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Abstract

Depth map data is used to supplement the color data in multi-view sequences.

As depth maps present distinct characteristics than natural color images, new

coding techniques are required to represent their smooth regions and sharp

edges. In this thesis, segmentation-based coding techniques are proposed to

encode depth maps by exploiting the redundancy between color and depth in-

formation. Methods developed combine partitions obtained from color and

depth images to find efficient representations. The color image is assumed to

be available before the depth map coding process, therefore a color partition

can be obtained at the decoder without introducing coding cost.

Two hierarchical image segmentation algorithms are proposed to generate color

and depth partitions for coding applications. The color segmentation obtains

a super-pixel representation using color information, spatial distribution and

shape complexity. The depth segmentation uses a 3D planar model for each

region to extract the structure of the scene. Color and depth partitions are

combined in depth map coding methods to find the final coding partition.

Different methods for texture representation have been explored in this thesis.

Initial approaches used 2D coding methods, while a 3D representation have been

proposed to represent depth maps from multiple views with a unique segmen-

tation. This 3D representation is used to segment depth maps in single-view

and multi-view configurations. Final coding partitions are obtained with a rate-

distortion optimization over a hierarchy of regions. Segmentation-based coding

techniques proposed obtain competitive results with HEVC coding standards.
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Chapter 1

Introduction

The extension of current visual displays and systems to the third dimension

aims to convey depth perception to the viewer. Advances in computer graphics,

computer vision, 3D display devices and interactive multimedia systems have

promoted the development of new means of storing and transmitting video

information. Many applications exploiting 3D video such as 3D video games,

3D films (IMAX cinemas), medical imaging and virtual or augmented reality

have arisen over the last years.

3D video applications such as 3D TeleVision (3DTV) [Dod05] and Free View-

point Video (FVV) [SMM+06] are supported by multi-view video. The possi-

bilities of both technologies are complementary and can be combined within the

same system. 3DTV offers a depth impression of the observed scenery from a

single static position in the space. On the other hand, FVV allows the user an

interactive selection of the viewpoint and direction within the available views

covered by the acquisition cameras. New virtual views can be synthesized in

intermediate position between the encoded viewpoints from a smaller set of

multi-view inputs.

Multi-view video coding systems can be classified among those that only

use color data and the ones that also make use of depth data for each

viewpoint. Among the ones using only color data -referred as Multi-View

Video (MVV)- stand out the respective extensions of Advanced Video Coding

1



2 Introduction

(AVC/H.264) [OBL+04] and High Efficiency Video Coding (HEVC) [SOHW12]

to multi-view environments (Multi-View video Coding (MVC) [Mea07] and

Multi-View extension of HEVC (MV-HEVC) [TCM+16]respectively). Both ex-

tensions use inter view prediction to exploit the multi-view redundancy of the

N cameras employed and are back-compatible with the single-view standards.

(a) MVV sequence: Color frame for all cameras at the same time instant

(b) Corresponding depth information for each camera at the same time instant

Figure 1.1: MVD ballet sequence composed of 8 camera views.

The Moving Picture Experts Group (MPEG) specified a standard for efficient

compression and transmission of color and depth data referred as Multi-View

video plus Depth (MVD). In this configuration, color information and depth

maps from several closely situated viewpoints are transmitted. A depth map is

an image that contains information relating to the distance of objects from a

viewpoint. Depth maps are stored as gray-scale images where the value at each

pixel represents the distance (or depth) between the camera and the object.

The depth value of each pixel ranges between the maximum and the minimum
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a) Color image b) Depth Image

c) Color Partition d) Depth Partition

Figure 1.2: Color-based partition and depth-based partition for an image of the
sequence Ballet.

distance to the camera position. Depth map values are quantized with 8 bits,

with the points closer to the camera having values near 255 and the furthest

near 0. Depth map information can be back-projected to the 3D world enabling

encoders to establish relations between views. Figure 1.1 shows one frame for

each view and the associated depth map of the Multi-View video plus Depth

(MVD) sequence Ballet [ZKU+04]. The addition of depth maps allows the

rendering of virtual views in-between of the encoded camera positions with

Depth Image Based Rendering (DIBR) [Feh04].

Depth maps are not intended to be viewed by the user but to render new images.

Thus, the aim when coding depth maps is to maximize the perceived visual

quality of the rendered virtual color views instead of the visual characteristics

of decoded depth maps themselves. Conventional image or video compression

techniques have been designed for high visual quality, and are not well adapted

to depth coding. The encoding of depth maps has to exploit the characteristics
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of depth maps and reduce the transmission cost when a large number of captured

views are employed [Mea07].

Depth maps are characterized by the presence of large homogeneous areas sep-

arated by sharp edges. Errors close to sharp edges lead to severe rendering

artifacts, while errors on areas without important transition may have negligi-

ble influence on the final quality. Block-based transformations such the ones

found in natural video coders are unable to represent depth edges efficiently.

High frequency components are needed to represent depth edges in block-based

transforms.

The particular characteristics of depth maps suggest the possibility of using

a segmentation-based technique to encode depth maps. Segmentation-Based

coding [KIK85] consists in describing the image using arbitrarily shaped con-

tours and coding the textured regions in-between them. An image segmentation

that separates the main depth transitions in-between different regions will con-

tain regions without sharp transitions. The depth texture information of these

regions will have smooth changes that can be represented compactly.

The main drawback of region-based coding representations consists in having

to code the position of contours in addition of the texture information. A

partition built from the color image can be used to reduce the cost of coding

depth boundaries. Color and their associated depth image present structural

similarities since they observe the scene from the same location. In Figure 1.2

a pair of partitions for the color image and the depth map are shown.

In this thesis, different options have been considered for combining color and

depth partitions efficiently. All the proposed methods use a region-based coding

representation of depth maps. The 3D geometry of the scene is exploited by

generating a 3D representation from the segmentation of several depth maps,

obtaining a unique representation of the scene in the 3D domain. Figure 1.3

shows a 3D representation generated from an input view.
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a) b)

Figure 1.3: a) Depth maps can be back-projected to the 3D world using the
camera parameters. In the figure, each point is represented with the corre-
sponding color of the color image. b) A 2D image partition is used to build a
3D model of the scene.

1.1 Context and Contributions

The purpose of this thesis is to build an encoding system for multi-view depth

maps. To do so, a 3D representation of the scene is proposed to encode the

information of the multiple views. The different algorithms developed use a

region-based coding approach, where a 2D partition obtained on the depth maps

signals the contours between regions and the texture of the region is modeled

and encoded. To reduce the cost of encoding the depth boundaries, a color

image partition is used to predict the location of depth edges.

More concretely, the contributions of this work and their position in this docu-

ment are the following:

• Color image partition (Section 3.1): a new similarity measure using re-

gion centroids for a binary merging algorithm to find super-pixel color

partitions.

• Depth image partition (Section 3.3): depth map data is back-projected

to 3D where regions are represented with 3D planar models. A similarity

measure for a binary merging algorithm is defined in the 3D domain to

obtain planar representations of the scene.

• 2D Single-view coding (Chapter 4): two different single-view coding meth-
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ods have been proposed using 2D models to represent the texture infor-

mation.

• 3D Single-view coding (Chapter 5): color and depth map partitions are

merged in a single-view coding technique adding progressively the main

depth edges and representing the corresponding regions using 3D models.

• Rate-distortion Hierarchy Optimization (Section 6.1): the rate-distortion

problem is solved as a Quadratic Semi-Assignment Problem (QSAP)

which defines the relation between regions in terms of their common

contour.

• Scene Representation (Appendix E and Section 6.2): the optimization

finds a unique partition across views using using only depth map par-

titions (Appendix E) and color and depth map partitions (Section 6.2),

generating a consistent 3D scene representation in each case.

• Multi-view coding (Section 6.2): the rate-distortion optimization com-

bines color and depth boundaries to find the optimal partition that repre-

sents the depth information of the multiple views. The obtained represen-

tation is used to efficiently encode the depth information of the multiple

views.

The work done in this thesis has been published in the following conference

articles:

• a.1: Depth map coding based on a optimal hierarchical region represen-

tation [MRHM12], 3DTV Conference, Zurich 2012.

• a.2: Fusion of colour and depth partitions for depth map coding [MMRH13],

Digital Signal Processing, Santorini 2013.

• a.3: Region-based depth map coding using a 3D scene representa-

tion [MMRH15] ICASSP, Brisbane 2015.
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• a.4: 3D Scene representation via rate-distortion optimization [SUBMIT-

TED], ICIP 2017.

And in the following journal articles:

• j.1: Depth map compression via 3D region-based representation [MMRH16],

Multimedia Tools and Applications 2016.

• j.2: 3D hierarchical optimization for Multi-view depth map coding [SUB-

MITTED], Multimedia Tools and Applications.

Segmentation Objective Approach Texture

a.1 Color 2D SV coding Optimization 2D
a.2 Color + depth 2D SV coding Fusion 2D
a.3 Color + depth 3D SV coding Fusion selected 3D
j.1 Color + depth 3D SV coding Fusion selected 3D
a.4 Depth 3D MV Representation Optimization 3D
j.2 Color + depth 3D MV coding Optimization 3D

Table 1.1: Overview of the articles developed during this thesis. SV stands for
single-view and MV for multi-view.

An overview of the different articles are summarized in table 1.1. In a.1, a

single color segmentation is used to approximate the depth map contours. As

the color segmentation could not find all the depth edges, in a.2 a fusion of color

and depth partitions is proposed. In these first articles, a 2D region model is

used to encode the depth maps.

To be able to exploit the 3D characteristics of the multi-view sequences, in a.3

and j.1, a 3D region model is proposed to encode the texture of the depth maps

in a single-view approach, having in mind a future multi-view extension. This

extension is explored in a.4 and j.2 articles.

This thesis is organized as follows: In Chapter 2 a review of the state of the art

relevant for this work is provided. Chapter 3 tackles the problem of generating

segmentations adapted to depth map coding, both for color images and depth

map images. Chapter 4 presents the two methods of 2D coding (a.1 and a.2). In
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Chapter 5, 3D models for single view region-based coding of depth map images

are presented (a.3 and j.1). In Appendix E the initial exploration of 3D multi-

view is explored (a.4). The multi-view depth map coding based on 3D models is

presented in Chapter 6 (j.2). Finally conclusions and future work are presented

in Chapter 7.



Chapter 2

State of the art

In this Chapter, a review of the state of the art relevant for this Thesis is

provided. An introduction of video coding is provided in Section 2.1. The

block-based video coding approach used in coding standards is summarized in

Chapter 2.2. A definition of segmentation-based coding techniques as the ones

that will be used in this work are presented in Section 2.3. Finally depth map

coding techniques and 3D scene representation methods in the literature are

studied in Sections 2.4 and 2.5.

2.1 Video Coding

The communication problem of transmitting video over a channel can be stated

as sending the source data with the highest fidelity within the available bit

rate, or alternatively, sending the source data using the lowest bit rate possible

while maintaining a certain reproduction fidelity. In both options, a trade-off

is made between bit rate and fidelity. The behavior of a video codec (a video

system including a coder and a decoder) is determined by the performance of

the rate-distortion trade-off.

Hence, video codecs are mainly characterized by:

• Throughput of the channel: average bit rate over a given channel, in-

9
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fluenced by the transmission channel bit rate and the error-correction

overheads.

• Distortion of the decoded video: distortion is introduced by the video

codec and also by errors in the channel.

In practical applications other factors have to be taken into account:

• System delay: can be restricted by factors as the encoding or decoding

processing delay, buffering of needed data or the speed at which data are

conveyed through the transmission channel.

• Complexity: have to be evaluated in different aspects including the com-

putational requirements, memory capacity and memory access require-

ment.

Thus, the practical source coding design problem is posed as follows: given a

maximum allowed delay and a maximum allowed complexity, achieve an op-

timal trade-off between bit rate and distortion for the range of environments

envisioned in the scope of the applications.

2.1.1 Source Coding Strategies

Techniques for digital compression can be classified as follows:

• Prediction: A process where a set of prediction values is used to predict the

values of the input samples. In this procedure only the differences between

the prediction values and the input samples have to be represented, which

are called the residual values.

• Transformation: A process consisting of forming a new set of samples

from a combination of input samples. A transformation usually avoids

representing similar values repeatedly by using frequency analysis. A

typical benefit of transformation is that the most relevant aspects of the
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set of input samples are typically concentrated into a small number of

variables.

• Quantization: A process by which the precision used for the representation

of a sample value is reduced in order to decrease the amount of data needed

to encode the representation. The precision can be controlled by a step

size that specifies the smallest representable value increment. Among

the techniques listed here for video compression, quantization is typically

the only one that is inherently non-invertible: quantization produces a

mapping that involves some loss of fidelity.

• Entropy coding: A process by which discrete-valued source symbols are

represented in a manner that takes advantage of the relative probabilities

of the various possible values of each source symbol. Types of entropy

coding are the the variable-length code (VLC), which establish a code ta-

ble that associate short codes to values that are highly likely to occur and

longer to represent less likely symbol values, and the arithmetic coding,

which encodes the entire message into a single number.

Video coding techniques can be classified depending on the prediction tech-

niques used. One way of compressing video is by compressing each picture

separately. This type of coding is referred as intra-picture or Intra coding, since

the picture is coded without any reference to other images of the sequence. How-

ever, higher compression figures are obtained by using the redundancy among

consecutive images in a sequence. Video can be represented more efficiently

by sending only the changes in the video scene rather than coding all regions

repeatedly. This coding is referred as inter-picture or Inter coding. This ability

to use temporal redundancy to improve coding efficiency is what distinguishes

video compression from the Intra compression exemplified by still images stan-

dards such as JPEG.
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2.2 Block-Based Coding

Nowadays, the two main video coding standards are the commonly used

AVC/H.264 [WSBL03] and the High Efficiency Video Coding (HEVC) /

h.265 [SOHW12]. In this Section a review of block-based coding characteristics

is provided before centering to HEVC. The main characteristics of block-based

standards are listed below:

• Hybrid codec: inter/intra-picture prediction and 2D transform coding.

Regions can be predicted using inter-picture prediction, and a spatial fre-

quency transform is applied to the Intra-coded regions. The encoding

process for inter-picture prediction consists of choosing motion data com-

prising the selected reference picture and motion vector to be applied for

predicting the samples of each block. The residual signal of the intra or

inter prediction, which is the difference between the original block and

its prediction, is transformed by a linear spatial transform. The resulting

coefficients are then scaled, quantized, entropy coded, and transmitted

together with the prediction information.

• Macroblocks and Slices: Each picture is partitioned into slices which in

turn are subdivided into macroblocks. Each slice can be parsed indepen-

dently of the other slices in the picture. There are three fundamental slice

types depending on the freedom for the prediction signal:

– I slices: each macroblock uses intrapicture coding using spatial pre-

diction from neighbouring regions.

– P slices: support intrapicture and interpicture predictive coding.

– B slices: support intrapicture coding, interpicture predictive coding,

and also interpicture bipredictive coding.

• Quantization: A Quantization Parameter is used for determining the

quantization of transform coefficients.

• Adaptive Deblocking Filter: Block edges are typically predicted with less

accuracy than interior samples, and block transforms also produce block
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edge discontinuities. The filter reduces blockiness while retaining the

sharpness of true edges in the scene.

• Profiles and Levels: Profiles and levels specify conformance points to fa-

cilitate interoperability for various applications.

2.2.0.1 High Efficiency Video Coding (H.265)

HEVC [SOHW12] is a video compression standard developed jointly by Video

Coding Experts Group and MPEG through their Joint Collaborative Team on

Video Coding. The HEVC project was launched to achieve major savings for

equivalent visual quality relative to the bit rate needed by the widely used AVC

standard. HEVC has been designed to address essentially all existing applica-

tions of previous standards and to particularly focus on two key issues: increased

video resolution and the increased use of parallel processing architectures. The

main features of the HEVC are:

• The video coding layer of HEVC employs the same hybrid approach used

in AVC/H.264 (inter/intra-picture prediction and 2D transform coding).

• Coding Tree Units and Coding Units: The core of the coding layer in

previous standards was the macroblock, whereas the analogous structure

in HEVC is the coding tree unit, which has a size selected by the encoder.

• Prediction Blocks: The decision whether to code a picture area using

inter-picture or intra-picture prediction is made at the coding unit level.

Luma and chroma coding blocks can then be further split in size and pre-

dicted from luma and chroma prediction blocks. HEVC supports variable

Prediction Blocks sizes from 64× 64 down to 4× 4 samples.

• Transform Blocks: The prediction residual is coded using block trans-

forms. Integer basis functions similar to those of a Discrete Cosine Trans-

form (DCT) are defined for the square transform block sizes.

• Motion compensation: Quarter-sample precision is used for the motion

vectors, filters are used for interpolation of fractional-sample positions.
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Multiple reference pictures are used. For each prediction block, either

uni-predictive or bi-predictive coding can be done.

• Entropy coding: Context-Adaptive Binary Arithmetic Coding (CABAC)

is used for entropy coding. It is a lossless compression technique providing

much better compression than other entropy encoding algorithms for video

encoding. CABAC encodes binary symbols with an arithmetic coding

approach using local context.

2.2.1 Multi-view Video Coding

In addiction at their work in video coding, the Joint Video Team of VCEG and

MPEG has also promoted the standardization of video coding with multiple

views. An extension of AVC/H.264 that is referred to as Multi-View video

Coding (MVC) was added in July 2008 and an additional stereo high profile was

completed one year later [Mea07]. The standard enables inter-view prediction

to improve compression capability, as well as supporting ordinary temporal and

spatial prediction. For Multi-View Video (MVV) with up to eight views, an

average of 20% reduction in bit rate was reported, relative to the total simulcast

bit rate [MMW11].

MV-HEVC

HEVC standard has been extended to support efficient representation of multi-

view video and depth-based 3D video formats [TCM+16]. The multi-view ex-

tension, Multi-View extension of HEVC (MV-HEVC), allows efficient coding

of multiple camera views and associated auxiliary pictures, and can be im-

plemented by reusing single-layer decoders without changing the block-level

processing modules since block-level syntax and decoding processes remain un-

changed. Bit rate savings compared with HEVC simulcast are achieved by

enabling the use of inter-view references in motion-compensated prediction.

MV-HEVC follows the same design principle as MVC. The design enables a

single texture base view to be extracted from MV-HEVC bitstreams, which is
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decodable by a HEVC decoder. MV-HEVC comprises only high-level syntax

additions and can thus be implemented using existing single-layer decoding

cores. Higher compression (compared with simulcast) is achieved by exploiting

redundancy between different camera views of the same scene.

A key benefit of the MV-HEVC architecture is that it does not change the syn-

tax or decoding process required for HEVC single-layer coding below the slice

level. This allows the reuse of existing implementations without major changes

for building MV-HEVC decoders. Motion vectors in MV-HEVC may represent

temporal or disparity information, depending whether they are computed be-

tween frames in different temporal instants for the same view or between views

in the same temporal instant. Block-level HEVC motion compensation modules

can be used which operate the same way regardless of whether prediction have

been used. The average gain for MV-HEVC compared with HEVC coding are

over 30% [TCM+16].

3D-HEVC

The more advanced 3D video extension, 3D extension of HEVC (3D-HEVC)

uses the Multi-View video plus Depth (MVD) format. Additional bit rate re-

duction compared with MV-HEVC is achieved by exploiting statistical depen-

dencies between video texture and depth and specifically adapt to the properties

of depth maps. The coding scheme represents an extension of HEVC, similar to

the MVC extension of AVC/H.264. In addition to the disparity-compensated

prediction advanced techniques, the representation of depth blocks, and the

encoder control for depth signals have been integrated.

In 3D-HEVC all video pictures and depth maps that represent the video scene

at a given time instant are encoded in an access unit similarly to MVC. Inside

an access unit, the video picture of the so-called independent view is transmit-

ted first directly followed by the associated depth map. Thereafter, the video

pictures and depth maps of other views are transmitted.

Each independent view is coded using a unmodified HEVC coder. The corre-
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sponding sub-bitstream can be extracted from the 3D bitstream to be displayed

on a conventional 2D screen. The other components are coded using modified

HEVC coders, which are extended by including additional coding tools and

inter-component prediction techniques that employ previously coded data in-

side the same access unit. The principal characteristics are listed below:

• Coding of Dependent Views: the disparity-compensated prediction has

been added as alternative to motion-compensated prediction in a similar

way as for MVC.

• Coding of depth maps: The HEVC design has been optimized for natural

video. To optimize the coding of depth maps, two families of modes have

been added to represent the sharp edges and large regions with nearly

constant values characteristics of depth maps:

– Depth Modeling Modes: New intra coding modes have been added to

enable a better representation of depth edges. Additional modes par-

tition a depth block into two non-rectangular regions and represent

each of these regions by a constant value. Two types of partitioning

are used, namely Wedgelets, for segmentations using a straight line,

and Contours, for arbitrary segmentations. The constant values for

the two regions are predicted based on the reconstructed samples

in neighboring blocks and the remaining difference is quantized and

coded in the bitstream.

– Motion Parameter Inheritance: Since video pictures and depth maps

represent different aspects of the same video scene, the motion char-

acteristics should be similar. A inter coding mode for depth maps is

added in which the partitioning of a block into sub-blocks, as well as

the associated motion parameters, are inferred from the co-located

block in the associated video picture.

• View Synthesis Optimization: Coding artifacts in depth data are only

indirectly perceivable in the synthesized video data. In the encoder control

for depth maps, the distortion is not directly measured in the depth map
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domain, but instead the resulting distortion in one or more synthesized

views is analyzed.

• Coding Performance: In comparison to simulcasting the different signals

using HEVC, 3D-HEVC approach provides about 40% and 50% bit rate

savings for configurations with 2 and 3 views, respectively [TCM+16].

2.3 Segmentation-Based Coding

As presented in Section 2.1, video compression standards divide the images in

rectangular blocks. Each block is coded with a hybrid prediction-transform

approach. An alternative approach consist in describing the image using ar-

bitrarily shaped contours and coding the textured regions in-between those

contours. These methods are called Segmentation-based coding methods since

a complete segmentation of the image is needed in order to code the image.

In segmentation-based coding methods the shape and size of each segment are

arbitrary and ideally are adapted to the image content.

The principal drawback of segmentation-based coding methods is the need of

coding the contour information in addition to the texture information. Errors

in contours are extremely noticeable to the human visual system, leading to the

use of lossless or near-lossless coding techniques for contour coding. The joint

coding of texture and contour creates a trade-off in the bit rate assigned to each

term. A partition with many regions is desirable since the texture inside of each

region will be more homogeneous and therefore could be coded using less bits,

but the coding cost of the shape will increase. On the other hand, reducing the

numbers of contours will create regions with more texture variations that will

need more coefficients to provide the desired quality.

The usual process to perform the image coding consist in encoding first the

contours and, once the final contours are obtained, encoding the texture to

avoid errors if a lossy contour coding technique is used.
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2.3.1 Contour Coding

In the literature it is possible to find a wide range of contour coding tech-

niques [Mor04]. Among the lossless techniques, can be pointed out Chain

Code [Fre61], Morphological Skeleton [MS86], transition points [Pin98] and

Quadtree decomposition [KM95]. Multigrid Chain Code (MGCC) [MG96] is

an example of a near-lossless technique (it is an extension of Chain Code).

Some examples of lossy techniques are Fourier descriptors [ZR72], and polygo-

nal [Dun86] and Spline [Sch07] approximations.

Other option to signal contours include binary coders such as JBIG2 [HKM+98]

or PAQ [Mah05]. JBIG2 [HKM+98] is an image compression standard de-

signed for bi-level images suitable for both lossless and lossy compression.

PAQ [Mah05] are a series of open source data compression techniques which

use context mixing: a large number of models estimate the probability that the

next bit of data will be a 0 or 1. These predictions are combined and arithmetic

coded.

Figure 2.1: Chain code contour coding: relationship between partition and
contour grid sites.

Chain Code techniques [Fre61] allow lossless coding of image partitions. Regions

are represented by their boundaries and the coding process consists on tracking

and encoding the boundaries. The process used to encode a partition is:

• Define an appropriate boundary representation. This usually leads to
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constructing a contour image.

• Using the fact that two consecutive boundary points in a discrete grid are

neighbours, encode the movements from one contour point to another,

starting from an initial point, until the complete contour is tracked.

The contour of a given partition can be represented using an hexagonal con-

tour grid. In this case, a one to one relationship between partitions and their

boundary representation can be achieved. In this type of representation, each

pair of neighbor pixels in the partition is separated by a contour grid site. This

contour grid site is labeled as active if the associated pair of pixels have different

labels, otherwise it is labeled as inactive.

This concept is illustrated in the example of Figure 2.1, where circular and line

segment elements represent sites from the partition and contour grids, respec-

tively. Encoding of the contours is done by specifying the set of movements

necessary to track the complete set of active contour grid sites. Shape and po-

sition information are jointly coded by introducing the location information in

the chain code itself.

2.3.2 Texture Coding

The regions resulting after a segmentation process are statistically quasi-sta-

tionary and should therefore enable higher data compression ratios. However,

traditional block-based texture coding techniques can not exploit efficiently this

quasi-stationarity because they perform poorly on border blocks.

Different texture coding methods can be used in this stage, provided they are

region oriented. The simplest texture coding method consists of the coding of

the mean value for every region, thus leading to a very cheap texture coding

cost. Several more complex methods for the efficient coding of texture informa-

tion have been proposed so far. The polynomial method represents an image

segment using polynomial functions of different degrees [SC96, BMC88]. Gilge

et al. [GEM89] proposed a more accurate method in which a generalized or-
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thogonal transformation can be constructed with respect to the shape of the

image segment at the cost of calculating the orthogonalizing basis images. Gen-

eralized orthogonal transforms rely on an approximation of the texture within

each region by an orthogonal polynomial function. Only the coefficients of this

function are sent to the receiver.

Low complexity Shape Adaptive Discrete Cosine Transform (SA-DCT) algo-

rithms have been introduced to efficiently transform the image blocks that con-

tain object boundaries [SM95, SBM95]. These algorithms first divide an image

into blocks and then code the boundary blocks using the SA-DCT. Although

boundary blocks are encoded effectively, the problem of blocking effects inside

the image segments remains unsolved. Another approach to encode the image

segments is the region-based wavelet transform [KIAK97]. The advantages of

the wavelet-based scheme are its low computational complexity, ability to code

the details inside the segment, and absence of blocking effects in the recon-

structed images.

2.3.3 Image Segmentation

Segmentation-based coding techniques require a image partition to encode the

image. Image segmentation is one of the most basic and studied problems in

computer vision. It is the process of partitioning a digital image into multiple

segments. The goal of segmentation is to simplify the representation of an

image into something that is more meaningful and easier to analyze. Here a

brief review of segmentation techniques is provided.

2.3.3.1 Superpixels Methods

Superpixels are popular in computer vision applications for their aim to over-

segment the image by grouping pixels that belong to the same object. Superpix-

els provide a convenient primitive from which to compute local image features.

They capture redundancy in the image and greatly reduce the complexity of

subsequent image processing tasks. Superpixels have proved increasingly use-

ful for a variety of applications such as depth estimation, image segmentation,
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Figure 2.2: Superpixel segmentation with different number of regions ob-
tained with Simple Linear Iterative Clustering (SLICS). Images obtained
from [ASS+12].

skeletonization, body model estimation, or object localization. Figure 2.2 shows

an example of superpixel segmentation.

Superpixel representations have the following desired properties:

• Computationally efficient: reduces the complexity of images from hun-

dreds of thousands of pixels to only a few hundred superpixels.

• Representationally efficient: pairwise constraints between pixels, can

model much longer-range interactions between superpixels.

• Perceptually meaningful: each superpixel is a perceptually consistent unit.

All pixels are most likely uniform in color and texture.

The algorithm Simple Linear Iterative Clustering (SLICS) [ASS+12] performs

a local clustering of pixels in the 5-D space defined by the L, a, b values of the

CIELAB color space and the x, y pixel coordinates. SLICS start from a regular

grid of centers or segments, and grow the superpixels by clustering pixels around

the centers. At each iteration, the centers are updated, and the superpixels are

grown again. A distance measure enforces compactness and regularity in the

superpixel shapes.
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Superpixels Extracted via Energy-Driven Sampling (SEEDS) [BBR+13] intro-

duce an approach based on a hill-climbing optimization. Starting from an initial

superpixel partitioning, it continuously refines the superpixels by modifying the

boundaries evaluating the changes with a energy function, based on enforcing

color similarity between the boundaries and the superpixel color histogram. The

procedure to tackle the superpixel problem in SEEDS starts from a complete

superpixel partitioning, which is iteratively refined.

2.3.3.2 Hierarchical Segmentation

Image segmentation methods can be classified according to whether they pro-

vide a single image partition or a hierarchy of regions [PT14]. Flat Segmenta-

tion methods produce a single image partition for each parametrization, they

represent different scales by varying some of these parameters. On the other

hand, hierarchical partitions provide a pyramidal structure that represents re-

gions at all scales. Hierarchical representations contain partitions of the image

at different levels of detail in a single structure.

Hierarchies may be constructed in Top-down or Bottom-up algorithms. In top-

down algorithms prior knowledge about objects such as its possible shape, color,

or texture are used to guide the segmentation. On the other hand, bottom-up

algorithms are constructed in an iterative process, as illustrated in Figure 2.3.

On the bottom extreme of the diagram, the algorithm starts by a partition at

the maximum level of detail (pixels, superpixels, etc.), representing each region

as a node. Then, it iteratively merges those sets of regions that are more similar

according to a given criterion.

Some of the most successful hierarchical segmentation methods in the litera-

ture include Ultrametric Contour Map (UCM) [AMFM11] or Binary Partition

Tree (BPT) [SG00]. In Ultrametric Contour Map (UCM), a contour detec-

tor combines multiple local clues into a globalization framework to obtain the

probability of contour for each boundary point. UCM algorithm transforms

the contour map into a hierarchical representation. Partitions at different level

of detail are extracted from the hierarchy according to the contour probability
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Figure 2.3: Hierarchical representation of an image highlighting object nodes.
Figure obtained from [VMS08].

among regions. Binary Partition Tree (BPT) algorithm creates a hierarchy of

regions by a merging algorithm that can make use of any similarity measure.

More details about the BPT method are given in Section 3.

2.4 Depth Map Coding

Depth data present a set of characteristics that diverge from color images. Typ-

ically, they are composed of large smooth regions separated by sharp depth

transitions. Classical video compression techniques for color images have been

designed to achieve high visual quality on the encoded signal. For this pur-

pose, the image is divided in blocks and each block is coded using a transform

and a quantization step [OBL+04]. However, the direct application of these

techniques on depth maps leads to coding artifacts in the edges due to quanti-
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zation [MMS+08].

Many techniques aimed at preserving the depth map edges while reducing the

cost of coding the smooth regions have been presented. Edge-adaptive wavelets

have been applied for depth map coding by using shape-adaptive lifting [MD08]

or by switching between long filters in homogeneous areas and short filters over

the edges [DTPP08]. Graph-based wavelets have been proposed to preserve

edge information in depth maps [SSO09]. All these approaches try to avoid

applying transform coding across the edges.

Other family of approaches explicitly encode the position of the most signif-

icant depth edges (see for e.g. [Jag11]). The main depth contours are sig-

naled and the in-between texture is encoded with piecewise-linear functions.

In [CKO+11], two different modes are proposed to signal the depth edges de-

pending of their complexity over one unified framework. Then, the simplest

transform is chosen for each block. Instead of explicitly representing the depth

maps boundaries, [SMAP14] proposes encoding the residual prediction errors

with quantization at pixel domain rather than in the transform domain. The

coding of prediction errors in the spatial domain is also used in [MMMW15].

The fact that color images and depth maps represent the scene from the same

viewpoint leads to a high structural similarity between both images. The edges

in depth are often located in the same location of color discontinuities. In order

to avoid signaling the explicit location of depth edges, this similarity between

depth maps and the corresponding texture image can be used. This strategy

is used in [LLZ+15], where skip-coding mode and motion vectors in the coded

texture are used in the depth map. The similarity between color information

and depth maps to avoid encoding the location of depth map edges is also used

in [DYQZ12]. A joint color and depth coding for multi-view video is proposed

in [GCM+16]. Making use of DIBR, the color and depth information is projected

obtaining a inter-view prediction, missing pixels are in-painted using minimum

explicitly encoding.

A color image segmentation is proposed in [MZZF11] to predict the shape of the
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different surfaces in the depth map. Then, each region is approximated either

by a parametrized plane or by AVC/H.264 Intra coder. An approximation of

a depth partition using the color image also is used in [RHMA+12], where the

depth texture is encoded with orthogonal basis.

The reduction of the redundancy present in multi-view image sets have been

studied in several works. This inter-view redundancy can be removed by ex-

tracting the geometrical structure of the scene. In [MOF15], a geometrical rep-

resentation is introduced to describe the multi-view information with a graph.

Starting from an initial view, inter-view redundancy is avoided by adding new

graph nodes only if new information appears in the subsequent views. Similarly,

a novel 3D video coding technique based on the creation of a panorama view

is detailed in [FLG15]. This view represents most of the visual information ac-

quired from multiple views using a single virtual view characterized by a larger

field of view. Moreover, in [SLJ+14], the inter-view redundancy is removed by

an analysis performed over the occluded areas. In the second view, only new

areas which were occluded in the first view are coded.

Since depth maps are not directly displayed but used to render new images,

the usual rate-distortion criterion over the depth map may not give a proper

measure of the quality of the representation. Different distortion measures

are studied to better relate the errors in depth maps with their effect on the

synthesized color images. To this end, it is preferable to optimize the rate-

distortion measure over the synthesized views rather than over the depth map

directly [KOLT15]. The main advantage of modeling the coding error on the

synthesized view instead of calculating it on the depth map is that the impact of

the coding errors can be determined in the generated virtual view. Moreover,

in [TSMW12, ZYL+16], new distortion metrics are proposed to measure the

influence of depth errors in the synthesized virtual view.

Planar models have been also proposed for depth representation on 3DTV appli-

cations. In [OA14], a markov random field model that mimics a rate-distortion

trade-off is used in a stereo configuration to obtain a co-segmentation with pla-

nar approximations. A single reference MVD format is also proposed to fuse the
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information of the stereo views in a single reference view. Two different com-

pression techniques are explored, the first one follows the two-view structure

while the second fuses the data in a single-reference MVD format.

2.5 3D Representation

RGB-D data provides a dense representation of the scene from a single-view.

However, in multi-view sequences, depth data associated with each view heav-

ily augments the amount of data needed to store the 3D information. In this

context, extracting a 3D model of a scene from multiple depth maps removes

redundant information of the views while obtaining a unique 3D representa-

tion of the scene. This representation can be further used in tasks as ac-

tion detection [LZ15], scene recognition [GAM13], scene labeling [WLC+15]

or robotics [KATS11, KS14].

The use of 3D planar models have been used to recover the structure of the

scene from panoramic sequences [MK09] or from a multi-camera environ-

ment [YVEM15]. With the raise in popularity of 3D sensors, 3D planar models

have been used to segment images while reducing the noisy nature of the ob-

tained depth maps. In [SMLN11] multiple planes are detected and tracked

in Time of Flight depth images. In [LKF16] a layered scene decomposition

extracts the structure of the scene handling the occlusions using priors. Each

pixel in the image can be associated to multiple labels which represent the oc-

clusion of background regions, each region is represented whether for a planar

or a b-spline model.

Using MVD data, in [BP14] the 3D point cloud from multiple RGB-D cam-

eras is back-projected to the 3D world and used to generate a set of 3D planar

patches consistent among the views. These patches are obtained with a Markov

random fields using a voxelization of the scene and several 3D planar candi-

dates. More recently, in [VDV16] the same problem is tackled in a wide-baseline

stereo configuration. Each image is segmented independently and a fitting pro-

cess assigns a 3D plane to each region. Planes are used as candidates in an



2.5 3D Representation 27

energy-minimization problem, which optimizes the error of the model and the

smoothness over neighboring regions. 3D planar models have shown also to be

useful to extract 3D planes from stereo configurations [SSS09] or to co-segment

multiple view objects [KSS12].

Segmenting point clouds coming from RGB-D sensors has been tackled as a part

of semantic labeling of indoor scenes and scene understanding. In [SHKF12] a

hierarchical segmentation is proposed using depth clues to infer the relations

between objects and using priors to classify the different objects. In [RBF12]

an initial superpixel segmentation is used to compute kernel descriptors such as

gradient, color and surface normal to build a hierarchy that is used to assign

the labels to each node using markov random field. Gupta et al. [GAM13]

generalize the UCM hierarchical segmentation to incorporate depth information

for semantic segmentation. Lately, in [WLC+15] an unsupervised framework

where joint feature learning and encoding is proposed for RGB-D scene labeling.





Chapter 3

Proposed Segmentation

Techniques

In this thesis, two criteria for obtaining a hierarchical segmentation of images

have been developed, one for color images and the other for depth maps. Both

hierarchical segmentations obtain regions adapted for coding purposes. These

methods use the Binary Partition Tree (BPT) algorithm presented in 2.3.3.2.

First, the BPT algorithm is reviewed. Then, the two techniques are presented

and evaluated in terms of segmentation accuracy.

BPTs are hierarchical region-based representations of images [SG00]. The rep-

resentation of a hierarchy can be depicted with nodes as shown in Figure 3.1.

Each node of the hierarchy represents a region in the image, and the parent node

of a set of regions represents their merging. In all stages it is assumed that this

hierarchy is binary (regions are merged by pairs). Commonly, such hierarchies

are created using a greedy region merging algorithm that, starting from an ini-

tial leave partition LP , iteratively merges the most similar pair of neighboring

regions according to a region similarity criterion (referred as Ocriterion in the

following).

The algorithm works on a Region Adjacency Graph, that is, a set of nodes

representing regions and a set of links defining the connectivity between regions.

29
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Figure 3.1: Hierarchical representation of an image. From left to right, the
two most-similar neighboring regions are merged at each step. The hierarchical
representation is depicted as a tree, where the region formed by merging two
segments is represented as the parent of the respective nodes.

A node of the graph can represent either a region, a flat zone or even a single

pixel. A merging algorithm on this graph is a technique that removes some of

the links and merges the corresponding nodes. The steps in each merging step

are the following:

• compute a similarity measure for each pair of neighbor regions.

• select the most similar pair of regions and merge them into a new region.

• update the neighborhood and the similarity measures. The algorithm

iterates until the desired number of regions is obtained.

The merging process ends when the whole image is represented by a single

region, which is the root of the tree. The set of mergings that creates the

tree, from the leaves to the root, is denoted as merging sequence. In a binary

hierarchy, a merging sequence contains N partitions, where N is the number

of leaves (regions in LP ). This is the set of partitions that is usually analyzed

when working with hierarchies. Still, once the hierarchy is built, an analysis

on the whole hierarchy may obtain partitions which are not included in the

merging sequence.

The creation of a BPT relies on two major notions: the merging criterion and the

region model. The merging criterion defines the similarity of neighboring regions

and, therefore, the order in which regions are going to be merged. The region
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model specifies how regions are represented and how to compute the model of

the union of two regions. Several criteria and models are listed in [VMS08].

3.1 Color Segmentation

The objective of the color segmentation is to obtain a PColor partition similar to

superpixel partitions in the literature [BBR+13, ASS+12]. Superpixels provide

a useful representation of the image with a reduced number of entities with

respect to the pixel representation. The PColor partition will be used as a base

partition to encode depth maps. Thus, it will determine the texture rate needed

to encode the set of regions. For HD sequences, experimental results developed

have shown that PColor has to be composed of a few hundred regions. At

that number of regions, superpixels techniques fail at retrieving accurately the

discontinuities in the image. To overcome that, a superpixel inspired technique

is proposed, which obtains higher boundary retrieval than current superpixel

techniques in the literature.

Superpixels techniques (see Section 2.3.3.1) perform a clustering process using

the color similarities and spatial proximity. In this Section, these two charac-

teristics are introduced in the BPT. The new similarity measure for the color

image is derived from the bpt nwmc measure in [VMS08].

In bpt nwmc, the region model is constant for all the pixels of the region and

the model MR is obtained by averaging the values of the pixels p ∈ R, in the

YCbCr color space:

MR =
1

NR

∑

p∈R

I(p) (3.1)

where NR is the number of pixels of region R and I is the image in the YCbCr

color space.

The bpt nwmc similarity criterion consists of two terms: The first one, based

on color similarity, is the Weighted Euclidean Distance between Models (wedm)

which compares the models of the original regions, R1 and R2, with the model
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of the region obtained after the merging R1 ∪R2:

Owedm(R1, R2) = NR1
||MR1

−MR1∪R2
||2 + NR2

||MR2
−MR1∪R2

||2 (3.2)

The second term is related to the contour complexity of the merged regions. The

measure computes the increase in perimeter ∆P (R1, R2) of the new region with

respect to the largest of the two merged regions: ∆P (R1, R2) = min(P1, P2)−

2P12 where P1 and P2 are the perimeters of the regions R1 and R2 and R12 is

the common perimeter between regions.

The term that measures contour complexity is:

Ocont(R1, R2) = max(0,∆P (R1, R2)) (3.3)

The contour term promotes the creation of smooth contours between regions.

Since most objects are regular and compact (that is, tend to have simple con-

tours), the analysis of shape complexity can provide additional information for

the mergings.

Color and contour similarity measures are linearly combined to form the

bpt nwmc similarity criterion:

Obpt nwmc(R1, R2) = αOwedm(R1, R2) + (1− α)Ocont(R1, R2) (3.4)

The bpt nwmc similarity criterion creates color homogeneous regions with

smooth contours, but tends to create elongated regions. As the regions will be

used for coding purposes, more compact regions are desirable. To this end, a

new term which measures the spatial proximity is added based on the distance

between region centroids. The centroid of a region is defined as:

Cent(R1) =
1

NR1

∑

p∈R1

Coord(p) (3.5)

where Coord are the coordinates of the pixels p in the region R1. The cent is

defined as the euclidean distance d between centroids:

Ocent(R1, R2) = d (Cent(R1), Cent(R2)) (3.6)
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The Cent criterion is combined with the bpt nwmc to form the bpt spx super-

pixel similarity criterion:

Obpt spx(R1, R2) = β OCent(R1, R2) + (1− β)Obpt nwmc(R1, R2) (3.7)

After testing different weights for α and β, it was found that the weight factors

in equations (3.4) and (3.7) obtain similar results in terms of boundary re-

trieval. For simplicity, the three terms are combined without weights, creating

the superpixels criterion bpt spx (3.8):

Obpt spx(R1, R2) = OCent(R1, R2) +Owedm(R1, R2) +OCont(R1, R2) (3.8)

bpt spx bpt nwmc SEEDS SLICS UCM

Figure 3.2: Color segmentation: visual comparison.

As stated before, the number of regions in the color partition, N regs
color, is an

important parameter of the coding systems proposed. The bpt spx criterion

builds the hierarchy until N regs
color regions are obtained. Visual results for the

different methods are shown in Figure 3.2.
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3.2 Color Segmentation Evaluation

The color image segmentation is evaluated against other superpixels segmenta-

tions to validate the use of the new centroid distance term. The benchmark for

this work consist of the BSDS500 dataset [MFTM01] which contains 500 images

with human-marked-boundaries as ground-truth. The bpt spx method is com-

pared with the BPT merging criterion bpt nwmc [VMS08], with two state of

the art superpixel methods, SEEDS [BBR+13] and SLICS [ASS+12], and with

the UCM [AMFM09], that obtains a hierarchical structure similar as the one

derived with the BPT.

Figure 3.2 shows visual results of the methods compared in this work. The

regions generated with bpt spx present smoother contours than the bpt nwmc

criterion due to the centroid term. This term promotes compactness in the

first stages of the hierarchical segmentation which leads to smoother contours.

SLICS segmentation recovers even simpler contours, achieving partitions with

less false boundaries at the cost of losing also some meaningful contours. The

objective of bpt spx differs from the one of UCM since, on the one hand, the

UCM partition aims to obtain a partition that represent the objects of the scene

with minimal regions while, on the other hand, the aim of the color segmentation

is to achieve a superpixel representation for coding purposes.

Figure 3.3 shows numerical results in terms of precision, recall and F-measure

(see Appendix C.2 for an explanation of the evaluation metrics used in this The-

sis) for boundaries between segmentation and ground-truth. In bpt spx, the use

of the centroid slightly decreases the recall with respect to the bpt nwmc crite-

rion but the precision is improved, obtaining a result similar to the segmentation

obtained with SLICS. Globally, the usage of the centroid criterion achieves a

better trade-off between superpixel compactness and boundary adherence than

bpt nwmc.

The F-measure of bpt spx results are comparable to SLICS, but as the main ob-

jective of the color segmentation is to procure the maximum number of contours,

a higher recall is desired. Since the UCM representation promotes a represen-
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Figure 3.3: Evaluation of different methods for the color segmentation

tation where each region is meaningful, the number of boundaries that are not

from the object is lower, obtaining a much higher precision figure. On the other

hand, the UCM obtains smooth contours which occasionally are slightly dis-

placed from the ground-truth, leading to lower recall measure. Moreover, the

high computational requirements of the UCM make their use costly for a video

coding scheme.

3.3 Depth Map Segmentation

The color segmentation provides an initial segmentation for depth maps. How-

ever, when color and depth images present structural differences, not all the

depth edges can be retrieved from the color image. Since edges from depth
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segmentation have to be encoded, the objective is to find a depth partition able

to represent the depth map image using the lowest number of depth edges. In

this Section, a method that uses a 3D planar model to represent the regions in

the BPT is proposed.

Figure 3.4: Depth maps are back-projected to the 3D world using the camera
parameters of the view. Using an initial segmentation, each region is represented
with a 3D planar model. From the 3D planar models the depth map can be
projected to recuperate the depth map.

The depth map partition is created in three steps. Depth maps used in multi-

view scenarios are often noisy and quantized into 8 bits. To avoid discontinuities

in the surface normals, an initial superpixel over-segmentation of the depth map

is performed as an initial step. This severely over-segmented partition (∼10000

regions) removes noise and quantization errors while capturing the scene with

sufficient detail.

Using this initial over-segmentation, the 3D point cloud is generated by com-

puting the centroid of all the points in the region and back-projecting them to

the 3D world using the mean value of all the pixels in the region, as shown in

Figure 3.4. This creates a 3D point cloud where each point of the point cloud

is related to a region. As the point cloud is formed with the depth map of one

viewpoint, only the nearest surfaces of the scene are present in the point cloud.
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The second step consist in performing the region growing algorithm in [RvdHV06]

to the 3D point cloud generated in the first step to obtain smoothly connected

areas. The algorithm computes the local surface normals and uses the point

connectivity to join 3D points that have the same orientation. The method

requires a small number of parameters -number of neighbors, angle orientation

tolerance and a smoothness threshold to start new regions-, which provide a

trade-off between under- and over-segmentation.

The partition obtained after the region growing step is able to recover the

structure of the scene but still has some small-sized regions which have not

been merged as shown in Figure 3.6.a. The third step of the algorithm finds the

final partition with a BPT. A new model and similarity criterion is proposed to

deal with depth maps.

A 3D planar region model is chosen as a model for the merging process. In

this model, each region is characterized by the centroid of the 3D points of

the region ci and the normal orientation ni of the plane that best fits the 3D

points, as shown in Figure 3.5.a. Each region model is formed by fitting a 3D

plane to all the 3D points of the region using RANdom SAmple Consensus

(RANSAC) [FB81].

n1 
n2 

c1 

c2 

a)

n1 

n2 

c1 

c2 

d(c1, P2) 

d(c2, P1) 

d(c1, c2) 

b)

Figure 3.5: a) Region model: plane with normal ni and centered in ci. b)
Distances in the 3D similarity criterion.

The similarity criterion combines two different similarity measures between re-

gions R1 and R2: orientation and 3d-distance. The orientation similarity indi-

cates whether the centroid of one plane is well approximated by the neighboring
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plane equation:

Oorientation(R1, R2) = a1 ∗ d(c1, P2) + a2 ∗ d(c2, P1) (3.9)

where ai is the area of the region in number of pixels, d(c, P ) is the euclidean

distance between a point c and a plane P .

The measure 3d-distance is based on the euclidean distance between centroids.

This measure has a similar effect than the cent term in the bpt spx criterion.

3d-distance promotes the creation of regions that are closer in the 3D space.

O3d−distance(R1, R2) =
a1 + a2

2
∗ d(c1, c2) (3.10)

The final similarity criterion is defined as:

O3d−bpt(R1, R2) = Oorientation(R1, R2) +O3d−distance(R1, R2) (3.11)

Figure 3.5.b shows a graphical example of the 3d-bpt criterion.

At each iteration of the merging process, the algorithm selects the pair of regions

with the lowest O3d−bpt, which corresponds to the most similar pair of regions,

and merges them into a new region. An example of final partition obtained

with the algorithm is depicted in Figure 3.6.b.

a) b)

Figure 3.6: Depth Map Partition process. a) Result of applying the region
growing algorithm. b) Final coding partition after the 3d bpt algorithm.

3.4 Depth Map Segmentation Evaluation

The depth map segmentation proposed is evaluated with 25 depth maps from

the MVD sequences undo dancer, balloons, kendo, breakdancers and ballet. For
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more details about the MVD sequences see Appendix A. Results generated with

the proposed scheme are compared against the segmentation produced with

rgbd-UCM [GAM13] and with UCM computed using only the depth image.

For rgbd-UCM, a hierarchical segmentation is generated using color and depth

clues. Two variants of the 3D merging process are examined, with and without

the region growing step, named 3d-rgb-rgrow and 3d-bpt respectively.

Depth

map

rgbd-UCM

UCM

3d-bpt

Region
growing

3d-bpt-
rgrow

undo dancer balloons kendo breakdancers ballet

Figure 3.7: Visual comparison between the depth segmentation techniques. In
row ascendent order: Depth map to segment, rgbd-UCM, UCM, 3d-bpt, Output
of Region growing segmentation stage and 3d-bpt-rgrow.

Figure 3.7 shows the partitions obtained with the different methods. By using

the color image in addition of the depth image, the rgbd-UCM generally is able

to represent the foreground objects with more regions. Despite that, when the

depth map is noisy, the rgbd-UCM fails at obtaining the main depth edges as
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can be seen in the balloons image in Figure 3.7. Using the standard UCM on

the depth image this over-segmentation is reduced.

Figure 3.8: Gradient measure in function of the number of contour points in
the segmentation.

The 3d-bpt method obtains a representation of the scene where objects in the

same depth are correctly separated but has problems at recovering the overall

structure of the scene. This can be seen in the undo dancer image in Figure 3.7

where regions are created at increasing depths values, joining the walls and

the floor. The region growing stage creates an initial segmentation where the

flat areas of the scene are joined in a unique region. From the region growing

segmentation, the 3d-bpt criterion merges the regions in non-smooth areas with

the best 3D plane model.

The evaluation of the different depth segmentation techniques is computed using

a gradient measure in the contour points. The purpose of the depth segmenta-

tion is to provide the main depth edges of the depth map with the minimum

contour points. The maximum directional gradient (horizontal or vertical) is

computed for each contour point and then averaged. This measure is computed

at different cuts of the hierarchy. Notice that this metric is helpful to deter-

mine if areas at different depth distances are in different regions. However it
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cannot measure the areas where there is not a depth edge but a change of the

orientation, as the joints between floor and walls.

In Figure 3.8, the average results for the different sequences are shown. The 3d-

bpt and the 3d-bpt-rgrow obtain better results than the rgbd-UCM and UCM.

In the two UCM options the contours obtained are smooth, losing some mean-

ingful depth boundaries. The rgbd-UCM obtains even lower gradient measure

since it uses also the color image to generate the hierarchical partition.

While the results are similar for the two BPT options, the 3d-bpt-rgrow is

selected by its better 3D scene reconstruction. The separation of walls and

floor is more desirable from a conceptual point of view more than the edges

that are in the middle of them.





Chapter 4

2D Single-View

In this Chapter, the two 2D depth coding methods developed during this The-

sis for single-view coding are presented. The first one, Color-Based Hierarchical

Optimization, finds the final coding partition with an optimization over a hier-

archy of regions using only a color partition. By using only the color partition,

the depth map can be encoded without explicitly signaling the depth bound-

aries. However, as the color partition is not always able to retrieve all depth

edges, depth contours are present inside the regions. This leads to use complex

texture models, increasing the texture bitrate. In the second method,Fusion of

Color and Depth Partitions, depth contours are encoded explicitly, providing

depth edges when color and depth boundaries are inconsistent.

4.1 Color-Based Hierarchical Optimization

The first method is based on segmenting the depth map using only color infor-

mation. Depth maps are segmented using a color partition into homogeneous

regions of arbitrary shape. The contents of these regions are coded using texture

coding techniques. Having uniform regions allows coding the texture inside the

region with few coefficients. Using only color partition saves the high cost asso-

ciated to coding the resulting partitions (region shape) in segmentation-based

coding techniques. Instead of directly segmenting the depth map and sending

the partition to the receiver, an approximate depth partition is constructed

43
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using the decoded color image which is supposed to be available at the receiver.

The final coding partition is obtained with an optimal lagrangian approach

applied to a hierarchical region representation. The lagrangian approach (pre-

sented in Subsection 4.1.1) presents two benefits. Firstly, the encoding pa-

rameters are selected optimally for each region and secondly, the optimal final

number of regions needed to encode the depth map can be automatically ob-

tained. Furthermore, two modes of the Shape Adaptive Discrete Cosine Trans-

form (DCT) [SM95] are used to obtain a better rate-distortion trade-off.

The segmentation technique used in this work is the BPT with the similar-

ity bpt nwmc criterion defined in Section 3.1. The proposed bpt spx similar-

ity criterion in 3.1 was developed later in the thesis. The bpt nwmc can be

computed using color information (bpt nwmc color) or using depth information

(bpt nwmc depth).

4.1.1 Hierarchical Rate-distortion Problem Definition

The rate-distortion problem consists in finding the optimal coding that mini-

mizes the distortion D of the image with the constrain that the total cost R

is below a given budget [OR98]. In the hierarchical case, this optimal coding

consists in finding the optimal partition with the coding technique for each re-

gion to describe the image, this is, a set of regions in the hierarchy H. The

rate-distortion function has to be defined (see [OR98]) with R and D additive

measures in H:

RH =
∑

regions

Rk (4.1)

DH =
∑

regions

Dk (4.2)

Each node of the hierarchy can be encoded using a set of coding techniques

generating a set of Rk,q and Dk,q for each region k and each coding technique

q. In this Thesis, the distortion measure Dk,q is computed as the Square Error
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between the estimated texture values and the real ones:

Dk,q =

Nk
∑

n=1

|ĝq(n)− g(n)|2 (4.3)

where Nk is the number of pixels of the region k, g is the texture value of the

pixels of the region and ĝq is the estimated values with the q texture coding

option.

Typically, in segmentation-based coding, the rate to encode a region is composed

of two terms: The cost of the contours of the region (RC
k,q) and the cost of the

texture coefficients (RT
k,q). Hence, for each region their rate cost Rk,q is defined

as:

Rk,q = RC
k,q +RT

k,q (4.4)

The constrained problem can be converted into an equivalent unconstrained

one by using Lagrangian relaxation. Cost and distortion are combined using a

positive multiplier λ that defines the trade-off between the distortion allowed

and the number of bits spent:

Jk,q = Dk,q + λRk,q (4.5)

R7

R5

R1 R2

R6

R3 R4

R5

R3

R4

Figure 4.1: Lagrangian optimization over hierarchies. The bottom-up analysis
follows the merging sequence from Figure 3.1 activating the nodes with mini-
mum lagrangian. The algorithm finds the best partition (regions 3, 4 and 5)
and the best coding strategy.

Assuming that the optimum λ∗ is known, the first step is to make a local

analysis and to compute, for each node of the BPT, the Lagrangian for each

coding technique (or quantizer level). The coding technique giving the minimum

Lagrangian is considered as the optimum one for this node:

Jk = argmin
q

Jk,q (4.6)
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The second step is to define the best partition. This can be done by a bottom-

up analysis of H. Starting from the lowest level, one checks if it is better to

code the area represented by the children regions as a single parent region or as

individual regions child1 and child2. The best choice is selected by comparing

the Lagrangian of the parent with the children’s one:

Jparent ≤ Jchild1 + Jchild2 (4.7)

where Jchild is the cost of the cheapest path under the child node.

If the left term is lower than the right term, the parent node is activated and

the children ones are deactivated. This inequality is evaluated following the

merging sequence up to the root node. At the end of the procedure, the best

partition for the given budget is defined by picking up all the regions corre-

sponding to the activated nodes together with their corresponding best coding

technique (defined during the first step of the algorithm). The definition of

the optimum parameter λ∗ can be done, for instance, with a gradient search

algorithm. Figure 4.1 shows a result of a lagrangian optimization applied to the

hierarchy depicted in Figure 3.1.

4.1.2 Encoding process

Color 

Segmentation

Depth map

Decoded 

color image

Side 

information

Encoder

Hierarchical 

Representation

Partition Coding

H
LPColor

Optimization

PO୮t
Texture

bitstream

Nregs_color

Figure 4.2: Block diagram for the hierarchical representation.

The creation of the coding partition is depicted in Figure 4.2 and can be de-

scribed in four steps:
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Color segmentation: A fine initial color partition (LPColor) is built in the

same way both at the encoder and the decoder using the decoded color view

(using the bpt nwmc color similarity criterion from Section 3.1). LPColor is an

over-segmented approximation of the final coding partition. The assumption

here is that depth transitions coincide in most situations with color transitions.

Since LPColor can be constructed both at the encoder at the decoder, it has

no coding cost. Experiments have shown that the proposed coding technique

is robust to the number of regions in this initial partition and simply, a high

enough number to prevent under-segmentation is enough (see Figure 4.4.a).

Hierarchical representation (depth criterion): Starting from LPColor, a

BPT hierarchy H is obtained at the encoder side by using a depth-based simi-

larity (bpt nwmc depth) as a merging criterion. Using an initial partition con-

structed using only depth information (instead of LPColor) would have all depth

edges, but in that case, the shape of this partition would need to be sent, at a

high coding cost.

Optimization: The rate-distortion optimization presented in Subsection 4.1.1

selects the optimum combination of regions and coding techniques/quantizer

over H. In this work, a SA-DCT [SM95] has been used as the texture coding

strategy. The SA-DCT encodes the texture (in this case the depth associated

with the region) of any arbitrary shaped segment.

Two modes of the SA-DCT have been used. The first mode, SA-DCTblocks,

divides the segmented region in blocks of 8x8 pixels and each block is encoded

using SA-DCT or standard DCT. The SA-DCT is used in blocks that correspond

to a boundary of the region while the standard DCT is used in blocks where

all pixels belong to the region. The second mode, SA-DCTsingle, is intended

to handle homogeneous regions in an efficient manner, hence encodes all the

segmented region in a single SA-DCT, giving a rough approximation to the

texture with few coefficients. Example blocks for each SA-DCT configuration

are shown in Figure 4.3.

Both modes are available to the lagrangian multiplier optimization process that
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a) Example block b) SA-DCTblocks c) SA-DCTsingle

Figure 4.3: Example of coding a block with SA-DCT methods. SA-DCTblocks

divides the segmented region in blocks of 8x8 pixels while SA-DCTsingle encodes
all the segmented region in a single SA-DCT.

selects the optimal one, region by region, following the optimization described

in Subsection 4.1.1. As the partition is fully color-based, the contour cost RC
k,q is

0 bits for all regions. Once the optimization process finds the optimal partition

POpt, the texture coefficients from active regions are grouped and entropy coded

using an adaptive arithmetic codec [WNC87].

Partition Coding: As the hierarchical representation and optimization steps

use depth information (not available at the decoder) to construct POpt, side

information has to be provided to generate POpt at the decoder. The side in-

formation consist on the sequence of mergings that the decoder has to perform

to generate POpt from LPColor. To do that, an alternative hierarchy HC is con-

structed starting from LPColor, but this time, a color criterion (bpt nwmc color)

is used instead of the depth (bpt nwmc depth) criterion. Being purely based on

color information, HC can be constructed at the decoder.

At the encoder, the sequence of mergings in HC and H are compared. For

each merging in HC , a bit of side information is sent. If the regions merged

at a given step in HC are also merged in the POpt, a ’0’ is sent. Otherwise,

a ’1’ is sent. This way, the decoder can prevent the mergings in HC that

are not used to construct POpt, and this way, POpt can be constructed at the

decoder. Experimental results have shown that using this approach instead of

directly encoding the region contours greatly reduces the amount of bits needed

to encode the partition. The amount of bits needed to replicate the hierarchical

structure is less than 0.01 bits per pixel in the sequences used.



4.1 Color-Based Hierarchical Optimization 49

a) LPColor b) POpt

Figure 4.4: a) Example of a LPColor with 500 regions for image Ballet. b) POpt

selected by the Lagrange optimization for the same image.

Figure 4.4.b shows an example of the partition selected by the lagrangian opti-

mization for the image Ballet. At the end, the total encoding rate for all regions

is formed by the sum of each of the regions texture cost RT
k plus the coding cost

of sending the side information that will allow the decoder to build POpt.

Nregs_color Side information 2D Texture bitstream

Figure 4.5: Bitstream containing the number of regions for the color image, the
side information needed to recover POpt and the SA-DCT coefficients.

4.1.3 Decoding Process

The decoder process is depicted in Figure 4.6. LPColor is built from the decoded

color image as done in the encoder. Then, the side information is used to

replicate POpt: the decoder proceeds merging further regions using the color

information (bpt nwmc color) criterion but, each time a merging is proposed by

this criterion, a bit is pulled from the side information to decide if the merging

is allowed. In case it is not, the algorithm proceeds with the next merging in

the BPT.
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Figure 4.6: Block diagram for the decoding process.

4.2 Fusion of Color and Depth Partitions

In Section 4.1, a segmentation technique has been used to create a partition

of the decoded color image, already available at the decoder. This partition is

used to approximate the location of the depth edges. This allows using region-

based texture coding techniques without the burden to encode the full depth

partition. An evolution of this method was presented in [MMRH13] with two

main contributions.

The first contribution is to use the color segmentation criterion bpt spx pre-

sented in Section 3.1. It was introduced to promote compact-shaped regions.

The second contribution is related to the assumption of co-occurrence of depth

and color contours in [MRHM12]. While in many cases depth and color con-

tours are located at similar locations, there are small but noticeable differences

that result in regions that contain depth discontinuities. In this case, the lack of

homogeneity results in a poor performance of the region-based texture coding

techniques. To solve that, it is proposed to use a combination (fusion) of a fine

color partition (denoted as PColor) and a coarse depth partition (denoted as

PDepth) which contains the location of the main edges, providing information

about the boundaries when the color and depth discontinuities are inconsistent.

In Figure 4.8, partitions obtained for the color image and the depth map are

shown.

Unlike the previous work presented in Section 4.1, a rate-distortion optimization
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Figure 4.7: Scheme for the encoding process. The two partitions obtained with
the color image and the depth map are fused to a single partition which is used
in the encoding of the depth map.

is not performed in the hierarchical structure obtained with the region-merging

algorithm. Here the focus is on improving the coding segmentation by adding

depth boundaries, therefore the texture coding is performed in a single layer of

the hierarchical representation.

4.2.1 Encoding process

a) PColor b) PDepth

Figure 4.8: a) Color-based partition for sequence balloons. b) Depth-based
partition for sequence balloons.

The scheme of the encoder process is shown in Figure 4.7. PColor is built

with the bpt spx presented in Section 3.1. For PDepth, the similarity criterion

involves only texture information (from the depth map). The criterion used is

the squared error (bpt se) [VMS08] which do not take into account the size of

the regions to be merged, which is preferable in the scarcely textured depth
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maps. The region model M (see Section 3.1) is constant for all the pixels of the

region R1 ∪R2 and is compared to the original depth image I:

Obpt se(R1, R2) =
∑

p∈R1∪R2

(I(p)−MR1∪R2
)2 (4.8)

4.2.1.1 Partition Combination

Both partitions PColor and PDepth are combined to form a new partition P c d.

The P c d partition is built by taking all the PColor and PDepth boundaries:

P c d
i = P color

i

⋂

P depth
i (4.9)

Typically, PColor presents a more regular segmentation and also contains a good

number of depth edges, while PDepth contains the more important depth edges.

To ensure the creation of meaningful regions, only new regions that are larger

than a certain size are created. Figure 5.2.b shows the resulting P c d, dis-

tinguishing the boundaries from PColor and PDepth. With the addition of the

edges from PDepth, the inconsistencies between color and depth map that lead

to under-segmentation errors are solved.

4.2.1.2 Contour and texture coding

The partition contours are coded with a modified Freeman Chain Code tech-

nique [Fre61] [MSG93]. See Subsection 2.3.1 for details of Freeman Chain Code

technique.

Nregs_color Partition bitstream Texture bitstream

Figure 4.9: Bitstream containing the number of regions for the color image, the
contour coefficients to recover PDepth at the decoder and the SA-DCT coeffi-
cients.

The SA-DCT technique [SM95] is used to encode the texture within each region.

The absence of transitions inside regions allows coding the texture information

with few coefficients. In this case the mode used is the SA-DCTblocks (see 4.1),
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which divides the segmented region in blocks of 8x8 pixels and each block is

encoded using either SA-DCT or standard DCT . SA-DCTblocks have been used

because achieves higher quality than SA-DCTsingle.

4.2.2 Decoding Process

Decoded 

color image

Decoder

Partition 

Combination

Partition 

bitstream

Texture
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Figure 4.10: Scheme for the decoding process. The color partition is obtained
from the color image while the depth partition is received for the decoder.

The decoder receives the bitstream depicted in Figure 4.9. The decoder is able

to replicate the color partition as it has been created from the encoder since

solely the color image is used. Using the contour information received, the

depth map partition is generated. The fusion segmentation is built using the

same process as described for the encoder. The complete design of the decoder

is presented in Figure 4.10.

4.3 2D Single-View Depth Map Coding

Results

The 2D coding methods presented in this Chapter are evaluated using 10 images

of each of the multi-view sequences sets ballet, undo dancer, kendo and balloons.

The Color-Based hierarchical optimization method (Section 4.1) will be referred

as Color opt, and the fusion of color and depth partition method (Section 4.2)

will be referred as Fusion. Color opt results are obtained with initial partitions
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of 2000 regions. Results for the Fusion method are obtained using a fixed

number of regions in the partitions of 50 regions in the depth segmentation

and 100 regions in the color segmentation. The number of regions in the depth

segmentation has been found to be sufficient to find the main edges on the

image. Notice the difference of the number or color regions used in Color opt

and Fusion. As the Color opt method does not use a depth partition, the number

of regions in the color partition is higher to obtain as many depth contours as

possible.

Color opt and Fusion methods use SA-DCT as a coding technique. Fig-

ure 4.11 shows the coding performance of the two SA-DCT configurations for

the Color opt method. Depth map coding results are obtained with different

configurations: SA-DCTsingle and SA-DCTblocks encode the LPColor partition

with a fixed coding technique (varying the quantizer level) whereas the other

approaches uses the lagrangian optimization to select the best choice of coding

technique/quantizer level. The lagrangian optimization finds the best trade-

off for each region using the hierarchy H. The lagrangian no hierarchical

uses the lagrangian optimization but only exploring LPColor. The lagrangian

Figure 4.11: Rate-distortion over depth maps. The proposed lagrangian op-
timization (Color opt) is compared with using only the leaves partition in the
lagrangian optimization (lagrangian no hierarchical), with SA-DCTsingle and
with SA-DCTblocks
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PSNR over depth map

PSNR over virtual view

Figure 4.12: Peak Signal-to-Noise Ratio (PSNR) over depth maps and in virtual
views of Color opt, Fusion and HEVC.
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optimization combines regions coded with SA-DCTsingle and SA-DCTblocks

optimally, obtaining increased rate-distortion figures than obtaining any of

the methods separately. Moreover, the use of the hierarchy explores a larger

number of coding options, leading to an increase of 1dB compared of using the

lagrangian no hierarchical configuration.

As the proposed algorithms are image based, intra-mode comparison with the

main intra-mode profile HEVC is provided. A description of the sequences used

is provided in Appendix A. The description of the experimental configuration is

described in Appendix B. Error measures (defined in Appendix C) are computed

between pairs of synthesized virtual views. The first one is always obtained using

the uncompressed depth maps, while the second one is generated, respectively,

with HEVC, Color opt and Fusion methods.

Figure 4.13: Structural SIMilarity (SSIM) over virtual views of Color opt, Fusion
and HEVC.

Rate-distortion results are presented in both Peak Signal-to-Noise Ratio

(PSNR) and Structural SIMilarity (SSIM) depending on the number of bits per

pixel used to encode the depth map. For the Color opt different rate-distortion

points are found using different λ parameters. For the Fusion method, the
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undo dancer balloons kendo ballet
Depth Map
Color opt -12.39 -10.93 -12.76 -8.79
Fusion -15.81 -6.94 -6.70 -5.00

Virtual View
Color opt -8.43 -6.48 -7.91 -4.97
Fusion -12.66 -4.46 -3.42 -2.96

Table 4.1: Bjontegaard measures with respect to HEVC.

cost of encoding the contours given the depth segmentation is fixed whereas

the texture cost depends of the quantization step selected for each region.

Results are shown in Figure 4.13 and Figure 4.12. Bjontegaard delta PSNR

(BD-PSNR) [Bjo01] (see Appendix C) results are summarized in table 4.1.

BD-PSNR figures are presented with respect to HEVC.

In both SSIM and PSNR the Fusion proposal outperforms Color opt, showing

the need of using depth contours to increase the quality of the color partition.

The BD-PSNR improvement of the Fusion method with respect of the Color opt

is in the margin of 3 dB. The only exception is for the undo dancer sequence

where, for low rates, the quality is similar to the previous method, thus dimin-

ishing the BD-PSNR measure for that sequence. In the Color opt method, the

rate-distortion optimization prevents that behavior.

The advantages of a segmentation-based technique can be seen in the better

performance obtained with the proposed techniques in virtual views. Despite

results of the two 2D methods are below HEVC ones, segmentation-based cod-

ing techniques explored in this Chapter provide foundation for next Chapters

showing the necessity to combine color and depth map partitions to increase

the coding efficiency and the benefits in using optimization methods over a

hierarchy of regions.





Chapter 5

3D Single-View

In this Chapter, a 3D depth map coding technique for a single-view is presented

(3d Single-View). The segmentation algorithms presented in Chapter 3 are used

to independently segment the color image and the depth data. Similarly to the

Fusion method presented in Section 4.2, the color and depth partitions are

combined to obtain the final coding partition. In this case, to reduce the cost

of encoding depth boundaries, only the main depth edges are added. From the

final partition, a 3D plane-based representation is introduced to store the scene

structure. The main contribution of this Chapter is the introduction of the 3D

planes to represent the depth map, which facilitates the multi-view extension

in Chapter 6.

5.1 3D Single-View Depth Map Coding

The 3d Single-View depth map coding technique uses an image partition to fit

a 3D plane for each region. Pixels belonging to each region are back-projected

into the 3D space and then encoded using a 3D plane. 3D planes are able to

represent the smooth texture of depth maps with few coefficients. Assuming

that most depth edges in the depth maps are located in the same position as

color discontinuities, a segmentation technique using the decoded color image

allows to recover most of these depth edges.

59
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5.1.1 Encoding Process
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Figure 5.1: Encoder scheme. Color image and depth map are used to build two
independent partitions. 3D planes are fitted using the color partition and the
intersection of both partitions. The depth boundaries that solve the inconsis-
tencies between color and depth partitions are found in a rate-distortion fashion
and sent to the decoder.

The encoding process is depicted in Figure 5.1. The encoder uses both the de-

coded color image and the original unencoded depth map to build two partitions

with the bpt spx and 3d-bpt-rgrow methods explained in Sections 3.1 and 3.3

(referred as PColor and PDepth). PColor provides most of the depth boundaries

and can be built also at the decoder without any extra coding cost. PDepth

contains the most important depth boundaries (including the ones not present

at the color partition). PColor and PDepth are combined to form a new partition

P c d by taking all boundaries of both partitions as explained in Section 4.2.1.1.

An example of the partition combination process is shown in Figure 5.2.

A difference of the fusion method of Section 4.2, the 3d Single-View only

encodes the most relevant depth edges. To obtain these edges, two 3d planes

representations are built, one using PDepth and the other using P c d. Once each

3d plane estimation is done (Section 5.1.1.1), the main depth edges are obtained

analyzing both 3D representation with a Partition Decision (Section 5.1.1.2).

5.1.1.1 Plane Estimation

A 3D representation is formed by fitting a 3D plane for each region using

RANSAC [FB81]. The performance of RANSAC algorithm relies heavily on
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a) PColor b) P c d

Figure 5.2: Partition combination. Contours from PColor depicted in white;
PDepth contours depicted in green.

the threshold to determine the outliers. If the threshold is too strict, few points

in every iteration will be found as inliers, thus the plane will be estimated with

a reduced subset of the points of the region. On the contrary, if the threshold

do not separate between inliers and outliers, the fitting will include the outliers,

resulting in a poor plane estimation. The dependence of choosing an adequate

threshold is removed by selecting different values and keeping the one that pro-

vides the best model, that is, the one that has lower mean square distance

between the plane and the points of the region:

Dk =

Nk
∑

n=1

|Proj(Π3D
k , n)− g(n)|2 (5.1)

where Π3D
k is the plane model for region k, Nk is the number of pixels of region

k, Proj(Π3D
k , n) is the value of the projected 3D planar model to the pixel n of

region k and g(n) is the depth value of n.

In order to obtain a compact representation the 3D plane coefficients are repre-

sented using the distance from the plane to the camera and the plane orienta-

tion. The distance from the plane to the camera is converted to an alternative

quantized representation using the distance to depth map conversion:

Cdist =
1.0

d(pl,c)

(2Ndist−1)
∗ ( 1.0

MinZ
− 1.0

MaxZ
) + 1.0

MaxZ

(5.2)
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where d(pl, c) is the euclidean distance between the region plane and the camera,

Ndist is the number of bits to be used in the quantization and MaxZ and MinZ

are the maximum and minimum depth values of the image.

The plane orientation is stored in spherical coordinates with their 3D angles θ

and φ:

θ = arccos

(

nz
√

n2
x + n2

y + n2
z

)

(5.3)

φ = arctan

(

ny

nx

)

(5.4)

The nz component is pointed towards z > 0. The resulting angles have the

following dynamic range: 0 ≤ θ ≤ π
2
and 0 ≤ φ ≤ 2π. Each angle is encoded

with equal precision with a uniform quantizer.

5.1.1.2 Partition Decision

While adding edges from PDepth removes under-segmentation and thus, reduces

the coding distortion, these contours must be explicitly encoded, which increases

the coding cost. Unlike the 2D method in Section 4.1, to achieve the budget

rate, the method controls how the new boundaries are added, prioritizing the

boundaries that have a larger impact to the coding of the depth map. New

regions in P c d are classified according to the distortion reduction obtained

when adding the corresponding depth boundary to PColor. Depth distortion is

computed with the Equation 5.1.

Different rate-distortion points are obtained by progressively adding region

boundaries to PColor until the budget rate for this image is reached, result-

ing in the final partition P Final. These added region boundaries should be also

encoded (with lossless Freeman Chain-Code technique [Fre61], see Section 2.3.1)

and sent to the decoder. The bitstream sent to the decoder is depicted in Fig-

ure 5.3.
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Nregs_color Partition bitstream Texture bitstream

Figure 5.3: Bitstream containing the number of regions for the color image, the
depth boundaries coded with chain-code and the 3D plane coefficients.

Figure 5.4 shows the resulting reconstructed planes projected onto the decoded

depth map image. In Figure 5.4.a no depth contours are added to PColor while

in 5.4.b the P Final is used. Using directly PColor results in depth discontinuities

inside the regions that lead to poorly fitted 3D planes and in high errors in the

decoded depth map. However, the P Final partition corrects under-segmentation

errors with the added depth contours. That leads to a more efficient represen-

tation in the decoded depth map (see for instance the detail in the hand).

a) PColor b) P Final

Figure 5.4: Partition decision coding example. 3D planes coding example using
PColor and P Final.

5.1.2 Decoder Scheme

The 3d Single-View bitstream in Figure 5.3 is decoded with the scheme shown

in Figure 5.5. Using the number of regions for the color partition, the decoder

is able to build PColor as done in the encoder without any added cost. Then,

P Final is built by decoding the additional boundaries and adding them to the

PColor partition. Combining the color partition and the depth edges, the decoder

obtains P Final reproducing the structure of the depth map without explicitly

encoding the position of all the depth edges. Once P Final is obtained, the
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decoder projects the 3D planes back to the 2D depth map. Besides the color

image, the camera model of the viewpoint is required to project the 3D planes.

Both color images and camera model are used in the DIBR process. Thus, no

extra information needs to be sent to the decoder.
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Figure 5.5: Decoder scheme. By adding the transmitted depth boundaries to
the color partition the decoder obtains the final coding partition.

5.2 3D Single-View Depth Map Coding

Results

The 3d Single-View method is evaluated using 10 frames of the 3D multi-view

sequence sets undo dancer, ballet, kendo, breakdancers and balloons. As the 3d

Single-View method does not have temporal prediction, only intra modes for

the different methods are taken. Sequences used, information of generating the

virtual view and computing the error measures are shown in Appendices A, B

and C.

The different design parameters are discussed in section 5.2.1. Then, the com-

plete coding scheme is compared against AVC/H.264, HEVC, 3D-HEVC and

MV-HEVC and the state of the art method [OA14] in Section 5.2.2.

5.2.1 Configuration

Figure 5.6 shows the averaged cost of sending the texture and the contour infor-

mation for the sequences undo dancer, balloons, kendo, breakdancers and ballet.

The starting point corresponds to use only the PColor, thus the rate for the par-

tition is 0 bits. The number of regions in PColor is determined according to the
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budget rate. Adding an increasing number of contours increments the rate for

both the contour and the texture, since new regions are created. The contour

cost grows at a higher pace. Notice that, in the last rate-distortion point, the

rate employed for texture has increased by a half of the starting rate while the

contour cost is more than 5 times larger.

Since the cost of adding new boundaries rapidly surpasses the initial texture

cost, it is compulsory to add only the boundaries that improve greatly the

distortion figure. This behavior motivated this 3d Single-View method, which

only adds new boundaries in regions where the distortion is reduced heavily.

With this methodology, the increased rate is employed solely in regions where

the PColor has problems representing the depth map.

Figure 5.6: Comparative between the rate employed for coding the texture and
the contour for different rate-distortion points obtained.

5.2.2 Coding performance

To objectively evaluate the 3d Single-View method, error measures are taken

both in the depth map and in the synthesized virtual view. The valuable mea-

sure is in the virtual view but measuring directly on the depth map gives an

overview of how good can the original depth map be represented with planes.

The PSNR measure is taken to evaluate the error in the depth map directly

and the results for the different sequences are shown in Figure 5.7. In that
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a) undo dancer b) ballet

c) kendo d) breakdancers

e) balloons

Figure 5.7: 3D Single-View: rate-distortion results over depth map.
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comparison, the 3D-HEVC performs worse than the other methods of the lit-

erature. Since color and depth map for two views are encoded altogether in

3D-HEVC, the view synthesis optimization maximize the quality in the virtual

view and not directly in the depth map. The 3d Single-View method also is in

that category and the results in depth map are below the other methods.

To compare the results in the virtual view, for each frame of the sequence, the

virtual view is synthesized using the original depth maps and the decoded depth

maps (using the 3d Single-View method and the intra mode of AVC/H.264,

HEVC, 3D-HEVC and MV-HEVC). The color images for the synthesized pro-

cess are encoded using the same quality for all the experiments. Notice that

3D-HEVC encodes color and depth altogether but only the depth is used in the

comparison.

Figure 5.8 and Figure 5.9 show the rate-distortion results for the sequences

evaluated. The vertical axis shows the average SSIM of the synthesized virtual

view, while the horizontal axis corresponds to the bitrate needed to encode the

depth maps. The 3d Single-View method is able to obtain better rate-distortion

efficiency than the HEVC for low bitrates in the sequences undo dancer, ballet,

breakdancers. For kendo, and balloons the result obtained is not as good as

their depth maps are noisy and the planarity assumption does not hold. In

these sequences, the depth boundaries are not well defined and often are not

in correspondence with color edges. Fitting planes in those areas results in a

poorly 3D estimated representations.

Furthermore, it can be seen that the 3d Single-View method achieves better

performance when measuring SSIM in the original view rather than in the vir-

tual view. This means that, by using the color segmentation as a base partition

for the 3D representation, the estimated planes are able to solve original incon-

sistencies in the depth map, obtaining a better performance than HEVC which

is unaware of color transitions.



68 3D Single-View

a) undo dancer b) ballet

c) kendo d) breakdancers

e) balloons

Figure 5.8: 3D Single-View: rate-distortion results over original view.
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a) undo dancer b) ballet

c) kendo d) breakdancers

e) balloons

Figure 5.9: 3D Single-View: rate-distortion results over rendered view.
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5.2.2.1 Results in Middlebury dataset

In order to compare against the state of the art method [OA14] described in

Section 2.4, results on the Middlebury Dataset were generated. The Middlebury

Stereo Dataset [SS03] consists of many stereo images with ground-truth dispar-

ities between several view-points. The datasets chosen from the website are the

2003 [SS03], 2005 [SP07] and 2006 [HS07] which were the ones used in [OA14].

Each sequence contains color information from several viewpoints and dispar-

ity for two of them. These ground-truth disparities have some unknown values

which have been filled using the same in-painting method than [OA14] to have a

fair comparison between the methods. The images are cropped to a multiple of

8 in order to be able to be encoded with the AVC/H.264 and HEVC encoders.

a) Rendered view

b) Original view

Figure 5.10: 3D Single-View: results for the middlebury dataset.

The results obtained in the full dataset at maximum resolution are shown in Fig-

ure 5.10. In the first row, the rendered image obtained with the depth maps
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coding using different methods is compared with the rendered image using the

original depth map. The 3d Single-View method obtains PSNR and SSIM val-

ues comparable to HEVC for low bitrates. In the original view comparison, the

values for the different methods saturate at 30 dB which is the maximum qual-

ity achievable with the given in-painted depth maps. Is worth noting that for

the two comparisons the 3d Single-View method achieves better results when

evaluated with SSIM rather than with PSNR. Also, the 3D-HEVC method is

clearly the best in PSNR over rendered views, since the 3D-HEVC encoder

finds the best rate-distortion points for each block in terms of PSNR. Despite

that, when comparing with SSIM, the 3d Single-View method obtains similar

results than other HEVC configurations. A direct comparison with [OA14] is

not provided in Figure 5.10 since they provide results just on 6 single selected

images, while in Figure 5.10 results are averaged over the full dataset. However,

the 3d Single-View method obtains results comparable to their proposed MVD

method.

a) Results for Art sequence

b) Results for sequence Plastic

Figure 5.11: Results obtained for two sequences of the middlebury dataset with
different coding performance.



72 3D Single-View

Similar to [OA14], the performance of the 3d Single-View method varies depend-

ing on the characteristics of the depth map. To illustrate that behavior, Fig-

ure 5.11 shows two original color images from the sequences Plastic and Art and

the coding results for that sequence. In the top row, the sequence Art has a very

textured color image, which leads to problems of under-segmentation in some

regions. Adding depth boundaries progressively, the main under-segmentation

problems in the color image are solved with depth edges, increasing the SSIM

figure. On the other hand, the Plastic sequence is a sequence with few color

texture, thus it is easier to segment solely with the color image. Using only

color edges the performance of the 3d Single-View method is better than the

HEVC standards.

The proposed 3d Single-View scheme obtains coding performances similar to

HEVC, showing a notable improvement compared to the ones presented in

Chapter 4. A more complete evaluation of contour and texture techniques is

performed in Appendix D. Moreover, the 3D coding technique opens up the

encoding of multiple views sharing texture coefficients, as will be explored in

Chapter 6.



Chapter 6

3D Multi-View

In this Chapter, a complete 3D multi-view depth map coding technique is pro-

posed. It uses the spatial redundancy among views to represent the depth

maps of multiple viewpoints. The proposed scheme jointly extracts a unique

3D planar representation and a consistent segmentation of the scene from mul-

tiple depth maps. The region based representation proposed in Chapter 5 is

extended to work with multiple views. A unique 3D region model is used for

represent regions in different views.

In Chapter 5, the final coding partition was determined using a distortion based

approach (adding depth boundaries progressively). In this Chapter, the number

of encoding regions for each depth map is determined by a rate-distortion opti-

mization process. The optimization uses the 3d-bpt hierarchy from Section 3.3

to extract a 3D representation for the multiple views with a variable number of

regions. The process of building the 3D representation is depicted in Figure 6.1.

This Chapter is structured as follows. The lagrangian rate-distortion optimiza-

tion of Section 4.1.1 is stated in a global problem in Section 6.1. The opti-

mization method is applied to find a 3D Multi-View representation using color

and depth partitions in Section 6.2. This representation is used to encode depth

maps of multiple views in Section 6.3. Experimental results are provided in Sec-

tion 6.4.

73
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srun modules/segmentation/bin/release/relabel --input_prl 
/imatge/mmaceira/work/december2016/4_1_coldep_opt_1view_500/dancer_159/frame_0029/1v_opt_mv_opt_95/o
verlay/cam2_color_depth.prl --output_prl 
/imatge/mmaceira/work/december2016/4_1_coldep_opt_1view_500/dancer_159/frame_0029/1v_opt_mv_opt_95/o
verlay/cam2_color_depth_journal.prl

a) b) c) d)

Figure 6.1: a) Depth images of multiple views b) For each view a combined color
and depth partition Pi is obtained c) Pi partitions are combined in a reference
view where a hierarchy of regions is built d) A rate-distortion optimization finds
the optimal partition in the hierarchy which defines a partition in each of the
input views.

6.1 Rate-Distortion Hierarchy Optimization

Inspired by [CGW03, GVB11, VAM15], the rate-distortion optimization prob-

lem presented in Section 4.1.1 is stated as a Quadratic Semi-Assignment Prob-

lem (QSAP), restricting the solution to nodes of the hierarchy. Partitions are

defined in terms of boundaries between regions and hierarchical constraints

are added to solve the Quadratic Semi-Assignment Problem (QSAP) problem

with a linear programming relaxation approach. The notation used is consis-

tent with [VAM15], where an optimization on multiple hierarchies is used for

semantic segmentation of sequences.

The QSAP approach has two main advantages over other common approaches

such as the dynamic programming solution from Section 4.1.1. Firstly, QSAP

defines the relation between regions (whether they are merged or not) in terms

of their common contour. This relation allows to represent the contour cost of

the union of two regions easily. Secondly, QSAP can be generalized to work

with multiple hierarchies, which would allow applying the procedure defined in

this work to relate frames of multiple time instants in order to remove temporal

redundancy.
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6.1.1 Hierarchy Optimization

The objective of the hierarchy optimization is to find the optimal boundary

configuration that defines a partition using nodes from the hierarchy H using

the rate-distortion constrains. This optimization can be stated as a constrained

minimization problem:

min
B

tr(QB) = min
B

∑

m,n

qm,nbm,n (6.1)

s.t. bm,n ∈ {0, 1} ∀m,n bm,m = 0

where matrix Q is an affinity matrix that measures the quality of all the possible

partitions in the hierarchy H. This partitions are encoded in a binary matrix

B, where elements bm,n = 1 if the boundary between leaves m and n is active

(regions m and n have not been merged) and bm,n = 0 otherwise.

For the rate-distortion optimization, the elements in matrix Q can be defined

to mimic the rate-distortion lagrangian decision as:

qchild1,child2 = Jparent − (Jchild1 + Jchild2) (6.2)

This allows to introduce the local node analysis of equation 4.7 into the global

framework optimization of equation 6.1. Nodes with minimum Lagrangian J

are favored, thus leading to the optimal partition for a given λ (see Figure 4.1).

Note that, by correctly zeroing some elements of matrix B, the whole set of

partitions in H can be unequivocally described. This allows the optimization

to fully exploit the richness of the hierarchical representation. In practice, not

all the variables represented in this matrix are useful, as boundaries between non

adjacent leave regions are not considered in the process. Thus, the maximum

number of hierarchical constrains is proportional to the number of regions in

the leave partition.

The hierarchy H contributes in two aspects to the optimization process. Firstly,

it defines the mergings between regions of its leaves partition LP to form clus-

ters. Secondly, it also includes the order in which these regions should be merged
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to represent each node of the tree. As in [VAM15], these restrictions are en-

coded using two coupled constraints per node. The first constraint imposes that

all the variables representing boundaries between two siblings should have the

same value. The second constraint imposes that for a given node, a variable

representing a boundary between two siblings can only impose a merging if all

the leaves associated with the node are merged.

First, for a given parent node and in order to merge its two siblings, all the

leaves that form the boundaries between these two siblings should be merged.

This is imposed by:

m,n
∑

n 6=l

bm,n = (Nc − 1)bm,l (6.3)

where Nc is the total number of common region boundaries from the leave

partition that represents the union of both siblings, m is a region from the first

sibling and n, l are regions from the second sibling.

Second, for a given parent node and in order to merge its two siblings, the leaves

that form their respective subtrees must also be merged:

n,l
∑

bn,l ≤ Nmbm,o (6.4)

where Nm is the total number of inner region boundaries from the leaves par-

tition of both siblings, m and n are regions from the first sibling and n, l are

regions from the second sibling.

Note that Equation 6.3 guarantees that all boundaries between two siblings

are either active or non active at the same time. Therefore, the second con-

straint 6.4, coupled with the first one, ensures that the optimization process

propagates the second condition to all the node boundaries.

Adding these two constraints to the optimization process of Equation 6.1 results
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in:

min
B

∑

m,n

qm,nbm,n (6.5)

s.t. bm,n ∈ {0, 1} bm,n = bn,m ∀n,m

m,n
∑

n 6=l

bm,n = (Nc − 1)bm,l,

n,l
∑

bn,l ≤ Nmbm,o ∀p ∈ {H}

where p represents any parent node in the collection of hierarchies. The result

of this optimization is a binary matrix B∗ that describes the optimal partition

{P ∗(λ)}. Varying λ different optimal rate-distortion partitions are found. Once

the final partition is found, the vector b that encodes the active boundaries

between leaves is stored. This information allows to recover the final coding

partition from the leaves partition.

6.2 3D Multi-View Scene Representation

using Color and Depth Partitions

The optimization method presented in the previous Section is applied to a 3D

Multi-View representation using color and depth partitions. Prior to the method

presented in this Section, a scene representation method was developed using

only depth map partitions (see Appendix E). In this initial method, multiple

depth partitions were combined in a reference view. Then, an optimization

found a consistent partition across the views. The initial scene representation

method showed the computational complexity and limitations of merging mul-

tiple partitions using a unique hierarchy. This motivated the method presented

here to perform a single-view optimization before combining the information of

multiple views.

The complete multi-view scene representation method is depicted in Figure 6.2.

It starts by finding a partition Pi for each individual view i which merges color

and depth partitions optimally. The single-view processing is done indepen-

dently for each view as shown in Figure 6.3 and explained in Section 6.2.1.

This process provides an optimal color-depth partition for each of the views,
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thus reducing the number of regions of each view before combining the infor-

mation of the multiple views.

Single-View 

Optimization

Multi-View representation

P1 

PMV,1

PMV,N
Multi-View 

Optimization

Single-View 

Optimization

PN 

N views

View ref

3D models

Depth map 1

Decoded 

color image 1

Depth map N

Decoded 

color image N

Figure 6.2: Multi-View representation. For each view i, a joint color and depth
optimization finds a Pi partition. The N Pi partitions are projected to the
reference view where a multi-view optimization finds a consistent partition PMV,i

for the N views.

The information of the multiple views is accumulated into a common reference

view viewref by projecting the Pi into viewref . Then, a multi-view optimization

process (depicted in Figure 6.6) obtains PMV which defines the final coding

partitions for each view. Complete details on this multi-view optimization are

given at Section 6.2.2.

The optimization process of equation 6.5 is referred as:

P ∗(λ) = Optλ(H) (6.6)

where, for a given λ, an optimal partition P ∗ is extracted fromH. For simplicity,

the notation of optimal partitions is reduced from P ∗(λ) to P .

Hierarchies in the single-view and the multi-view stages are built as in Chap-

ter 5: Initial color and depth map partitions (LPColor
i and LP depth

i respectively)

are generated with the methods presented in Chapter 3. Hierarchical repre-

sentations H are generated with 3d bpt method presented in Section 3.3. A

3D region model is used to represent each region in H as presented in Subsec-

tion 5.1.1.1.
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6.2.1 Single-View Optimization

In the Single-View Optimization LPColor
i and LP depth

i are combined into an

optimal partition Pi for each view i as shown in Figure 6.3.

Single-view optimization

Pi
Partition 

Combination

Piୡ_ୢ
Hierarchical 

Representation

Hiୡ_ୢ
Optimization

Depth 

Segmentation

Color 

Segmentation

Depth 

map i

Decoded 

color image i

Nregs_depth

Nregs_color

LPiୈୣ୮th

LPiColor
Figure 6.3: Optimization process for each view. A combined color and depth
optimization is performed finding an optimal combined partition.

LPColor
i and LP depth

i are fused into a partition P c d
i = LP color

i

⋂

LP depth
i that pre-

serves all the boundaries from both partitions as presented in Subsection 4.2.1.1.

The P c d
i is used to build a hierarchy Hc d

i . The optimization procedure in-

troduced in Section 6.1 over that hierarchy obtains an optimal rate-distortion

partition Pi:

Pi = Optλ(H
c d) (6.7)

The equation 6.2 can be expressed as follows:

qchi,1,chi,2
= Jpi − (Jchi,1

+ Jchi,2
) = (6.8)

(Dpi + λRpi)− (Dchi,1
+ λRchi,1

)− (Dchi,2
+ λRchi,2

) =

△Distchi,1,chi,2
+ λ△Ratechi,1,chi,2

where pi is the parent region resulting of the union of children chi,1 and chi,2:

pi = chi,1

⋃

chi,2. △Distchi,1,chi,2
is the increment in distortion caused by the

union and △Ratechi,1,chi,2
is the increment in rate. Typically, the △Distchi,1,chi,2

is positive as representing the depth map with less regions will increase the

distortion and △Ratechi,1,chi,2
is negative.

The distortion of each region k of the hierarchy is computed as the square error

between the 3D planar model and the pixel values of the region, particularizing
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Equation 4.3 as:

Di,k =

NPix
i,k
∑

n=1

|Proji(Πk, n)− gi(n)|
2 (6.9)

where Π3D
k is the plane model for region k, NPix

i,k is the number of pixels of

region k and Proji(Πk, n) is the value of the projected 3D planar model to the

pixel n of region k and gi(n) is the depth value of pixel n. An example of the

projection step is shown in Figure 6.4.

The △Distchi,1,chi,2
is computed as:

△Distchi,1,chi,2
= Dpi −Dchi,1

−Dchi,2
(6.10)

r4

r1 r2

r3

∏2∏1

∏3 3D planes

Image Partition

r1

∏1

∏4

Figure 6.4: The Single-View distortion is computed projecting each 3D planar
model to all the pixels of the corresponding region. The r4 distortion generated
with Π4 is compared with a representation using the child regions r2 and r3,
represented with models Π2 and Π3.

To compute the △Ratechi,1,chi,2
two terms are present: texture and contour.

The texture RT
chi,1,chi,2

is a constant -RT , since with the union only one model

(instead of one for each child) is needed.

Contours of a region may come from two partitions; some from LPColor
i and

some from LP depth
i . The contour cost RC

chi,1,chi,2
is computed by counting the

number of contour elements (two neighboring pixels with different labels define

one contour element between them) of the regions chi,1, chi,2 and multiplying

for the average cost of encoding each contour element:

RC
chi,1,chi,2

= −cA Nchi,1,chi,2
− c′A N ′

chi,1,chi,2
(6.11)
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where Nchi,1,chi,2
and N ′

chi,1,chi,2
are the numbers of common contours of the two

children from the depth and color partitions respectively, while cA and c′A are

the average costs to encode a contour element for either the depth and the color

partitions. Note that contours from the color partition do not introduce any

cost, therefore c′A = 0. The cA has been obtained experimentally using the

multi-view sequences resulting in cA = 1.2 bits per contour position.

Equation 4.4 is computed as:

△Ratechi,1,chi,2
= −RC

chi,1,chi,2
−RT

chi,1,chi,2
= −cA Nchi,1,chi,2

−RT (6.12)

Figure 6.5 shows an example of merging two regions. Encoding r4 instead of

r2 and r3 saves the cost of encoding the boundary between the regions and the

texture coefficients of one region.

r4

r1 r2

r3

r1

Figure 6.5: The Single-View rate for each region is the rate saving promoted
by the merging. Regions r2 and r3 are merged into r4, leading to represent the
depth map without the contour between r2 and r3 and saving one 3D plane.

The color-depth optimization in each view addresses the addition of the depth

boundaries in the color partition in an optimal fashion while reducing heavily

the total number of regions. Doing this procedure in each view also reduces the

number of occluded regions in the Multi-View Optimization.

6.2.2 Multi-View Optimization

The multi-view optimization process is shown in Figure 6.6. The partition Pi of

each of the N views is projected to viewref , obtaining an initial partition P ini
i

for each view:

P ini
i = Projref (Pi) (6.13)
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The projection step uses the camera parameters to translate the information of

each view to the reference view viewref . Pixels in each partition Pi are processed

in scan order and the corresponding pixel labels are projected to viewref . Each

individual projected partition P ini
i is defined by assigning to each pixel position

the label of the nearest projected viewi pixel. With this process the regions

that are near to the camera position prevail over the ones that are further away.

In this projection step, regions of viewi that are occluded in the reference view

are detected. A region is considered occluded if the number of pixels of this

region in viewref is less than half the number of pixels in viewi. Occluded

regions have no valid correspondence in viewref . To solve this, these regions

will be encoded independently in that view and removed from the projected

partition in viewref .

P1
Multi-view optimization

PN
Partition 

Combination
N views

Projection

Projection

Prୣ୤ini
Hierarchical 

Representation
Optimization

Hrୣ୤
P1ini

PNini
3D models

PMV,1

PMV,N

Figure 6.6: Multi-View Optimization process for each view. Partitions from
multiple views are combined in a unique hierarchy. Rate-distortion measures
are computed using all the input views and stored in the hierarchy to find the
joint optimal partition for the multiple views.

The individual projected partitions P ini
i in viewref are accumulated in a unique

partition as stated in Equation 6.14. Unlike the single-view optimization, here

in the projected viewref not all the pixels have a projected label. In order to

obtain a partition with all the pixels assigned to a label, a hole filling algorithm

creates new labels in-between regions with different label. For each combination
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of labels in each viewi, a new label is created in P ini
ref .

P ini
ref =

⋂

i

P ini
i (6.14)

A hierarchical depth representationHref is built using the accumulated partition

P ini
ref . Rate and distortion values for each region in Href are found examining

each partition generated in the N views. The increment of distortion for each

union is computed as:

△Distch1,ch2
=

N
∑

i=1

△Distchi,1,chi,2
(6.15)

where △Distchi,1,chi,2
represents the increment of distortion of each view i as in

Equation 6.10. A graphical example of equation 6.15 is shown in Figure 6.7.

Notice that, in the example, rocl 1 is occluded in viewref . Therefore, rocl 1 does

not participate of the optimization process and is encoded with a independent

plane.

r3 r2

r3viewref
r1 r2

r3viewʹ
r1 r2

r3viewͳ

∏2

∏1 ∏3

rocl 1

∏ocl 1

Figure 6.7: The Multi-View distortion is computed projecting each 3D planar
model to all the pixels of the corresponding region of each image.

Similarly, the rate is computed using the information of all views, adding the

boundary cost (from depth boundaries only, as c′A = 0 for color contours):

△Ratech1,ch2
=

N
∑

i=1

△Ratechi,1,chi,2
(6.16)
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As the same region model encode regions of multiple views, the texture rate is

the same than in the single view optimization:

△Ratech1,ch2
= −cA

N
∑

i=1

Nchi,1,chi,2
−RT (6.17)

An example of computing the rate for the Multi-View optimization is shown in

Figure 6.8.

The PMV partition is obtained using the hierarchical optimization of section 6.1:

PMV = Optλ(Href ) (6.18)

Since the hierarchy Href is build in the viewref , the merging orders are de-

termined in viewref . By incorporating the information of the N views to the

optimization process, the resulting partition PMV defines an optimal partition

in all the views.

r4

r1 r2

r 3           

r1

viewref

r4

r1 r2

r3

r1

viewʹ

r4

r1 r2

r3

r1

viewͳ

rocl 1

Figure 6.8: The Multi-View rate for each region is the rate saving obtained with
the merging. A merging in viewref may force a merging in the other views.

The optimization parameter λ that defines the rate-distortion trade-off is the

quality parameter. By varying λ, different rate-distortion points are found,

being able to obtain 3D scene representations with different level of detail. The

multi-view optimization obtains a set of consistent partitions referred as PMV,i.

An overview of the partitions obtained at every stage is shown in Figure 6.9.

6.3 3D Multi-View Depth Map Coding

In the previous Section, a set of PMV,i partitions and 3D models was found. In

order to convey that information to the decoder a method to pack the informa-
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a) b) c) d) e)

Figure 6.9: Example of the different partitions obtained in the Multi-View
3D Representation a) Input Color partition LPColor

i b) Input Depth partition
LP depth

i c) Result of the Single-View Optimization Pi d) P
ini
ref partition e) Result

of the Multi-View Optimization process PMV,i.

tion of the multiple views is proposed. Figure 6.10 shows the encoding process

for each view i.

Partition bitstream i

Encoder view i

Partition 

Analysis

Contour Coding

Texture bitstream i

PMV,iLPiColor
3D 

models

Depth_edges
Active color 

boundaries i

Texture 

Encoding

Figure 6.10: Encoder scheme. Partition information is generated independently
for each view. Texture encoding encodes the 3D plane in INTRA if it is the
first view where it appears or INTER if it has been encoded previously.

To generate the partition information, the first step consists in analyze which

contours from LP color
i and LP depth

i are present in PMV,i. Contours in PMV,i

from LP depth
i are encoded with Freeman contour coding [Fre61] independently

for each view. For the color contours, information of color boundaries that are

not active (because of region mergings) is sent to the decoder indicating if the
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merging has been done or not. Active information is stored with 1 bit per each

merging in Href as done with the side information in Section 4.1.

Once the partition information has been encoded, the texture coefficients are

generated. The first view encodes the texture information of all the planes asso-

ciated to that view in INTRA mode, while planes from the subsequent views will

be encoded using INTER view prediction when possible. In the INTRA mode,

the 3D planes are represented by using the distance of that plane to a camera

plus the plane orientation. The INTRA mode uses the same representation as

the 3D Single-View depth map coding presented in Section 5.1.1.1.

For subsequent views i, the INTER mode is used. Planes from the first view

are projected to view i as done in the construction of the multi-view partition

in viewref . Each region in partition viewi has a candidate plane from view1.

This plane is compared with a plane coded with INTRA in viewi. The plane

with the lower error is kept. If the plane is coded with INTER, a SKIP mode

is sent, if not the region is INTRA coded.

The bitstream (depicted in Figure 6.11) provides the decoder with the infor-

mation needed to recover the partition and the texture for each region. The

partition bitstream, active color boundaries and texture bitstream for each view

are provided in addition of the number of regions Nregs color in each initial color

partition LP color
i . Nregs color is the same for the N views.

Partition bitstream Active Color Boundaries Texture bitstream

View 1 View N View 1 View N View 1 
INTRA

View N 
INTER

View 2 
INTER

... ... ...Nregs_color 

Figure 6.11: Bitstream with the information of the N views. The depth par-
tition information signal the depth boundaries added to the color information.
With the active boundaries information the final coding partition is obtained.
The texture coefficients for views 2 to N make use of the previous transmitted
coefficients.

The decoder process is depicted in Figure 6.12. For each view, the LP color
i
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is built from the decoded color image. From that partition, color edges are

removed using the active color boundaries information. Then new edges are

added from the partition bitstream. Depth map is recovered by decoding the

texture bitstream and projecting each 3D plane to PMV,i.

Color 

SegmentationDecoded 

color image i

Decoder view i

Partition 

Decoding

Active color

boundaries i

Texture 

Bitstream i

Texture 

Decoding

LPiColor

Decoded 

depth map 

view i

Nregs_color

Partition 

Bitstream i

PMV,i

Figure 6.12: Decoder scheme. LP color
i is generated from the decoded color

image using Nregs color. Using the information of active color boundaries and
the partition bitstream the encoding partition PMV,i is generated. The decoded
depth map for view i obtained by projecting the 3D planes to PMV,i.

6.4 3D Multi-View Results

In this Section, a quantitative evaluation of the 3D Multi-View depth map

representation and coding methods are presented. The RGB-D multi-view se-

quences ballet, undo dancer, breakdancers and ghost town are used for eval-

uation. Each sequence is composed of several color and depth images from

multiple views, as well as camera parameters for each frame (see Appendix A).

The different stages of the 3D Multi-View method are evaluated using 25 frames

of each sequence.

First, different configurations for the 3D multi-view scene representation method

are studied in Section 6.4.1. Then, the 3D multi-view depth map coding method

is compared against HEVC, 3D-HEVC and MV-HEVC in Section 6.4.2.

Experiments will make use of three views as shown in Figure 6.13: viewleft,

viewright and viewref using the same configuration of 3D-HEVC. viewleft and
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viewright are the two base views to encode and viewref is the location selected

to perform the optimization process in the multi-view optimization block (see

Section 6.2). This view corresponds to the virtual view of 3D-HEVC. Color and

depth map images as well as the camera parameters are available in the three

views considered.

viewleft viewrightviewref

view viewview
Figure 6.13: Three views are considered in the generation of results: viewleft,
viewright and viewref . viewref is the intermediate view where the Multi-View
optimization is performed.

6.4.1 3D Multi-View Scene Representation Evaluation

In this Section, the different blocks of the 3D Multi-View Scene Representation

system are analyzed. Results for the different sequences are averaged into a

single rate-distortion curve.

6.4.1.1 Combining Multiple Views

viewleft viewrightviewref

viewview view

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Rate (bpp)

20

25

30

35

40

45

50

P
S

N
R

1 view optimal

2 views optimal

3 views optimal

Figure 6.14: Results in the viewref . 1 view configuration have only information
of viewref , 2 view configuration use the 2 views projected to viewref and 3 view
configuration uses the three of them.
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The first experiment of the 3D Scene Representation recuperates the configura-

tion used in Appendix E to analyze their limitations. It combines depth parti-

tions (LP depth
i ) from multiple views without the single-view optimization. Thus,

the multi-view optimization stage of Section 6.2.2 is evaluated using LP depth
i as

Pi partitions for the different views. Different configurations are used to analyze

their performance: the 1 view optimal configuration uses only information from

viewref in the multi-view optimization process (Equations 6.14 to 6.18 with

P ini
ref = LP depth

ref ). The 2 views optimal configuration uses information of viewleft

and viewright (P
ini
ref = LP depth

left

⋂

LP depth
right ) and in the 3 views optimal all 3 views

are used.

viewrefviewleft viewright

view

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Rate (bpp)

20

25

30
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40
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50

P
S

N
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Multiview 1 view

Multiview 2 view

Multiview 3 view

Single view

Figure 6.15: Results from Figure 6.14 are translated to viewleft and viewright.
The three multi-view configuration (all with hierarchy built in viewref ) are
compared with a hierarchy in each view independently.

Results are analyzed first in viewref . Figure 6.14 shows the results of different

configurations. The 1 view optimal configuration, which only uses information

from viewref , obtains the higher rate-distortion figures. In the 3 views optimal,

results are slightly below the 1 view optimal. As the projection from these views

to viewref is not able to match all the depth boundaries in viewref , the results

for the 2 views optimal are below the 1 view configuration.

The resulting partitions are then evaluated in viewleft and viewright comparing

also to a single-view optimization done in each view independently. Results

are shown in Figure 6.15. Each region that is not present in viewref (occluded
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regions) is encoded with an additional 3D planar model in that view. The

different multi-view configurations achieve similar results, all of them below the

results of the single-view configuration. This behavior is due to the fact that

the hierarchical optimization in viewref restricts the possible mergings in the

other views and that an extra rate is needed to encode occluded regions.

The use of a single-view optimization prior to the multi-view stage overcomes

the limitations of restricting mergings in other views. With the single-view

optimization, the number of regions in the different views is reduced before

building the shared hierarchy between views in viewref . Being able to merge

regions in a single-view reduces the number of regions that are occluded in

viewref while creating a hierarchy Href in viewref with relevant regions.

6.4.1.2 Single View Optimization: Rate-distortion

In this section the performance of the rate-distortion optimization method in the

Single-View Configuration is studied. Different cuts of the hierarchy Hc d
i are

extracted following the merging sequence are compared with optimal partitions

Pi with different quality parameter λ. By using the 3DMulti-View optimization,

a gain of 2-3 dB over using the Hdepth
i merging sequence is achieved.
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Figure 6.16: Rate-distortion results with the 3D Multi-View optimization
method. Using an initial Hdepth, results from coding the partition with 3D
planes following the merging sequence and with the proposed optimization.
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6.4.1.3 Single View Optimization: Color and Depth Combination

Figure 6.17 shows the R-D curves for three different options: using only a

LPDepth, using only a LPColor and using a P c d. Using only color partition

has the advantage that no contour information has to be sent. Its a good

option for very low bit-rates but the lack of precision in the region boundaries

limits the maximum achievable quality. Use only depth information increase

the quality obtained at the cost of coding all depth contours (increased rate).

The combination of color and depth provides a good trade-off because most

of the depth contours can be approximated using color boundaries and only a

reduced set of depth contours not present in the color partition must be sent.
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Figure 6.17: R-D curves using LPColor, LPDepth and combined P c d to encode
depth maps. Partitions using depth include the cost of encoding texture and
boundary while the colors only need texture information.

6.4.2 3D Multi-View Depth Map Coding Results

Configuration setup for the experiment is provided in Appendix B. For each

sequence, three views are used, viewleft and viewright are encoded (each view

independently) and the middle one is employed as the location for the viewref .

The view rendered using the original depth maps serves as a reference for the

different methods in the virtual view. As the 3D multi-view method does not

have temporal prediction, only intra modes for the different methods are taken.

To evaluate the performance of the 3D multi-view system, PSNR and SSIM
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measures (see Appendix C) were taken. As both measures show similar tenden-

cies, only the PSNR will be shown to evaluate the different techniques.
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Figure 6.18: Distribution of rate in texture, partition and active boundaries
information for different rate-distortion points.

To evaluate the distribution of rate among texture, boundaries and active

boundaries information, the bitstream presented in Section 6.3 was analyzed

to determine the different contributions. Figure 6.18 shows the rate distribu-

tion among each category. Each bar is normalized with the maximum rate in

the last column. The cost of encoding the texture and the information of ac-

tive boundaries remains fairly constant among all the different rate-distortion

points. However, the partition cost becomes the prevailing one as the rate

increases. The results of the optimization depend on the given budget rate.

When the budget is low, only color boundaries are added. When more bits can

be allocated, the optimization adds the costly depth boundaries.

Results measured on the depth map for the different sequences are shown in

Figure 6.19. In that comparison, the 3D-HEVC performs worse than the other

HEVC configurations methods of the literature. As explained in Section 5.2,

this is because color and depth map for two views are encoded together in 3D-

HEVC. The view synthesis optimization in 3D-HEVC maximize the quality in

the virtual view and not directly in the depth map. The 3D multi-view method

outperforms the single-view approach presented in Chapter 5 (3d Single-View)

for all the sequences. The use of the 3D multi-view optimization allows a gain
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Figure 6.19: Multi-View results: rate-distortion evaluated over depth map.

over the 2 dB for the different sequences. This improvement is noteworthy

for the undo dancer sequence, where the planar characteristic of the scene can

be fully exploited. On the other hand, the 3D multi-view method has more

problems with the ghost town sequence. In that sequence, the color segmen-

tation is not able to properly segment elements at different depths since all of

them have the same tonality. In that case the number of contours added for

the Multi-View approach is similar to the Single-View approach, thus achieving

comparable results.

In sequences where the depth map is noisier, as ballet and breakdancers, the

3D planar segments are not able to represent correctly the depth maps, thus

obtaining worse results than the HEVC standards.

Results in the rendered virtual view are shown in Figure 6.20. The results of
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Figure 6.20: Multi-View results: rate-distortion evaluated over rendered view.

the planar implementations achieve better results than HEVC and MV-HEVC

in ballet and undo dancer and are closer than in the depth map comparison in

the other sequences. Notice that in undo dancer, 3D-HEVC does not improve

HEVC or MV-HEVC. As explained in the depth map domain, this is due to 3D-

HEVC encoding together color and depth information. Here only depth maps

from 3D-HEVC are taken, using the same color image than the other methods

for generating the rendered view. The results for Figure 6.20 are summarized

in Tables 1 and 2, where the Bjontegaard’s metric to compute the average gain

in PSNR Bjontegaard delta PSNR (BD-PSNR) and to compute the average

saving in bitrate Bjontegaard delta RATE (BD-RATE) are shown, taking the

HEVC as a reference.

The 3D multi-view method improves the rate-distortion results of the 3D single-

view method in Chapter 5 for all the sequences in the depth map. This result
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Table 6.1: BD-RATE

MV-HEVC 3D-HEVC 3D Single-View 3D Multi-View
undo dancer -23.69 -40.97 -36.94 -49.16
ghost town -39.96 -64.50 42.03 2.91
ballet -6.03 -71.89 -37.16 -41.63
breakdancers -6.16 -35.71 48.46 150.13

Table 6.2: BD-PSNR

MV-HEVC 3D-HEVC 3D Single-View 3D Multi-View
undo dancer 1.16 1.80 2.12 3.38
ghost town 1.43 2.16 -1.03 0.01
ballet 0.20 3.47 1.57 1.51
breakdancers 0.17 1.02 -1.03 -2.57

is not translated equally to the virtual view. For ballet and breakdancers, the

results in the virtual view are below the single-view algorithm. This is because

the multi-view algorithm reduces the number of 3D planes when encoding the

depth map. ballet and breakdancers are noisier and present a larger base-line

between views. The reduced number of segments in the multi-view scheme

penalizes the performance of the method. On the other hand, in undo dancer

the planar characteristics of their depth maps allow an improvement over the

HEVC standards.





Chapter 7

Conclusions

This thesis is divided in three main parts. The first part tackles the problem of

generating image partitions adapted to depth map coding, both for color images

and for depth map images. The second and third parts uses the set of partitions

generated to encode depth maps. In the second part, 2D segmentation-based

techniques are used to encode depth maps. In the third part, 3D region models

obtain 3D representations of the scene while encoding the depth maps.

Two image segmentation algorithms have been introduced for generating the

color and depth partitions independently. For the color segmentation, the

bpt spx criterion has been proposed which adds a new term based on the dis-

tance between region centroids in order to obtain compact regions has been

proposed. The segmentation results improve the previous criteria in terms of

precision and F-measure over boundaries, obtaining results similar to partitions

obtained with state-of-the-art SLICS method.

The bpt 3d rgrow depth segmentation method uses a 3D planar region model

alike to the 3D representation desired for the multi-view depth map encoding.

In this model, each region is characterized by the centroid of the 3D points of

the region and the normal orientation of the plane. Comparing with different

state of the art segmentation methods, it is shown the benefits of using the

proposed method for depth map compression.
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The proposed 2D Single-View Depth Map Coding techniques validate the use of

the redundancy of color images and depth maps to improve depth map coding

efficiency. In the Color-Based hierarchical optimization, the benefits of using

a hierarchy of regions to extract the final coding partition have been shown.

In the fusion of color and depth partition method, the necessity to explicitly

signal depth edges to overcome color-based segmentation limitations have been

studied. All depth edges are added to the color partition to obtain the coding

partition.

The 3D single-view coding proposed uses the two segmentation techniques intro-

duced in this work. It combines the color partition and the depth map partition

to obtain the final coding partition that properly segments the depth map. A

difference of the fusion method, not all depth edges are signaled, a partition

decision step selects the most important ones.

In the multi-view domain, in order to work with the multiple images the rate-

distortion optimization problem is formulated as a QSAP. Partitions are defined

in terms of boundaries between regions and hierarchical constraints are added to

solve the QSAP with a linear programming relaxation approach. A consistent

segmentation among the different views is obtained with the rate-distortion

optimization. This representation retrieves a unique 3D planar decomposition

of the scene. A method to encode the 3D planar decomposition for depth map

coding application has been proposed.

Depth map coding techniques proposed in this thesis have been validated against

current standards showing competitive results against HEVC,MV-HEVC and

3D-HEVC standards.

Future Work

In this Thesis the coding of depth maps have been carried out over a single-view

and a multi-view configuration. Some of the future work possibilities include:
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• Exploiting temporal redundancy: video can be represented more effi-

ciently by sending only changes between consecutive images instead of

coding all regions repeatedly. An extension of this work to handle video

sequence would allow to reduce the coding cost for each frame individu-

ally. The QSAP optimization problem can be formulated to work with

multiple hierarchies of different frames.

• Deep learning: the problems of depth estimation and super-resolution

from a single monocular image is being studied with deep learning tech-

niques. In addition of multi-view clues, an estimated depth map obtained

with monocular techniques or an up-sampled depth map can be used as

extra information in the construction of the depth map coding partition.

• Delay and complexity: the different algorithms presented in this work

have been developed without constraints in the delay or complexity of

the different elements. The integration of the different parts as part of a

feasible coding scheme should consider these limitations.

• Depth inconsistencies: the performance of the described methods varies

depending on the sequences considered. The depth maps used in this work

are considered as ground truth and are not modified. Inconsistencies be-

tween views or between color images and depth map are not preprocessed.

These inconsistencies penalize the proposed encoding techniques as it is

assumed that color images and depth maps are well aligned as well as that

depth of different views is consistent across views. Creating new synthetic

sequences or improving the current depth estimation techniques will pro-

vide a larger database to analyze the performance of the different depth

map coding methods.

• Content-based representation: the 3D representation introduced in this

thesis can be used in further task as object recognition or gesture detec-

tion.

• Adaptive encoding: in the depth map coding methods of this thesis all

regions are treated equally. Segmentation-based coding techniques can
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select different quality parameters for each region, assigning more bits in

the most relevant areas of the image.

• 3D region models: the 3D scene representation and multi-view coding use

3D plane models to represent the scene. Region models of greater com-

plexity such as quadric surfaces can be added on the generic optimization

step to represent the scene.



Appendix A

Databases

In this appendix the MVD sequences used in the thesis are presented. In first

place the MVD sequences used in the development of the MVC and 3D-HEVC

standards from MPEG are presented and then the Middlebury Stereo Dataset.

A.1 MVD Sequences

The MVD camera sequences in this Section were captured by synchronized

cameras with camera arrays. The MVD sequence in different configura-

tions. The MVD sequences that were used in this work are the following:

kendo [TFT+09], balloons [TFT+09], breakdancers [ZKU+04], ballet [ZKU+04],

undo dancer [Nok09] and ghost town [Nok09]. In the following it is detailed the

views used in the experiments and characteristics of each sequence. For each

sequence samples frame (frame 51) of the three views used are shown.

A.1.1 Kendo and Balloons

• Number of cameras: 7

• Spatial resolution: 1024x768

• Frame rate: 30 fps
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• Left - Reference - Right Camera: 1 - 3 - 5

Left view Reference view Right view

Figure A.1: Kendo sequence.

Left view Reference view Right view

Figure A.2: Balloons sequence.

A.1.2 Ballet and Breakdancers

• Number of cameras: 8
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• Spatial resolution: 1024x768

• Frame rate: 15 fps

• Left - Reference - Right Camera: 1 - 2 - 3

Left view Reference view Right view

Figure A.3: Ballet sequence.

Left view Reference view Right view

Figure A.4: Breakdancers sequence.
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A.1.3 Undo Dancer and Ghost Town

• Number of cameras: 5

• Spatial resolution: 1920x1088

• Frame rate: 25 fps

• Left - Reference - Right Camera: 1 - 5 - 9

Left view Reference view Right view

Figure A.5: Undo Dancer sequence.

Left view Reference view Right view

Figure A.6: Ghost Town sequence.
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A.2 Middlebury Dataset

The Middlebury Stereo Dataset [SS03] consists in many stereo images with

ground-truth disparities between several view-points. It is widely used as a

database to evaluate different methods of computing disparities. Here the

ground-truth disparities are used to generate the depth map for two viewpoints

with the disparities to depth transformation:

depth(x, y) =
f ∗B

disp(x, y)
(A.1)

where f is the focal length in pixels, B is the Baseline (distance between the

two cameras), disp(x,y) is the disparity of the pixel x,y and depth(x,y) is the

absolute depth of the pixel x,y.

The absolute depth is quantized and stored in 8 bits:

depth(x, y)0to255 =
1.0

depth(x, y)

255.0
∗ (

1.0

MinZ
−

1.0

MaxZ
) +

1.0

MaxZ

(A.2)

where MinZ and MaxZ is the minimum and maximum depth for the sequence.

The datasets chosen from the website are the 2003 [SS03], 2005 [SP07] and

2006 [HS07] which were the ones used in [OA14]. Each sequence contains

color information from several viewpoints and disparity for two of them. These

ground-truth disparities have some unknown values which have been filled using

the same in-painting method than [OA14] to have a fair comparison between

the methods. The images are cropped to a multiple of 8 in order to be able to

be encoded with the AVC/H.264 and HEVC encoders.
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Figure A.7: Color images, depth with holes and depth in-painted for the two
views of Aloe sequence.



Appendix B

Experiment Configuration

The configuration to evaluate the performance of the depth map coding tech-

niques proposed in this thesis are shown in Figure B.1. For each sequence,

three views are used, the left and right views are encoded and the middle one

is employed as the location for the virtual view. Color and depth map images

for the three views are available.

Figure B.1: Virtual view generation.

The performance of the depth map coding technique can be compared in the

depth map, giving an overview of the compression efficiency of the method. As

depth maps are used to render new images and not to be viewed directly, the

relevant comparison is performed in the virtual view. The generation of the
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rendered virtual view is done using the color image and the depth map from

left and right view.

Software used for the generation of virtual views are:

• View synthesis reference software (VSRS 3.5), in Tech. Rep. ISO/IEC

JTC1/SC29/WG11, March 2010.

• HM Software for the HEVC project. Version 16.4 of the software, March

2015.

Figure B.2: Evaluation in the rendered virtual view.

VSRS 3.5 is used for ballet and breakdancers sequences and the HEVC software

for the other sequences. The comparative with the rendered view is shown in

Figure B.2. Additionally the comparison can be done with the original color

image.



Appendix C

Error Measures

C.1 Image Quality Measures

PSNR

PSNR is a term for the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the fidelity of its representation.

Because many signals have a very wide dynamic range, PSNR is usually ex-

pressed in terms of the logarithmic decibel scale. PSNR is commonly used to

measure the quality of reconstruction of lossy compression codecs. The signal

in this case is the original data, and the noise is the error introduced by com-

pression. When comparing compression codecs, PSNR is an approximation to

human perception of reconstruction quality. Although a higher PSNR generally

indicates that the reconstruction is of higher quality, in some cases is not true,

it is only conclusively valid when compares results from the same codec type

and same content.

PSNR is most easily defined via the mean squared error (MSE). Given a noise-

free m×n monochrome image x and its noisy approximation y, MSE is defined

as:

MSE(x, y) =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[x(i, j)− y(i, j)]2 (C.1)
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The PSNR is defined as:

PSNR(x, y) = 10 log10

(

MAX2
x

MSE(x, y)

)

(C.2)

MAXI is the maximum possible pixel value of the image. When the pixels are

represented using 8 bits per sample, this is 255. For color images with three

RGB values per pixel, the definition of PSNR is the same except the MSE is

the sum over all squared value differences divided by image size and by three.

Alternately, for color images the image is converted to a different color space

and PSNR is reported against each channel of that color space.

SSIM

The SSIM index [WBSS04] is a method for measuring the similarity between

two images. SSIM is designed to improve on traditional methods like PSNR

and MSE, which have proven to be inconsistent with human eye perception. A

difference of PSNR and MSE, SSIM considers image degradation as perceived

change in structural information. Structural information is the idea that the

pixels have strong inter-dependencies especially when they are spatially close.

These dependencies carry important information about the structure of the

objects in the visual scene. The SSIM metric is calculated on various windows

of an image.

x and y are discrete non-negative signals; µx, σ
2
x, and σxy are the mean value

of x, the variance of x, and the covariance of x and y, respectively. According

to the luminance, contrast, and structure comparison measures were given as

follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(C.3)

c(x, y) =
2 σxσy + C2

σ2
x + σ2

y + C2

(C.4)
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s(x, y) =
σxy + C3

σxσy + C3

(C.5)

where C1, C2 and C3 are small constants given by C1 = (K1 ·L)
2 ; C2 = (K2 ·L)

2

and C3 = C2/2. Here L is the dynamic range of the pixel values, and K1 ≪ 1

and K2 ≪ 1 are two scalar constants. The general form of the SSIM index

between signal x and y is defined as:

SSIM(x, y) = l(x, y)c(x, y)s(x, y) =
(2µxµy + C1)(2 σxy + C2)

(µ2
x + µ2

y + C1)(σx + σy + C2)
(C.6)

In order to evaluate the image quality this formula is applied only on luma. The

resultant SSIM index is a decimal value between -1 and 1, and value 1 is only

reachable in the case of two identical sets of data. Typically it is calculated

on window sizes of 8 × 8. The window can be displaced pixel-by-pixel on the

image but the authors propose to use only a subgroup of the possible windows

to reduce the complexity of the calculation. SSIM is maximal when two images

are coinciding.

Bjontegaard metrics

Bjontegaard metric are metrics to compute the difference between two rate-

distortion plots. PSNR has been a widely used metric for objective test of

video quality. The encoding quality of two codecs can also be compared by using

their rate-distortion curves and Bjontegaard proposed a method of calculation

of average PSNR differences between curves in [Bjo01].

The method is based on fitting a curve through multiple data points consisting of

PSNR-bitrate obtained by encoding the video sequence at different quantization

parameter values. An expression for the integral of such curve is formulated

for two different codecs. The average difference is then calculated by taking

difference between the integrals, divided by the integration interval.
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The Bjontegaard model is used to calculate the average PSNR and bit rate

differences between two rate-distortion curves obtained from the PSNR mea-

surement when encoding a content at different bit rates. The model reports two

values:

• Bjontegaard delta PSNR (BD-PSNR), which corresponds to the average

PSNR difference in dB for the same bit rate.

• Bjontegaard delta RATE (BD-RATE), which corresponds to the average

bit rate difference in percent for the same PSNR.

C.2 Segmentation Quality Measures

Precision and recall are the basic measures used in evaluating search strategies.

In pattern recognition and information retrieval, precision is the fraction of

retrieved instances that are relevant, while recall (also known as sensitivity) is

the fraction of relevant instances that are retrieved.

In a classification task, the precision for a class is the number of true positives

(i.e. the number of items correctly labeled as belonging to the positive class)

divided by the total number of elements labeled as belonging to the positive class

(i.e. the sum of true positives and false positives, which are items incorrectly

labeled as belonging to the class). Recall in this context is defined as the number

of true positives divided by the total number of elements that actually belong

to the positive class (i.e. the sum of true positives and false negatives, which

are items which were not labeled as belonging to the positive class but should

have been):

Precision =
tp

tp + fp
(C.7)

Recall =
tp

tp + fn
(C.8)
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where tp,fp,fn are the true positives, the false positive and the false negatives

respectively.

A precision score of 1.0 for a class C means that every item labeled as belonging

to class C does indeed belong to class C (but says nothing about the number

of items from class C that were not labeled correctly) whereas a recall of 1.0

means that every item from class C was labeled as belonging to class C (but says

nothing about how many other items were incorrectly also labeled as belonging

to class C).

A measure that combines precision and recall is the harmonic mean of precision

and recall, the traditional F-measure or balanced F-score:

F = 2
precision× recall

precision+ recall
(C.9)

This is also known as the F1 measure, because recall and precision are evenly

weighted.





Appendix D

Segmentation-Based Coding

Analysis

The choice of methods to perform the texture and contour coding in Chap-

ter 4 was performed without an exhaustive analysis of the alternatives. In this

Appendix an analysis of different coding options for contour and texture is de-

veloped. A selection of methods presented in Section 2.3 were studied to find the

most suitable for depth map coding. Experiments in this Appendix have been

performed using the proposed color segmentation and depth map segmentation

techniques presented in Chapter 3.

D.1 Contour Coding

The evaluation of the different methods have been carried out over the multi-

view sequences undo dancer, balloons, kendo, breakdancers and ballet. Sample

images of the MVD sequences and the configuration used are found in Ap-

pendix A, B and C. Using an initial color partition, new regions are progres-

sively added by coding the position of the boundaries with the different methods:

Chain code, JBIG2 and PAQ (version 8). Intra coding mode and inter mode

are explored. In the intra mode, all the boundaries of the partition are encoded

without any reference partition. The inter mode uses the color partition as a

support to add depth boundaries. The inter mode is obtained just encoding the
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location of the new contours (with chain code coding) or by signaling all the

pixels that have a new label within the region. Figure D.1 shows an example of

the different coding options considered. The new label option has the limitation

that two new adjacent regions can not be created inside the same region.

Intra partition for 2 rate-distortion points

Inter partition for 2 rate-distortion points

New labels for 2 rate-distortion points

Figure D.1: Different modes used for adding new regions given an initial par-
tition. In the Inter Partition the boundaries of the original partitions are not
coded. In the first two options the image size is (2N*1)x(2M+1) to store all the
possible position of the boundaries. In the new labels option the image have
size NxM.

The experiments are performed over 20 depth images for the different sequences

using an increasing number of new contours. The intra and inter modes are

coded with chain code, jbig2 and paq8 while the new labels only for jbig2 and
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paq8. Figure D.2 shows the results for each sequence. The horizontal axis shows

different percentage of contours added while the vertical axis shows the rate of

coding this boundaries in bits per pixel. The intra modes perform worst than

the inter modes, which is expectable since little new boundaries are added. The

PAQ8 contour intra doubles in rate all the other modes and is removed for the

comparison averaging all the sequences in Figure D.3.

As can be seen in the average plot, the chain code inter method is the one

that performs better followed closely for the two JBIG2 inter methods. As a

result, the chain code inter method is taken as the option to code the contours

generated with the depth partition.

undo dancer balloons kendo

breakdancers ballet

Figure D.2: Results of contour coding for the different sequences.

D.2 Texture Coding

In this section, different methods have been studied for coding the texture in

each region. Different partitions have been used to encode the depth maps.

Starting from a color based partition, new depth boundaries are progressively

added. The different options considered were:
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Figure D.3: Contour coding results averaged for all sequences.

• SA-DCT blocks: a SA-DCT with blocks of 8x8 in each region. In blocks

where all the 8x8 pixels are in the same region a normal DCT is performed,

in border blocks a Shape Adaptive DCT is used. This method is able to

obtain high PSNR figures at the cost of employing several coefficients for

each region.

• SA-DCT region: a SA-DCT for the whole region together. With this

method a unique SA-DCT is performed, but only smooth transitions in

the region can be represented.

• Orthobasis: an orthonormal basis is build depending of the shape of the

region. It can represent smooth transitions, but their behavior is incon-

sistent. Increasing the number of bits of each coefficient not always is

translated to better distortion values.

• Region Mean: using only the mean depth value to encode each region. It

is the simplest codification option and is used as a baseline.

• 3D planes: model used in the 3D depth map segmentation introduced

in Section 3.3 and detailed in Subsection 5.1.1.1. Texture information of

each region is back-projected to the 3D domain and a plane is fitted with

RANSAC. Plane coefficients are stored using the distance of the plane

with the camera and their orientation.



D.2 Texture Coding 119

ballet

undo

dancer

kendo

balloons

break-

dancers

Color Partition Depth Partition Coded Partition rd 1 Coded Partition rd 2

Figure D.4: Texture coding: Results evaluated with the different partitions over
depth maps.

The performance of each method is evaluated with the different partitions ob-

tained with: the initial color partition, the initial depth partition and two parti-

tions combining color and depth partitions for two rate-distortion points. In all

the plots only the texture cost is represented, as here the interest is on finding

the best coding option for a given partition.

Figure D.4 shows the performance of the different partitions evaluated directly

over the depth map. The first column shows the result using the color partition.

As some meaningful depth edges are missing in these partitions, results using 3D

planes are worse than other coding options that are better at representing sharp
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edges. In sequences where depth maps are noisier (kendo and balloons) the

planes fail at representing that behavior, leading to low rate-distortion figures.

Notice that in these sequences the region mean method is better at representing

the depth map since none technique can represent correctly the transitions.

The second column shows the results using the depth partition. The perfor-

mance of the proposed technique is better than the alternatives. Since a hi-

erarchical method that merges segments with a 3D planar model is proposed,

the resulting segments can be approximated correctly with a 3D plane. This

behavior can be observed also in the other two rows since in there also depth

edges are used.

The method that achieves similar results of 3D planes is the SA-DCT region.

It is able to obtain similar distortion figures with the same rate. However the

SA-DCT blocks needs a much higher rate to represent the depth map. The

orthobasis method achieves lower performance across different rates.

The main advantages of the 3D planes method can be observed in Figure D.5. In

this Figure the distortion measures are found in the virtual view. The virtual

view is generated with the original depth map and with the depth obtained

with the different techniques. The proposed texture coding technique is able

to obtain better results than the other coding techniques. Even in sequences

where the results in D.4 where much lower than the others (for low bitrates) the

3D planes method is able to generate a better representation when evaluated in

virtual view.

The proposed 3D coding technique do not represent the depth map with all

the small variations inside each region leading to lower results when comparing

in depth map, but is able to represent the 3D structure of the scene correctly,

obtaining improved results in the virtual view. The result is even better in

undo dancer or ballet where the depth is smoother than the other sequences,

resulting in regions quasi-planar.
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ballet

undo

dancer

kendo

balloons

break-

dancers

Color Partition Depth Partition Coded Partition rd 1 Coded Partition rd 2

Figure D.5: Texture coding: results evaluated with the different partitions over
virtual views.

D.3 Contour and Texture Coding Cost

In this experiment the color and depth partitions are encoded as the previous

experiment but in this case contour and texture costs are accumulated in a

unique figure. The color partition is assumed to be available and therefore

their cost is zero. Results are shown in Figure D.6. The hybrid color+depth

technique obtains the final coding partition achieve better results than coding

directly the ideal depth map. In the sequences where the differences between

color and depth are greater -kendo and balloons- this results are comparable,

but in sequences with acceptable depth map the hybrid approach is better than
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using only the depth partition.

ballet

undo

dancer

kendo

balloons

break-

dancers

Depth Map Virtual View

Figure D.6: Contour and texture coding: Results evaluated with the different
partitions adding the contour coding cost.



Appendix E

3D Multi-View Scene

Representation using Depth

Partitions

As a first application for the hierarchical optimization presented in Section 6.1,

a method to jointly extract a 3D planar representation and a consistent seg-

mentation of the scene from multiple views is proposed.

The pipeline of the segmentation process can be seen in Figure E.1. The infor-

mation of each depth map is back-projected to the 3D domain using the camera

parameters generating a unique point cloud for all the views. Using the camera

model of each view, pixels from the multiple depth maps are back-projected to

the 3D world, as shown in Figure E.1.b.

The information of the multiple views will be accumulated to viewref . However,

the handling of occlusions can not be done in the 2D image domain [LKF16].

The overcome that, a region growing algorithm [RvdHV06] obtains an initial

segmentation directly on the 3D point cloud. The initial partition of the hier-

archy for viewref is obtained by projecting this point cloud segmentation into

viewref . In this process, 3D points are projected keeping the foreground ele-

ments at each pixel location of viewref .

123
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a) viewi

depth
maps

b) 3D Point
Cloud

c) Hierarchical
Representation

d) Rate-
distortion
optimization

e) viewi

Final
Partitions

Figure E.1: a) Depth images of multiple views. b) The depth information of
the multiple views are back-projected to the 3D world to generate a unique
point cloud. c) The point cloud is segmented in the 3D domain and projected
to a reference view where a hierarchy of regions is built. d) A rate-distortion
optimization finds the optimal partition in the hierarchy. e) The partition in
the reference view defines a partition in each of the input views.

As the projected partition has holes in pixels where no 3D point from the

point cloud is projected, a hole filling over the projected partition obtains the

leaves partition LP . The hole filling stage creates a partition with new labels

in-between regions with different label while filling the interior of regions.

The hierarchy is built with the BPT merging criterion presented in Section 3.3

using LP as initial partition. Iteratively, the two most similar regions at each

step are merged until one region represents the whole image, as shown in Fig-

ure 3.1. The merging process uses a 3D planar model to represent each region

and a similarity measure that computes the distance between planes. For each

node, a 3D planar model is fitted with RANSAC [FB81] using the corresponding

points in the 3D point cloud.

By assigning a rate-distortion measure to each node of the hierarchy in viewref ,

the optimal representation in terms of rate-distortion is retrieved. In this ap-

plication, the main objective is the consistent segmentation of multiple depth

maps. Thus, the parameter relevant is the number of regions to represent the
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whole multi-view scene. To this end, the cost of coding the depth edges is not

incorporated to the rate-distortion optimization.

The optimization parameter λ that defines the rate-distortion trade-off is the

quality parameter. By varying λ, different rate-distortion points are found,

being able to obtain 3D scene representations with different level of detail.

A search in the hierarchical representation finds the optimal partition in terms

of rate-distortion as presented in Section 6.1. The optimal partition obtained

defines a partition for viewref . To find the final partitions for the set of input

viewi views, the point cloud created using the partitioned viewref is projected to

each viewi. The optimal partition is obtained by replicating the information of

active boundaries B∗ to each viewi, obtaining a consistent segmentation across

the views.

Scene Representation Results

In this section, quantitative evaluations of the consistent segmentation results

are provided. As the technique aims to segment RGB-D multi-view sequences,

the multi-view sequences ballet, undo dancer and ghost town are used. Se-

quences include color images, depth maps and camera parameters for each view.

Sample images and cameras taken for each sequence are detailed in Appendix A.

In order to assess the scene representation technique, different configurations

to build the hierarchy are explored. A 2 views configuration which uses two

viewi different than viewref is compared to a 3 views configuration that also

incorporates the viewref . A hierarchy obtained solely in viewref is added to

observe the benefits of the multi-view approach (1 view). To compare the

different configurations, each region is represented with the proposed 3D planar

model.

Results in reference view

Two results are generated for each configuration. The ones obtained with the

hierarchy presented in Section 4.1.1 (following the merging sequence) and the
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optimal ones obtained in the rate-distortion optimization.

Figure E.2: Rate-distortion results in the viewref . For each configuration, the
non-optimal solution following the merging sequence and the optimal results
are shown.

The optimization process allows keeping the maximal PSNR achievable with

a reduction of the number of regions, yielding gains above 3 dB compared to

the non optimal approach. The hierarchy obtained by the 1 view configuration

results in higher PSNR since the partition is generated directly in that view. It

is noticeable the gain when adding a third view, since the 3 views configuration

obtains an average gain of 2dB’s at high rates with respect to the 2 views

configuration.

Results in side views

The optimal partitions found in viewref are translated to the different views

viewi. As the 1 view configuration only uses the viewref , the viewi partitions

are not available, hence the partitions of the 3 views configuration are used.

Figure E.3 shows that the 3 views configuration obtains higher rate-distortion

figures than the 1 view configuration, supporting the multi-view approach of

the proposed algorithm.
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Figure E.3: Averaged Rate-distortion results in the views viewi.

Figure E.4: Depth map coding. Depth maps of viewi are used to render a color
image in viewref position.

Depth map coding

As an application of the proposed 3D scene representation, the resulting par-

titions in viewi are used to encode depth maps in multi-view sequences. The

methodology used is as [MMRH16] where, starting from a color partition, the

main depth edges are added progressively, obtaining different rate-distortion
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points. Once the final partition is build, a 3D plane fitting stage finds the best

plane for each region. Here it is compared the method presented in Chapter 5

(the depth partition is obtained independently for each view using the non op-

timal solution following the merging sequence: 1 view merg.seq.), the optimal 3

views configuration proposed in this work (3 views optimization) and the HEVC

standard and 3D-HEVC.

Each depth map is coded in the two viewi and are used to generate a rendered

color image in the viewref position (see Appendix B. The resulting color images

are compared with the original color image of the viewref . In Figure E.4 the

rate-distortion results of the method compared with HEVC standards is shown.

Since the 3 views configuration is able to find a better depth partition across

views, the depth map obtained with that representation is able to over-perform

both [MMRH16] and HEVC results.
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