodes. For the vertex introduced at time ¢, each of
its emanating edges is connected to an existing vertex s,
introduced at time s < ¢, with probability

IL,(1) = _q(t)+a (5)

22ila;(0) +a]”

where ¢,(1) is the degree, measured at time ¢, of the node
introduced at time s. The factor a takes into account the
possible initial attractiveness of each node, prior to receiv-
ing any connection. Large LPA networks are characterized
by a power-law degree distribution P(k) ~ k™7, with a
degree exponent y = 3 + (a/m) [36] and average degree
(g) = 2m. It is thus possible to tune the degree exponent in
the range 2 <y < oo by changing the attractiveness
parameter in the range —m < a < co. The power-law form
extends up to the maximum degree ¢,,,, that depends on N
as Guax ~ NV@=1) for all values of y. LPA networks are
further characterized by the presence of degree correlations
[37]: The average degree of the nearest neighbors of nodes
of degree g, G,,(q) [38] is of the form g,,(q) ~ ¢=>*7 for
y <3, and §,,(q) ~Ing for y > 3 [36]. See Appendix E
for a practical implementation of this model.

By their very construction, LPA networks lack a non-
trivial K-core structure since the iterative procedure to
determine K shells for K > m removes all nodes by exactly
reversing the growth process. Therefore, in LPA networks,
all nodes belong to the same K = m shell, where m is the
minimum degree in the network. We thus have (g)x =
(q) = 2m < \/qmax even for modest values of N, and
according to our generalized prediction, the LEV should be
approximately /g,y for all values of y, in stark opposition
to the original CLV formula, which still predicts, in Eq. (3),
different expressions for y < 5/2 and y > 5/2. This scal-
ing, Ay ~ \/Gmax> has been exactly demonstrated for the
case y = 3, corresponding to the so-called Barabasi-Albert
model [16] in Ref. [39]. Here, we extend this form for all
values of y in LPA networks.

In Fig. 3(a), we plot the largest eigenvalue obtained in
LPA networks with different sizes and degree exponent y,
as a function of /gn,.. As we can observe, after a short
preasymptotic regime for small network sizes (small g,,,,),
Ay ErOWS as | /Gqy Tor all values of y, independently of
the factor (g®)/(q). Interestingly, for all values of y, the
LEV falls onto the same universal curve, asymptotically
approaching /qp,y, which indicates that this functional
form is, moreover, independent of degree correlations,
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FIG. 3. (a) Largest eigenvalue Ay, as a function of /g,y in
LPA networks with different degree exponent y. (b) Inverse
participation ratio Y, (N) as a function of N in LPA networks with
different degree exponent y. Each point in both graphs corre-
sponds to an average over 100 independent network realizations.
Error bars are smaller than symbol sizes.

which change continuously with y in LPA networks [36]. We
conclude that, in perfect agreement with our conjecture, the
spectral properties of LPA networks are ruled only by the
hub. Additionally, this implies that the PEV is localized
around the hub. This fact is verified in Fig. 3(b), where we
plot the inverse participation ratio Y, (N) as a function of N.
In Fig. 3(b), we see clearly that Y4(N) goes to a constant for
N — oo, for any degree exponent y and for sufficiently large
N, indicating that PEV always becomes localized on a set of
nodes of finite size (not increasing with N): the hub and its
immediate neighbors. Further evidence about the localiza-
tion is provided in Appendix F.

In LPA networks, the lack of a K-core structure is a
fragile property since reshuffling connections while pre-
serving the degree of each node [40] may induce some
K-core structure. However, this emerging K-core structure
is not able to restore the scaling predicted by Eq. (2) (see
Appendix G). As Fig. 4(a) shows, reshuffling does not alter
the overall behavior, apart from minimal changes: The LEV
still scales asymptotically as /Gy, for any y, while the
PEV is still asymptotically localized around the hub, as the
inverse participation ratio tending to a constant for large
network sizes shows [see Fig. 4(b)].
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FIG. 4. (a) Largest eigenvalue Ay, as a function of /G, in
rewired LPA networks with different degree exponent y. (b) In-
verse participation ratio Y4(N) as a function of N in rewired LPA
networks with different degree exponent y. Each point in both
graphs corresponds to an average over 100 independent network
realizations. Error bars are smaller than symbol sizes.

V. CONSEQUENCES FOR DYNAMICS
ON NETWORKS

The spectral properties of the adjacency matrix determine
the behavior of many dynamical processes mediated by
topologically complex contact patterns [8—10,22,41]. Here,
we show the consequences of the topological properties
uncovered above for two highly relevant types of dynamics.

A. Epidemic spreading

The susceptible-infected-susceptible (SIS) model is one
of the simplest and most fundamental models for epidemic
spreading [42] (see Appendix H for details), showing an
epidemic threshold 4. separating a regime where epidemics
rapidly become extinct from a regime where they affect a
finite fraction of the system. The dependence of this thresh-
old on the network topology is well approximated by the so-
called quenched mean-field theory (QMF) (see Appendix H),
predicting it to be equal to the inverse of the LEV,

1
he=7- (6)

Inserting into this expression the LEV scaling form given by
Eq. (2) in the case of random uncorrelated static networks, we
see that the threshold always vanishes on power-law dis-
tributed networks in the thermodynamic limit, with different
scalings depending on the value of y [22]. For y < 5/2, the
expression coincides with the one predicted by the hetero-
geneous mean-field (HMF) theory [43] (see Appendix H),
while HMF theory is violated for y > 5/2. In LPA networks,
Ay is, for any y, given by \/Gma. so Eq. (6) predicts a
vanishing of the epidemic threshold qualitatively different
from the one on uncorrelated networks for y < 5/2. In
particular, the approach to zero in the thermodynamic limit
should be slower in LPA networks than in static uncorrelated
networks with the same y.

10°

10

] —e— 220

< < P
= = o —¥— 240
e —— 260
e e
f " —— 380
10! 10 //' ----- HMF prediction
<« M ——  QMF prediction
10710 10" 100 10° 10° 10% 10!
G G
FIG. 5. (a) Numerical estimate of the inverse epidemic thresh-

old 1/4, in LPA as a function of ¢, for various values of the
exponent y. We consider networks of sizes from N = 10° to
N = 108. (b) Numerical estimate of the synchronization thresh-
old k. for y = 2.2 as a function of g,,,,. System size ranges from
N =300 to N =300000. In both plots the dependence for
y = 2.2 predicted by the QMF theory is represented by a thick
dashed straight line, and the HMF prediction is represented by a
dash-dotted line.
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In order to check this picture, we perform numerical
simulations of the SIS model on LPA networks of different
degree exponent y and determine the threshold using the
lifespan method (see Appendix H). In Fig. 5(a), we plot
the numerically estimated threshold as a function of g,,y-
We find that the theoretical expectation is followed only
approximately: The slopes are smaller than 1 in all cases,
more so for larger values of y. However, this discrepancy is
a finite-size effect: As the system size grows, the effective
slope grows. Asymptotically, for large N, the threshold
always vanishes as /gy, at variance with what happens
for uncorrelated static networks for y < 5/2. The compari-
son with the slope predicted by HMF theory for y = 2.2
(dashed line) clearly shows the failure of the latter. Hence,
the remarkable conclusion is that on LPA networks, the
epidemic threshold vanishes asymptotically for any y, but it
never vanishes as predicted by HMF theory, at odds with
what happens on static uncorrelated networks.

In the case of real-world networks, our proposed
estimate for the scaling of the largest eigenvalue again
provides a much better overall prediction for the threshold
in the SIS model—see Fig. 6, where we compare it with the
original CLV prediction. As we can see, in cases where the
CLV prediction is off by orders of magnitude, our improved
scaling form leads to a much better threshold prediction.
As an estimate of the overall goodness of the prediction,
the mean relative error for the CLV predictions is 4.20
(standard deviation 11.92, maximum 52.02), while the
predictions of Eq. (4) give much smaller values (mean 0.37,
standard deviation 0.24, maximum 1.33).
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FIG. 6. (a) Numerical estimate of the inverse epidemic threshold
1/2., in a subset of the real-world networks considered, as a
function of the inverse largest eigenvalue approximation
max{\/Gmax- (¢*)/(q)}. (b) Numerical estimate of the inverse
epidemic threshold 1/4. in real-world networks as a function
of the inverse improved largest eigenvalue approximation
max{/Gmax> (¢)x,, }- Data for the networks Zhishi, Web Notre
Dame, Road network TX, and Road network PA are lower
bounds to the real threshold due to computing-time limitations.

B. Synchronization

Kuramoto dynamics [44] (see Appendix I) is the
paradigmatic model for the study of synchronization
among weakly coupled oscillators, with applications rang-
ing from neural networks to charge-density waves. Its
behavior in networks has been investigated in great detail
[45,46], showing the existence of a synchronization thresh-
old for a coupling parameter, k., separating a random phase
from a synchronized phase. Concerning the synchroniza-
tion threshold, the standard approach is the one in Ref. [8],
predicting a synchronized state to appear when the cou-
pling k among oscillators is larger than the critical value,

ko

K= ™
where kg = 2/[zg(0)] and g(w) is the frequency distribu-
tion of individual oscillators (see Appendix I). To assess
whether the generalized scaling just uncovered for A;; on
LPA networks also has effects for these dynamics, we
perform simulations of the Kuramoto model on growing
networks and determine the critical coupling . (see
Appendix I for details).

Figure 5(b) clearly shows that also for these dynamics,
the prediction given by the inverse of the LEV is quali-
tatively correct and, as a consequence, for y < 5/2, the
threshold vanishes more slowly than what is predicted for
random uncorrelated networks. We conclude that also in
this case, the nature of the growing network, and, in
particular, the lack of a K-core structure, has profound
consequences for the dynamics mediated by the contact
network.

VI. DISCUSSION

The generalized CLV conjecture we have exposed allows
us to fully clarify the physical origin of the properties of the
adjacency matrix’s largest eigenpair in complex networks.
There are two subgraphs that determine the LEV and the
PEV in a large complex network: the hub with its spokes
and the densely mutually interconnected set of nodes
singled out as the maximum K-core [47]. Each of these
two subgraphs has (in isolation) an associated LEV: The
hub is the center of a star graph, and therefore

[ . .
Az(v;) = \/qmax; the maximum K-core is a homogeneous

graph, and therefore Ag,’,(M) = (q)x,,- The LEV of the global
topology is simply given by the largest of the two. In
uncorrelated static networks, the growth with N of the two
individual LEVs depends on y, and this gives rise to the
change of behavior occurring for y =5/2, Eq. (3). In
growing LPA networks, the K-core structure is, by con-
struction, absent: The spectral properties are dictated only
by the hub (and this remains true also after reshuffling).
In networks of any origin (and any correlation level), the
relation between the average degree of the max K-core and
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(¢*)/{q) may break down. However, it is still true that the

LEV value is the largest between AI(S) and A,(lf’” ),

This conjecture is clearly not a proof. However, the
understanding of its conceptual origin allows us to predict
that it should hold for practically all real-world networks.
Various different mechanisms may lead to its breakdown.
There could be an inhomogeneous max K-core in the

network such that Aj(‘f'”) is very different from (q) g, . There

could be a third, different, type of subgraph, characterized
by a LEV larger than both the others. Or the whole graph
could have a LEV larger than the LEV of any proper
subgraph. An example of this last case is the complete
bipartite network K, ,: Its LEV is /pq [1], which can be
much larger (assuming p < ) than the value max{,/q, p}
predicted by Eq. (4). All these mechanisms are, in
principle, possible; however, they appear to be unlikely
in real self-organized networks.

Our findings about spectral properties have immediate
implications in several contexts. We have shown that proper-
ties of dynamical processes as general as epidemics and
synchronization are deeply affected by which subgraph
determines the LEV. For example, another effect that can
be immediately predicted is that removing the hub may
completely disrupt the dynamics when the LEV is given by

A(Mh), while this is practically inconsequential in the other
case. Similar consequences are expected to occur in general
[9-11,41]. Another context where these results may have
implications is for centrality measures, many of which are
variations of the eigenvalue centrality [6,48]. Finally, it is
worth remarking that the example of linear preferential
attachment networks clearly points out that the way a
network is built may have deep and unexpected implications
for its structure and its functionality.
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APPENDIX A: APPLICABILITY OF CLV EXACT
RESULTS TO FINITE NETWORKS

The exact result proved by Chung, Lu, and Vu in
Ref. [17], namely, Eq. (1), can be rewritten as

: (%) 1
a1+/Y9max if @D < (V)

A = @ e @) (A1)
azm lf <‘I>\/m > ln(N)

It therefore provides a prediction for the value of the LEV if
the ratio

(%)

<q> V qmax

is larger than In(N) or smaller than 1/1n?(N). For very
large systems, both (g*)/{(q) and /G diverge and, if
they scale with N with different exponents (i.e., y # 5/2),
the logarithmic factors are not asymptotically relevant:
Either the first or the second of the conditions in Eq. (1) is
fulfilled. However, for finite values of N, there is a sizable
interval such that Eq. (1) does not strictly apply. In the
case of uncorrelated power-law networks with distribution
P(q) = (y = 1)m"~'q77, we have, in the continuous degree
approximation,

£(7.N) Zg:i\/;% [(q::"y_y - 1], (A3)

where ¢, = N'/? for y <3 and g, = NV for
y >3, m is the minimum degree, for which we take
m = 3, and in the evaluation of (g?), we have taken the
maximum degree ¢,,,, into account. Numerically evaluat-
ing {(y,N), we can compute, for every value of y, the
minimum value of N for the exact expression Eq. (1) to
apply. For y < 5/2, {(y,N) diverges with N: The predic-
tion Ay, ~ (¢*)/{q) in Eq. (1) applies for N > N, defined
by (7, Nyin) = In(Nyin)- On the other hand, for y > 5/2,
{(y, N) tends to zero as the system size diverges. Hence, the
prediction Ay % \/qmax in Eq. (1) applies for N > N,
defined in this case by {(7, Nyin) = 1/ In?(Npyin ). In Fig. 7,
we plot N i, as a function of y. From the figure, it turns out
that the exact theoretical prediction Eq. (1) holds only for
extremely large sizes (at least N > 10!}, but the bound is
much larger for almost all values of y). Networks of such
size cannot be simulated with current computer resources.
An improved analysis in Ref. [17] replaces In(N) by
In(N)'/? and In(N)? by In(N)*>? in Eq. (1). A similar
analysis as performed above indicates that this corrected
version holds for sizes of at least N > 3 x 107, which is

{(r.N)= (A2)

T T T T T T T T T

1028 L

.
[ ]
L]
25 | 4
10% b'
L]
102+ % ]

1019 L 4

N, min

1010+ —— v <5/2]

108 e y>5/2

2.00 225 250 275 3.00 3.25 3.50 3.75 4.00
Degree exponent v

FIG. 7. Minimum sizes N, for the validity of Eq. (1) in
uncorrelated power-law networks as a function of the degree
exponent y. Values in the vicinity of y = 5/2 not plotted are all
larger than 103°.
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FIG. 8. For each of the real-world networks considered, we plot in log scale a line indicating the interval where Eq. (1) does not make
any prediction. The symbols indicate the actual value of (¢?)/[(¢)/@max) for each network.

very close to the limit allowed by present computation
systems.

In the case of the real-world networks considered, we
plot in Fig. 8, along the y axis, a line between In(N)
and 1/In*(N), indicating the interval of values of
(¢*)/1{q)\/Gmax) Where Eq. (1) does not strictly apply.
The symbols indicate the actual value of the ratio
(¢*)/1{4)\/qmax) in each network. It turns out that for
102 networks out of 109, the actual value falls in the
inapplicability interval. Hence, for the vast majority of real
networks, the exact result in Eq. (1) does not, strictly
speaking, allow us to make any prediction.

APPENDIX B: EIGENVECTOR LOCALIZATION
AND THE INVERSE PARTICIPATION RATIO

The concept of the localization of the principal eigenvector
{fi} translates in determining whether the value of its
normalized components (satisfying >_;f? = 1) is evenly
distributed among all nodes in the network or it attains a
large value on some subset of nodes V and is much smaller in
all the rest. In the first case f; ~ N~'/2, Vi and the network is

not localized. In the second case f; ~ N ‘_,l/ * fori €V and
fi~0, for i¢V, were Ny is the size of the localization
subset V.

The presence of localization in the PEV can be easily as-
sessed in ensembles of networks of variable size N by study-
ing the inverse participation ratio (IPR), defined as [30,31]

N

Y4(N) = Z[fi]4,

i=1

(B1)
as a function of N, and fitting its behavior to a power-law
decay of the form [27]

Y4(N) ~ N~ (B2)

If the PEVis delocalized, with f; ~ N~!/2, Vi, the exponent
is equal to 1. Any exponent @ < 1 indicates the presence of
some form of eigenvector localization, taking place in a
subextensive set of nodes, of size N, ~ N%. In the extreme
case of localization on a single node, or a set of nodes with
fixed size, we have a = 0 and Y4(N) ~ const.

APPENDIX C: K-CORE DECOMPOSITION

The K-core decomposition [28] is an iterative procedure
to classify vertices of a network in layers of increasing
density of mutual connections. Starting with the whole
graph, one removes the vertices with only one connection
(degree g = 1). This procedure is then repeated until only
nodes with degree g > 2 are left. The removed nodes
constitute the K =1 shell, and those remaining are the
K = 2 core. At the next step, all vertices with degree g = 2
are removed, thus leaving the K = 3 core. The procedure is
repeated iteratively. The maximum K-core (of index K ;) is
the set of vertices such that one more iteration of the
procedure removes all of them. Notice that all vertices of
the K-core of index K have degree larger than or equal to K.

APPENDIX D: DIFFERENT LOCALIZATIONS
FOR UCM NETWORKS

For UCM networks, the localization of the PEV in
different subgraphs depending on whether y is larger or
smaller than 5/2 can be exposed by plotting the weights
concentrated on the subgraphs as a function of y (see
Fig. 9). In this figure, we have set the weight of the
maximum K-core equal to zero for y =3 since, by
construction, it coincides with the whole network and
trivially contains all the weight for the PEV.

It is clear that for y < 5/2, the weight is concentrated on
the max K-core, while the hub plays no role. Fory > 5/2,
the opposite scenario applies: The hub plus its nearest
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FIG. 9. PEV weight concentrated on various subgraphs for
UCM networks of size N = 107 with different values of y.

neighbors (i.e., the leaves) bear most of the PEV weight,
while the max K-core (or the max K-core minus the hub, in
case the latter belongs to the former) has vanishing weight
concentrated on it. Strong finite-size effects smoothen the
change of behavior for y between 5/2 and 3, but by
changing the system size (not shown), one can extrapolate
that, for asymptotically large systems, the picture is the one
just described.

APPENDIX E: BUILDING LINEAR
PREFERENTIAL ATTACHMENT NETWORKS

Given the mapping of LPA networks with the Price
model [49], LPA networks can be easily constructed with
the following simplified algorithm [5]: Every time step, a
new node is added, with m new edges. Each one of them is
connected to an old node, chosen uniformly at random,
with probability ¢ = a/(a + m); otherwise, with the com-
plementary probability 1 — ¢ = m/(a + m), the edge is
connected to a node chosen with probability proportional to
its in-degree ¢,(t) —m. In our simulations, we consider
LPA networks with minimum degree m = 2 and varying y,
for network sizes ranging from N = 102 up to N = 10%.
Topological and spectral properties of LPA networks are
computed by averaging over 100 different network con-
figurations for each value of y and N.

APPENDIX F: PRINCIPAL EIGENVECTOR
LOCALIZATION IN LINEAR PREFERENTIAL
ATTACHMENT NETWORKS

A direct way to observe PEV localization consists in
plotting the square of the components f? as a function of
the node degree ¢;, as shown in Fig. 10. As we can see from
this figure, for all values of y, the component of the PEV
associated with the largest values of ¢ have a macroscopic
weight, indicating localization of the PEV in the hubs.
This plot presents evidence of a further difference of LPA
networks with respect to random uncorrelated networks. In
this case, and for y < 5/2, it is possible to show that in

0.5 *omy 4 A v
041
® 4=220
0.3+ v oy=240
~ . A y=260
= <« y=280
0.2 > 7 =300
o B 4=320
0.1r ° y =340
N * 4 =23.60
0.0 = W mmm— cax . paelluele oo e v =3.80

10" 1(‘)’7 16'! 1(‘)' 1(‘]”
(IV,
FIG. 10.  Scatter plot of f? as a function of the degree g; in LPA
networks of different degree exponent y. Network size N = 10°.

static networks, the PEV components approach the form
obtained within the annealed network approximation [50],
which is given by [27]

f?“:[NJW‘ (F1)

As we can see in Fig. 10, this linear behavior is not present
in the data from LPA networks, even for small y values.

APPENDIX G: K-CORE STRUCTURE IN
RESHUFFLED LINEAR PREFERENTIAL
ATTACHMENT NETWORKS

The lack of K-core structure of LPA networks arises
from its peculiar growing nature, in which nodes with
minimum degree m are sequentially attached to the net-
work. This property is not robust, however, since a simple
reshuffling procedure can destroy it, inducing a nontrivial
K-core structure. In Fig. 11, we show the average maxi-
mum core index (K,,) as a function of the network size,
computed from LPA networks with different degree expo-
nent, in which edges have been reshuffled according to
the degree-preserving edge-rewiring process described in
Ref. [40]. As we can observe, for y > 3, the reshuffling
process is not able to induce a substantial K-core structure.
This occurs because the reshuffling destroys correlations,
but uncorrelated networks with y > 3 have essentially no

; °
102} ]
° v o =22
—~ . v y=240
= ° . A y=260
X . N <« 4=280
10t ° > =300
v A «
- N < " y=320
<
I < N v =340
h n
i (] u " * 4 =360
7=380
10° 10° 10t 10° 106 107
N
FIG. 11. Average maximum core index (K,,) as a function of

network size for reshuffled LPA networks with different degree
exponent y. Error bars are smaller than symbol sizes.
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FIG. 12. Average maximum core index (K,,) as a function of
network size for reshuffled LPA networks with different degree
exponent y. Error bars are smaller than symbol sizes.

K-core structure [29]. For y < 3, on the other hand, the
K-core structure generated by reshuftling is robust, with an
average maximum core index increasing as a power law
with network size [29].

The maximum K-core resulting from the reshuffling of
LPA networks has an average degree (g) k,, that depends on
the maximum degree g, (see Fig. 12). However, since the
hub has degree much larger than N'/2, the network does not
become uncorrelated even upon randomization, and (g) g,
is always smaller than ,/g,c. Hence, the properties of the
largest eigenpair are always dictated by the hub, as in the
original LPA networks.

APPENDIX H: SUSCEPTIBLE-INFECTED-
SUSCEPTIBLE EPIDEMIC DYNAMICS

The SIS model is the simplest model designed to capture
the properties of diseases that do not confer immunity [51].
In the SIS model, individuals can be in either of two states,
susceptible or infected. Susceptible individuals become
infected through contact with an infected individual at rate
p, while infected individuals heal spontaneously at rate .
As a function of the parameter A = f#/u, the model shows a
nonequilibrium phase transition between an active, infected
phase for 4 > 1, and an inactive, healthy phase for 1 < ...
We are interested in the location of the so-called epidemic
threshold 1. and on its dependence on the topological
properties of the network under consideration [52].

Early theoretical approaches to the SIS dynamics were
based on the so-called heterogeneous mean-field (HMF)
theory [43,53], which neglects both dynamical and topo-
logical correlations by replacing the actual structure of the
network, as given by the adjacency matrix, by an annealed
version in which edges are constantly rewired, while
preserving the degree distribution P(g). Within this
annealed network approximation [54], a threshold for
uncorrelated networks of the form A, = (q)/(g?) is
obtained. An improvement over this approximate theory
is given by quenched mean-field (QMF) theory [7], which,
while still neglecting dynamical correlations, takes into

100 k — N=10° |
— N=10¢
— N=10°]
— N=10°
— N=10" ]
— N=108

H
<
.

Lifespan
S

~
>

10 ¢ —

1072 107!
A

FIG. 13.  Average lifespan vs spreading rate 4. of SIS epidemics
starting from a single infected node (the hub) and reaching the
healthy absorbing state before the coverage reaches the threshold
value ¢ = 0.5. Data are for LPA networks with y = 2.6 and
various system size N.

account the full structure of the adjacency matrix. Within
this approximation, the threshold is given by the inverse of
the largest eigenvalue of the adjacency matrix, 1. = 1/A,,.
Recent and intense activity, based on more sophisticated
approaches [22,55,56], has shown that, on uncorrelated
static networks, this result is essentially asymptotically
correct.

In order to determine A, numerically, we resort to the
lifespan method [56,57], which is not affected by the
drawbacks that make the consideration of susceptibility
unwieldy [55]. Simulations start with only the hub infected.
For each run, one keeps track of the coverage, i.e., the
fraction of different nodes that have been touched at least
once by the infection. In an infinite network, this quantity is
vanishing for 4 < 4., while it tends asymptotically to 1 in
the active region of the phase diagram. In finite networks,
one can set a threshold ¢ (we choose ¢ = 0.5) and consider
all runs that reach a coverage larger than ¢ as endemic.
The average lifespan (T'), restricted only to nonendemic
runs, plays the role of a susceptibility: The position of the
threshold is estimated as the value of A for which (T)
reaches a peak (see Fig. 13).

APPENDIX I: KURAMOTO
SYNCHRONIZATION DYNAMICS

The Kuramoto model [44,46] describes the dynamics of
a collection of weakly coupled, nearly identical oscillators.
If they are placed on the nodes of a network with adjacency
matrix A;;, the equation of motion reads

éi = W; + KZAU Sln(Gj - 91'), (Il)
J
where « is a coupling constant and w; is a quenched random

variable (natural frequency), whose distribution g(w) is
taken here to be uniform between —1 and 1. In the initial
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condition, the phases @; are uniformly random between 0
and 2z. Defining the global order parameter as

, (12)

where / is the imaginary unit, one finds that there is a
critical threshold «,. separating a disordered phase where
r =0 (in the thermodynamic limit) from a synchronized
phase with » > 0. A QMF-like theory for the Kuramoto
model [8] predicts a critical point k. = ky/A,, where
ko = 2/[rg(0)] = 4/x, the last equality holding because of
the uniform distribution of natural frequencies g(w).

The value of the critical threshold is numerically deter-
mined in finite networks by computing the susceptibility,
xx(x) = N((r?) = (r)?), which shows a peak for k = ..
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