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На дъщеря ми Лорея! 

На съпругата ми Оляна! 

На майка ми, баща ми и брат ми! 

На дядо ми Денчо! 

 





 

 

 

 

 

 

 

 

“Една борба, 

Една любов, 

Един отбор в света - 

Има свята истина една: 

САМО, САМО ЦСКА!” 

 

Песен на привържениците на  ЦСКА (София) 

CSKA (Sofia) supporters’ song 

 

 

 

 

 

 

“Walk on through the wind, 

Walk on through the rain, 

Though your dreams be tossed and blown, 

Walk on, walk on, with hope in your heart, 

And you’ll never walk alone, 

You’ll never walk alone.” 

 

Liverpool FC supporters’ song 

 

 

 





 

 

 

 

 

“It is not our part to master all the tides of the world, but to do 

what is in us for the succor of those years wherein we are set, 

uprooting the evil in the fields that we know, so that those who live 

after may have clean earth to till. What weather they shall have is not 

ours to rule.” 
 

Gandalf 
J.R.R. Tolkien, The Last Debate, The Return of the King 

 

 

 

 

 

 

 

 

 

“The important thing is not to stop questioning. Curiosity has 

its own reason for existence. One cannot help but be in awe when he 

contemplates the mysteries of eternity, of life, of the marvelous 

structure of reality. It is enough if one tries merely to comprehend a 

little of this mystery each day.” 
 

Albert Einstein 
"Old Man's Advice to Youth: 'Never Lose a Holy Curiosity.'" LIFE Magazine, 1955 

 

 

 

 

 

 

 

 

 

“You know nothing, Jon Snow.” 
 

Ygritte 
George R.R. Martin, A Game of Thrones 
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PREFACE TO THESIS 

 

 

Tissue engineering aims to replace restore or help regeneration of injured tissue or organ with 

scaffolds that mimic the natural extracellular matrix (ECM). However, the design of such scaffolds 

requires deeper understanding of the factors that determine the cellular behavior. This Thesis is 

focused on the cell-biomaterials interaction, but it strives to go beyond the classical material science, 

looking for new options to obtain control over the cell behavior.  

Cellular interaction with artificial substrata is a well-described paradigm usually attributed to the 

adsorption of adhesive proteins from the surrounding medium. The recognition of these proteins 

triggers an order of specific signaling events, reminiscent of the natural cell-ECM interactions, which 

affect the behavior of adhering cells.  One important aspect of such an interaction, however, is the 

organization of the matrix proteins - a hallmark for the ordinary ECM.  

Recent studies in our group showed that even in-vitro the cells tend to create organization. They 

remodel the adsorbed matrix proteins (mostly in a fibril-like pattern) as an attempt to make their own 

provisional ECM. Though this phenomenon is described and settled basically to fibronectin (FN), it 

appears to involve also other matrix proteins, for example fibrinogen (FBG), and even collagen IV 

and vitronectin, which, being non fibrillar proteins by their nature, also undergo linear reorganization. 

Thus, cells somehow “prefer” fibrillar protein assemblies trying to imprint such patterns in their 

closest environment. Other types of protein arrangements, however, for example network-like 

assemblies, which are also typical for the ECM, are still insufficiently studied and this is an essential 

part of this PhD work. 

In the first part of the thesis particular attention was devoted on the peculiar behavior of adsorbed 

FN and FBG in the nanoscale that was recently observed by atomic force microscopy (AFM). Joint 

work with the group of Prof Salmeron-Sanches from the Polytechnic University in Valencia  (currently 

in The University of Glasgow) revealed that apart from the classical view for a rather stochastic 

adsorption of matrix proteins, the lateral protein-protein interactions may prevail on some surfaces 

giving rise to self-assembly in a network-like structure, which has significant consequences on the 

protein behavior. The thesis is focused particularly on the biological activity of these networks, while 

the phenomenon of networks assembly itself and its nano-engineering aspects are a matter of 

separate investigations. The studies performed in this thesis clearly suggested that the modulation 

of the network formation (using model surfaces with varying density of -OH groups) has strong 

impact on the cellular behavior – a fact, confirmed with two different cell systems: fibroblasts and 

endothelial cells.   

Another line of research that was followed lies on the fact that in solution matrix proteins can 

sequestrate from the surrounding liquid phase to form structures of various shapes, including fibers 

with a diameter of only few nanometers and lengths up to centimeters, thus resembling the natural 
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ECM components. A fascinating possibility to mimic similar structures is to engineer nanofibers 

based on matrix proteins via electrospinning technology - an approach that was extensively explored 

in the second part of the thesis. It was evidently shown that the cells attach faster to such fibrils and 

readily recognize them – a phenomenon that even not entirely understood was confirmed in series 

of studies. Thus, one can anticipate that mimicking the fibrillar organization of ECM will help to 

understand how cells respond to such an environment, an issue that is fundamental for biology. 

Besides, this approach represents an additional tool for controlling the cell behavior as proposed in 

this thesis. Therefore nanofibers based on natural matrix proteins (e.g., fibrinogen, fibronectin) and 

synthetic polymers (e.g. poly(lactic acid), (PLA); poly(ethylacrilate), (PEA)) were elaborated and 

their implication as a model system revealed that varying with the composition, the organization and 

the mechanical properties of these fibers may be obtained a tight control over the cellular response.  

The Thesis is based on 5 original publications separated in 5 Chapters (2 to 6) ordered in a logic 

and hierarchic way and carrying homonymous titles. A comprehensive Introduction (Chapter 1) and 

short Prefaces to each chapter describes the rationale of the published work and its place within the 

whole topic of the Thesis, formulated in the Aim and Specific Objectives paragraph.
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RESUMEN DEL THESIS 

 

 

La ingeniería de tejidos tiene el objetivo de reemplazar, restaurar o estimular la regeneración de 

tejidos dañados con matrices (“scaffolds”) que mimetizan la matriz extracelular natural (MEC). El 

diseño de dichas matrices, no obstante, requiere un profundo conocimiento de los factores que 

gobiernan el comportamiento celular. Esta tesis se centra en las interacciones entre células y 

biomateriales, pero pretende ir más allá de los límites de la ciencia de materiales con el fin de 

contribuir al desarrollo de nuevos métodos para controlar el comportamiento celular. 

Las interacciones de las células con sustratos artificiales se han descrito dentro de un paradigma 

bien caracterizado, atribuido a la adsorción de proteínas adhesivas del medio circundante. El 

reconocimiento de dichas proteínas desencadena una serie de eventos de señalización celular 

reminiscentes de las interacciones célula-MEC que se dan in vivo y que afectan al comportamiento 

de las células adherentes.  

Un aspecto importante de dicha interacción es la organización de las proteínas de la matriz, que 

caracteriza la MEC. Estudios recientes de nuestro grupo han demostrado que incluso in vitro las 

células tienden a crear organización, remodelando las proteínas de matriz adsorbidas (en un patrón 

fibrilar) a fin de generar su propia MEC provisional. Aunque este fenómeno depende básicamente 

de la fibronectina (FN), otras proteínas como el fibrinógeno (FBG), el colágeno IV y la vitronectina, 

también participan, experimentando una reorganización fibrilar a pesar de últimos ser proteínas no 

fibrilares por naturaleza. Por lo tanto, las células aparentemente “prefieren” una disposición “fibrilar” 

de las proteínas a su alrededor y tratan de crear estos patrones en su entorno. Otros tipos de 

disposición típicos en la MEC, por ejemplo, en forma de red, han sido sin embargo poco estudiados, 

y serán el eje esencial de este trabajo doctoral. 

En la primera parte de esta tesis, se presta especial atención al peculiar comportamiento en la 

nanoescala de la FN y la FBG adsorbidas, recientemente observado mediante microscopía de 

fuerza atómica (MFA). Nuestro trabajo conjunto con el Prof. Salmerón-Sanches de la Universidad 

Politécnica de Valencia (ahora en Glasgow), reveló que aparte de la visión clásica de la adsorción 

de proteínas como un proceso estocástico, las interacciones laterales proteína-proteína pueden 

prevalecer en algunas superficies dando lugar al auto-ensamblaje en estructuras de red, con 

efectos significativos en su comportamiento. Esta tesis se centra especialmente en la actividad 

biológica de estas redes, mientras que los fenómenos de formación de estructuras reticulares y sus 

aspectos de bioingeniería son objeto de investigaciones aparte. Los estudios realizados en esta 

tesis claramente sugieren que la modulación de la reticulación (usando superficies modelo con 

densidad variable de grupos hidroxilo) tiene un fuerte impacto en el comportamiento celular, 

confirmado mediante dos sistemas modelo muy diferentes (fibroblastos y células endoteliales). 
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Otra línea de investigación se ha centrado en el hecho de que las proteínas de la matriz en solución 

pueden secuestrar de la fase líquida circundante, formando estructuras de formas diversas, 

incluyendo fibras con un diámetro de tan solo unos pocos nanómetros, pero una longitud hasta 

varios centímetros, similares a los componentes naturales de la MEC. La ingeniería de nanofibras 

basada en las proteínas de la matriz, mediante tecnología de “electrospinning”, ofrece posibilidades 

fascinantes para mimetizar estas estructuras. Esta aproximación se explora en la segunda parte de 

esta tesis, en la que se demuestra que las células se anclan más rápido y reconocen más fácilmente 

estas fibrillas, un fenómeno que aunque no es muy bien comprendido se ha confirmado en diversos 

estudios. Por lo tanto, puede anticiparse que mimetizar la organización fibrilar de la MEC puede 

contribuir a comprender como las células responden a su entorno, un fenómeno esencial para la 

biología. 

Aparte, este método representa una herramienta adicional para controlar el comportamiento celular 

como se propone en esta tesis. Por lo tanto, utilizamos nanofibras basadas en las proteínas 

naturales de la matriz (por ejemplo, FBG o FN) así como polímeros sintéticos (como el ácido 

poliláctico, (PLA), o el poli (acrilato de etilo), (PEA)) y estudiamos sus propiedades como sistemas 

modelo. Nuestro trabajo revela que variando la composición, organización y propiedades 

mecánicas de estas fibras puede obtenerse un estrecho control sobre las respuestas celulares. 

Esta tesis se basa en cinco publicaciones originales separadas en 5 capítulos (2 a 6) de título 

homónimo y ordenados de forma lógica y jerárquica. Una detallada introducción (capítulo 1) y cortos 

prefacios en cada capítulo describen la base de cada uno de los trabajos publicados y su lugar en 

el tema general de esta tesis, formulado en el párrafo en que se detallan los objetivos globales y 

específicos. 
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УВОД КЪМ ДИСЕРТАЦИЯТА 

 

 

Тъканното инженерство цели възстановяване или регениране на увредени тъкани или 

органи посредством матрици (“scaffolds”), които имитират естествения екстрацелуларен 

матрикс (ЕЦМ). Разработването на такива подложки обаче изисква дълбоко познаване на 

факторите,  определящи клетъчното поведение. Тази дисертация се фокусира върху 

взаимодействието клетка-биоматериал като се стреми да надникне отвъд класическото 

материалознание, тъсейки нови подходи за осъществяване на контрол върху поведението на 

клетката. 

Клетъчното взаимодействие с изкуствени субстрати е добре описан парадигъм, който 

обикновено се свързва с адсорбцията на адхезивни протеини от заобикалящата среда. 

Разпознаването на тези протеини запуска редица сигнални мехамизми, наподобяващи 

естественото взаимодействие на клетките с екстрацелуларния матрикс, и повлиява 

поведението на адхериралите клетки. Важен аспект на едно такова взаимодействие е 

организацията на адхезивните матриксни протеини – знакова характеристика за нативния 

екстрацелуларен матрикс. 

Предишни изследвания в нашата група показаха, че дори in-vitro клетките са склонни да 

създават организация. Те ремоделират адсорбираните матриксни протеини (най- често във 

фибриларна форма) в опит да създадат собствен, кратковременен екстрацелуларен матрикс. 

Въпреки, че този феномен е установен и описан предимно за фибронектина (ФН), се оказва, 

че той включва и други матриксни протеини, например фибриноген (ФБГ), и дори колаген тип 

IV и витронектин (ВН), които, макар и нефибриларни по своята природа, също претърпяват 

линейна реорганизация. Следователно, клетките по някакъв начин „предпочитат“ 

фибриларната организация на протеините и се опитват да „отпечатат“ подобни структури в 

най-непосредствено си обкръжение. Други типове организация, обаче, като например 

мрежовиднaта, също типичнa за ЕЦМ, са недосатъчно изследвани и това съставлява 

съществена част от настоящата дисертация. 

Първата част на този тезис обръща особено внимание на специфичното поведение на 

адсорбирани ФН и ФБГ в наноразмерната област, което може да бъде наблюдавано 

посредством атомно-силова микроскопия (АФМ). Съвместната работа с групата на проф. 

Салмерон-Санчес от Политехническия университет на Валенсия (в момента в Университета 

на Глазгоу (Шотландия)), показа, че отделно от класическото разбиране за стохастична 

адсорбция на матриксните протеини, върху някои повърности може да пробладава 

латералното взаимодействие между техните молекули, водещо до самоорганизирането им в 

мрежоподобни структури, имащи значителни последствия както върху поведението на 

протеина, така и върху неговата биоактивност. Настоящият труд е фокусиран именно върху 
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биологичната активност на тези супрамолекулни структури, докато феноменът на 

образуването им сам по себе си, както и неговите наноинженерни аспекти, са обект на 

отделни изследвания. Проучванията, проведени в обхвата на тази дисертация ясно доказаха, 

че чрез промяна в повърхностната плътност на –ОН групи може силно да се повлияе 

способността за мрежовидна самоорганизация на някои белтъци, а от там и клетъчното 

поведение – факт, потвърден при две отделни клетъчни системи: фибробласти и ендотелни 

клетки. 

Друга линия на изследвания се основава на факта, че, в разтвор, белтъците могат да 

секвестират от заобикалящата ги течна фаза и да формират различни структурни форми, 

включително фибри с диаметър от само няколко нанометра и дължина до сантиметри, 

наподобяващи  естественната организация на ЕЦМ. Интригуваща възможност  за имитиране 

на подобни структури е разработването на нановлакна, базиращи се на матриксни протеини, 

посредством технологията на електроовлакняване  (електроспининг) – подход, който е 

широко застъпен във втората част на дисертацията. Там безспорно е показано, че клетките 

се прикрепят по- добре към такива нановлакна и явно ги разпознават – феномен, който макар 

и  не напълно разбран, бе потвърден в редица изследвания. Следователно, имитирането на 

фибриларната организация на ЕЦМ би спомогнала да разберем как клетките реагират на 

подобна среда – въпрос, който е фундаментален за клетъчната биология. Наред с това, 

подобен подход предствавлява и допълнителен инструмент за контрол на клетъчното 

поведение, въпрос които подробно е застъпен в настоящия тезис. И така, базирайки се на 

естествени матриксни протеини, какъвто е фибриногенът, и на синтетични полимери, каквито 

са полимлечната киселина  (PLA) и полиетилакрилатът (PEA), бяха разработени нов тип 

хибридни нановлакна  и тяхното използване като модална система разкри, че варирайки с 

тяхната композиция, организация и механични свойства би могло да се осъществи прецизен 

контрол върху клетъчния отговор. Настоящата дисертация се базира на пет оригинални 

публикации, организирани в пет отделни глави (Глава 2  до Глава 6), подредени в логична и 

йереархична последователност, и носещи едноименни със съответната публикация 

заглавия. Подробното Въведение (Глава 1) и кратките уводни бележки към всяка глава 

отразяват същественото в публикуваната работа и негйното положение спрямо цялостната 

тематика на дисертацията, формулирана ясно в раздела “Цел и задачи”. 
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AIM OF THESIS AND SPECIFIC OBJECTIVES 

 

 

Aim of thesis 

To develop systems for guiding cellular behavior based on the phenomenon of substratum-

driven protein assembly and the application of bioinspired electrospun nanofibers as positional 

cues that mimic the ECM organization. 

 

 

Specific objectives 

 To explore the novel phenomenon of material substratum-driven protein assembly as 

platform to engineer positional ques for the adhering cells, involving: 

 

o Studies on the effect of substratum properties that can modulate the lateral assembly of 

the matrix proteins fibronectin and fibrinogen 

 

o Biological characterization of the assembled protein networks 

 

o Developing of system that utilize substratum driven protein assembly of fibronectin and 

fibrinogen for guiding the cellular behavior  

 

 

 Elaboration of bioinspired electrospun nanofibers and their use as positional cues for the 

adhering cells, involving: 

 

o Design of appropriate equipment and technology for the production of fibrinogen based 

nanofibers. 

 

o Production of fibrinogen-based nanofiber samples and elaboration of technique for their 

alignment 

 

o Application of nanofibers at dorsal and ventral surfaces of living cells. Observation via 

time-laps microscopy and evaluation of the impact on the cell behavior. 

 

o Studies on the initial cellular interaction with differently structured nanofibers - random 

and aligned, including morphological and functional response of endothelial cells in 2D 

and 3D environment  

 

o Exploring fibrinogen-based nanofibers for vascular tissue engineering purposes 
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Extracellular matrix 

 

The tissues of a multicellular organism contain two main components: the cells themselves, the 

“living” matter, and the material that lies between the cells - the extra- cellular matrix (ECM). The 

ratio of volumes occupied by ECM to that occupied by cells in tissues can vary from less than 1:10 

(e.g. in muscles) to more than 10:1 (e.g. in tendons, cartilage and bone). ECM is composed of 

polymeric networks of several types of macromolecules in which smaller molecules, ions and water 

are bound. The major types of macromolecules are polymer-forming proteins, such as collagens, 

elastin, fibrillins, fibronectin, laminins etc. and hydrophilic hetero-polysaccharides, such as 

glycosaminoglycan hyaluronan and proteoglycans. It is the combination of protein polymers and 

hydrated proteoglycans that give extracellular matrices their resistance to tensile and compressive 

mechanical forces, (Hubbell 2007).  

Over the years, the understanding of ECM function has evolved from the early concept of a static 

“connective tissue” that ties everything together to one that considers ECM as a dynamic structure 

that provides strength and elasticity, interacts with cell-surface receptors, and controls the 

availability of growth factors. It is clear now that the ECM is a complex system that is able to control 

the cell behavior. The main functions of ECM along with the structural one are: (1) to provide a 

barrier that isolates tissues from each other, (2) to provide navigational cues for migratory cells, (3) 

to provide signals that alter cell be`havior, and (4) to sequester biologically active compounds such 

as growth factors.  

Figure 1. Main types of ECM: a basement membrane underlying the epithelial cells of the tissue and a stromal ECM surrounding 

the cells of the mesenchymal part of the tissue. Adapted from (Davies 2001). 
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Being in different forms the ECM is a feature of all multicellular organisms, in plants it appears 

mainly as cell walls, while in animal tissues it appears in two main forms: basement membranes 

(BM) and interstitial ECM, often termed rough ECM or stromal ECM, (Figure1).  

Basement membranes are thin layers of ECM that underlie epithelial or endothelial cell sheets 

effectively separating them from the underlying stromal tissues. Stromal matrix is associated with 

connective tissues and is frequently fibrous, particularly in load-bearing tissues such as artery walls, 

tendons, cartilage and skin. The stromal ECM can also be mineralized producing the hard structure 

of bone. 

The ECM is a mixture of many different molecular components that varies between organisms and 

between tissues within one organism, and sometimes varies with developmental age. The internal 

structure of the ECM is highly organized, resulting partly from the biological properties of the ECM’s 

molecules and partly from the activities of the cells that produce ECM. Cells contact ECM through 

specialized receptor molecules. They use their receptors not only to adhere to the matrix 

components but also to signal for the presence of particular components. ECM receptors transmit 

this signal to the internal cell machinery allowing dynamic control on the overall cell behavior. 

Moreover, ECM is not a static structure, but it constantly undergoes remodeling by the cells involving 

opposing processes of synthesis and controlled destruction, as well as continuous rearrangement, 

(Davies 2001). 

 

Structural components of ECM 

Animal ECM is composed mainly of glycoproteins and proteoglycans, but many of them bind 

other ECM glycoproteins resulting in highly complex structures. Therefore, the ECM might be 

considered as a highly cross-linked gel consisting of approximately 100 known ECM components, 

and they are more if one counts the bioactive molecules (for example growth factors) that are not 

structural part of the matrix but bind to it. Generally, ECM components are glycoproteins and 

proteoglycans, however in some cases the more abundant proteins such as collagens might be 

described separately due to their unique mechanical properties. Proteoglycans contain long, 

charged glycosaminoglycan (GAG) chains covalently attached to serine or threonine of the core 

protein. Some GAG chains are also found unconnected to a protein, such as the hyaluronan, 

(Mecham 2011).  

The main structural components of the ECM are the matrix proteins that show high structural and 

functional variability. Despite their structural and functional diversity however, they have also 

common features: Many proteins of the ECM have very large molecules being often extensively 

glycosylated or, in the case of proteoglycans - containing covalently attached GAG chains. Molar 

masses of 100–1,000 kDa are most frequent. In general, ECM proteins are highly asymmetric in 

shape because they are multidomain proteins, in which different or equal structural domains are 

specifically arranged. Domains are defined as homologous units with homology following from 
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amino acid sequence similarity. Individual domains may have distinct functions even after 

fragmentation from the intact protein. The combination of different domains leads to a multi- 

functionality of essentially all ECM proteins. The multifunctionality and the expanded shapes provide 

the potential for lateral interactions, favoring the formation of fibers and other supramolecular 

assemblies of ECM proteins, (Mecham 2011).  

 

ECM proteins 

As noted above, ECM is composed mainly of glycoproteins and proteoglycans. ECM proteins 

might be further classified, depending on their function, in three major subtypes: structural, adhesive 

and multifunctional.  

 

Structural ECM proteins  

 

Collagens 

Collagens are the most abundant proteins of the ECM. There are 28 different types of collagen 

that assemble into a variety of supramolecular structures including fibrils, micro- fibrils, and network-

like structures. Their numeration from I to XXVIII is based on the chronological order of discovery. 

At least 45 different collagen genes exists that code for collagen polypeptides, called alpha chains. 

Majority of collagens are homotrimeric molecules being composed of three identical alpha chains, 

Figure 2. Scheme  of the assembly of collagen I. (a) Individual collagen polypeptide chains. The polypeptides consist of the repeating 
sequence Gly-X-Y, where X is often proline and Y is often hydroxyproline; (b) collagen is made up of three polypeptide strands which 
are all left-handed helixes and twist together to form a right-handed coiled coil. The polypeptide strands are synthesized as precursor 
chains with propeptides (globular extensions) on the C and N ends. The propeptides are cleaved into short nonhelical telopeptides; 
(c) collagen molecules self-assemble into collagen fibrils; (d) collagen fibers are formed by end-to-end and lateral assembly of 
collagen fibrils, resulting in a regular banding pattern that is characteristic of collagen. Adapted from (Sicari et al. 2014). 
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but some collagens can be also heterotrimeric, for example α1(I)2α2(I) for collagen type I or α3(IV), 

α5(IV) and α6(IV) for one of the isoforms of collagen type IV. In addition, a single collagen type can 

have multiple chain compositions like α1(V)2α2(V), α1(V)α2(V)α3(V), or α1(V)3 for collagen type V. 

All collagens have structure called triple helix, a tight right-handed helix of three individual 

collagen α-chains, each individual chain having the structure of a left-handed helix. The amino acid 

sequence of the collagen chain involved in the triple helix is unusual - all have glycine residues in 

every third amino acid and about a fifth of the other amino acids consist of proline and 

hydroxyproline, forming hydrogen bonds that stabilize the helical structure. Collagens are 

synthesized by the normal secretory pathway, but are modified in the endoplasmic reticulum and 

Golgi apparatus so that many prolines are hydroxylated to become hydroxyproline. The collagen 

chains are further stabilized by disulfide bond formation, and complex carbohydrates are added to 

the non-triple helix regions of the molecules. Cells do not secrete collagens directly, but rather 

secrete large precursors called procollagens that have ‘extra’ domains at each end of the molecule. 

These domains are cleaved outside the cell by specific proteinases, and once free of them most 

collagen chains associate with each other to form fibrils, which line up with one another to form 

larger fibres, (Figure 2), (Sicari, Londono, and Badylak 2014). The collagens are normally 

assembled into suprastructures, such as fibrils, micro- fibrils, filaments, and networks. These 

Figure 3. Suprastructural organization of collagens. Adapted from (Mecham 2011). 
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suprastructures further assemble into higher organized tissue structures. For example, fibrils form 

fibers and lamellae. Beaded filaments combine to form broad-banded structures. Networks 

assemble into basement membranes, anchoring fibrils, and lattices. The diversity of extracellular 

matrix suprastructures is dependent on the collagen type and further diversity is achieved by 

copolymerization of several types of collagen and noncollagenous macromolecules. The 

components of the suprastructure can differ in their identities, (Figure 3). Collagen types I, II and III 

account for about 90% of all collagen in the body, and form strong fibrils. Practically however, most 

individual fibrils are composed of a mixture of these collagens and may also include small amounts 

of the other fibrillar collagens (e.g. V and XI), (Davies 2001).  

While most fibrillar collagens are common in connective tissue, the basement membranes usually 

contain a quite different type collagen, collagen IV, which forms three-dimensional network rather 

than fibrils. This collagen will be described in more details below, as BM component. Here we will 

only mention that type IV collagen has ligand affinity for endothelial cells and is present within the 

BMs of most vascular structures. On the other hand, Type VII collagen is also present within the BM 

of the epidermis and facilitates fibril anchoring to protect overlying keratinocytes from the mechanical 

stress, (Yurchenco and O’Rear 1994). 

Many of the collagen types provide tissue-specific physical and mechanical characteristics and 

allow for tissue-specific cell–ECM interactions. An example is the less rigid type III collagen that is 

present in the submucosal layers of tissues that require increased flexibility and compliance such 

as the urinary bladder, (Barnard and Gathercole 1991; Sicari et al. 2014). 

 

Basement membrane proteins 

 

Laminin  

Laminins (LN) are present in worms and flies and are among the first extracellular matrix proteins 

produced during embryogenesis. Laminin is cell adhesive proteins, a major component of the 

basement membrane, (Yurchenco and Wadsworth 2004). Compared with fibronectin, which is found 

only in chordates, laminins are evolutionarily ancient and conserved, (Tzu and Marinkovich 2008). 

Laminins bind cell surface receptors and thereby connect basement membrane with adjacent cell 

layers. Laminins are large (400–900 kDa) heterotrimeric glycoproteins of three different polypeptide 

chains: α, β, and γ, (Figure 4). Unlike fibronectin, which is encoded by a single gene and generates 

variants through alternative splicing, multiple genes encode each of the three laminin subunits, 

which results in different combinations of laminin variants. Laminins undergo self-polymerization and 

form filaments and layered sheets, which initiate basement membrane assembly. Interestingly, 

laminin sheets are generally mixtures of multiple laminins instead of separate networks of each 

laminin, (Schéele et al. 2007). When laminin polymerization is inhibited, basement membrane 

assembly seems to be disrupted even in the presence of other major constituents such as entactin, 
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type IV collagen, and perlecan, (Li et al. 2002). Laminin binds cell surface receptors like integrins 

and α-dystroglycan, which make laminin the central adhesive protein of basement membranes. 

Laminins interact with other laminins via their N-terminal globular LN domains to self-polymerize and 

initiate basement membrane assembly. There are also many protein-binding sites on laminins for 

ECM proteins, such as entactin (or nidogen), and for cells surface receptors, such as syndecans 

and integrins. Interestingly, most of the non-cellular ECM protein-binding sites are in the short arms 

of the three chains, whereas most of the cell surface receptor-binding sites are in the N- and C- 

terminus of laminin α chains, especially in the globular domain called LG-domain, (Timpl et al. 2000). 

A major class of laminin receptors for linking cells is the integrins. Laminin–integrin interaction 

activates variety of intracellular signaling pathways involving focal adhesion kinases (FAK), small 

Rho-GTPases, mitogen-activated protein kinases (MAPK), phosphatases and cytoskeleton 

components, and therefore mediates cell adhesion, migration, proliferation, differentiation, and 

survival, (Belkin and Stepp 2000; Givant-Horwitz, Davidson, and Reich 2005; Schéele et al. 2007; 

Watt 2002).  

 

Type IV Collagen 

Here up on Collagen IV (Col IV) is described separately as main structural component of the 

basement membrane. Col IV is not fibrillary protein, but it produces a unique network within the BM, 

which polymerize independently from laminin and play pivotal role on BM physiology. 

Figure 4. Laminin strucrure: Laminin is composed of three polypeptide chains (α, β1, and β2) organized into the shape of a cross. 

Laminin has binding domains for heparin, collagen IV, heparin sulfate, and cells. Adapted from (Sicari et al. 2014). 
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Laminin has binding domains for heparin, collagen IV, heparin sulfate, and cells. Adapted from (Sicari et al. 2014). 
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As most members of the Collagen superfamily in vertebrates, Col IV is presented in at least  27  

different isoforms, ( Myllyharju et al., 2004). Col IV however is unique, because it occurs only in the 

BM. Collagen IV is heterotrimeric molecule, consisting of three alpha-chains, (Yurchenco and 

Furthmayr 1984). Each molecule is a combination of three out of six genetically distinct α-chains 

designated α1(IV) to α6(IV). Out of many potential combinations, these chains interact and assemble 

with a remarkable specificity to form only three distinct heterotrimers of α1α1α2, α3α4α5, and 

α5α5α6. The α1 and α2 chains, which were discovered first, and therefore called “classical” chains 

are present in the BM of all tissues, whereas the other four α-chains are spatially and temporally 

regulated in their tissue distribution during development, (Figure 5), (Khoshnoodi, Pedchenko, & 

Hudson, 2008). Each α-chain contains three structurally distinct domains: (1) a long collagenous 

domain of ∼1400 residues, interrupted by about 20 short non collagenous sequences, which is 

flanked by (2) short N-NC sequence of 25 residues rich in cysteine and lysine, called 7S-domain, 

and (3) a globular non-collagenous carboxy-terminal domain (C-NC domain) of 230 residues, 

(Hudson et al. 2003). The presence of cysteine- and lysine-rich residues at the amino terminus is 

essential for intrachain crosslinking of four triple-helical molecules through disulfide bonds and 

lysine- hydroxylysine crosslinks. A characteristic feature of Col IV is the presence of 21 to 26 

(depending on the type of the chain) interruptions in the collagenous Gly-X-Y triple repeats. This 

interruptions provide molecular flexibility for network formation and some of them also serve as cell-

binding sites and inter-chain crosslinking, (Vandenberg et al. 1991). The NC1 domains are the sites 

for molecular recognition through which the stoichiometry of chains and the specificity in the 

assembly is directed. Khoshnoodi and co-workers have shown that a complex interaction of NC1 

domains provides a high degree of specificity and serves as “folding matrix” for triple-helical 

assembly of Col IV molecule, (Figure 6), (Khoshnoodi et al. 2006). Once secreted into the ECM, the 

triple-helical molecules self-associate to form distinct networks providing a molecular scaffold onto 

which other ECM components such as laminins, perlecans, and proteoglycans interact. Yurchenco 

Figure 5. Schematic view of assembly of collagen IV:  Each heterotrimer is with characteristic stoichiometry of chains. The 
assembly initiates by chain-specific recognition of NC1 domains, formation of NC1-trimers followed by supercoiling of the triple-
helical collagenous domains which proceeds toward the N-terminal 7S domains. Out of 56 potential heterotrimers, only three 
specific combinations: α1α1α2, α3α4α5, and α5α5α6, have been found in vivo. Adapted from (Khoshnoodi, Pedchenko and 

Hudson 2008). 
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and Ruben investigated the 

supramolecular structure of collagen IV 

network in situ and showed that collagen 

molecules assemble into irregular 

polygonal networks held together by 

lateral interactions along the triple-helical 

domain, as well as the N-terminal and C-

terminal end-domains, (Figure 7), 

(Yurchenco and Ruben 1987). Despite of 

providing a scaffold for assembly and 

mechanical stability of the BM, Col IV is an important cells interaction component. This interaction 

is crucial for many important biological processes as cell adhesion and growth, migration and 

differentiation. Cell attachment to Col IV is mediated by multiple binding sites within both triple-

helical and NC1 domains and involves both integrin receptors (α1β1, α2β1, α10β1 etc.) and 

Figure 6. Protomer assembly of collagen IV. Assembly is initiated by 
specific interactions of the C-NC domains (A), after which folding of 
the triple helical domain proceeds toward the amino terminus, forming 
a heterotrimeric protomer. Dimerization of protomers occurs via the 
equatorial faces (A and B) of the NC trimers, yielding NC hexamers. 
Within each NC trimer, the monomers recognize one another through 
a domain-swapping mechanism in which an α -hairpin motif (Site 1) of 
one monomer is swapped into a docking site (Site 2) of its swapping 
partner (C and D). Dimers also oligomerize at their N termini forming 
network suprastructures. Adapted from (Khoshnoodi et al. 2006). 
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Figure 7. Heterotrimeric collagen IV molecule interacts 
through its N-terminal 7S domains to form a tetramer 
(left) or through its NC1 domains to form a dimer (right). 
Through complex interactions, these molecules can 
further interact to form higher order of supramolecular 
organization and three-dimensional networks. Adapted 

from (Khoshnoodi, Pedchenko and Hudson 2008). 
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nonintegrin receptors (for example, cell-surface heparin sulfate proteoglycans, chondroitin sulfate 

proteoglycan, CD44, mannose receptor family, etc, (Leitinger and Hohenester 2007). 

 

Entactins (Nidogens) 

Entactins, also known as nidogens, are basement membrane glycoproteins playing important role 

in integrating the laminin and Col IV networks together. Two entactins expressed by distinct genes 

have been identified in vertebrates, named entactin-1 (~150 kDa) and entactin-2 (~20 0 kDa) (or 

nidogen-1 and nidogen-2), (Kohfeldt et al. 1998). Each isoform contains three globular domains - 

two in the N-terminus (G1 and G2) and another one in the C-terminus (G3). A rod-like connecting 

domain composed of cysteine-rich epidermal growth factor-like repeats, which include the Arg-Gly-

Asp (RGD) integrin-binding sequence and a thyroglobulin-like repeat, connects the N- and C-

terminal globules. Entacin-1 binds strongly to both the laminin γ1 chain through globular domain G3 

and to collagen IV through G2, (Fox et al. 1991; Pöschl et al. 1996; Reinhardt et al. 1993). Except 

as a linker between self-assembled laminin and collagen IV it acts to stabilize basement membrane, 

(Timpl and Brown 1996), but also integrates other ECM proteins. Entactin-1 binds fibronectin, 

perlecan, and fibulins through its G2 and G3 domains, (Kvansakul et al. 2001; Mecham 2011; 

Reinhardt et al. 1993). 

 

Adhesive ECM proteins 

Cells adhere to the extracellular matrix through interaction with the cell adhesive ECM proteins, 

including fibronectin, vitronectin, thrombospondins, tenascins, fibrinogen, and others. The structural 

BM proteins can also be described as adhesive proteins as they are recognized by integrins and 

induce cell adhesion, but they have other main function. Most adhesive glycoproteins bind cells 

through surface integrin receptors often in conjunction with other receptors, such as dystroglycans 

and syndecans. They also interact with each other or with other extracellular matrix components to 

form a rich ECM network. Interactions between cells and the ECM may mediate plethora of cellular 

responses, such as cell migration, growth, differentiation, cell survival etc. Cells receive and respond 

to signals from surrounding extracellular matrix, and in turn, modulate surrounding extracellular 

matrix through control of matrix assembly.  

 

Fibronectin 

As studies with fibronectin (FN) represent a significant part of this Thesis, it will be considered with 

more details.  

FN was first discovered in 1948 as a contaminant of plasma fibrinogen showing insolubility at low 

temperature and therefore termed “cold-insoluble globulin”, (Morrison, Edsall, and Miller 1948; 

Mosesson and Umfleet 1970). FN is a high molecular weight dimeric glycoprotein (~450 kDa per 

dimer) widely expressed by a variety of cells in embryos and adult tissues, (Clark 1989; R. O. Hynes 
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1990). Plasma fibronectin is synthesized in the liver by hepatocytes and present in a soluble form in 

blood plasma at a concentration of around 300-400 mg/mL. Cellular fibronectin is secreted by 

fibroblasts and multiple other cell types and is organized into fibrils contributing to the insoluble 

extracellular matrix. The name “fibronectin” is derived from the Latin word fibra, meaning “fiber”, and 

nectere, meaning “to bind”.  

 

 Basic structure of fibronectin 

Fibronectin mainly exists as a dimeric glycoprotein, with two similar ~240-kDa subunits covalently 

linked through a pair of disulfide bonds near the C-terminus. There are three types of repeating 

modules in each fibronectin subunit: 12 type I (termed FN1), 2 type II (termed FN2), and 15–17 type 

III repeats (termed FN3), (Figure 8), accounting for 90% of the sequence. The remaining sequences 

include a connector between modules FN15 and FN16, a short connector between FN31 and FN32, 

and a variable (V) sequence that is not homologous to other parts of fibronectin. 

It has been noted that the N-terminal subdomain of the Von Willebrand factor (VWF) type C module 

of α2 procollagen are structurally similar to fibronectin FN1 module (O’Leary et al. 2004)suggesting 

that the VWF type C module may be the precursor of the fibronectin FN1 module.  

FN2 modules are rare and are similar to some cringle domains, which are present in organisms 

evolutionary lower to vertebrates, (Ozhogina et al. 2001). Each FN2 module is approximately 60 

Figure 8. Modular structure of fibronectin. (a) Each fibronectin dimer is composed of two monomers linked at the C-terminus by a 
pair of disulfide bonds. 12 type I modules (blue rectangles) termed FN1, 2 type II modules (green triangles) termed FN2, and 15–17 
type III modules (rose ovals) termed FN3. Proteolytic 27, 40 and 70 kDa N-fragments and the protein-binding sites on fibronectin are 

underlined with receptors listed. Adapted from (Mecham 2011). 
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residues long with two inter-chain disulfide bonds in each repeat. NMR studies identified an 

interaction between FN16 and FN22 , (Pickford et al. 2001), and thus the FN2 modules are thought 

to be involved in a “head-to-tail” arrangement of FN modules, (Figure 8). FN2 modules are observed 

also in the structure of matrix metalloproteinases, (Collier et al. 1988). 

The FN3 module is found in multiple copies in many other extracellular matrix proteins, cell surface 

receptors, and cytoskeletal proteins of vertebrates and non- vertebrates, (Bork and Doolittle 1992). 

Each FN3 has is about 90 residues and lacks disulfide bonds. It consists of two antiparallel b-sheets 

formed from seven b-strands that are connected by flexible loops. The main integrin-binding motif 

RGD is in one of the flexible loops connecting two b-strands, (Dickinson et al. 1994). One large 

single gene (~50 kb for human fibronectin) encodes this protein in most species (Hirano et al. 1983). 

Alternative splicing and various posttranslational modifications give a heterogeneity of FN, with up 

to 20 variants in human fibronectin, (Kosmehl, Berndt, and Katenkamp 1996). There are two 

alternatively spliced segments in fibronectin due to alternative exon usage: extra domain A (EDA) 

located between the FN311 and FN312 modules, and extra domain B (EDB) between FN37 and FN38 

modules, (Figure 8). The Alternative splicing of fibronectin is regulated by the cell type, 

developmental stage, and aging, (Kornblihtt et al. 1996). Fibronectin isolated from plasma tends to 

have a lower molecular weight than one isolated from cell culture, which leads to the distinguishing 

of two types of FN, plasma fibronectin and cellular fibronectin. Studies showed that plasma FN 

generally lacks EDA and EDB sequences. Cellular fibronectin is more heterogeneous and is 

represented by splice variants with variable presence of EDA, EDB. Certain isoforms of FN, 

especially those containing EDA and EDB modules, are upregulated in malignant cells, (Ffrench-

Constant 1995). 

The EDA module of FN mediates cell differentiation, (Jarnagin et al. 1994). FN containing the EDA 

module is much better at promoting cell adhesion and spreading than FN lacking the EDA module. 

The presence of EDA enhances fibronectin-α5β1 integrin interaction and promotes cell adhesion, 

(Manabe et al. 1997).  Genetically manipulated mice that lacked EDA developed normally, but with 

a shorter life span, abnormal wound healing, and edematous granulation tissue, (Muro et al. 2003), 

suggesting that EDA is not required for embryonic development but is important for a normal life 

span and emphasizing the role of FN in organization of the granulation tissue and in wound healing. 

On the other hand, EDB knockout mice developed normally as well, but with reduced fibronectin 

matrix assembly, (Fukuda et al. 2002). EDB-containing fibronectins are concentrated in tumors and 

are found at low levels in plasma, (Menrad and Menssen 2005). For this reason, tumor therapy 

research has focused on developing antibodies specific to the FN’s EDB module for diagnostic and 

prognostic purposes. 

 



Chapter 1   |                                                                                                                                                                             Introduction 
Extracellular matrix 

 
22 

 Posttranslational Modifications 

In addition to alternative pre-mRNA splicing, various posttranslational modifications that occur 

intracellularly in the endoplasmic reticulum and Golgi contribute to the heterogeneity of FN. 

Fibronectin can be glycosylated, phosphorylated, and sulfated, (Paul and Hynes 1984). The 

intrachain and intramodule disulfide bonds of FN1 and FN2 modules are often formed in this step. 

Generally, FN contains about 5% carbohydrate although higher levels of glycosylation occurs in 

some tissues. Nonglycosylated. FN is more sensitive to proteolysis than glycosylated fibronectin 

and has an altered binding affinity to proteins such as collagen, suggesting that carbohydrates 

stabilize FN against degradation and regulate its affinity to some substrates 

FN is crucial for vertebrate development, presumably by mediating a variety of adhesive and 

migratory events. FN not only binds to cells through the cell surface receptors (integrins) but 

specifically interacts with other proteins, including collagen, fibrin, and heparin/heparan sulfate, 

(Pankov 2002). 

 

 Integrin binding domains  

Two main sites of fibronectin that mediate the cell adhesion are named cell-binding domains. They 

are located respectively in FN39–FN310 modules and in the alternatively spliced V-region. FN 

interacts with many integrins including α3β1, α5β1, α8β1, αvβ1, αIIbβ3, αVβ3, αVβ5, and αVβ6 that 

recognize its Arg-Gly-Asp (RGD) sequence in the central cell-binding domain. Integrins α4β1 and 

α4β7 however recognize also the Leu-Asp-Val (LDV) sequence in the V-region, (Humphries, Byron, 

and Humphries 2006; Leiss et al. 2008). The integrin binding motifs all contain a critical residue 

aspartate (Asp (D)), which interacts with a metal in the metal-ion dependent adhesion site (MIDAS) 

of integrins. Other Integrin-binding sites are also presented in the EDA module, which binds α4β1or 

α9β1 integrins, (Liao et al. 2002), in the FN314 module, which binds α4β1 integrin through the IDAPS 

sequence, (Pankov 2002), as well as in  FN35, which binds activated α4β1or α4β7 integrin through 

the KLDAPT sequence, (Moyano et al. 1997). 

 

 Collagen binding domain  

The collagen-binding domain of fibronectin is identified as FN16–FN19 including also the first two 

FN2 modules. Fibronectin binds denatured collagen (gelatin) more effectively than native collagen. 

Fibronectin–collagen interaction may mediate cell adhesion to denatured collagen, form 

noncovalent crosslinking of fibronectin and collagen in migratory pathways, and regulate the 

removal of denatured collagenous materials from blood and tissue, (Pankov 2002). 

 Fibrin binding domain 

There are three fibrin binding sites in the fibronectin molecule. The first and the most important is 

located in the N-terminal  FN14 –FN15 (Williams et al. 1994)The second binding site is FN110 – 

FN112, close to the C-terminus. The third binding site appears following chymotrypsin digestion of 
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fibronectin, and is immediately adjacent to the collagen binding domain (Clark 1989) At physiological 

temperatures, the fibronectin–fibrin interaction is weak. Covalent crosslinking of fibrin and FN 

however might be mediated by Factor XIII transglutaminase at a Gln-residue close to the N-terminus 

and stabilizes this interaction. In such a way fibronectin is incorporated into the fibrin clot, stimulates 

platelets, fibrin conversion and modulates cell adhesion or migration into the clots during wound 

healing, (Cho and Mosher 2006). 

 

 Heparin binding domains  

Fibronectin molecule contains at least two heparin-binding domains that interact mainly with 

heparan sulfate proteoglycans. The first domain localizes at FN312 – FN314 modules in the C-

terminus. (Sharma et al. 1999) while second site is in the N-terminal: 1FN1 – FN15 modules. Heparin 

binding domains cooperate with cell binding domain of FN and potentiate cell adhesion, spreading, 

and formation of actin filaments. 

 

 Bacteria binding domain  

Besides heparin and fibrin, the N-terminal FN11–FN15 can bind several types of bacteria, such as 

Staphylococus aureus or Streptococcus pyogenes, (Clark 1989). Much attention has been paid 

recently to the bacterial fibronectin-binding proteins (FnBPs) that mediate cell adhesion and 

induce entry of bacteria into non-phagocytic host cells via fibronectin, (Schwarz-Linek, Höök, and 

Potts 2004). FnBPs are disordered in unbound state and upon interactions with fibronectin become 

ordered through an unusual and distinctive tandem b-zipper mechanism, (Bingham et al. 2008). 

 

 Fibronectin matrix assembly 

Functionally, FN is organized into a fibrillar network on the cell surface. Through interaction with 

the cell receptors it regulates various cell functions, such as cell adhesion, migration, growth, and 

differentiation, (Clark 1989; R. O. Hynes 1990). The majority of biological activities of FN require its 

assembly into fibrils, which are one of the earliest formed components of the ECM, and provide 

scaffolding for deposition of the fibronectin-interacting proteins such as collagen and heparan sulfate 

proteoglycans etc., (Hynes 2009). Inhibition of FN fibril formation causes delay in embryonic 

development, (Darribère et al. 1990). Unlike assembly of collagen or laminin, fibronectin 

fibrillogenesis does not occur spontaneously in natural physiological conditions. It requires the 

presence of cells. Soluble compact FN is assembled to its fibrillar form in a cell-mediated, stepwise 

manner. The process initiated by binding of soluble fibronectin to cell surface receptors that induce 

conformational changes to expose cryptic binding sites. These changes facilitate fibronectin–

fibronectin interactions, forming fibronectin fibrils elongation through cell-generated tension (actually 

generated by integrins) and the formation of an insoluble fibrillar network, (Figure 9). One hypothesis 

is that fibronectin assembly begins by interactions of the fibronectin cell- binding domain (RGD motif 



Chapter 1   |                                                                                                                                                                             Introduction 
Extracellular matrix 

 
24 

in FN310) with cell surface 

integrins, (Mao and 

Schwarzbauer 2005; Mecham 

2011). On the other hand, the 

dimeric fibronectin (i.e. the 

soluble FN) induces integrin 

clustering upon binding two 

integrins with its two cell-

binding domains. Clustered 

integrins become activated 

that provokes actin filament 

rearrangement, facilitates the 

extension of fibronectin and 

exposes cryptic binding sites, 

as stated above.  It enables 

interactions of the N-terminal 

70K region FN11 – FN19, 

termed 70K fragment, with 

other parts of fibronectin, and 

causes irreversible association 

of fibronectin to a fibrillar 

matrix. Another hypothesis 

suggests that FN assembly is 

initiated by interaction between 

the N-terminal 70-kDa region 

and its cell surface receptors. 

Accordingly, binding of the 70K 

region to cell surface receptors unfolds FN, which exposes the integrin binding site RGD to interact 

with cell surface integrins causing elongation of bound FN, and exposing cryptic fibronectin–

fibronectin  binding sites form FN fibrils, (Tomasini-Johansson, Annis, and Mosher 2006) 

Vitronectin 

Vitronectin (VN) is a 75-kDa glycoprotein present in blood plasma at a concentration of 200–400 

mg/ml (2.5–5.0 mM). This adhesive protein is present also in other body fluids such as amniotic fluid 

and urine, and in the ECM of most tissues, (Preissner 1991; Tomasini and Mosher 1991). VN was 

independently studied under the names “serum spreading factor”, “epibolin,” and “S protein (site-

specific protein)” in the late 1970s and early 1980s, until it was realized that all studies relate to the 

Figure 9. Hypothetical model of fibronectin assembly. (a) FN assembly sites on the 
cell surface is controlled by the adherent substrates to which cells are attached; (b) 
Soluble fibronectin dimer binds to linearly arrayed fibronectin assembly sites through 
the N-terminal 70-kDa region of fibronectin; (c) The binding of 70 K to the cell surface 
fibronectin assembly receptors induces unfolding of fibronectin, which exposes the 
RGD sequence in FN310;.(d) The RGD- integrin interaction leads to stretching  FN 
through tension generated from integrins and cytoskeleton contractility; (e) Elongation 
of fibronectin exposes more cryptic fibronectin– fibronectin interacting sites, leading 
to the formation of insoluble fibronectin fibrils through fibronectin–fibronectin 
interactions. (f) Immunofluorescence staining of fibronectin matrix. (g) Cells shown by 

phase contrast microscopy. Adapted from (Xu et al. 2009). 
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same protein - vitronectin, given the name for its ability to bind glass (“vitrus”, Latin). Human VN is 

a protein of 459 amino acids, mainly synthesized in the liver, (Seiffert et al. 1994). In human blood, 

it exists in two forms: one is a single chain 75-kDa form, and the other is a two-chain form of 65 and 

10-kDa chains connected by a disulfide bridge, Schvartz, Seger, and Shaltiel 1999). Vitronectin has 

many important protein-binding domains, (Figure 10). A somatomedin B domain is located at the N-

terminus and binds plasminogen activator inhibitor-1 (PAI-1),(Zhou et al. 2003), and interacts with 

the urokinase receptor, (Wei et al. 1994). Immediately adjacent to the somatomedin B domain is an 

RGD cell adhesion sequence, which is the major integrin binding site in the protein. Close to the 

RGD are the binding domains for thrombin–antithrombin complex and collagen, Schvartz, Seger, 

and Shaltiel 1999). At the C terminus, there are also a plasminogen-binding site, two heparin-binding 

sites and another (PAI-1) binding site, (Kost et al. 1992). Vitronectin interacts with the extracellular 

matrix through its collagen- and heparin binding domains, and with cells through its RGD integrin 

binding sequence. Integrins αIIbβ3, αVβ1, αVβ3, αVβ5, αVβ8, and α8β1 are those recognizing the 

RGD motif of VN, (Marshall et al. 1995; Nishimura, Sheppard, and Pytela 1994) Vitronectin–integrin 

interaction activates important intracellular signaling pathways, induces protein phosphorylation, 

activates MAP kinase pathways, and thereby plays an important role in processes like cell adhesion, 

spreading, migration, cell growth, differentiation, proliferation, and apoptosis Schvartz, Seger, and 

Shaltiel 1999). VN functions in wound healing, viral infection and tumor growth and metastasis are 

also well recognized, (Felding-Habermann and Cheresh 1993; Schvartz, Seger, and Shaltiel 1999). 

Curiously, VN knockout mice developed normally with no major defects, (Zheng et al. 1995), 

suggesting either vitronectin is dispensable or other molecule might play a rescue role in the 

absence of vitronectin. 

 

 

 

Figure 10. Protein-binding domains of vitronectin. Vitronectin’s major ligand-binding sites are indicated. The major integrin-binding 

site RGD locates in residues 45–47. A disulfide bond connects the 65 kDa and the 10 kDa subunits of the cleaved form of vitronectin. 
PAI-1:Pplasminogen activatorr inhibitor-1, TAT: thrombin-antithrombin. Adapted from (Mecham 2011). 
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Multifunctional matrix components 

This group includes multiple ECM proteins. Except in cell adhesion those proteins are involved 

also in various specific functionalities 

 

Von Willebrand factor 

Von Willebrand factor is another adhesion protein that is primarily involved in the adhesion of 

vascular cells (McGrath et al. 2010; Sadler 1998). It is synthesized by the megakaryocyte (the 

platelet-generating cells of the bone marrow) and is stored in the α-granules of circulating platelets. 

Activation of platelets leads to the release of von Willebrand factor. It is also synthesized and stored 

by endothelial cell. A multimeric form of the protein, with tens of copies linked together into insoluble 

form, is present in the sub-endothelium, where it is involved in blood platelet adhesion in cases of 

vascular injury,(Hubbell 2007; Springer 2011). 

 

Thrombospondins 

Thrombospondins are a family of structurally related multifunctional, multimodular calcium-binding 

ECM glycoproteins encoded by separate genes. Five thrombospondins have been identified so far 

and can be divided into two groups: group A with thrombospondin-1 and -2 forming homotrimers, 

and group B with thrombospondin-3, -4, and -5 (also known as cartilage oligomeric matrix protein) 

forming homopentamers, (Lawler 2000). Thrombospondins are shown to bind to cells, platelets, 

calcium, and various substances such as heparin, integrins, fibronectin, collagen, laminin, 

fibrinogen, plasminogen, osteonectin, and TGF-β; and are important for cell adhesion and 

spreading, platelet aggregation, angiogenesis, neurite growth and apoptosis, (Esemuede et al. 

2004; Mosher 1990) For example, thrombospondin-1 can inhibit endothelial cell proliferation and 

migration, inhibit neovascularization, but promote growth and migration of smooth muscle cells and 

fibroblasts, (Bagavandoss and Wilks 1990; Esemuede et al. 2004; Vogel et al. 1993). Generally, the 

medical focus of thrombospondin is on its role in angiogenesis and tumor therapy. 

 

Fibrinogen 

Studies with fibrinogen constitute a considerable part of this thesis, therefore it will be reviewed in 

more details.  

Fibrinogen (FBG) is a fibrous protein that was first discovered together with keratin, myosin, and 

epidermin and separated of them based on its X-ray diffraction patterns, (Bailey, Astbury, and 

Rundall 1943). Later on it was found to be associated with an α-helical coiled-coil structure. FBG is 

a glycoprotein normally present in human blood plasma at concentration of about 2.5 g/L. This 

plasma protein is essential for hemostasis, wound healing, inflammation, angiogenesis and other 
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biological functions. FBG is a soluble macromolecule, but it forms a clot, or insoluble gel, upon 

conversion to fibrin by the action of the serine proteolytic enzyme thrombin, (Figure 11), which itself 

is activated by a cascade of enzymatic reactions triggered by injury or upon contact with foreign 

surface. Fibrinogen is also necessary for the aggregation of blood platelets, an initial step in 

hemostasis. Each end of a fibrinogen molecule can bind with high affinity to the integrin receptor on 

activated platelets, αIIbβ3, so the bi-functional fibrinogen molecules act as bridges to link platelets. 

In its various functions as a clotting and adhesive protein, the fibrinogen molecule is involved in 

many intermolecular interactions and has specific binding sites for several proteins and cells. Fibrin 

clots are dissolved by another series of enzymatic reactions termed the fibrinolytic system, (Figure 

11). In this system the proenzyme plasminogen is activated to plasmin by a specific proteolytic 

enzyme, typically tissue-type plasminogen activator or urokinase-type plasminogen activator. 

Plasmin then cleaves fibrin at certain unique locations to dissolve the clot. The activation of the 

fibrinolytic system is greatly enhanced on the surface of fibrin, thus, the fibrinolysis highly specific 

for cleavage of the insoluble fibrin clot, rather than circulating fibrinogen, (Weisel 2005). Fibrinogen 

is a large glycoprotein with three pairs of polypeptide chains linked together by disulfide bonds. FBG 

molecules are elongated 45 nm structures that consist of two outer D domains, each connected by 

a coiled-coil segment to its central E domain (Figure 12, A). The molecule is comprised of two sets 

of three polypeptide chains designated Aα,Bβ, γ with molecular masses of 66.5, 52 and 46.5 kDa, 

Figure 11. Fibrinolytic system: Tissue plasminogen activator (t-PA) circulates in plasma as a complex with plasminogen-activator 
inhibitor type 1 (PAI-1). On the surface of the clot. t-PA or urokinase-type plasminogen activator (u-PA) activates plasminogen. The 
complex of plasminogen, t-PA, and fibrin promotes the formation of plasmin. Plasmin causes lysis of the cross-linked fibrin into fibrin 
degradation products. PAI-1 also binds to fibrin and is able to retain inhibition against t-PA. α2-antiplasmin inhibits plasmin from 
creating fibrin degradation products. Factor XIII activates α2-antiplasmin as well as cause soluble fibrin to become cross-linked fibrin. 
Figure adapted from (Del Rosario and Tsai 2015). 
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respectively.  Posttranslational addition of carbohydrates to the Bβ and γ chains brings the total 

molecular mass to about 340 kDa. The nomenclature for fibrinogen, (Aα,Bβ, γ)2, arises from the 

designation of the small peptides that are cleaved from fibrinogen by thrombin to yield fibrin as 

fibrinopeptides A and B (FpA and FpB) and the parent chains, without fibrinopeptides α and β. No 

peptides are cleaved from the γ chains by thrombin. The entire amino acid sequence of all 

polypeptide chains of human fibrinogen has been determined from the nucleotide sequences of the 

cDNA coding for the polypeptide chains, (Doolittle 1984; Henschen and Mcdonagh 1986). There are 

respectively 610, 461, and 411 amino acids in each of the human Aα, Bβ, and γ chains. The amino 

acid sequences of the three chains are homologous, but also differences exist, determining specific 

functions for certain molecular domains. All six chains are held together by disulfide bonds in the 

Figure 12. Fibrinogen structure. (A) Polypeptide chain composition of fibrinogen. The individual chains, Aα, Bβ and γ, are blue, green 
and red, respectively; fibrinopeptides A and B (FpA and FpB) are magenta; the disulfide bonds are indicated as  black bars; triple 
arrows show proteolytic cleavage sites between the D and E regions in the removal of the αC and BβN regions. (B) Crystal structure 
of fibrinogen (C) Domain structure of FBG. The individual domains of the D regions, A-domain, B-domain, and P-domain, are indicated 
only in one subunit of the molecule. Color indications from (A) are preserved. Adapted from (Medved and Weisel 2009). 

 

Figure 12. Fibrinogen structure. (A) Polypeptide chain composition of fibrinogen. The individual chains, Aα, Bβ and γ, are blue, green 
and red, respectively; fibrinopeptides A and B (FpA and FpB) are magenta; the disulfide bonds are indicated as  black bars; triple 



Chapter 1   |                                                                                                                                                                             Introduction 
Extracellular matrix 

 
29 

central domain, (Henschen and Mcdonagh 1986). Three interchain disulfide bonds link the two 

halves of the molecule together, one between the two Aα chains and two between the two γ chains. 

The A and B fibrinopeptides are located at the N-terminal ends of the α and β chains, respectively, 

(Doolittle 1984; Weisel 2005)  

 Domain structure of FBG 

The shape of fibrinogen and its organization into domains have been defined by a variety of 

physicochemical and structural techniques. Fibrinogen was one of the first biological 

macromolecules visualized by electron microscopy, (Hall and Slayter 1959). It was recognized as 

elongated molecule about 45 nm in length with nodular regions at both ends connected by rod-like 

strands. The central region contains the two pairs of A and B fibrinopeptides and binds thrombin. 

The distal end nodule is the C-terminal γ chain (γC nodule) is made up of three domains, and the 

proximal end nodule is the C-terminal Bβ chain (βC nodule), also made up of three domains, 

(Medved et al. 1990; Rao et al. 1991; J. W. Weisel et al. 1985). The C-terminal portions of the two 

Aα chains (αC domains) extend from the molecular ends and interact with each other and with the 

central domains in fibrinogen, (Figure 11, B), (Gorkun et al. 1994). It was found that each terminal 

part of the fibrinogen molecule is made up of six cooperative domains, with three domains formed 

by the C-terminal part of the β-chain and three other domains formed by the C-terminal part of the 

γ-chain, (Medved et al. 1990; Privalov and Medved 1982). Several proteolytic fragments of 

fibrinogen has been used as a basis for defining its domain structure and identifying functional sites, 

(Hantgan et al. 2000). The fibrinolytic enzyme plasmin cleaves fibrinogen at distinct locations. Initial 

digestion removes the C-terminal Aα chains and Bβ 1-42, creating fragment X. Cleavages in all 

three chains then yield two D fragments and one E fragment, (Figure 11, C). 

 

Tenascin 

Tenascins are a group of ECM-glycoproteins including tenascin-C, tenascin-R, tenascin-W, 

tenascin-X, and tenascin-Y, (Jones and Jones 2000). Tenascin-C was the first tenascin identified 

and is predominantly synthesized by the nervous system and connective tissues. Tenascin-R is also 

found in the nervous system. Tenascin-X and tenascin-Y are presented primarily in muscle 

connective tissues. Tenascin-W is found in kidney and developing bone with a KGD sequence that 

interacts with integrins (Meloty-Kapella et al. 2008). The basic structure of tenascins contains 

numbers of epidermal growth factor-like repeats followed by alternatively spliced fibronectin type III 

modules and a fibrinogen-like globular C- terminal domain. Like thrombospondin-1, tenascin-C 

contains an RGD motif and is recognized by diverse integrins, yet classified as a rather antiadhesive 

or adhesion-modulatory protein (Orend and Chiquet-Ehrismann 2000). Human umbilical vein 

endothelial cells (HUVEC) adhere to tenascin-C by α2β1and αvβ3 integrins and partially spread, but 

generally, adhesion to tenascins is weak, with adherent cells being elongated instead of flattened. 



Chapter 1   |                                                                                                                                                                             Introduction 
Extracellular matrix 

 
30 

In most cases adhesion does not result in rearrangement of actin cytoskeleton, (Sriramarao, 

Mendler, and Bourdon 1993). Tenascin-C provokes cells adherent to fibronectin to detach through 

direct interaction of tenascin-C with the 13 FN3 module of FN (Midwood and Schwarzbauer 2002). 

The metalloprotease meprin cleaves human tenascin-C at the seventh fibronectin type III repeats 

and destroys the antiadhesive ability of tenascin-C by removing the C-terminal anti-adhesion 

domain, (Ambort et al. 2010). 

 

Nephronectin 

Nephronectin is an ECM - glycoprotein found as a ligand for α8β1 integrin, an interaction that is 

essential for kidney development, (Brandenberger et al. 2001). Nephronectin has 70–90 kDa 

molecule with five epidermal growth factor like-repeats, an RGD-containing linker domain and a C-

terminal domain named the MAM domain. It is widely expressed in kidney, lung, brain, uterus, 

placenta, thyroid gland, and blood vessels - a distribution similar to that of α8β1 integrins, 

(Brandenberger et al. 2001; Huang and Lee 2005; Manabe et al. 2008). To date, a8b1 integrin is 

the only identified receptor for nephronectin and interaction is through its RGD sequence in the linker 

domain and a synergetic sequence on the C-terminal side of the RGD motif, (Sato et al. 2009).The 

high affinity of nephronectin to α8β1 integrin explains why other ligands with lower affinities to that 

integrin such as fibronectin, vitronectin, or tenascin-C are not able to compensate the deficiency of 

nephronectin in kidney development. 

 

Elastin  

Elastin is ECM protein able to interact with neighboring cells and critical for the mechanical 

properties of ECM. It springs back tissues into their initial shape after deformation, tissues in which 

this ability is particularly vital, including arteries, tendons and skin. (Davies 2001). The tissue 

elasticity is normally achieved by a random network of elastic fibers embedded within and supporting 

the ECM. These fibers contain high amount of elastin on which depend their mechanical properties.  

Elastin is synthesized and secreted as a soluble precursor, tropoelastin, which forms elastic fibers 

in association with other ECM components, mainly fibrillins 1and 2. The fibers are stabilized by an 

enzymatically stabilized by lysyl oxidase, which deaminates specific lysine amino acids in the elastin 

molecule and allows the covalent crosslinking of fibers. The balance of elastic fibers of elastin and 

the relatively inelastic fibers of collagen, which varies between different ECMs, is thought to be a 

key regulator of their mechanical properties, (Davies 2001). 

 

Fibrillins 

Fibrillin 1 and 2 are large cysteine-rich glycoproteins that serve two key physiological functions: as 

supporting scaffold on which elastin is laid down to make elastic fibers maintaining the tissue 

integrity and as regulators of signaling events that instruct cell performance. The structural role of 
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fibrillins is connected with providing temporal and hierarchical assembly of microfibrils and elastic 

fibers, whereas the instructive role includes their ability to sequester transforming growth factor β 

(TGF-β) and bone morphogenetic protein (BMP) complexes in the ECM, (Ramirez and Sakai 2010). 

 

Proteoglycans 

Proteoglycans are also important component of the ECM. They are present in a diverse set of 

molecules characterized by having very large and complex carbohydrates attached to a protein core. 

The complex carbohydrates are often referred as glycosaminoglycans (GAGs), (Figure 13). GAGs 

possess a variety of biologic activities including the ability to bind growth factors and cytokines and 

promote water retention, (Bülow and Hobert 2006). There are several types of protein core, and 

many types of GAGs classified into distinct families (e.g. heparin, heparan sulfate, chondroitin 

sulfate A and B, hyaluronic acid (HA) or hyaluronan, dermatan sulfate, keratan sulfate etc., (Iozzo 

and Schaefer 2015). Within each of these families there is variation in the precise sequences of 

sugars. Each   protein core of proteoglycans can carry a variety of GAGs, and different cores may 

bear the same type of GAG. The protein cores are synthesized by the normal secretory pathway in 

the endoplasmic reticulum and then pass to the Golgi apparatus, where certain of their serine 

residues are linked via xylose to long GAG chains that are synthesized in situ. In most 

proteoglycans, these chains are then sulfated by sulfotransferases, thus obtaining sulfate groups 

giving the GAGs a net negative charge. Proteoglycans have a variety of functions. Many can be 

bound by receptors on cells, promoting cell–ECM adhesion, and also by ECM molecules such as 

Figure 13. Structure of Proteoglycans. GAGs are  long unbranched polysaccharides that are composed of a repeating disaccharide 
unit. The disaccharide unit is composed of one of either N-acetylgalactosamine or N-acetylglucosamine. Adapted from (Sicari et al. 
2014). 
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fibronectin. Most of them can take up water to form hydrated gels to fill space in the ECM, and some, 

like heparan sulfate, bind to a variety of growth factors, concentrating them in the ECM and 

preventing their diffusion, (Davies 2001). Examples of matrix proteoglycans include aggrecan, which 

accounts for 10 % of the weight of cartilage and forms a hydrated gel into which collagen fibers are 

embedded; lumican, which forms a gel that aids the transparency of the cornea; neurocan, which 

appears to guide developing nerves to their targets when the nervous system wires itself up in 

embryonic life; fibromodulin, which appears to inhibit collagen fibril assembly; and perlecan, which 

forms a filter-like gel in basement membranes. HA retains significant biological activity and directly 

promotes cell proliferation, migration, and differentiation. The concentration of HA within ECM is 

highest in fetal and newborn tissues and is therefore associated with enhanced healing properties, 

(Hodde et al. 1996; Sicari et al. 2014). 

 

Structural dynamic of ECM 

The micro-environmental conditions that cells find are key regulators of the normal tissue function 

and disease appearance. Cells continuously adapt to their environment by modifying their behavior 

but also by remodeling their microenvironment ,(Cox and Erler 2011)). Hence, understanding the 

complex processes accompanying ECM production, modification and remodeling, and how these 

processes change the physiological, biochemical and biomechanical properties of the ECM, are key 

to understand the cells behavior at biomaterials interface.  

Except synthesis, ECM undergoes continuous organization and remodeling based on mechanical 

reorganization or enzymatic degradation (Altankov et al. 2010; Coelho et al. 2016). Observed in vivo 

or in vitro, these processes play a critical role in adaptation of cells to their microenvironment and 

reveal the importance of the reciprocal cell-ECM interactions for the normal tissue homeostasis and 

function. 

 

ECM remodeling 

Within tissues, cells build and reshape the ECM by synthetizing, degrading or reassembling it. 

Remodeling rates are particularly high during development, regeneration of tissues and wound 

repair, but when miss-regulated, they can contribute to diseases such as atherosclerosis, fibrosis, 

ischemic injury and cancer, (Curino et al. 2005; Reisenauer et al. 2007; Yu, Mouw, and Weaver 

2011).  

 

Mechanical reorganization of ECM proteins 

Although the processes involved in the organization of ECM are poorly understood, there are 

evidences for distinct hierarchical steps in matrix assembly starting with the recognition of ECM 

components followed by an order of complex inter-ECM interactions. For example, the integrin-

mediated arrangement of fibronectin into fibrils is dependent on integrins but is also connected with 



Chapter 1   |                                                                                                                                                                             Introduction 
Extracellular matrix 

 
33 

the tethering of other ECM proteins, including thrombospondin 1 and type I collagen to the cell 

surface, (Sottile and Hocking 2002). The basement membrane assembly is also initiated by 

recognition of laminins by the cells; in fact, they self-assemble into heterotrimers only at the cell 

surface interacting with cell surface receptors - mainly integrins, (Daley, Peters, and Larsen 2008; 

Li et al. 2003)Type IV collagen also assembly only in contact with cells, but is further internally 

stabilized by Met-Lys crosslinks in the basement membrane, (Than et al. 2002). Kurban et al. 

showed that a small protein named von Hippel-Lindau tumor-suppressor protein is required for this 

assembly. Other proteins also play role in basement membrane structuring: an example is the 

nidogen, which interacts with specific domains of laminin and also links collagen IV within the 

basement membrane, (Kurban et al. 2008).  

The ability of cells to rearrange adsorbed matrix proteins in a fibril-like pattern is well described 

in literature phenomenon, (Christopher, Kowalczyk, and McKeown-Longo 1997; Sottile and Hocking 

2002; Velling 2002).  Several cell types (including fibroblasts and endothelial cells) tend to rearrange 

adsorbed matrix proteins, such as fibronectin, fibrinogen, and even collagen IV  in a fibril-like pattern 

seeking to mimic the natural organization of these proteins in ECM, (Altankov and Groth 1994; 

Coelho et al. 2011, 2013, 2016; Tzoneva et al. 2002), or creating appropriate microenvironment for 

secretion of own matrix. Such a cellular activity are strongly dependent on the surface properties of 

materials like hydrophility, surface chemistry, electrical charges, stiffness etc. (Altankov and Groth 

1994; Gustavsson et al. 2008; Rhee and Grinnell 2007) and have their importance for the 

biocompatibility of the materials. It is postulated that biocompatibility of materials is connected with 

the allowance of cells to remodel surface associated proteins, presumably as an attempt to form 

their own matrix (G. Altankov & Groth, 1994; Georgi Altankov, Grinnell, & Groth, 1996; Nuno Coelho 

et al 2011, 2013, 2016, Tzoneva et al 2002). For example, the cells trigger Integrin-mediated 

organization of substrate adsorbed fibronectin into specific fibrillar structures, very similar to 

fibronectin matrix fibrils that occur during the physiological fibronectin fibrillogenesis 

(Altankov&Groth 1994; Altankov, Grinnell, and Groth 1996; Altankov et al 2010). Moreover, there 

are observations that organized fibronectin may recruit other matrix proteins to the cell surface, and 

therefore is required for their organization. For example, Tzoneva et al showed that fibronectin 

fibrillogenesis is required for rearrangement of substratum associated fibrinogen; endothelial cells 

were able to reorganize both adsorbed  and soluble  fibrinogen in specific fibrillar structures that 

follow the fibrillar organization of the fibronectin (Tzoneva et al. 2002).  Even collagen IV, which is a 

non-fibrillar protein in its nature, can undergo fibril-like linear rearrangement by fibroblasts along 

fibronectin fibrils, (Coelho et al. 2013, 2016; Maneva-Radicheva et al. 2008).  

Relatively little is known about the fate of the already arranged matrix proteins. Recent data 

indicate that organized ECM proteins have distinct properties from non-polymerized (protomeric) 

ones not only in respect to the stability of ECM, but also according the regulation of its composition, 
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integrity and adhesive behavior, (Mosher et al. 1992; Sottile and Hocking 2002). What is clearly 

known is that they may undergo proteolytic remodeling.  

 

Enzymatic (proteolytic) remodeling of ECM 

In general, ECM remodeling is a dynamic process that consists of two opposite events: assembly 

and degradation of matrix. Enzymatic degradation (also proteolytic or proteolysis) is a mechanism 

for the removal of the excess ECM and is usually approximated with remodeling (Salmeron-

Sanchez, Altankov, and Eberli 2010). Normally it is active during development and regeneration, but 

when miss-regulated, these processes can have serious pathological consequences, such as 

fibrosis, arthritis, reduced angiogenesis, and developmental abnormalities, (Wagenaar-Miller et al. 

2007). The invasive behavior of cancer cells is also due to the up-regulation of matrix remodeling, 

(Curino et al. 2005).  

The proteolytic cleavage of ECM components is the main mechanism for ECM degradation and 

removal, (Koblinski, Ahram, and Sloane 2000; Mohamed and Sloane 2006). Several families of 

proteases operate at the ECM level, including matrix metalloproteinases, cysteine proteases 

and serine proteases. Proteolysis regulates the ECM assembly, removing the excess ECM 

components. During enzymatic remodeling of ECM structures, bioactive fragments and growth 

factors can be transformed from their inactive stage to an active form allowing accomplishing their 

functions. 

The major enzymes that degrade ECM and the cell surface associated proteins are matrix 

metalloproteinases (MMPs). MMPs form a large family (24 members) of proteolytic enzymes, 

which together with adamalysin-related membrane proteinases that contain disintegrin and 

metalloproteinase domains (ADAMs or MDCs), such as thrombin, t-PA, u-PA and plasmin, are 

involved in the degradation of ECM, (Page-McCaw, Ewald, and Werb 2007). All MMPs require metal 

ions (zinc and calcium) for its activity, and each of them lyses various ECM proteins (each MMP 

cleaves a different range of ECM components). Secreted MMPs are all produced and secreted from 

cells in an inactive proenzyme form, which are activated when they are cleaved themselves by other 

proteases. Instead of being secreted, MMP-11 is embedded in the plasma membrane; this 

membrane-bound MMP is believed to be activated by signaling pathways inside a cell, and to be 

capable of activating other MMPs in the ECM outside. The actions of MMPs directed at destroying 

ECM are antagonized and regulated by tissue inhibitors of metalloproteinases (TIMPs), (Davies 

2001). The overall rate of matrix destruction is determined largely by the balance between the TIMPs 

and MMPs embedded within ECM.  

Matrix remodeling is subject of extensive biomedical research during last decade, but the question 

how it relates to the biocompatibility of materials remains unanswered. Upon implantation, foreign 

materials often trigger an uncontrolled and undesired deposition of fibrous matrix, despite difficult to 

predict, compromises the biocompatibility of the implant. The complex 3D organization of ECM in 
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vivo is difficult to recreate on biomaterial interface. Thus, identifying factors and mechanisms that 

control the matrix secretion and organization on the materials interface is a critical step the 

development of materials reliable for application in the field of biomedical engineering.
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Cellular receptors  

 

Interactions between cells and ECM are mediated by cell-surface receptors, which are 

glycoproteins and proteoglycan by their nature. They may be systematized in two classes of 

adhesion receptors: 1) involved mainly in cell-cell adhesion (briefly mentioned in this work) and 2) 

receptors accomplishing cell-ECM interactions. Some receptors from the second class might be 

involved in both cell-cells and cell-matrix adhesion. 

 

Cell-cell receptors  

 

Cadherins  

 Cadherins are a family of cell-surface 

receptors involved in homophilic binding 

(i.e., the binding of a cadherin on one cell 

with an identical cadherin on another cell), 

(Leckband and Prakasam 2006; 

Leckband and Sivasankar 2012).These 

molecules make possible that a cell of one 

type recognizes and adheres to other cells 

of same type, an interactions that normally 

require the presence of extracellular Ca2+. 

Cadherins are not directly involved in cell-

ECM interaction but may be involved 

indirectly by organizing tissues in 

conjunction with other receptors and 

interactions, (Figure 14, (b)). 

 

Selectins  

Selectins are receptors family that 

accomplishes the heterophilic binding 

between cells (for example blood cells and 

endothelial cells) also in a Ca2+ dependent 

manner. These proteins show lectin-like properties and recognize as their ligands branched 

oligosaccharides. Selectins receptor - ligand interactions are involved mainly in cell-cell adhesion, 

with particular importance in the inflammatory processes, (Rosen and Bertozzi 1994; Vestweber and 

Blanks 1999), (Figure 14, (c)). 

Figure 14.. Cellular receptors mediating cell to cell interactions: (a) 
and (d) CAMS; (b) Cadherins; (c) Selectins. 
 Figure copyright of Pearson Education Inc. Adapted from 
www.mun.ca/biology/desmid/brian/BIOL2060/CBhome.html. 
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 Figure copyright of Pearson Education Inc. Adapted from 
www.mun.ca/biology/desmid/brian/BIOL2060/CBhome.html. 
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Cell adhesion molecules (CAMs) 

This class of receptors belongs to the immunoglobulin superfamily of cell adhesion molecules and 

is denoted as Ig-CAMs, ICAMs or simply CAMs. These proteins bind their protein ligands both 

homophilically and heterophilically, but independently of extracellular Ca2+. CAMs bind to different 

cell-surface proteins realizing primarily cell-cell interactions. One class ligands for these receptors 

includes several members of the integrin receptors family, (Walsh and Doherty 1997), (Figure 14, 

(a), (d)). 

 

Cell-ECM receptors 

 

Integrin receptors 

The integrin receptor family is involved in both cell-cell and cell-ECM binding. Integrins are 

heterodimers of non-covalently associated α- and β-subunit. The α and β subunits are constructed 

from several domains with flexible linkers between them. The size varies but typically the α-subunit 

contains around 1000 and the β- around 750 amino acids. Each subunit has a single membrane-

spanning helix and a short, usually unstructured cytoplasmic tail, (Hubbell 2007). 

In vertebrates, there are 18 α and 8 β subunits that can assemble into 24 different receptors with 

different binding properties and different tissue distribution, (Barczyk, 2010; Hynes, 2002). Some of 

the α- β combinations are conditionally combined in β1, β2, β3 and β4 subclasses as shown in Table 

1, which are in fact the most commonly expressed integrins (Hubbell 2007). The β2 integrins are 

involved primarily in cell-cell recognition; for example, the integrin αLβ2 binds to ICAM-1 and ICAM-

Table 1. Some of the members of the integrin receptor family and their corresponding ligands. Adapted from  Adapted from (Hubbell 
2007). 
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2, both members of the immunoglobulin superfamily of cell adhesion molecules described above. 

By contrast, the β1, β3 and β4 integrins are primarily involved in ECM interaction. On the other hand, 

the β1, β2 and αV-containing integrins are the largest groups in this classification. The α and β 

subunits show no homology to each other, but the α subunits have similarities among themselves 

(Barczyk et al. 2010). 

 

Integrin α-subunits 

The α-chain consists of four or five extracellular domains: a seven-bladed β-propeller, a thigh, and 

two calf domains. Nine of the 18 integrin α chains have an α-I domain of around 200 amino-acids, 

inserted within the β- propeller, (Larson et al. 1989). The α-I domain, a copy of which also appears 

in the β-chain (respectively β-I domain), has five β-sheets surrounded by seven α helices similar to 

those of the von Willebrand factor A-domains. The β- propeller contain domains that bind Ca2+ that 

has been shown to influence ligand binding, (Humphries, Symonds, and Mould 2003; Oxvig and 

Springer 1998). The thigh and calf domains have similar, immunoglobulin-like, β-sandwich folds, 

(Xiong et al. 2002), and 140–170 residues with more β-strands than typical Ig-like domains (~100 

residues). Two main regions are responsible for the intradomain flexibility: one is the linker between 

the β-propeller and the thigh; the other is between the thigh and the calf-1 domain. The α-I domain 

in αxβ2 heterodimer is also inserted in the β-propeller domain with flexible linkers (Figure 15). Unlike 

Figure 15. Integrin structure. (A) Domain structure of αxβ2 (Xie et al. 2009); (B) structure of αxβ2 repeating the color code afrom 

(A). (C) Schematic representation of bent and upright conformations. Adapted from (Campbell and Humphries 2011). 

 

Figure 15. Integrin structure. (A) Domain structure of αxβ2 (Xie et al. 2009); (B) structure of αxβ2 repeating the color code afrom A. 

(C) Schematic representation of bent and upright conformations. Adapted from (Campbell and Humphries 2011). 
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the other four α-domains, which have relatively rigid structures, I domains show conformational 

changes that are important for the regulation of the binding affinity (Campbell and Humphries 2011). 

 

Integrin β-subunits  

The β subunit contains a plexin-semaphorin-

integrin (PSI) domain, a β-I domain, (Lee et al. 

1995), and four cysteine-rich EGF repeats. As 

shown in Figure 16, the β-I domain contains an 

Mg2+ coordinating the metal-ion-dependent 

adhesion site (MIDAS) and a site adjacent to MIDAS 

(ADMIDAS) binding an inhibitory Ca2+ ion. This 

ADMIDAS site binds the Mn2+ ion leading to a 

conformational change resulting in an active form of 

the integrin, (Humphries et al. 2003). There is also 

a second Ca2+ binding site called the synergistic 

metal ion binding site (SyMBS), (Zhu et al. 2008).  

The β-leg has seven domains with flexible and 

complex interconnections. A β-I domain is inserted in a hybrid domain, which is, in turn, inserted in 

a plexin-semaphorin-integrin (PSI) domain. These domains are followed by four cysteine-rich 

epidermal growth factor (EGF) modules and a β-tail domain. The hybrid domain in the upper β-leg 

has a β-sandwich construction, (Barczyk et al. 2010) There is evidence for important conformational 

changes occurring in the β-I/hybrid region. A transition from a “closed” (Figure 16, left) to an “open” 

conformation (Figure 16, right) of the β-I domain has been observed when an a7-helix in the β-I 

moves toward the hybrid domain, (Xiao et al. 2004),and via a rod-like motion the a7-helix causes 

the hybrid domain to swing-out by around 60o  resulting in alterations of their activity, (Campbell and 

Humphries 2011). 

 

Conformational changes in integrins upon ligand binding 

Crystallization studies have shown that integrins can exist in a compact bent conformation, (Xiong 

et al. 2002) mostly associated with their inactive state. Locking the integrins in this state through 

disulphide bonds abolishes ligand binding. Electron microscopy under conditions in which ligand 

binding was low, e.g. in low Ca2+ containing buffers, showed also predominantly bent structures, 

(Nishida et al. 2006; Takagi et al. 2002). In bent conformation, the ligand-binding pocket is oriented 

toward the plasma membrane, thereby “protecting” ligand engagement, but flexibility at the 

membrane domain could enable the conversion of bent to extended integrin conformation, (Beglova 

et al. 2002). More recently, mechanical tension has been demonstrated to stabilize the active 

Figure 16. Illustration of the movement of a7 helix in the 
β-I domain of intedrins and the swing of the hybrid domain 
(the domains are defined in Figure 15. Adapted from 
(Campbell and Humphries 2011). 

 

Figure 16. Illustration of the movement of a7 helix in the 
I domains and the swing of the hybrid domain (the 
domains are defined in Figure 15). Adapted from 
(Campbell and Humphries 2011). 
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conformation and thereby increasing affinity, (Askari et al. 2009; Astrof et al. 2006). For example, in 

integrin α5β1 the mechanical tension induces α5β1 engagement with the synergy site in fibronectin, 

in turn leading to FAK activation, (Friedland, Lee, and Boettiger 2009).  

Early studies reported activation-dependent changes in monoclonal antibodies (mAb) binding to 

integrins that were attributed to conformational changes of the molecule, (McEver and Martin 1984), 

and revealed several epitopes, involved in ligand binding. The acronym LIBS (ligand-induced 

binding sites) was proposed to describe these epitopes and usually the activating mAbs appear to 

function by increasing the affinity of ligand binding. Most LIBS mAbs have epitopes that are 

regulated by divalent cations, and because cations also regulate ligand binding, it appears that many 

cation-responsive, or activating mAbs, actually recognize naturally occurring conformers of 

integrins. These mAbs may therefore shift the conformational equilibrium leading to high affinity 

binding state for given integrin. Some other activating mAb epitopes however are unaffected by 

either ligand or cation binding and here the most likely mechanism of action is through inducing the 

activated conformation of the integrin, (Chen 1999). In addition to the affinity modulation, integrin 

clustering by multivalent ligands or changes in membrane fluidity, may cause remarkable changes 

in integrin binding activity, (Carman and Springer 2003). 

Thus, the conformational changes in the head are the key determinant of ligand-binding activity. 

The conformation of the β-I domain however might be determined by the position of a hybrid domain, 

which swinging-out away from the α-subunit may pulls downward the β-I domain and favors the 

upward movement of the α1-helix, (Xiao et al. 2004). Such motions shifts the β-I domain from a low-

affinity into a high-affinity conformation by backbone movements of loops that contain cation-

coordinating residues. Not accidentally mutations that favor a downward shift of the β-I domain also 

result in a high-affinity state, (Campbell and Humphries 2011; Cheng et al. 2007; Hato et al. 2006). 

Ligand binding specificity 

A characteristic feature of most integrin receptors is their ability to bind a wide variety of ligands. 

Conversely, many ECM and cell surface adhesion proteins bind to multiple integrin receptors, (van 

der Flier and Sonnenberg 2001; Humphries 2000; Plow et al. 2000). One molecular explanation for 

this low specificity is the evolutionary selection of common acidic peptide motifs in ECM proteins 

that mediate integrin binding via coordination to a divalent cation-containing binding pocket. Integrin- 

ligand combinations can be classified into at least four groups, based on the nature of the molecular 

interaction, (Figure 17).  All five αV integrins, two β1 integrins (α5, α8), and αIIbβ3 recognize ligands 

containing an RGD tripeptide active site. Indeed the reported crystal structures of αVβ3 and αIIbβ3 

complexed with RGD ligands reveal an identical interaction model, (Xiao et al. 2004; Xiong et al. 

2002). RGD binds at an interface between the α- and β-subunits fitting to a cleft in a β-propeller 

module of the α-subunit. RGD-binding integrins bind to a large number of ECM and soluble vascular 

ligands, but with different affinities mainly determined by conformational correspondence. Although 
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RGD is an essential element of the ligand binding process, ligands can contain other binding sites. 

An example is a synergy sequence in fibronectin that also binds the α5 β-propeller, (Mould et al. 

2003). Conversely, the α4β1, α4β7, α9β1, the four members of the β2 subfamily, and αEβ7 

recognize related sequences in their ligands. The first group (α4β1, α4β7 and α9β1) bind to an acidic 

motif, termed LDV that is functionally related to RGD. Fibronectin for example (a typical RGD 

protein) contains the prototype LDV ligand in its type III repeat region, but other ligands (such as 

VCAM-1 and MAdCAM-1) also employ related sequences. Though the crystal structures of this 

integrin subfamily is not known, it is likely that LDV peptides bind similarly to RGD. On the other 

hand, the subunits containing α-I-domain (α1, α2, α10, and α11) combine with β1 to form the 

laminin-collagen binding subfamily. A crystal structure of a complex between the α2 I-domain and 

the α subunits of the triple-helical collagenous peptide has revealed the Gly-Phe-Hyp-Gly-Glu-Arg 

(GFOGER) motif providing the key cation-coordinating residue, (Emsley et al. 2000). The 

mechanism of laminin binding is less understood, although a recent study has suggested that the 

extreme carboxyl terminus of the γ-chain and an undefined site in laminin G-domains together 

constitute an integrin-binding site, (Ido et al. 2007). 

In addition to physiological ligands, integrin ligands generated by proteolysis are receiving 

increasing recognition. Integrins can also bind snake toxins called disintegrins, (Calvete et al. 2005; 

Swenson, Ramu, and Markland 2007), certain viruses, (Stewart and Nemerow 2007), and bacteria, 

(Hauck et al. 2006; Palumbo and Wang 2006). Some of these interactions occur outside the regular 

Figure 17.  Representation of the integrin family. In vertebrates, the integrin family contains 24 heterodimers.Adapted from (Barczyk 

et al. 2010). 

 

Figure 17.  Representation of the integrin family. In vertebrates, the integrin family contains 24 heterodimers.(Barczyk et al. 2010). 
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ligand-binding sites in the integrins and display different binding characteristics compared with the 

binding of physiological ligands, (Barczyk et al. 2010). 

 

Activation of intergrins 

Adhesion is highly dynamic process, with cells continuously changing their pericellular 

environment and responding by rapid alterations their position and state of differentiation, and 

therefore a highly responsive receptor activation mechanism is required. As integrins don’t have 

enzymatic activity, intensive signaling is instead induced by the assembly of signaling complexes 

on the internal face of the plasma membrane. The activation of these complexes is achieved in two 

manners; first, by receptor clustering, which increases the amount of molecular interactions 

thereby increasing the rate of binding of effector molecules (“outside-in signaling”), and second, 

by induction of conformational changes in receptors that creates or exposes effector binding 

sites. For example, in leukocytes or blood platelets, intracellular signals can release a self-inhibitory 

function of talin, which consequently binds to the cytoplasmic tails of inactive integrins. This leads 

to conformational change, transmitted through the cell membrane to the extracellular integrin 

domains, which become activated and able to bind their ECM-ligands (“inside-out signaling”), 

Figure 18. Diagram of bidirectional activation of integrins. During ‘inside–out’ signaling, an intracellular activator, such as talin, binds 

to the β-integrin tail, leading to conformational changes that result in activation and increased affinity for extracellular ligands (right).  
Integrins can also transmit information into cells by ‘outside–in’ signaling. Binding of integrins to their extracellular ligands changes 
the conformation of the integrin leading to integrin clustering and subsequent activation. Adapted from (Shattil et al. 2010). 

 

Figure 18. Diagram of bidirectional activation of integrins. During ‘inside–out’ signaling, an intracellular activator, such as talin, binds 
to the β-integrin tail, leading to conformational changes that result in activation and increased affinity for extracellular ligands (right).  
Integrins can also transmit information into cells by ‘outside–in’ signaling. Binding of integrins to their extracellular ligands changes 
the conformation of the integrin leading to integrin clustering and subsequent activation. Adapted from (Shattil et al. 2010). 
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(Figure 18), (Shattil, Kim, and Ginsberg 2010). Current evidence suggests that conformational 

regulation is the primary mode of affinity regulation of integrins, (Campbell and Humphries 2011). 

 

Functions of integrins 

It is clearly noted by Hynes that 

integrins form supramolecular 

complexes with their extracellular 

and cytosolic partners, (Figure 

19), (Hynes et al. 2002). These 

networks are highly ordered and 

perform their distinct functions. 

Thus, the first function is to 

establish links between the ECM 

and the cytoskeleton. For a 

majority of integrins, the linkage is 

to the actin cytoskeleton, (Geiger, 

Spatz, and Bershadsky 2009), but 

there are also exceptions – for 

example, integrin α6β4 connects to the intermediate filament system, (Nievers, Schaapveld, and 

Sonnenberg 1999). Recently, the intermediate filament protein vimentin has been shown to be 

dependent on β3 integrins for its recruitment to the cell surface indicating that an intimate 

relationship exists between the various cytoskeletal networks and integrins, (Bhattacharya et al. 

2009). Some of the components in this mechanical linkage, such as talin, play a dual role activating 

integrins via an inside-out signaling mechanism, (Tadokoro et al. 2003). 

Integrins are responsible not only for cell adhesion to ECM, but also for the transmission of 

mechanical forces across the cell, thus playing a central role in mechanotransduction, i.e., the 

process by which mechanical stimuli are converted into chemical signals within the cell, (Ross et al. 

2013). A new dimension in understanding of integrins function has come with the realization that 

integrins can act as mechanosensors and generate signals that affect cell physiology via complex 

intracellular signaling mechanisms including autocrine and paracrine mechanisms, (Chen and 

O’Connor 2005; Linton, Martin, and Reichardt 2007; Zhu et al. 2007) 

It is clear now that integrin-containing matrix adhesions are assembly platforms for a multitude of 

signaling pathways that control cell growth, differentiation, and death (Zaidel-Bar, Itzkovitz, et al. 

2007).These adhesion structures mediate the synergy between growth factor- and integrin-

dependent signaling, which is responsible for the anchorage-dependent growth of most normal cells 

(Reddig and Juliano 2005). All this determines other important function of Integrins: namely the fact 

that integrins are bi-directional receptors involved in both outside-in and inside-out signaling. The 

Figure 19. Integrin signaling. The major signal transduction pathways and many 
of the key players in them are shown together with the major effects on cell 
behavior mediated by integrins. Adapted from (Hynes et al. 2002) 

 

Figure 19. Integrin signaling. The major signal transduction pathways and many 
of the key players in them are shown together with the major effects on cell 
behavior mediated by integrins. Adapted from (Hynes et al. 2002) 
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inside-out signaling mainly acts to bring the integrin in to the active conformation. Talins, kindlins, 

filamins, migfilin, FAK, and ILKs. are only part of the proteins that are involved in the regulation 

of integrin activation, (Honda et al. 2009). 

 

Cell-ECM interactions in-vivo 

As stated above, upon ligand binding, integrins undergo conformation changes leading to the 

classical outside-in signaling. This activates signaling events that are complex and cell-specific, 

depending on what other signaling receptors and signaling systems are available in the cell.  The 

ligation of integrins triggers a large variety of signal transduction events that serve to modulate many 

aspects of cell behavior including proliferation, survival/apoptosis, shape, polarity, motility, gene 

expression, and differentiation. These signal transduction pathways are as complex as those 

emanating from receptors for soluble factors (e.g., G protein-coupled and kinase receptors). Indeed, 

Figure 20. The behavior of individual cells and the dynamic state of multicellular tissues is regulated by intricate reciprocal molecular 

interactions between cells and their surroundings. Adapted from (Lutolf and Hubbell 2005). 

 

Figure 20. The behavior of individual cells and the dynamic state of multicellular tissues is regulated by intricate reciprocal molecular 
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many integrin-dependent pathways are very similar to those triggered by growth factor receptors 

and are intimately coupled with them (Figure 20).   

Tissue dynamics, in its formation, development, function, regeneration after damage or 

pathological appearance, is result of an intricate temporal and spatial coordination of numerous 

crucial cell fate processes, each of which is induced and controlled by a multitude of signals from 

the extracellular microenvironment, (Kleinman, Philp, and Hoffman 2003). This dynamic composite 

of biophysical and biochemical cues is transmitted from the outside of a cell by its surface receptors, 

then is integrated by intracellular signaling pathways to regulate gene expression and, ultimately, 

establishes cell behavior and phenotype.  The extracellular microenvironment, as mentioned before, 

integrates three main groups of effectors: a) insoluble hydrated macromolecules (fibrillary proteins 

such as collagens, fibronectin, laminin, elastin, hydrophilic proteoglycans etc.; b) soluble 

macromolecules (growth factors, chemokines and cytokines); and c) surfaces proteins of adjacent 

cells. Thus, the determination of a cell to proliferate, migrate, differentiate, trigger apoptosis or 

perform other specific functions is a strictly coordinated response to molecular interactions with 

these ECM effectors. Noteworthy, apart from the other signaling pathways the flow of information 

between cells and their ECM is highly bidirectional, and precisely regulated as observed in 

processes like ECM degradation and remodeling, (Lutolf and Hubbell 2005).
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Cell-biomaterial interactions 

 

Cell-matrix interactions at biomaterial interface 

Understanding the cellular events that take place upon contact with biomaterials interface is 

powerful approach for not only determining the phenomenon of biocompatibility of materials, but 

also for further spreading of our knowledge over the fundamental processes of dynamic interaction 

between cells and their microenvironment. The initial cell-biomaterial interaction mimics to a certain 

extent the natural interplay between cells and ECM, (Williams 2008), and some of the ECM proteins 

(called adhesive proteins) are considered to play a main role in mediating such an interactions. It is 

a paradigm that cells cannot interact directly with the foreign material surfaces, as they cannot 

recognize them. However they possess a machinery to recognize and interact with adsorbed 

proteins or other bioactive molecules, containing adhesive sequences (e.g., RGD). Generally, cell-

biomaterials interaction can be divided into early and late events. Early events involve recognition 

of signals, incorporated in the material or coming from the adsorbed adhesive proteins and transition 

of these biological signals to cell interior, (Altankov et al. 2010; Grinnell 1986). Late events cover 

the proliferation of the cells under continuous exchange of biological signals with the biomaterial, 

which establishes distinct cellular behavior, (Place, Evans, and Stevens 2009; Sipe 2002). In fact, 

many cellular responses to soluble growth factors, such as EGF, PDGF, LPA, thrombin, etc., are 

dependent on the cell’s being adherent to a substrate via integrins. That is the essence of 

anchorage dependence of cell survival and proliferation and integrin-dependent cell adhesion lie 

at the basis of this phenomenon, (Assoian 1997; Schwartz and Assoian 2001). 

 

Adsorption of proteins at biomaterials interface 

Real cell-biomaterials interaction depends primarily on the adsorption of proteins. The adsorption 

of larger biomolecules, such as proteins, is of high physiological relevance. However, it should be 

considered that they adsorb with different mechanisms than their analogs at molecular or atomic 

level. By definition adsorption (not to be mistaken for absorption) is the accumulation and adhesion 

of molecules, atoms, ions, or larger particles to a surface, without occurring of surface penetration, 

(Boyle 2005). Proteins are molecules composed of amino acid subunits. Each amino acid has a side 

chain that gains or loses charge depending on the pH of the surrounding environment, as well as its 

own individual polar/nonpolar qualities. Usually the protein adsorption is considered as positive 

event because ordinarily supports cellular interactions with foreign material, otherwise biologically 

unrecognizable. Such are principally the biomedical implants. However, in some cases, protein 

adsorption to biomaterials can be an extremely unfavorable event. For example the adhesion of 

clotting factors may induce thrombosis. 
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Some of the major driving forces behind protein adsorption include: surface energy, intermolecular 

forces, hydrophobicity/hydrophobicity balance, and ionic or electrostatic interaction. Knowing how 

these factors affect protein adsorption, they could be manipulated by different engineering 

techniques for most optimal performance in biomedical or physiological environment. 

Protein adsorption on surfaces is a process driven by energetic interactions between the molecular 

groups on the substrate and on the protein (i.e., hydrogen bonding, electrostatic, van der Waals 

interactions), Moreover, it is dependent on the entropic changes resulting from the protein 

unfolding and the concomitant release of bound water, (García 2006; Werner, Pompe, and Salchert 

2006). Thus, the amount of adsorbed protein and its conformation depend on the chemical nature 

of the substrate and the molecular structure of the protein itself, which determine the balance 

between energetic and entropic interactions. The adsorption of ECM proteins has been extensively 

investigated utilizing different model substrata such as mica, glass or self-assembled monolayers. 

Particularly well described is the behavior of FN, laminin, collagens, FBG and several other “popular” 

proteins, exploring the capacity of different techniques and approaches, such as the classical SDS-

electrophoresis, spectroscopy and various fluorescence probes and ongoing with the ellipsometry, 

quartz crystal microbalance, FTIR, electron microscopy and atomic force microscopy (AFM), 

(Keselowsky, Collard, and Garcıá 2004; Lord et al. 2006; Michael et al. 2003; Noh and Vogler 2006; 

Prime and Whitesides 1991; Sousa et al. 2007; Steiner et al. 2007; Tsapikouni and Missirlis 2007). 

These studies clarify that in addition to the differences in the amount of adsorbed protein, many 

proteins undergo conformational changes upon adsorption on biomaterial substrates, and these 

structural changes actually determiner their biological activity. Due to their secondary and tertiary 

structure the proteins represent more or less defined folding of their molecules, as well as specific 

distribution of hydrophobic, hydrophilic or differently charged moieties, which has a major impact on 

their adsorption profile. And it becomes even more complex considering that the properties of the 

proteins can vary in different environmental conditions, depending for example on pH, ionic strength, 

or temperature. In the fluid phase the proteins normally move to the surface interface by diffusion; 

small proteins diffuse faster than larger ones and therefore are predominant in the early adsorption 

phase. Depending on the relative strength of the initial attachment, protein molecules can stay 

adsorbed or may be displaced by other molecules with higher affinity for the surface, called Vroman 

effect, (Noh and Vogler 2007). 

Whereas in solution proteins rotate freely, on a surface each protein adapt a certain orientation 

depending on which part of the molecule interacts and which part is exposed to the solution. 

Obviously, this is an important issue when adsorbed proteins have specific bioactivity connected 

with a certain part of the molecule. The active sides can become either available or hidden after the 

adsorption. For example, on hydrophilic interfaces proteins will predominantly expose to the surface 

those parts of the molecule that are rich of hydrophilic residues and on hydrophobic surfaces 

proteins will direct their hydrophobic patches to the surface. Analogously, proteins adsorbing at 
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positively or negatively charged interfaces will tend to expose oppositely charged regions to the 

surface. Therefore, a protein has a favorable conformational state on a given surface, which often 

differs from the native conformational state in solution. Thermodynamically, this is because the free 

energy minimum of the protein in solution typically differs from the free energy minimum after contact 

with the surface, (Santore and Wertz 2005; Sethuraman and Belfort 2005). Initially proteins 

approach the surface in their native state and bind through some initial contact sites to the surface. 

Then structural reorganizations start driven by favorable protein-surface interactions and increase 

in entropy due to a loss of ordered secondary structure. This leads to release of water molecules or 

different ions from the surface. 

When protein molecules not only interact with the sorbent surface, but also between each other, 

lateral interactions can be expected to occur. Often proteins bear a charge of equal sign that 

causes intermolecular repulsions. For example, at pH values below and above the isoelectric point 

(pI) the density of protein layers is usually smaller than at pH equal to pI, (Demanèche et al. 2009). 

Such a repulsive interactions lead to higher desorption rates along time. However, lateral interaction 

can be also in favor of adsorption rates and causing some cooperative effects. It was shown by Ball 

and Ramsden that the cumulative electrostatic field in the periphery of adsorbed proteins induces 

an electrostatic self-assembly which enhances the protein uptake rates. This positive cooperative 

effect is explained by a mechanism through which proteins are at the same time attracted toward 

the surface in vertical direction and repelled from the neighboring protein in horizontal direction. 

Characteristic feature of such an adsorption kinetics is the almost linear increase before the 

saturation levels are reached, (Ball and Ramsden 1997, 2000).  

An important aspect of protein adsorption is the formation of clusters or larger aggregates of 

proteins or protein monomers upon contact with a substrate. These processes can highly alter the 

protein adsorption at solid interfaces and influence the adsorption kinetics as well as the resulting 

layer structure. The mechanisms of protein clustering may include either the diffusion of surface 

bound molecules towards precursor aggregates or direct adsorption of free protein molecules 

tending to form protein aggregates in advance – both mechanism implying that clusters increase 

their size directly on the surface mediated by stronger protein–protein interactions, (Minton 2001). 

Another mechanism that can lead to development of clusters consist of the formation of larger 

protein assemblies in the solution which later deposit onto the surface where they spread and flatten, 

(Rabe et al. 2009). The growth of protein clusters in such a mechanism is not so restricted to the 

surface but could also proceed into third dimension, (Ishiguro et al. 2005). 

Relevant to our studies is important to note that clustering in most cases is a surface driven 

process. Protein clusters could appear as stable, ordered or amorphous aggregates that grow in a 

protein solution and their appearance ranges from fibril-like features to spheres or beads with 

diameters of up to a several hundred nanometers, (Zhang and Liu 2003). These structural 

arrangements however, are of particular interest when affect the fate of ECM proteins at the 
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biomaterials interfaces, which might be considered as still insufficiently studied issue. A special 

attention deserves the characteristic nanoscale behavior of adsorbed matrix proteins such as 

fibronectin, collagen, laminin, fibrinogen, etc., observed by AFM,(Coelho et al. 2010; Gugutkov et 

al. 2009, 2010, 2011; Llopis-Hernández et al. 2013; Salmeron-Sanchez et al. 2010). Apart from the 

“classical view” for a rather stochastic adsorption of proteins, these studies showed that on some 

surfaces the lateral protein-protein forces may prevail over the protein-substratum interactions giving 

rise to the formation of a network-like structure. For example, Salmeron Sanchez and co-workers, 

via exploring an amphiphilic system based on copolymers of poly(ethylacrylate) (PEA) and hydroxyl 

poly(ethylacrylate) (PHEA), (Salmeron-Sanchez et al. 2010), have shown that the amount of 

expressed —OH groups strongly affects the probability for lateral assembly of adsorbed proteins. 

However, this co-polymer system affects not only the lateral assembly of adsorbed proteins, but 

also their biological activity, which constitute considerable part of the current Thesis. In fact using 

this system, named material driven protein assembly, we demonstrated that it can be used to 

obtain control over the cell behavior, particularly shown by us for fibronectin and fibrinogen, (D. 

Gugutkov et al. 2011; D Gugutkov et al. 2010; Rico et al. 2009), while other authors from our group 

extended it validity to the behavior of collagen IV (Coelho et al. 2010), and vitronectin (Toromanov 

et al. 2010). 

 

Cell adhesion 

According to the classical 

ligand receptor theory, 

(Grinnell 1986), the initial 

interaction of cells with foreign 

substratum might be 

approximated with cell 

adhesion, a multi-step process 

initiated by the adsorption of 

proteins from the surrounding 

medium, followed by cell 

adhesion, spreading and 

polarization (Altankov et al., 

2010; Grinnell, 1986). The 

continuous cell spreading is 

accompanied by organization of 

actin into microfilament 

bundles. The initial adhesive Figure 21. The adhesome and its complicity. Interactions between all intrinsic 

components. Adapted from (Zaidel-Bar, Itzkovitz, et al. 2007). 

 

Figure 21. The adhesome and its complicity. Interactions between all intrinsic 
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interaction is driven, in most cases, by the integrins. Cell attachment require formation of receptor-

ligand bonds that quickly enhance in number, thus increasing the total attachment strength and 

allowing cells to bound its actin cytoskeleton resulting in a morphological changes usually 

approximated with cell spreading, (Khalili and Ahmad 2015).Thus, the primary interaction of cells 

with a biomaterial is the adhesive contact. Cell adhesion is a well described paradigm in the 

literature, but it should be also considered that it is a process that realizes bidirectional interaction 

between cells and foreign material. The cells recognize adsorbed protein but also can remodel them 

as will be stated below. It provides an interactive interface between the extracellular 

microenvironment (often termed scaffold) and the internal cellular signaling machinery. The dynamic 

regulation of these intracellular processes and their coupling to the substratum events is mainly 

integrin-dependent, but involves many other components comprising all together the adhesome, 

(Figure 21). The adhesome is the entire collective of molecules associated with the adhesion 

structures participating in both the physical/structural and sensing/signaling activities of these 

structures, (Zaidel-Bar, Itzkovitz, et al. 2007). Integrin-triggered adhesions possess an ability to form 

morphologically different adhesion structures. Distinct types of cell adhesions are: 

 Dot-like nascent adhesions, often called focal adhesion complexes, are the earliest 

integrin-containing structures. Approximately 100 nm in diameter these short living adhesions are 

positioned at the interface between the cell lamellipodium and the matrix. Focal complexes contain 

a few hundred protein molecules, including integrins, talin, and paxillin and can easily evolve in 

classical focal adhesions,(Figure 22), (Alexandrova et al. 2008; C. K. Choi et al. 2008). 

 Classical focal adhesions are typically generated when cells interact with flat and rigid 

surfaces. These adhesions are usually several square micrometers in size and are located at the 

ends of actin stress fibers. Actin filaments at these sites often co-align with extracellular fibronectin 

fibrils. The transformation of focal complexes at the cell edge into stress fiber-bound focal adhesions 

normally occurs at the boundary between the lamellipodium and the lamella. The process is 

Figure 22. Adhesion complex (left) and focal adhesion (right). Adapted from www.reading.ac.uk . 

 

Figure 22. Adhesion complex (left) and focal adhesion (right). Adapted from www.reading.ac.uk . 
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associated with recruitment of additional proteins, which undergo a common tyrosine 

phosphorylation which triggers all subsequent cellular pathways, (Zaidel-Bar, Milo, et al. 2007), 

(Figure 22, Figure 23). In general, the signaling cascades initiated or modulated by integrins triggers 

distinct signal transduction pathways including focal adhesion kinase (FAK), various Src family 

kinases, MAP kinases, PKCs and phosphatidylinositol lipids turnover. as well as leads to the 

recruitment of the cytoskeletal components a-actinin, tensin, paxillin, talin and vinculin, (Harburger 

and Calderwood 2009; Zaidel-Bar and Geiger 2010). 

 Fibrillar adhesions are recently described and are rather connected with the formation of 

FN matrix. They are prominent in the central areas of cells and forms mainly along FN matrix fibrils 

(Pankov et al. 2000; Zamir et al. 1999), (Figure 23). 

 Podosomes and invadopodia are small, cylindrical adhesions formed around an actin 

bundle or thin membranous protrusions, respectively. They are associated with the actin-contraction 

and cell movement, (Poincloux, Lizarraga, and Chavrier 2009), and are prominent in different 

mesenchymal cells derivatives (osteoclasts, macrophages, dendritic cells). Invadopodia are 

typically involved in the matrix invasion characteristic for cancer cells, (Gimona et al. 2008), while 

Figure 23. Main forms of integrin-mediated adhesions adhesions. Endothelial cells cell labeled for paxillin (green) and tyrosine-
phosphorylated paxillin (pY-paxillin, red.In these images, three major forms of integrin adhesions are detected: dotlike focal 
complexes (FX), “classical” focal adhesions (FA), and fibrillar adhesions (FB). Adapted from  (Geiger and Yamada 2011). 

 

Figure 23. Main forms of integrin-mediated adhesions adhesions. Endothelial cells cell labeled for paxillin (green) and tyrosine-
phosphorylated paxillin (pY-paxillin, red.In these images, three major forms of integrin adhesions are detected: dotlike focal 

complexes (FX), “classical” focal adhesions (FA), and fibrillar adhesions (FB). Adapted from  (Geiger and Yamada 2011). 

Figure 24. Podosomes formed by osteoclasts Green is actin and red is paxillin. Adapted from (Geiger and Yamada 2011). 

 

Figure 24. Podosomes formed by osteoclasts Green is actin and red is paxillin. Adapted from (Geiger and Yamada 2011). 
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podosomes appear to diverse vinculin distribution and their primary purpose is connected to cellular 

motility and invasion. Therefore, they often serve as both sites of attachment and degradation 

along the ECM. Many different specialized cells exhibit both types of these dynamic structures such 

as  invasive cancer cells, osteoclasts, (Figure 24), vascular smooth muscle cells, endothelial cells, 

and certain immune cells like macrophages and dendritic cells, (Artym et al. 2011). 

Though cell adhesion is a phenomenon generally attributed to the behavior of cells in vitro, it 

naturally comes from the mechanism that cells utilize for the interaction with ECM, e.g. in 3D 

environment. Therefore such structures are called also 3D matrix adhesions, (Cukierman et al. 

2001). For example, the dense plaques of smooth muscle form firm, integrin-based adhesions 

linking the actin cytoskeleton to the ECM, (Wang, Stromer, and Huiatt 1998). Another example are 

endothelial cells that form structures similar to focal adhesions at sites of high hydrodynamic stress 

in blood vessels, (Davies, Robotewskyj, and Griem 1994). Prolonged, narrow focal and fibrillar 

adhesions appear also in decellularized matrices, as well as in the loose matrix in which embryonic 

cells migrate in vivo ,(Cukierman et al. 2001).  

These issues are particularly important for the understanding of cellular behavior in 3D scaffolds 

where the formation of 3D matrix adhesion induces important alterations on cell behavior. Cells 

cultured on 3D matrices showed increased proliferation, faster migration and altered morphology 

when compared with cells cultured on 2D surfaces, (Cukierman et al. 2001). Whether cells sense 

the artificial materials prepared for example for implantation as a real 3D environment is difficult to 

answer. However, the existence of different signal transduction pathways in 3D versus 2D 

environment, together with the specific morphological characteristics of 3D matrix adhesions, clearly 

suggest that there exist principal differences between these microenvironments and further 

investigations are needed in this field.  They will provide a tool for better understanding the role 

three-dimensionality and will allow precise characterization of diverse artificial scaffolds prepared 

for use in regenerative medicine, (Pankov & Momchilova, 2010).  

https://en.wikipedia.org/wiki/Motility
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Tissue engineering 

 
One important implication of our knowledge about cell-ECM interaction is in the field of Tissue 

engineering (TE): an advanced, multidisciplinary and rapidly developing research topic that is 

expected to have great impact on human health and life span in near future. 

 

Definition of tissue engineering 

Tissue engineering is an interdisciplinary research field that applies biological and engineering 

principles to develop biological substitutes that restore, maintain, or improve tissue function, (Dvir 

et al. 2011; Ma 2008). The term ‘Tissue engineering’ was officially accepted at a National Science 

Foundation workshop in 1988 and was defined as “The application of principles and methods 

of engineering and life sciences toward the fundamental understanding of structure-function  

relationships in normal and pathological mammalian tissues and the development of 

biological substitutes to restore, maintain or improve tissue function”. Nevertheless the idea 

of replacing damaged tissue with other, healthy one is not new and it was first publish back in the 

16th century  by Gasparo Tagliacozzi (1597) in his work “De Custorum Chirurigia per Insitionem”  

(The Surgery of Defects by Implantation), where  he describes replacement of a nose with part of 

forearm tissue. Nowadays the field of tissue engineering is modern, highly multidisciplinary trend 

that recruits efforts from clinical medicine, materials science, genetics, engineering and life sciences 

to fulfill its challenging goals. 

 

Scaffolds 

Tissue engineering usually requires 

the use of porous 3D supporting 

matrices, or scaffolds to provide an 

appropriate environment for the 

regeneration of tissues and organs. 

These scaffolds act as a template for 

tissue formation and are normally 

populated with cells, occasionally with 

growth factors, or subjected to 

biophysical stimuli in a bioreactor; a 

device  which applies different types of 

mechanical or chemical stimuli to 

cells, (Martin et al. 2004). The cell-

seeded scaffolds can be either 
Figure 25. Tissue engineering quadrat. 

 

Figure 25. Tissue engineering quadriat. 
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cultured in-vitro to synthesize tissues, which can then be implanted into an injured site, or directly 

implanted into the damaged site and use the body’s own capacity for regeneration of tissues or 

organs in-vivo. The combination of cellular component, bioactive molecules (inductive cues), 

scaffolds (conductive cues) and bioreactors (physio-chemo-dynamic cues) is often referred to as 

a tissue engineering quadrat, (Figure 25).  

 

Requirements to scaffolds  

Several key properties of the scaffolds should be considered as important when designing or 

determining their suitability for use in tissue engineering, (O’Brien 2011): 

 Biocompatibility: cells must adhere, function normally, and migrate onto the surface and 

eventually through the scaffold and begin to proliferate before laying down new matrix. After 

implantation, the scaffold or tissue engineered construct must elicit a negligible immune reaction. 

 Biodegradability: Scaffolds are not intended as permanent implants. The objective of tissue 

engineering is to allow the body’s own cells, over time, to eventually replace the implanted 

scaffold or tissue engineered construct. They must be therefore biodegradable, by meaning to 

allow cells to produce their own extracellular matrix. Moreover, the products of the scaffold 

degradation should also be non-toxic and able to exit the body without interference with other 

organs. In addition, in order to allow degradation to occur parallel with tissue formation, often an 

inflammatory response combined with controlled infusion of cells such as macrophages is 

demanded. 

 Mechanical properties: Ideal scaffold should have mechanical properties consistent with the 

tissue that is to be replaced and, from a practical point of view; it must be strong enough to allow 

handling during production and implantation.  

 Scaffold architecture: The architecture of scaffolds used for tissue engineering is of critical 

importance. Scaffolds should have an interconnected porous structure and desired controllable 

porosity in order to ensure, first, cellular penetration and second, an adequate internal diffusion 

of nutrients. Furthermore, a porous interconnected structure is required to allow diffusion of 

waste and degradation products out of scaffold. The issue of core degradation, arising from lack 

of vascularization and waste removal from the center of tissue engineered constructs, is another 

major concern in tissue engineering, (Phelps et al. 2010). 

 Material consideration: The material (or biomaterial) from which the scaffold is fabricated is 

one of the most important parameter for scaffolds with application in tissue engineering. This 

criterion is one of which all of the desired scaffold properties listed above are dependent on. 

 Other important properties of the scaffold are connected with its surface topography (important 

for cell adhesion, orientation and tissue integration), surface chemistry (presence of chemical 

groups and functionalizations) and biological activity (involvement of bioactive components like 

ligand binding motifs, growth factors, enzymes etc.)  
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Biomaterials 

First definition for biomaterial comes from the Consensus Conference of the European Society for 

Biomaterials (ESB) in 1976, and says: “A nonviable material used in a medical device, intended 

to interact with biological systems”. Current definition of  ESB however is enriched as: “A 

material intended to interface with biological systems to evaluate, treat, augment or replace 

any tissue, organ or function of the body”, (O’Brien 2011). This refined definition is 

demonstration of how the concept of biomaterials has evolved. Biomaterials have turned from low 

recognizable (“stelt” materials) or merely interacting with the body to actively influencing 

biological processes toward the goal of proper tissue regeneration. Based on their nature, three 

individual groups of biomaterials might be distinguished in respect to fabrication of scaffolds for 

tissue engineering: (i) ceramics, (ii) synthetic polymers and (iii) natural polymers. Each of these 

groups has its specificity, advantages and, respectively, disadvantages, leading recently to 

consideration for development and use of composite scaffolds that combine materials from different 

groups in order to improve their desirable properties. 

The usage of ceramic scaffolds, such as hydroxyapatite (HA), (Figure 26, (b)), and tri-calcium 

phosphate (TCP) is widespread when we talk for bone regeneration applications. Ceramic scaffolds 

are characterized by high mechanical stiffness (Young’s modulus), low elasticity, and brittleness, 

but they exhibit  excellent biocompatibility due to their chemical and structural similarity to the 

mineral phase of native bone. The interactions of osteogenic cells with ceramics are important for 

bone regeneration as ceramics are known to enhance osteoblast differentiation and proliferation, 

(Ambrosio et al. 2001). Various ceramics have been used in dental and orthopedic surgery as bone 

defects fillers or as integration improving coatings for metallic implants. Ceramic’s clinical 

applications however have some limitations, because of their brittleness, difficulty of shaping, and 

because new bone tissue formed in a porous HA network cannot sustain the mechanical loading 

needed for remodeling, (Wang 2003). In addition, it is difficult to control the degradation rate of the 

bone grafts, (Tancred, McCormack, and Carr 1998). 

Numerous synthetic polymers have been widely used to produce scaffolds, including for example 

polystyrene, poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA) and poly-dl-lactic-co-glycolic acid 

(PLGA). While these materials have shown themselves as successful in fabrication and  tailoring 

Figure 26.  Different types of scaffolds: comparative SEM images of (a) collagen-GAG scaffold; (b) hydroxyapatite; and (c) composite 

collagen-hydroxyapatite scaffold. Adapted from (O’Brien 2011) 

 

Figure 26.  Different types of scaffolds: comparative SEM images of (a) collagen-GAG scaffold; (b) hydroxyapatite; and (c) composite 
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architecture, and their degradation characteristics can be controlled by modifying the polymer 

chemistry and composition, (Rowlands et al. 2007), they have drawbacks mainly related with their 

reduced bioactivity, slow degradation (as some of them degrade only by hydrolysis), or body 

rejection, (Liu, Slamovich, and Webster 2006). 

 The third commonly used approach is the use of biological materials as scaffold biomaterials, 

(Figure 26, (a)). Biological materials such as collagen, fibrinogen, various proteoglycans, alginate-

based substrates and chitosan have all been used in the production of scaffolds for tissue 

engineering. Unlike synthetic polymer-based scaffolds, natural polymers are biologically active and 

typically promote excellent cell adhesion and growth. Furthermore, they are also biodegradable and 

so facilitate host cells to produce their own extracellular matrix and rebuild, with the time, the 

degraded scaffold. Main drawbacks here are connected with the fabricating of scaffolds with a 

homogeneous and reproducible structure. Other important drawbacks relate to their poor 

mechanical properties and immunogenicity, which narrows their direct use in tissue engineering. 

The limitations, described above for each of the groups have resulted in considerable efforts for 

development of composite scaffolds at present comprising the nature of a number of biomaterials, 

for example introducing GAG into native collagen sponge, (Figure 26, (c)), ceramics into polymer-

based scaffolds, (Huang et al. 2008), or combination of synthetic polymers with natural ones in order 

to enhance either their biological activity or mechanical properties, (Friess and Schlapp 2006; 

Gugutkov et al. 2016). However, although composite scaffolds have shown some promises, they 

consists of at least one phase which is not found naturally at this place in the body and thus they all 

have associated problems with biocompatibility, biodegradability or immunogenicity, (O’Brien 2011). 

 

Recreating the extracellular microenvironment 

With understanding the importance of proper interactions between cells and their 

microenvironment, an exceptional attention was recently directed to development of scaffolds that 

can imitate the structural aspects of extracellular matrix and are expected to facilitate cell 

adhesion, proliferation, differentiation and neo tissue genesis. 

Until recently, it was believed that the macroporous features of scaffolds only needs to mimic the 

dimension scale of the extracellular matrix (ECM), and the matrix itself (natural or artificial) is only 

to serve as a support for the cells. The stress was set on critical engineering of the material 

properties, such as pore size, mass transfer, biocompatibility, biodegradability and mechanical 

characteristics that suits certain tissue. However, now, when the field evolved, more and more 

attention is focused on the biological aspects of scaffolds design, and how they affect various cell 

types behaviors, (Lutolf and Hubbell 2005). Tissue engineers had realized that some of the widely 

used scaffolds do not correctly recapitulate the cell microenvironment, because ECM is a complex, 

dynamic and hierarchically organized nanocomposite structure that is able to regulates most 

essential cellular functions such as adhesion, proliferation, directional migration, differentiation and 
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morphogenesis, (Tsang et al. 2010),(Figure 27). As a consequence, existing and newly developed 

nanotechnological tools were used to design advanced nanocomposite scaffolds that can better 

mimic the ECM and eventually assemble into more complex, functional tissues. This requires 

effective organization of cells into tissues with architecture and physiological features matching 

those in the nature. Unfortunately, this is a difficult task, because the signaling factors that drive 

tissue assembly have not yet been fully understood. In general, the morphogenesis in a three-

Figure 27. Prototypic cell - extracellular matrix  interactions and their complicity. Adapted from (Tsang et al. 2010). 

 

Figure 27. Prototypic cell - extracellular matrix  interactions and its complicity. Adapted from (Tsang et al. 2010). 
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dimensional (3D) scaffold should resemble the processes of natural tissue development. It is known 

that cells are able to organize upon interaction with the ECM on the basis of topography, (Bauer, 

Jackson, and Jiang 2009), mechanical properties, (Levental et al. 2009), concentration gradients of 

the immobilized growth factors or distinct ECM molecules, (Rozario and Desimone 2011). Ott et al. 

reported a study emphasizing the importance of the ECM structure in guiding the cells and promoting 

morphogenesis. In this study hearts from rats were decellularized with preserving the underlying 

ECM and then repopulated with cardiac and endothelial cells. The cells migrated and self-organized 

in their natural location within eight days. Moreover, under physiological load and electrical 

stimulation, the constructs were able to generate pump function, (Ott et al. 2008). All this comes to 

show the significance of the unique microenvironment that ECM creates to foster tissue 

organization, but still, it does not reveal what is the essence of its important cues and their particular 

nature. 

 

Organizational cues within ECM that may control cell behavior  

Morphologically ECM is composed of intricate interweaving fibrillar compounds, ranging from 10 to 

several hundreds of nanometers which presumably are those providing cells with a wealth of 

informational cues. In vivo cells encounter and interact with differently organized topographical 

features ranging from folded protein to banded collagen fibrils. They also align and orient on them: 

a phenomenon known as contact guidance, 

(Flemming et al. 1999). Topographical cues 

imprinted within the structural organization of 

the ECM may have significant effects on the 

whole cellular behavior. Great number of 

studies have shown that the topography of 

substrates has immediate effects on the ability 

of cells to orient, to produce organized 

cytoskeletal arrangements and to migrate. One 

approach to study these effect is to recreate 

some of the structural parameters of the native 

ECM by micro- or nanopatterning utilizing 

different geometries (such as grooves, 

nanoposts and nanopits), or alternatively by 

production of nanofibrous structures. In respect 

to the patterning, though it is only applied on 2D 

surfaces, this technique reveals aspects of cell 

behavior and reaction to topographical cues 

that could be relevant also in 3D environment. 

Figure 28. Epithelial cells respond to nanopaterning through 
alignment and elongation. Adapted from (Bettinger, Langer, 

and Borenstein 2009) 
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The topography of substrates influences a variety of cellular processes, including adhesion, overall 

morphology, migration and differentiation, (Bettinger, Langer, and Borenstein 2009). For example, 

epithelial cells respond to patterns of grooves and ridges with elongation and alignment only if 

dimensions are as small as 70 nm, whereas on smooth substrates, cells spread in rounded shape 

(Figure 28), (Teixeira et al. 2003). Effect on human mesenchymal stem cell (MSC) differentiation 

using nanoscale symmetry and disorder was reported by Dalby et al., where ordered topographies 

resulted in low to negligible cell adhesion and osteoblastic differentiation, whereas nanoscale 

topographic disorder stimulated MSCs to produce bone mineral, (Dalby et al. 2007). In the studies, 

included in this Thesis, was shown that endothelial cells cultured on aligned and randomly deposited 

fibrinogen nanofibers not only attach and grow in a different orientation, but also express altered 

nitric oxide secretion (higher on random and lower on aligned fibers), i.e. different functionality, 

(Gugutkov, Gustavsson, Ginebra, & Altankov, 2013). The precise mechanism responsible for such 

a different cellular behavior on diverse nanotopographies is still not fully understood, although the 

involvement of cell adhesion machinery (integrins and actin cytoskeleton) and the activation of 

distinct signaling cascades has no doubt. 
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Implication of nanofibers 

 

Structurally, natural ECM consists of various interwoven fibrillary components (mostly proteins) 

with diameters ranging from tens to hundreds of nanometers. Their nanoscale structure offers a 

natural network to support cells and to present an instructive environment to guide cell behavior, 

(Wang, Ding, and Li 2013). Thus, obtaining scaffolds that imitate the architecture of tissues at the 

nanoscale is one of the major challenges in the field of tissue engineering. Indeed, recent 

developments in nanofibers production techniques have improved the perspectives for fabrication 

of such scaffolds. 

The preparation of scaffolds that can imitate the complex architecture of natural tissues at 

nanoscale is one of the major tasks. It has led to the development of various techniques for 

production of nanofibers. Among them, the electrospinning has gained significant recognition 

because of its ability to generate fibers similar to those of native ECM. Moreover this fabrication 

technique allows implementation of a wide range of biomaterials and provides tools for control over 

the geometrical organization of the scaffolds, (Wang et al. 2013). In the studies presented here the 

electrospinning technique was mostly used to produce nanofibers, though other techniques for 

generating nanofibers such as self-assembly and phase separation also take place in tissue 

engineering of today. 

 

Self-assembly 

Self-assembly is a process of spontaneous organization of individual components into an ordered 

and stable structure with non-covalent bonds. It is also a natural process involved in essential 

biological functions like nucleic acids and protein synthesis. However, self-assembly is a complex 

laboratory procedure that is limited to only a few polymer configurations (diblock copolymers, triblock 

copolymers, triblocks from peptide-amphiphile, and dendrimers, (Mosher et al. 1992). The most 

common of these are the peptide-amphiphiles (PA) – molecules with some specific structural 

features, namely a hydrophilic head, a long alkyl tail for hydrophobicity, cysteine residues to create 

disulfide bonds for polymerization, and a linker region of  glycine residues to provide flexibility to the 

Figure 29. Schematic of self-assembly technique used to fabricate fibrillar synthetic scaffolds. Adapted from (Wang et al. 2013). 
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group, (Hartgerink, Beniash, and Stupp 2001, 2002; Zhang 2003). When placed in water, the 

hydrophobic alkyl tail groups assemble together to form a cylindrical micelle that exposes the 

hydrophilic head groups to the water phase, (Figure 29). This technique is capable to create 

nanofibers even 5– 8 nm in diameter and 1μm in length, but the complexity of the procedure and 

the low productivity of the method limit it as a large-scale tissue engineering option Another limitation 

of this technique is the difficulty to obtain control on the nanofibers organization, (Ma et al. 2005). 

 

Phase separation 

Phase separation has been widely used as a technique to create porous polymer membranes. It 

is a thermodynamic separation of a polymer solution into a polymer-rich component and a polymer-

poor/solvent-rich component. In general the polymer is dissolved in solution and the driving force 

for the phase separation is the thermal treatment (most common), or the addition of a nonsolvent 

component to the polymer solution which creates a gel. Water is then used to extract the solvent 

from the gel; the gel is lyophilized to produce a nanofibrous scaffold, (Figure 30),  (Jayaraman et al. 

2004; Ma et al. 2005; Smith and Ma 2004). Ma and Zhang applied this technique to produce 

nanofibrous, three-dimensional scaffolds whit porosity as high as 98.5%. A variety of biodegradable 

aliphatic polyesters can be used for preparation of these scaffolds, composed of fibers with 

diameters that range from 50 to 500 nm (similar to natural collagen in the ECM), (Chen and Ma 

2004; Ma and Zhang 1999). Unlike self-assembly, the phase separation is a simple technique that 

does not require specialized equipment. The desired mechanical properties and architecture of the 

scaffold is easily achieved by varying component concentrations. However, this method is limited 

by only a selected number of polymers and is strictly a laboratory scale technique, (Jayaraman et 

al. 2004). 

 

Electrospinning 

The electrospinning process has attracted significant attention because of its ability to generate 

fibers similar to the native ECM and to process a wide range of materials. Other advantages are the 

straightforward nature of the process and its cost-effectiveness. The large surface area of 

electrospun nanofibers as well as their porous structure favors cell adhesion, proliferation, migration, 

Figure 30. Schematic of phase separation technique used to obtain fibrillar synthetic scaffolds. Adapted from (Wang et al. 2013). 
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and differentiation, (Bhattarai et al. 2004; Shi et al. 2010). If necessary, the nanofibers can be further 

functionalized via incorporation with bioactive species (e.g. enzymes, DNAs, and growth factors) to 

better control the proliferation and differentiation of cells, (Mosher et al. 1992). These attributes 

make electrospun nanofibers one of the best candidates for scaffolds applicable in the field of tissue 

engineering, (Wang et al. 2013). 

 

Due to the fact that electrospining is one of the core techniques used in this work, it will be 

summarized in more details 

 

Short history of electrospinning 

Electrospinning, also known as 

electrostatic spinning, is considered as a 

variant of the electrostatic spraying 

process which was first described by 

Bose in early 1745, (Greiner and 

Wendorff 2007). The first devices 

however to spray liquids through the 

application of an electrical charge were 

patented by Cooley and Morton at the 

beginning of the 20th century, (Cooley 

1899; Morton 1900). In 1914 Zeleny 

reported that the fine fiber-like liquid jets 

could be emitted from a charged liquid 

droplet in the presence of an electrical 

potential, which is considered to be the 

origin of principle for the modern needle 

electrospinning, (Zeleny 1914). In 1934, 

a crucial patent, revealing the 

experimental apparatus for the 

production of artificial filaments using 

electrical field, (Figure 31), was 

published for the first time by Formhals, 

(Formhals 1934).  

Firstly, electrospinning did not obtain 

substantial attention in the scientific 

community due to incapacity to observe the obtained nanofibers. However, with the booming of 

nanotechnology in 1990s several research groups, especially the Reneker’s one, rediscovered this 

Figure 31.  Formhals’ experimental apparatus for producing filaments 
via electrospinning: (A) spinning solutions are passed through electrical 
field between two electrodes- a slender rotating serrated wheel in a pool 
(B) and a collector wheel (C). The electrospun filaments are indicated 
as (D). Adapted from (Lin et al. 2012).  

 

Figure31.  Formhals’ experimental apparatus for producing filaments via 
electrospinning: (A) spinning solutions are passed through electrical 
field between two electrodes- a slender rotating serrated wheel in a pool 
(B) and a collector wheel (C). The electrospun filaments are indicated 
as (D). Adapted from (Lin et al. 2012).  

Figure 32. Number of published papers containing the concept of the 

"electrospinning" process searched for on PUBMED. 

 

Figure32. Number of published papers containing the concept of the 
"electrospinning" process searched for on PUBMED. 
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technique by fabrication of ultra-thin fibers from various polymers, (Doshi and Reneker 1995; 

Reneker et al. 1996). Since then the popularity of electrospinning has increased exponentially if one 

looks on the number of publications describing the usage of this method, (Figure 32).  

 

The electrospinning process 

The basic setup for electrospinning 

consists of three main components: a 

high voltage supply, a polymer 

source, connected with spinneret 

(normally bunt metallic needle) and 

grounded collector, (Figure 33). The 

spinneret is connected with container 

(syringe) hosting polymer solution (or 

melt). With the help of syringe pump 

or by simple gravity forces the 

polymer is fed to the spinneret in a 

constant flow rate. In the same time 

high voltage is applied between the 

spinneret and the grounded collector 

charging the polymer droplet. Two 

types of electrostatic forces – 

electrostatic repulsion between the 

charges and Coulomb force caused 

by the electrical field, are acting in this 

moment and convert the drop in conic 

structure named Taylor cone, (Figure 

34, (A)). When electrostatic forces 

overcome the surface tension of the 

polymer solution an electrified jet is 

generated that is further stretched by 

the electromagnetic field forming very 

thin continuous fiber. By simultaneously but demanded evaporation of the solvent the diameter of 

the jet significantly reduce and before it reaches the grounded collector a nanometric fiber is formed, 

(Haider, Haider, and Kang 2015). 

Before 1999, most of researches believe that the repulsion between the charges is the reason of 

splitting and splaying of the polymer solution.  Recent studies however showed that the bending 

Figure 33. Schematic illustration of electrospinning set-up. Adapted from 

(Lin et al. 2012). 

 

Figure 33. Schematic illustration of electrospinning set-up. Adapted from 
(Lin et al. 2012). 

Figure 34. Taylor cone, (A);  Instability of the jet during electrospinning, (B) 
and (C). Photographic images taken with different exposure times. Adapted 

from (B. D. Li and Xia 2004). 

 

Figure 34. - Taylor cone, (A);  Instability of the jet during electrospinning, 
(B) and (C). Photographic images taken with different exposure times. 
Adapted from (B. D. Li and Xia 2004). 
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instability is what causes thinning of the jet during electrospinning as shown on Figure 34, (B) 

and(C), (Li and Xia 2004; Reneker et al. 1996).  

 

Parameters affecting electrospinning process 

Variety of factors has influence on the electrospinning process. They may be generally classified 

in three groups: electrospinning parameters, polymer-solution parameters and environment 

parameters, (Haider et al. 2015): 

 The electrospinning parameters include the applied voltage, the distance between the needle 

and collector, the diameter of needle and the flow rate. 

 Polymer-solution parameters include, the nature of solvent, the polymer concentration, the 

viscosity and the conductivity of the solution. 

 Environmental parameters are the humidity and temperature. 

All of these parameters play role in the formation of the electrospun fibers and have direct influence 

on their properties. Therefore, for better understanding and control the electrospinning technique, it 

is of crucial importance to know more about their particular effects. 

 

Applied voltage 

The critical values of applied electromagnetic field needed to overcome the surface tension and 

formation of Taylor cone varies from polymer to polymer. Generally, formation of smaller-diameter 

nanofibers is connected with an increase in the voltage values. This is due to higher stretching of 

the polymer solution in correlation with the charge repulsion within the polymer jet, (Sill and von 

Recum 2008). However, placing the applied voltage beyond this critical value normally results in the 

formation of beads or beaded nanofibers because of decrease in the size of the Taylor cone and 

increase in the jet velocity without changes in the flow rate, (Deitzel et al. 2001).  

 

Flow rate 

The flow rate of the polymeric solution also influences the morphology of the electrospun 

nanofibers. Using optimal flow rate homogenous nanofibers without beads could be obtained. 

Conversely, increasing the flow rate above the optimum could provoke formation of beads and 

increase of fiber diameter due to incomplete drying, (Silke Megelski et al. 2002). On the other hand, 

decreased polymer flow leads sometimes to receded jet (a jet that emerges directly from the inside 

of the needle but not from Taylor cone). Such jets are not stable and, during the electrospinning, 

they are repetitively replaced by cone jets. The resulting nanofibers normally express non-uniformity 

in diameter ranges, (Zargham et al. 2012). In addition to bead formation, other structural irregularity 

can be caused by elevated flow rate. For example ribbon-like defects and unspun droplets can be 

formed as a result of non- evaporation of the solvent and low stretching of the solution, (Silke 

Megelski et al. 2002; Zargham et al. 2012). Theron et al. revealed that the flow rate and electric 
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current are directly related to each other. They showed also that reducing the surface charge density 

causes merging of nanofibers during their fall toward the collector, (Theron, Zussman, and Yarin 

2004). 

 

Needle diameter and needle to collector distance 

The distance between the metallic needle tip and collector plays also an essential role in 

determining the morphology of an electrospun nanofiber. The nanofiber morphology could be easily 

affected by the distance because it directly correlates with deposition time, evaporation rate, and 

whipping. Thus, an optimal distance is needed for the production of smooth and uniform electrospun 

nanofibers. Any changes on either side of the optimal distance will affect the morphology of the 

nanofibers. Generally, larger-diameter nanofibers are formed when this distance is too short, 

whereas the diameter of the nanofiber decreases with enlargement of the distance,  (Figure 35), 

(Matabola and Moutloali 2013). 

 

Polymer concentration and viscosity 

As electrospinning process relies on the uniaxial stretching of a charged jet it is significantly 

affected by changing the concentration of the polymeric solution. Low  concentration allows that the 

applied electromagnetic field and the surface tension cause breakage of polymer fibers into 

fragments before reaching the collector, (Haider et al. 2013; Pillay et al. 2013). Such a fragmentation 

can result in appearance of beads or beaded nanofibers. Increasing the concentration of the polymer 

in the solution above the critical level will increase also the viscosity, which subsequently hampers 

the flow through the needle. The result is defective or beaded nanofibers, (Haider et al. 2013). 

 

 

Figure 35. Morphology of electrospunn nanofibers: (a) - deposited at 2.0 cm; (b) -deposited at 0.5 cm. Adapted from (Buchko et al. 

1999).  

 

Figure 35. Morphology of electrospunn nanofibers: (a) - deposited at 2.0 cm; (b) -deposited at 0.5 cm. Adapted from (Buchko et al. 
1999).  
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Solution conductivity 

Solution conductivity is important for both the Taylor cone formation and the diameter of the 

nanofibers. In low-conductive polymer solutions the surface of the droplet will have no charge to 

form a Taylor cone and no electrospinning will appear. Increasing the conductivity of the solution to 

a critical value will increase the charges on the surface of the droplet and will allow to form Taylor 

cone but also will provoke decrease in the  diameter of  fibers, (Sun et al. 2014). Increasing the 

conductivity above the optimal one will hinder again the Taylor cone. This can be explained by 

interplay of Coulomb force between the charges on the surface of the fluid and the force applied by 

the external electric field. However, the formation of the Taylor cone is governed largely by the 

electrostatic force of the surface charges created by the applied external electric field (the 

component of the field that is tangential to the surface of the fluid induces this electro- static force). 

Dielectric polymer solution will not have enough charges in the solution to move onto the surface of 

the fluid; hence, the electrostatic force generated by the applied electric field will not be insufficient 

to form a Taylor cone and initiate electrospinning process. In contrast, a conductive polymer solution 

will have sufficient free charges to move onto the surface of the fluid and form a Taylor cone and 

initiate the electrospinning process. Thus, Coulomb and electrostatic forces together influence the 

elongating and the stretching of the jet and have a significant influence on the whipping and the 

diameter of the nanofibers, (Haider et al. 2015).  

 The conductivity of a polymer solution could be controlled by the addition of an appropriate salt to 

the solution. The addition of salt affects the electrospinning process by increasing the number of 

ions in solution (increase of surface charge density) and increasing its conductivity, (Choi et al. 

2004). 

 

Solvent 

Usage of a proper solvent is a key factors for successful electrospinning. Two parameters are of 

importance when selecting the proper solvent: (i) solubility of the polymer of interest and (ii) the 

boiling point of the solvent that gives an idea about its volatility (evaporation). Generally volatile 

solvents are preferred as they encourage the easy evaporation. However, too volatile solvents are 

mostly avoided because very high evaporation rates causes drying of polymer at the needle tip. 

From other hand, less volatile solvents are also avoided in electrospinning due to their high boiling 

points that prevent their drying during the nanofiber jet flight. In general, the deposition of non-dried, 

solvent-containing nanofibers results in the formation of beaded structures on the collector,  
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(Lannutti et al. 2007; Sill and von Recum 

2008). Furthermore, the solvent also plays 

a vital role if the fabrication of highly porous 

nanofibers is desired, (Figure 36). This may 

occur when a polymer is dissolved in two 

solvents where one of the solvents will act 

as a non-solvent. The different evaporation 

rates of the solvent and non-solvent will 

lead to phase separation and hence will 

result in the fabrication of highly porous 

electrospun nanofibers,(Sill and von 

Recum 2008).  

 

Humidity and temperature 

Recently it has been reported that 

ambient factors such as humidity and 

temperature also affect the properties of 

the nanofibers (Huan et al. 2015; Pelipenko 

et al. 2013). Humidity causes changes in 

the nanofibers diameter by altering the 

solidification process of the charged jet. 

This phenomenon however is strongly 

dependent on the chemical nature of the 

polymer. Pelipenko et al studied the change in nanofibers diameter with change in humidity and 

observed that the diameter of the nanofibers decreased with increase in of humidity. Further 

increase in humidity however may lead to formation of beaded fibers or obstructed electrospinning 

without fibers formation, (Pelipenko et al. 2013)  

Humidity also plays an important role in the creation of porous nanofibers when binary solvents are 

used. Appearance of the pores is attributed to the different evaporation rates of the two solvent. 

During electrospinning the more volatile solvent evaporates faster than the less volatile one. This 

phenomenon has cooling effect and similar to perspiration. The cooling provokes condensation of 

water vapor into water droplets that deposit on the fibers. The water mixes well with one of the two 

solvents on the inner and outer surfaces of the fibers. Thus after the complete evaporation of the 

solvents and the water droplets from the fibers formation of pores was found, (Figure 37), (Bae et 

al. 2013).  

Increasing the temperature usually unlocks two opposing effects to the average diameter of the 

nanofibers: (i) increase the rate of evaporation of solvent and (ii) decrease the viscosity of the 

Figure 37. SEM images of porous electrospun poly(methyl 
methacrylate) (PMMA) NFs with different humidity. Fiber cross-
section (Bae et al., 2013).  

 

Figure 37. SEM images of the electrospun polymethyl methacrylate 
(PMMA) porous fibers with different humidity. Fiber cross-section 

(Bae et al., 2013).  

Figure 36. SEM images of porous poly(vinyl butyral) (PVB) 
nanofibers prepared from THF/DMSO (9/1, v/v) solution. Adapted 
from (Gholipour Kanani et al. 2011). 

 

Figure 36. SEM images of porous polyvinyl butyral ( PVB) nanofibers 
prepared from THF/DMSO (9/1, v/v) solution. Adapted from 
(Gholipour Kanani et al. 2011). 
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solution. Together these effects lead to the decrease in the mean fiber diameter as reported by De 

Vrieze and co-workers., (De Vrieze et al. 2009). 

 

Polymer consideration 

Practically every polymer can be a subject of electrospinning when appropriate solvent and 

conditions are used. The technique has already been successfully applied to generate nanofibers 

from more than 100 different types of synthetic or natural polymers, (Burger, Hsiao, and Chu 2006). 

Synthetic polymers are relatively easy accessible than natural ones, because their lower price, 

especially when larger amounts are desirable.  Most commonly used synthetic polymers for 

biological applications are poly(caprolactone) (PCL), polyethylene oxide (PEO) and poly(lactic acid) 

(PLA). Although these polymers are claimed as biocompatible and biodegradable, they may trigger 

significant inflammation and foreign body reactions when implanted in vivo, (Bergsma et al. 1993). 

Therefore, natural polymers are more preferred to avoid immune complications. Most abundant 

natural polymers for electrospinning are collagens I and III, presenting almost one third of the 

proteins in the human body. Collagens however require cross-linking to maintain their fibrous 

morphology after electrospinning which is associated with toxicity of crosslinkers, (Barnes, Pemble, 

et al. 2007). 

Fibrinogen is also a preferable choice when considering implication of natural polymers, (D. 

Gugutkov et al. 2016; D. Gugutkov et al. 2013). However, the mechanical strength of fibrinogen 

nanofibers is usually limited, (D. Gugutkov et al. 2013; Shields et al. 2004), a problem that may be 

solved by developing hybrid FBG/polymer nanofibers as shown in the current Thesis, (D. Gugutkov 

et al. 2016). Principally, the use of precisely tuned blending with synthetic polymers is a popular 

approach to improve the stability and the mechanical strength of natural polymers allowing their 

electrospinning in a more stable configuration, (Jin San Choi et al. 2008; D. Gugutkov et al. 2016) 

 

Mechanical properties of electrospun nanofibers 

The mechanical properties of electrospun nanofibers depend on number of parameters including 

the polymer properties and its molecular structure, the size, the density and the orientation of the 

individual nanofibers, (Mauck et al. 2009). For example, nanofibers made of poly(lactic- co -glycolic 

acid) (PLGA) are ten folds stiffer than PCL ones, (Li et al. 2006). Ramakrishna and co-workers have 

found correlation between the rotating speed of  the collector and the orientation in the molecular 

structure within PLA fibers, which consequently led to higher tensile modulus and strength, (Inai et 

al. 2005). Leong and his group reported an increase in both strength and stiffness with decrease of 

fiber diameter of PCL-nanofibers, (Chew et al. 2006). Alignment of nanofibers also increases the 

stiffness in the direction of alignment, an important point when one strives to mimic the anisotropic 

ECM structure of load-bearing tissues such as tendons and myocardium, (Moffat et al. 2009). 

 



Chapter 1   |                                                                                                                                                                             Introduction 
Implication of nanofibers 

 
69 

Control on fibers alignment 

An important advantage of electrospinning technology is that it provides relatively easy control on 

nanofibers orientation. Distinct tissue engineering applications require scaffolds made of aligned 

nanofibers expecting to affect their mechanical properties and cell behavior. Aligned nanofibers are 

desired for many specific tissue types such as tendon, (Yin et al. 2010), and myocardium  (Zong et 

al. 2005), where collagen fibrils are naturally oriented. However, the alignment of nanofibers can be 

used also to guide the cell behavior, 

affecting the orientation, directional 

migration and overall cells morphology. 

Such studies were also performed in 

our lab and included in the present 

thesis, (Gugutkov et al. 2013, 2016). 

Aligned nanofibers have been used to 

guide the outgrowth of neural stem cells 

(NSCs) (Yang et al. 2005) and to 

support the  differentiation of mouse 

embryonic stem cells (ESCs) toward 

neural lineage (Xie et al. 2009).  Fibers 

orientation can also accelerate the 

wound closure guiding the migration of 

dermal cells in appropriate direction 

(Nisbet et al. 2008). 

A number of methods have been 

developed for controlling the alignment 

of electrospun nanofibers. These 

methods can be categorized into three 

classes depending on the type of forces 

involved, mechanical, electrostatic, or 

magnetic, (Figure 36 ): 

 

Mechanical forces 

This approach most often utilizes a metallic rotating mandrel as collector (Figure 36, A). When the 

electrospun nanofibers are collected by this way, the rotating speed of the mandrel determines the 

degree of alignment of the non-woven. Bowlin and co-workers showed that random collagen fibers 

might be collected at linear velocity lower than 0.16 ms−1 , while significant alignment was observed 

at linear velocities higher than 1.4 ms−1. However, higher speed can result in better alignment to 

certain level only, as linear velocity higher than 45 ms−1 will encourage formation of necks in the 

Figure 38. Control of alignment of electrospun nanofibers using three 

different forces: (A) mechanical forces through the use of a rotating 
mandrel; (B) (C) (D).using different shapes of  collector and electrostatic 
forces; (E) magnetic forces. SEM images in the right column representing 
typical morphology of. Aligned fibers obtained by respective method. 
Adapted from (Liu et al. 2012). 

 

Figure 36. Control of alignment of electrospun nanofibers using three 
different forces: (A) mechanical forces through the use of a rotating 
mandrel; (B) (C) (D).using different shapes of  collector and electrostatic 
forces; (E) magnetic forces. SEM images in the right column representing 
typical morphology of. Aligned fibers obtained by respective method. 
Adapted from (Liu et al. 2012). 



Chapter 1   |                                                                                                                                                                             Introduction 
Implication of nanofibers 

 
70 

nanofibers because the electrospinning jet may not be slower than the linear velocity of the mandrel. 

In general, the mechanical alignment by using a simple rotating drum has its limitations, connected 

mostly with imperfections of  alignment as a result of the whipping movements of the nanofibers and 

difficulties in collecting the electrospun material, (Blond et al. 2008; Na et al. 2009). Thus, for 

obtaining of uniformly aligned nanofibers, it is essential to optimize the rotation to an appropriate 

speed, (Barnes, Sell, et al. 2007). Other parameters that can influence the effectiveness of fiber 

alignment are the size of the mandrel and its conductive properties. Some authors propose the 

usage of alternated current (AC) to support the alignment process, (Liu, Thomopoulos, and Xia 

2012). 

 

Electrostatic forces 

Since electrostatic charges are distributed along the electrospinning jet, an external electric field 

can be used to manipulate and control the alignment of nanofibers, (Liu et al. 2012). The use of 

collector consisting of two pieces of electrically conducting substrates separated by a gap of an 

insulating substrate will result in deposition of uniaxially aligned nanofibers. The mechanism of this 

phenomenon lay on the fact that nanofibers descending from the spinneret will experience two types 

of electrostatic forces: The first is the electric field pointing towards the two electrodes, which pull 

the fiber towards the electrodes. However, it also creates opposite charges on the surfaces of the 

electrodes creating the second force, which stretches the nanofiber across the nonconductive gap 

to render it perpendicular to the edges of the electrodes (Figure 36, B), (Li and Xia 2004). An 

advantage of this method of alignment is that it is convenient to collect aligned fibers onto solid 

substrates. This approach can be applied also for obtaining alignment into other patterns, for 

example scaffolds made of radially aligned nanofibers or onto arrays of metallic beads used as 

collector (Figure 36, C and D). In latter case the fibers deposit randomly on the beads and aligned 

across the gaps between the beads. The resulting non-woven material has concave micro-wells at 

the positions corresponding to the beads, (Xie et al. 2009). One of the limitations of this technology 

however is that alignment efficiency decreases with increasing gap between the electrodes. 

 

Magnetic forces 

Alignment of nanofibers during electrospinning can also be achieved by applying an external 

magnetic field (Figure 36, E). Jiang and co-workers showed parallel alignment of magnetized 

poly(vinyl alcohol) (PVA) fibers using an external magnetic field. The polymer solution was 

magnetized by adding a small amount (less than 0.5 % in weight) of magnetic nanoparticles. Then 

the solution was electrospun into nanofibers in magnetic field generated by two parallel permanent 

magnets. The magnetic field stretched the fibers across the gap to form uniaxially aligned array as 

they deposited onto the magnets. Electrospinning without magnetic nanoparticles resulted in 

random distribution without alignment even in presence of magnetic field, (Yang et al. 2007).
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Preface to Chapter 2 

 

As stated in the Introduction, one considerable achievement of our group was the disclosure of 

fact that material-driven protein assembly might be used to obtain control over the biological 

activity of matrix proteins. It shall be clearly admitted however that this work was performed in a 

close cooperation with the group of Prof. Salmeron-Sanchez (Polytechnic University of Valencia and 

currently The University of Glasgow) contributing particularly on the nanoindentation of the observed 

phenomenon. Without their contribution it would be not possible to understand neither to explain the 

obtained biological consequences. Applying the established by this group family of model substrates 

with varying density of surface –OH groups, in fact, we described for the first time that fibronectin 

molecules may undergo lateral interaction provoked on some distinct chemistries, which leads to 

unique FN network formation. This phenomenon is also a matter of additional studies performed in 

the group of Prof Sanchez, which are separate and are not included in this Thesis. Here we found 

that the material driven FN networks formation depends not only on the surface density of –OH 

groups, but also affects significantly the biological performance of FN. Utilizing human fibroblast as 

model system we showed that cell adhesion and spreading to FN surprisingly declines as the 

fraction of –OH groups increases, contrarily to the classical trend for the behavior of FN on 

biomaterials, and that this is a specific result from the FN network assembly. Revealing this effect 

was the particular contribution of our group performed by the author of this Thesis. The more stable 

FN network was formed the better interaction of cells was observed. Conversely, as the density of 

network diminished (with increasing the fraction of –OH) the cellular interaction dramatically decline. 

Thus we showed for the first time that through controlling the density of –OH groups at biomaterials 

interface we can obtain control over the cellular interaction through altering the FN networks 

assembly. The complete details for this study are to find in the original paper "Fibronectin activity 

on substrates with controlled –OH density", presented in this Chapter.
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Abstract 

 

Adhesion of human  fibroblast to a family  of fibronectin (FN) coated model substrates consisting 

of copolymers of ethyl acrylate and hydroxyl  ethyl acrylate in different  ratios  to  obtain  a  controlled  

surface  density  of –OH groups was investigated. Cell adhesion and spreading surprisingly 

decreased as   the fraction of –OH groups on the surface increased. AFM studies of FN conformation 

revealed formation of a protein network on the more hydrophobic surfaces. The density of this 

network diminished as the fraction of –OH groups in the sample increased, up to a maximal –OH 

concentration at which, instead of the network, only FN aggregates were observed. The kinetics of 

network development was followed at different adsorption times. Immunofluorescence for vinculin 

revealed the formation of well-developed focal adhesion complexes on the more hydrophobic 

surface (similar to the control glass), which became less defined as the fraction of –OH groups 

increased. Thus, the efficiency of cell adhesion is enhanced by the formation of FN networks on the 

substrate, directly revealing the importance of the adsorbed protein conformation for cell adhesion. 

However, cell-dependent reorganization of substrate-associated FN, which usually takes place on 

more  hydrophilic  substrates (as do at the control glass slides), was not observed in this system, 

suggesting the increased strength of protein-to-substrate interaction. Instead, the late FN matrix - 

formation - after 3 days of culture, was again better pronounced on the more hydrophobic substrates 

and decreased as the fraction of –OH groups increase, which is in a good agreement with the results 

for overall cell morphology and focal adhesion formation.  

 

*Key words: cell adhesion; fibronectin; fibroblast; extracellular matrix; AFM 
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Introduction 

 

Cell adhesion to synthetic materials is mediated by extracellular matrix proteins, which adsorb on 

the substrate on contact with physiological fluids in vivo or culture medium in vitro 1–3. The 

concentration, distribution, and strength of interaction of the adsorbed protein layer are influenced 

by the nature of the underlying substrate. Besides the large variety of physical and chemical 

modifications developed to enhance the biocompatibility of materials, relatively little is known about 

the fate of adsorbed proteins. Soluble matrix proteins such as fibronectin (FN) and vitronectin often 

behave rather complex on biomaterials interface. FN is a glycoprotein that forms dimers, consisting 

of two subunits of 220 kDa, linked by a single disulfide bond near the carboxyl termini 4, 5. The 

importance of FN as a mediator of cell adhesion to a substrate was early recognized 6. There is a 

line of investigations showing that FN not only adsorbs but, on adsorption, it undergoes active 

removal and fibril-like reorganization governed by the adhering cells 7–9. This is presumably a 

process that is connected with the ability of cells to form their own extracellular matrix10, but it plays 

a distinct role for biocompatibility of materials and points to the active role of adhering cells 7–10. 

Cells interact with the adsorbed protein layer via integrins - a family of transmembrane receptors 

that govern the interaction of cells with the extracellular matrix (ECM). Integrin-mediated adhesion 

is a complex process that involves integrin association with the actin cytoskeleton and clustering 

into supramolecular complexes, focal adhesions, which contain structural proteins (vinculin, talin, 

tensin, etc.) and signaling molecules 11, 12. Integrin-FN interaction, governed mainly by the α5β1 

dimer, often leads to the reorganization of the adsorbed FN into extracellular matrix fibrils 13. The β1 

integrin-mediated FN fibrillogenesis on the surface of a synthetic material depends on the wettability 

of the surface: fibroblasts are able to remove and reorganize adsorbed FN from some hydrophilic 

surfaces but not on other more hydrophobic ones 7-9. Cell-mediated FN reorganization on a synthetic 

material seems to be an important factor to determine the biocompatibility of a material, because 

poor cell adhesion and spreading has been found in cases when integrin-mediated rearrangement 

of FN did not occur during ECM formation 7, 10.Many studies have shown the importance of FN in 

promoting cell adhesion and regulating cell survival and phenotype expression on different 

surfaces.14–21 The hydrophobic/hydrophilic nature of the surface is able to modulate FN 

conformation,14 which is said to adsorb preferentially on hydrophobic surfaces22  and that it 

undergoes greater extension of its dimer arms on hydrophilic than on hydrophobic glass23in a 

conformation which favors the cell-material interaction.24It is well documented that physicochemical 

properties of biomaterials surfaces have a great impact on protein adsorption and subsequent 

adhesion and proliferation of cells.2,14,15,19–21 In particular, the substrate wettability, as characterized 

by water contact angle, has been found to be a clue parameter 2,7–10,20. In general, wettable surfaces 

support cellular adhesion, which presumably is connected with the appropriate conformation of 

adsorbed proteins 20. However, this is not always straightforward because materials with very high 
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wettability, which usually bind much water-like hydrogels - do not support the adsorption of proteins 

and cell adhesion 25. It seems that several factors collectively contribute to cellular interaction, and 

it is often difficult to distinguish them; for example, surface chemistry11,12,14,15, surface charge 25,26 

and even the micro/nano-surface roughness 27,28 have been shown to influence FN adsorption and 

its biological activity. This work investigates the role of –OH groups on cell-to-substrate interaction 

using human fibroblasts and a set of FN-coated surfaces with controlled fraction of hydroxyl groups. 

Cell adhesion and spreading, overall cell morphology and focal adhesions formation, as well as the 

fate of substrate associated FN, including its initial reorganization by the cells and subsequent fibrillar 

matrix formation, are studied and correlated with the conformation of adsorbed FN as directly 

observed by atomic force microscopy. 
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Materials and methods 

 

Substrate preparation 

Copolymer sheets were obtained by polymerization of a solution of both monomers ethyl acrylate, 

EA, (99% pure, Aldrich, Steinheim, Germany) and hydroxyethyl acrylate, HEA (96% pure, Aldrich), 

with the desired proportion, using 0.1 wt % of benzoin (98% pure, Scharlau, Barcelona, Spain) as 

photoinitiator and a 2 wt % of ethylene glycol dimethacrylate EGDMA (Aldrich, 98% pure) as 

crosslinking agent. The polymerization was carried out up to limiting conversion. Five monomer feed 

compositions were chosen, given by the weight fraction of HEA in the initial mixture of 1, 0.7, 0.5, 

0.3, and 0 (hereafter, –OHX will refer to the sample with fraction x of HEA in the copolymer). After 

polymerization, low molecular mass substances were extracted from the material by boiling in 

ethanol for 24 h and then drying in vacuum to constant weight. Small disks were cut from the 

polymerized sheets to be used in the protein adsorption and cell adhesion studies. The samples 

were sterilized with gamma radiation (25 kGy) before the experiments. 

 

Atomic force microscopy 

AFM experiments were performed using a Multimode AFM equipped with NanoScope IIIa 

controller from Veeco (Manchester, UK) operating in tapping mode in air; the Nanoscope 5.30r2 

software version was used. Si-cantilevers from Veeco (Manchester, UK) were used with force 

constant of 2.8 N/m and resonance frequency of 75 kHz. The phase signal was set to zero at a 

frequency 5–10% lower than the resonance one. Drive amplitude was 200 mV, and the amplitude 

set point Asp was 1.4 V. The ratio between the amplitude set-point and the free amplitude Asp/A0 was 

kept equal to 0.7. Fibronectin from human plasma (Roche, Mannheim, Germany) was adsorbed on 

the different substrates by immersing the material sheets in 20 µg/mL physiological solution (NaCl 

0.9%) for 10 min. The influence of the adsorption time on the conformation of the adsorbed protein 

was investigated by immersing the PEA (–OH X0) sheet in protein solutions at different times: 10 s, 

30 s, 1 min, and 3 min. After protein adsorption, samples were rinsed three times in the physiological 

solution to eliminate the non-adsorbed protein. Remaining drops on the surface were dried by 

exposing the sample to a nitrogen flow for 2–3 min. AFM was performed in the tapping mode in air 
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immediately after sample preparation. Both height and phase magnitudes were recorded for each 

image. Mean values and their standard deviations are reported for both EWC and WCA. The last 

two columns show the roughness parameters (Rmax, the difference between the highest and lowest 

heights; RMS, root mean square, the standard deviation of the height values) for the different 

samples calculated on 1 x 1 µm2 before fibronectin adsorption. 

 

Contact angle measures 

Water (Sigma-Aldrich, reagent grade) contact angle experiments were performed making use of 

the optical contact angle measuring device DataPhysics OCA 10 (Filderstadt, Germany). The 

sessile drop method was used to evaluate the static contact angle with constant drop volumes at 

room conditions. Measurements were performed in triplicate for each sample after gamma radiation. 

 

Cells 

Human dermal fibroblast cell line CCD-25SK was obtained from the American Type Culture 

Collection (ATCC, Rockville, MD). Cells were maintained in Dulbecco’s modified Eagle medium 

(Gibco, 11960-044) supplemented with 10% fetal bovine serum (FBS), 1% penicillin / streptomycin, 

2 mM L-glutamine, and 1 mM sodium pyruvate (Gibco, 11360-039), in a humidified atmosphere of 

5% CO2in air. Around confluence the cells were detached with trypsin-EDTA (Gibco, 25200-072) 

that was inactivated with FBS after 5 min. The cells were then re-plated or used for experiments. 

For cell experiments, the polymer substrates were sterilized in 70% ethanol during 10 min and then 

copiously rinsed with sterile phosphate buffered saline solution (PBS). The samples were placed 

individually in 24-well tissue culture plates with a culture area of 1.9 cm2 , (Nunc, 142475). 

 

Cell adhesion 

To investigate initial cell adhesion and morphology, 2.0 x 104 cells/well were seeded to each 

sample in 2.0 mL serum free medium. One set of samples had been precoated with FN (20 µg/mL) 

for 30 min at 37 ºC. After 2 h of incubation, the living cells were labeled with fluorescein diacetate 

(FDA) by adding 10 µL/mL from a stock of 1 mg/mL FDA in acetone to the medium. Under these 

conditions, the vital cells convert FDA in a fluorescent analogue via their esterases. Representative 

pictures of the adhered cells were then taken with a fluorescent micro- scope, (Nikon, Eclipse E600), 

using the green channel. At least three representative pictures of each sample were made. Cell 

density and cell spreading were quantified by image analysis by calculating the average cell area 

on the different substrates. 

 

FITC-Fibronectin reorganization 

Human plasma FN, (Sigma, F2006), was dissolved in 0.1M sodium bicarbonate buffer (pH 5 9.0) 

at 1 mg/mL, then 10 µL of fluorescein isotiocianate (FITC), (Sigma, F7378) dissolved in 
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dimethylsulfoxide to 10 mg/mL was added and left for 2 h at room temperature. The labeled FN was 

separated from non-conjugated dye on a Sephadex G-25 desalting column equilibrated with PBS. 

The final protein concentration was estimated by measuring the absorbance at 280 nm, while the 

degree of FITC-labeling was calculated against the absorbance at 494 nm. Aliquots were then stored 

at -20 ºC. The ability of fibroblasts to reorganize adsorbed FITC- 

FN (i.e., early matrix) was monitored by coating all samples with 40 µg/mL for 30 min at 37 ºC, 

then rinsing with PBS twice, before seeding with 2.0 x 104 cells/well in serum containing medium. 

After 4 h of incubation, the samples were fixed using 3% paraformaldehyde, mounted in Mowiol 

(Sigma, 324590) and viewed and photographed with a fluorescent microscope (Nikon, Eclipse 

E600). As a positive control, a regular round shaped glass coverslip was used (Menzel GmbH, 15 

mm diameter). 

 

Fibronectin matrix formation 

The ability of fibroblasts to secrete and deposit FN into the extracellular matrix fibrils (i.e., late 

matrix) was examined via immunofluorescence. For that, 3.0 x 104 cells/well were cultured on the 

different substrates for 3 days in serum containing medium. At the end of incubation, the cells were 

rinsed with PBS three times before fixed with 3% paraformaldehyde for 5 min. The samples were 

then washed as above and saturated with 1% bovine serum albumin (BSA) for 15 min. 

Subsequently, they were stained with a polyclonal rabbit anti-FN antibody (Santa Cruz, 9068) 

dissolved in 1% BSA in PBS for 30 min, followed by goat anti-rabbit Cy3-conjugated secondary 

antibody for 30 min before washed and mounted with Mowiol. 

 

Focal adhesions formation 

All samples were fixed with 3% paraformaldehyde (5 min) and permeabilized with 0.5% Triton X-

100 in PBS (5 min) before saturation with 10% albumin in PBS. Immunofluoresecence for vinculin 

was performed according to standard protocol (30 min, 37 ºC) applying mouse monoclonal anti-

vinculin antibody 1:100 (Invitrogen) followed by goat anti-mouse Cy2-conjugated secondary 

antibody (Sigma) before washing and mounting with Mowiol.  
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Results 

 

Figure 1 shows the overall cell morphology on the different FN-coated substrates and the control 

glass after 2 h of culture. Cell density and spreading depend strongly on the –OH fraction on the 

surface (Table II). However, most elongated cells, similar to those on the control glass, are observed 

on the most hydrophobic substrate –OH0; as the fraction of –OH groups in the material increases, 

the number of attached cells reduces and spreading diminishes. As expected, the substrate 

wettability clearly drops (see Table I) with reducing the –OH density. Only rounded cells are 

observed on the more hydrophilic systems (–OH50 and –OH70) even if the cell density does not differ 

significantly among them. The organization of cellular proteins involved in the formation of focal 

adhesion complexes provides an opportunity to learn more about the effectiveness of cell-to-

substrate interaction. Figure 2 shows the distribution of vinculin in fibroblasts adhering on the 

different model substrates. Well-defined focal adhesions were found only on the more hydrophobic 

Figure 1. FDA vital staining of fibroblast on the different substrates and the control glass. The density of –OH groups (xOH) is shown 

on each picture for the different substrates. 

 

Figure 1. FDA vital staining of fibroblast on the different substrates and the control glass. The density of –OH groups (xOH) is shown 

on each picture for the different substrates. 
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substrates (–OH0, –OH30, Fig. 2) and on the control glass (Fig. 2). Even if vinculin is expressed also 

in the more hydrophilic substrates, it is not organized into focal contacts but randomly distributed 

along the cell periphery. Late FN matrix formation, for example after 3 days of culture, was also 

followed via immunofluorescence on the different samples. It was found that the cells are able to 

synthesize and deposit FN matrix fibrils on some of the material surfaces (Fig. 3) (hereafter, the 

term fibril will refer to the assembly of individual FN molecules through protein–protein interactions, 

which constitute a stable supramolecular entity. The formation of FN fibrils, the so-called 

fibrillogenesis, is a process either mediated by integrins or, as it is accounted for in the paper, 

Figure 2. Focal adhesion formation of fibroblast on the different substrates and the control glass through inmunofluorescence for 

vinculin. The density of ÀÀOHgroups (xOH) is shown on each picture for the different substrate. 

 

Figure 2. Focal adhesion formation of fibroblast on the different substrates and the control glass through inmunofluorescence for 

vinculin. The density of ÀÀOHgroups (xOH) is shown on each picture for the different substrate. 

Figure 3. Fibronectin matrix formation by fibroblast on the different substrates and the control glass after 3 days of culture. The 

mass fraction of –OH groups (xOH) is shown on each picture for the different substrates. 

 

Figure 3. Fibronectin matrix formation by fibroblast on the different substrates and the control glass after 3 days of culture. The 
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induced by the substrate). However, FN fibrils could not be found on the more hydrophilic samples 

[–OH100 and –OH70, Fig. 3(b, c)] while on the sample with intermediate composition, –OH70, the 

fibroblasts deposit only small fibrils, located mostly beneath the cells [Fig. 3(d)]. As the hydroxyl 

fraction decreases the FN deposition increases, which moreover is organized into a typical matrix-

like structure [Fig. 3(e, f)] similar to those on the control glass [Fig. 3(a)]. Figure 4 shows the cellular 

reorganization of adsorbed FITC-FN after 2 h of culture. As inferred from the homogeneous 

fluorescence of the substrate, no reorganization of FN takes place whatever the hydroxyl fraction of 

groups in the sample, that is, FN reorganization does not depend on the hydrophilicity for this family 

of substrates [Fig. 4(b-f)]. Conversely, FN reorganization is well pronounced on the control glass 

Figure 4. Reorganization of fluorescent fibronectin by fibroblast on the different substrates and the control glass after 2 h. The mass 

fraction of –OH groups is shown on each picture for the different substrates.  

 

Figure 4. Reorganization of fluorescent fibronectin by fibroblast on the different substrates and the control glass after 2 h. The mass 

fraction of –OH groups is shown on each picture for the different substrates.  

Figure 5. Dynamics of fibronectin fibrillogenesis on PEA (–OH0) as revealed by the phase magnitude in AFM. The protein was 

adsorbed from a solution of concentration 20 µg/mL for different times (a) 10 s (b) 30 s (c) 1 min, and (d) 3 min. 

 

Figure 5. Dynamics of fibronectin fibrillogenesis on PEA (–OH0) as revealed by the phase magnitude in AFM. The protein was 
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surface, an effect well documented in previous studies, 7–9 as indicated by the dark areas of FN 

removal by the cells and organization into bright fibril-like structures [Fig. 4(a)]. Figure 5 shows the 

AFM images of the FN adsorbed on the most hydrophobic substrate (–OH0) after different adsorption 

times (10, 30, 60, and 180 s) from 20 µg/mL protein solution. Previous studies show that AFM phase 

signal reveals protein conformation when substrata’s surfaces are not completely smooth (i.e., when 

their roughness blurs the small features due to adsorbed proteins) 28. The overall FN conformation 

on the surface changes as adsorption time goes by. At the very beginning of the adsorption process 

[Fig. 5(a), 10 s], isolated globular FN molecules are homogeneously distributed on the material. 

After 30 s of adsorption, FN globular molecules tend to align suggesting the initial formation of 

intramolecular connections, which result in protein–protein contacts through the surface [Fig. 5(b)]. 

FN conformation on Figure 5(c) reveals the formation of a protein network on the material after 60 

s of adsorption. Increasing the adsorption time results in thickening the fibrils, which make up the 

protein network [Fig. 5(d), 3 min]. Surface density of –OH groups (XOH) influences 

FN conformation on the substrates. Figure 6 shows protein conformation and distribution after 

adsorption for 10 min on the different substrates at different magnifications from a 20 µg/mL protein 

solution, which was the concentration previously employed for coating the substrates in cell 

adhesion studies. The more hydrophobic surfaces induce the formation of protein networks, whose 

density decreases as the fraction of –OH groups increases. FN network is well developed on the 

PEA (–OH0) substrates [Fig. 6(a, g)]. Protein molecules with elongated shape, in the form of long 

fibrils, are still formed on the ÀÀOH30surface, but only weakly connected protein filaments are 

identified [Fig. 6(b, h)]. 

Higher amounts of hydroxyl groups (from XOH=0.5 on) prevent the formation of a protein network on 

the materials surface and only disperse (nano) aggregates of the protein are observed on the –

OH50, –OH70 and PHEA substrates. Isolated globular molecules, homogeneously dispersed 

Figure 6. Fibronectin conformation as revealed by the phase magnitude in AFM. The protein was adsorbed for 10 min from a solution 
of concentration 20 µg/mL on substrates with increasing fraction of –OH groups. (a,g) PEA; XOH = 0, (b,h) XOH = 0.30, (c,i) XOH 

= 0.50, (d,j) XOH = 0.70, (e,k) XOH = 1, (f,l) control glass. 

 

Figure 6. Fibronectin conformation as revealed by the phase magnitude in AFM. The protein was adsorbed for 10 min from a solution 
of concentration 20 µg/mL on substrates with increasing fraction of –OH groups. (a,g) PEA; XOH = 0, (b,h) XOH = 0.30, (c,i) XOH = 
0.50, (d,j) XOH = 0.70, (e,k) XOH = 1, (f,l) control glass. 
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throughout the surface lacking FN–FN interactions, are observed on the control glass [Fig. 6(f, l)]. It 

must be remarked here the perfectly, ring-shaped, FN conformations observed on the control glass 

which is suggested to be a consequence of the protein-material interaction on hydrated surfaces.28  
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Discussion 

 

The initial cell-material interaction is a process driven by the soluble ECM proteins such as 

fibronectin and vitronectin, which rapidly adsorb on their surface.2,10,20,29,30  The quantity, distribution, 

conformation and strength of interaction between these ECM proteins and the material’s surface 

determine the cell response to artificial substrates.7,8 In solution, before adsorption, FN is in a 

compact conformation 5,31; substrate chemistry is known to influence FN conformation on a synthetic 

material leading to either the extension of the protein arms when favorable interactions between the 

surface chemistry and the protein takes place or, on the contrary, keeping the overall compact 

solution in other cases.14,21 

To learn more about the particular role of –OH groups on the surface behavior of adsorbed matrix 

proteins, we have copolymerized ethyl acrylate and hydroxyethyl acrylate monomers, which have a 

vinyl backbone chain with the side groups –COOCH2CH3 and –COOCH2CH2OH, respectively. Their 

copolymerization gives rise to a substrate in which the surface density of –OH groups can be varied 

without modifying any other chemical functionality of the system. Substrate’s hardness, sheet 

thickness, and roughness are known to influence protein adsorption. Our substrates were sheets $1 

mm thickness in the rubber state (room temperature is well-above the glass transition temperature), 

so their moduli are those of an elastomer ($1 MPa, independently of composition).32Moreover, the 

effect of gamma radiation on the physic-chemical properties of the system was shown to be 

negligible for this system.33 

 The concentration of –OH groups determines both the wettability and the hydrophilicity of the 

substrate, whereas the surface roughness remains unaffected (Table I). The interaction of the 

protein domains with the chemical functionalities of the substrate and with water determines the 

molecule’s adsorbed conformation. That is to say, proteins will perceive not only the differences in 

the –OH groups of the polymeric structure, but also strong differences in the content of water 

molecules on the surface. 

 In contrast with results of previous studies, 7–10 dramatically altered fibroblast adhesion and focal 

adhesions formation were found on the most hydrophobic substrates. It was surprising, as it is 

generally agreed that some wettability enhances cellular interaction. 2, 7–10 However, this is valid for 

moderate wettable substrata (about 30–60º WCA), and further decrease of WCA is either ineffective 

or leads to diminish cellular interaction.2, 34, 35 Materials with too high wettability, like hydrogels34or 

PEG grafted substrates,18, 21 which carry too much water, do not support cell adhesion, because 

they acquire repelling properties for proteins and cells. Conversely, too high hydrophobicity also 

does not favor cellular interaction because may induce conformational changes of FN molecules 

resulting in altered biological properties. 2, 10, 20 The relatively high equilibrium water content of pure 

PHEA in our system could explain the low cell attachment. It is noteworthy, however, that the values 

for the wettability of these samples (WCA 45º) correspond to values that are optimal for the cellular 
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interaction in other systems.2, 10, 20, 35 Conversely, surfaces with about 90º WCA, characteristic for 

pure PEA, and where the best cellular interaction was found, usually abrogate cellular interaction.7–

10, 20, 35 All this points to the different behavior surface associated FN in our system. 

Indeed, we found that FN is able to form a network on the more hydrophobic surfaces (–OH0, –

OH300 ) whose density decreases as the fraction of the hydroxyl groups on the surface increases. 

FN fibrillogenesis, for example, the formation of a FN matrix, has been described as a process driven 

only by cells,7 which occurs when integrins interact with the RGD domains of the FN molecule and 

extend their subunits giving rise to the formation of fibrils.13 In this way, the FN that is synthesized 

by fibroblasts assembles into a fibril network,6, 14, 15, 17 this cell-mediated FN assembly obviously also 

takes place on our model surfaces (Fig. 3). During this assembly, however, FN needs to undergo 

distinct conformational changes14, 15, 17  which on adsorption to the substrate can be limited. This 

may explain why materials surfaces affect FN matrix formation.8 A line of previous studies suggests 

that to be biocompatible, materials need to adsorb proteins loosely, for example, in such a way that 

cells can easily remove and organize in matrix fibrils.7–10 Our results, however, show that FN 

fibrillogenesis can take place as a consequence of the sole interaction between the protein 

molecules and a material surface, that is, without the need of cell involvement. Moreover, this 

material-induced fibrillogenesis is a dynamic process that depends strongly on the amount of protein 

adsorbed on the substrate and the time: as the FN is adsorbed its organization changes from a 

globular-like morphology to a more elongated one, and finally, the formation of the protein network 

takes place (Fig. 5). It seems, however, that from a certain concentration of hydroxyl groups on (XOH 

= 0.5 or higher), the interaction between FN domains and the substrate surface keeps the protein 

molecules in a globular like conformation, and the protein network is not formed anymore. We cannot 

discard the formation of FN globular aggregates in the more hydrophilic samples as a consequence 

of the drying process, which could lead to lateral reorganization of the adsorbed layer at the air-

liquid interface; this process could be favored on very hydrophilic surfaces due to the absence of 

strong enough protein-surface interactions to prevent the protein relaxation during water release.36 

Nevertheless, this dehydration-generated change of conformation does not take place on the more 

hydrophobic substrates, on which the substrate-induced fibrillogenesis is stable. 

It is noteworthy that the biological activity of the above observed FN network differs significantly 

from what we know for FN behavior on other set of surfaces.10 The strength of the interaction 

between the protein and the substrate depends on the conformation of the protein after the 

adsorption process. Besides, it has been suggested that protein adsorption takes place more 

strongly on hydrophobic substrates.35 Nonetheless, it is suggested that the formation of a protein 

network on the most hydrophobic substrate (–OH0) must increase the strength of the material-

protein interaction: cells are able to adhere and spread in a similar way as on the control glass [Fig. 

1(a)] although residing on strongly hydrophobic substrate [–OH0, Fig. 1(f)]; however, cell mediated 

FN-reorganization could only take place on the control glass but not on –OH0 substrate [Fig. 4(a)], 
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which suggests that FN is rather strongly bound compared to control glass, where it adsorbs more 

loosely.7–10 Nevertheless, focal adhesion contacts are well developed on both surfaces (Fig. 2). 

Thus, very different FN conformations on the substrate may result in a similar cell response, which 

suggests that protein conformation and the strength of cellular interaction cannot be simply 

correlated (or even considered independently) when one tries to understand cell-material 

interactions, that is, excellent cell adhesion may occur even if cells are unable to reorganize 

adsorbed FN before rendering their own matrix as long as the protein-material interaction lead to 

the adequate protein conformation of the substrate. As the amount of –OH0 groups on the surface 

increases cell adhesion and spreading diminish (Table II), as well as the number of focal adhesion 

points. On the –OH30substrate, pre-adsorbed FN is still able to form interconnected fibrils in a 

network like fashion which correlated with relatively good cell spreading [Fig. 1(e)] and focal 

adhesion formation [Fig. 2(e)] even if cell-mediated FN reorganization cannot take place on the 

substrate [Fig. 4(e)]. Higher amounts of hydroxyl groups (above 50%: –OH50, –OH70, –OH100) lead 

to poor cell adhesion and, consequently, to poorer spreading and focal adhesion formation [see 

Figs. 1, 2, and 4(b–d)]. AFM data show that on these substrates FN adsorption takes place in a 

globular-like conformation and there is no protein network formation [Fig. 5(d–f)]. For this group of 

substrates, cell-mediated FN reorganization does not take place presumably because of the 

conformation of the adsorbed FN is not good enough to allow initial cell adhesion, which are required 

before starting the matrix reorganization process.10, 37 

Late FN matrix formation-after 3 days of culture was again excellent on the more hydrophobic 

substrates and decreased as the fraction of –OH groups increased in good agreement with cell 

adhesion and focal adhesions formation. Cells are also able to secrete their own extracellular matrix 

on the control glass. Altogether this suggests that even unable to organize the preadsorbed FN on 

the substrate, the fibroblasts respond on this FN network, presumably because the conformation of 

the protein provides the adequate signals which stimulate their normal matrix-forming activity.10 

Our results suggest that the distinction between hydrophilic and hydrophobic features of a 

substrate is insufficient to explain the general trends underlying the cell-material interaction, and 

more factors must be taken into account. For instance, it has been reported that the ability of 

fibroblasts to secrete ECM proteins is greatly reduced on hydrophobic substrates, 9 even if cell 

adhesion takes place, what clearly differs from the results in this work. Rather, fibroblast functional 

behavior on a synthetic substrate depends in a subtle way on the particular substrate chemistry that 

influences the process of protein adsorption. Both protein conformation on the substrate and the 

intensity of the protein-material bond play a fundamental role on cell behavior: the adequate protein 

conformation on the substrate — leading to a substrate induced FN fibrillogenenis —  results in 

excellent cell adhesion and matrix formation (for low –OH contents in this work), even if pre-

adsorbed FN cannot be removed by cells. Alternatively, if protein conformation is good enough so 

as to support initial cell adhesion, cells will be able to remove the initial FN layer and secrete their 
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own extracellular matrix (as it happens in the control glass). Higher –OH fractions in the substrate 

lead to inadequate protein conformation on the substrate, which does not support good cell adhesion 

and consequently leads to diminished functionality. 

 

 

 

Conclusions 

 

FN conformation depends on the substrate density of hydroxyl groups. On the more hydrophobic 

substrates, FN is capable of establishing FN–FN interactions, which lead to the formation of a protein 

network, directly revealed by AFM, enhancing the protein-material interaction. The kinetics of FN 

fibrillogenesis was observed by AFM after different adsorption times. The presence of a protein 

network on the material favors fibroblast adhesion and late matrix formation, even if cells are not 

able to reorganize the preadsorbed FN layer. Higher amounts of hydroxyl groups on the substrate 

diminished cell adhesion and functionality: protein conformation is not adequate to cluster integrins 

and to direct adequate signals to the cell interior. 

 

AFM was performed under the technical guidance of the Microscopy Service at the Universidad 

Politecnica de Valencia, whose advice is greatly appreciated. Image analysis was performed by Dr. 

David Moratal. 
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Preface to Chapter 3 

 

The results provided in the previous Chapter 2 clearly suggested that the fibronectin network is 

strongly bioactive and can be used for guiding the behavior of cells by simply varying the efficiency 

of its formation on the material interface. The FN network applied in this study however, is a two 

dimensional (2D) structure formed on a model planar substratum, while the natural cellular 

environment in most cases is three-dimensional (3D). Therefore, in the present study we strived to 

switch the system to the third dimension by providing the cells with a bioactive nanofibrous 

environment. Indeed, we succeed to produce nanofibers from pure PEA – the polymer supporting 

best of FN network formation – using the classical vertical electrospinning technology, but in our 

own set-up and original 

technique for production of 

aligned fibers (see illustration). 

Thus, we could electrospun 

PEA nanofibers with different 

organization, random and 

aligned, which gave us 

opportunity to compare their 

effects on the cells. The 

rationale behind is that we 

were looking for a geometric 

cell response as indirect proof 

that cells recognize the substratum assembled FN network, now provided in 3D form. 

 We note again, this work was performed in very close cooperation with Prof Salmeron-Sanchez 

group contributing particularly on the characterization of nanofibers and the nanoindentation of the 

FN network.  

Indeed, the results obtained clearly suggest that fibroblasts respond strictly to the third dimension, 

acquiring distinct morphology (stellate-like on random and extended on aligned), which imply on the 

biological significance of the signal originating from the FN network. Interestingly the fibers 

orientation affected also the organization of the lately synthesized fibroblast FN matrix, which further 

confirms the applicability of material driven FN network formation for guiding the cell behavior in a 

long-term. Details for this study may be found in the original paper "Biological activity of the 

substrate-induced fibronectin network: insight into the third dimension through electrospun 

fibers", presented in this Chapter. 

 

 
 

 

 
 

 

Illustration of our Electrospinning set-up used for the production of nanofibers (A); 
Tailor made rotating collector for production of aligned nanofibers (B), originally 
designed by the author of this Thesis 

 

Illustration of our Electrospinning set-up used for the production of nanofibers (A); 
Tailor made rotating collector for production of aligned nanofibers (B), originally 
designed by the author of this Thesis 
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Abstract 

 

Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results 

in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar 

process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), 

which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic 

force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, 

allow one to rationalize the process. Further, the role of the spatial organization of the FN network 

on the cellular response is investigated through its adsorption on electrospun fibers. Randomly 

oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the 

extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting 

coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, 

developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, 

on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-

developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN 

matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones. 
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Introduction 

 

Fibronectin (FN) is a glycoprotein that forms dimers consisting of two subunits of 220 kDa, linked 

by a single disulfide bond near the carboxyl termini.1, 2 Each subunit contains three types of repeating 

modules (types I, II, and III) that mediate interactions with other FN molecules, other extracellular 

matrix (ECM) proteins, and cell-surface receptors.3 The importance of FN as a mediator of cell 

adhesion to a substrate was early recognized.4 Since then, many studies have shown the 

importance of FN in promoting cell adhesion and regulating cell survival and phenotype expression 

on different surfaces.5-14 Cells interact with FN via integrins, a family of transmembrane receptors, 

that govern the interaction of cells with the ECM. Integrin-mediated adhesion is a complex process 

that involves integrin association with the actin cytoskeleton and clustering into supramolecular 

complexes, focal adhesions, that contain structural proteins (vinculin, talin, tensin, etc.) and 

signaling molecules.15, 16 

The integrin-FN interaction, governed mainly by the  dimer, also leads to the formation of 

extracellular matrix fibrils from the newly secreted FN17and even arrangement of those protein 

molecules adsorbed on the substratum.20, 22 The thickness of FN matrix fibrils ranges from 10 to 

1000 nm in diameter and consists of a few to hundreds of FN molecules across.18 FN binding to 

integrins induces reorganization of the actin cytoskeleton and activates intracellular signaling 

complexes. Cell contractility facilitates FN conformational changes, and it allows for the unfolding of 

the native globular FN structure, thus exposing cryptic domains that were not available in the 

compact form of soluble FN. Finally, fibrils are formed through FN-FN interactions, usually through 

binding of I1-5 to either III 1-2 or III12-14 domains.19 

Cell-mediated FN reorganization, when adsorbed on a synthetic surface, seems to be also an 

important factor in determining the biocompatibility of a material, because poor cell adhesion and 

spreading has been found in cases when integrin-mediated rearrangement of FN did not occur at 

the material interface.20 – 22 
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Article 

 

Previous investigations have shown that fibroblasts and endothelial cells tend to rearrange 

adsorbed matrix proteins, such as FN and fibrinogen, in a fibril-like pattern. Using model surfaces, 

mostly self-assembled monolayers (SAMs), it is shown that cellular activity is mainly dependent 

upon the surface properties of materials, such as wettability, surface chemistry, and charge.23,25 This 

evidence raises the possibility that tissue compatibility of materials may be connected to the 

allowance of cells to remodel surface-associated proteins, presumably as an attempt to form their 

own provisional matrix; e.g., materials that bind proteins loosely will support the organization of a 

provisional ECM. This concept, however, raises many limitations to the biomaterials selection; 

therefore, to obtain a system that supports spontaneous fibrillogenesis of surface-associated FN is 

highly desirable. 

It has been shown that the existence of mechanical tension is necessary for efficient integrin-

mediated FN fibrillogenesis.26, 27 Fibrillar networks of FN have been generated also in the absence 

of cells by means of interactions with the underlying substrate that involves mechanical events at 

the molecular scale. FN fibrillogenesis upon contact with a lipid monolayer was explained through 

mechanical tension caused by domain separation in the lipid monolayer that pulls the protein into 

an extended conformation. 28 The assembly of FN into fibers was obtained also by applying forces 

to FN molecules via poly(dimethylsiloxane) (PDMS) micropillars at different stages of 

fibrillogenesis.29 We have recently shown that FN fibrillogenesis can take place as a consequence 

of the sole interaction between the protein molecules and a material surface with the appropriate 

surface chemistry; in concrete, a spontaneous formation of biologically active FN network was found 

in vitro after its adsorption on poly(ethyl acrylate) (PEA).30, 31 

This work further assesses the biological activity of the substrate-induced FN network assembled 

on electrospun PEA fibers. The electrospinning technique allows for the production of very thin fibers 

with very large specific surface areas. The technique has gained importance in recent years for 

biomedical applications, such as tissue engineering, drug release, wound dressing, and enzyme 

immobilization.32, 33  Random and aligned PEA fibers have been deposited on glass coverslips. FN 

fibrillogenesis on this electrospun substrate was directly observed by atomic force microscopy 

(AFM). The biological activity of the protein was assessed by in vitro culture of fibroblasts that 

respond to fiber organization as a consequence of FN network-cell interaction. 
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Experimental section 

 

Substrate preparation 

 Polymer sheets were obtained by polymerization of a solution of ethyl acrylate (EA, 99% pure, 

Aldrich, Steinheim, Germany) using 0.1 wt % of benzoin (98% pure, Scharlau, Barcelona, Spain) as 

a photoinitiator. The polymerization was carried out up to limiting conversion. After polymerization, 

low-molecular-mass substances were extracted from the material by boiling in ethanol for 24 h and 

then drying in vacuum to a constant weight. 

PEA was dissolved in hexafluoroisopropanol (HFP) at 30 mg/mL at room temperature. Randomly 

deposited PEA microfibers with a size in the range of 2-3 μm (see Figure 3) were obtained by 

electrospinning the polymer solution for 2 min onto 15 mm round-shaped glass coverslips (Termo 

Scientific/Menzel-Glaser, Germany) placed on grounded aluminum foil. The applied voltage was 20 

kV; the distance to the collector was 125 mm; and the flow rate was 300 μL/h. Aligned fibers were 

obtained under the same conditions, but the polymer solutions were electrospun for 5-6 min onto a 

rotating drum (1000 rpm) consisting of two parallel plastic discs (120 mm diameter) spaced at 15 

mm that are mounted at one and the same axis and connected in their periphery with 0.5 mm 

grounded coiled metal wire (21 parallel coils in a distance of 16 mm). The fibers, which align 

perpendicularly between the wires, were finally collected with glass coverslips. 

 

Scanning Electron Microscopy (SEM) 

SEM analysis of the electrospun fibers was carried out in a Jeol JSM-5410 scanning electron 

microscope. Samples were coated with a conductive layer of sputtered gold. The micrographs were 

taken at an accelerating voltage of 10 kV to ensure a suitable image resolution. 

Fast Fourier transformation (FFT) analysis of the SEM pictures was used to characterize the 

alignment of the fibers. A graphical description of the FFT frequency distribution was performed by 

placing a circular projection on the FFT output image using the Oval Profile plug-in and collecting 

the radial sums of the pixel intensities for each degree between 0° and 360°, in 1° step 

increments.34Analysis of the SEM micrographs was performed with ImageJ software (NIH, 

http://rsb.info.nih.gov/ij) with installed Oval Profile plug-in (authored by William O’Connell). All FFT 

data were normalized to a baseline value and plotted in arbitrary units, allowing different data sets 

to be directly compared. 

 

AFM 

AFM experiments were performed using a Multimode AFM equipped with a NanoScope IIIa 

controller from Veeco (Manchester, U.K.) operating in tapping mode in air; the Nanoscope 5.30r2 

software version was used. Si-cantilevers from Veeco (Manchester, U.K.) were used with a force 
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constant of 2.8 N/m and resonance frequency of 75 kHz. The phase signal was set to zero at a 

frequency of 5-10% lower than the resonance one. The drive amplitude was 600 mV, and the 

amplitude set point Asp was 1.6 V. The ratio between the amplitude set point and the free amplitude 

Asp/A0 was kept equal to 0.7. 

FN from human plasma (Roche, Mannheim, Germany) was adsorbed on the different substrates 

by immersing the material sheets in 20 μg/mL physiological solution (NaCl 0.9%) for 10 min. 

After protein adsorption, samples were rinsed 3 times in the physiological solution to eliminate the 

non-adsorbed protein. Remaining drops on the surface were dried by exposing the sample to a 

nitrogen flow for 2-3 min. AFM was performed in the tapping mode in air immediately after sample 

preparation. Both height, phase, and amplitude magnitudes were recorded for each image. 

 

Cells 

Human dermal fibroblasts (PromoCell, Germany, catalog number C-12302) were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1 

mM sodium pyruvate, 2 mM L-glutamine, and penicillin-streptomycin, all of them purchased from 

Invitrogen. 

 

Cell Adhesion and Overall Morphology 

To investigate the initial cell adhesion and overall cell morphology, 5 x 104cells/well were seeded 

in 24-well TC plates (Nunc, Denmark) containing the samples of PEA fibers and control glass slides 

at a final volume of 1 mL serum-free medium. All samples were precoated with FN (20 μg/mL) for 

30 min at 37 °C. After 2h of incubation, the cells were fixed with 4% paraformaldehyde (5 min), 

permeabilized with 0.5% Triton X-1000 (5 min), and stained with FITC-Phaloidin (Invitrogen) (dilution 

1:100) for 30 min to visualize actin cytoskeleton before washed and mounted with Mowiol 

(Polysciences, Inc.). Representative pictures of the adhered cells were then taken at low 

magnification (10x) using the green channel (excitation BP, 450-490 nm; beam splitter FT, 510 nm; 

emission LP, 515 nm) of a fluorescent microscope (Zeiss, Axiovert 40) equipped with digital camera 

IMag (Inrey Solutins, Bulgaria) and the corresponding software. 

 

Visualization of Focal Adhesions 

The cells were seeded as described above. To visualize focal adhesions, fixed and permeabilized 

samples were saturated with 1% albumin in phosphate- buffered saline (PBS) (15 min) and 

immunofluorencently stained for vinculin using monoclonal anti vinculin antibody (Sigma, catalog 

number V9131) dissolved in 1% BSA in PBS for 30 min followed Cy3-conjugated goat anti-mouse 

IgG (H + L) (Jackson ImmunoResearch, catalog number 115-165-062) as a secondary antibody (30 

min). To simultaneously visualize actin, FITC-phalloidin (Invitrogen) was added to the secondary 
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antibody solution at a final concentration of 1:100. The samples were viewed and photographed on 

an inverted fluorescent microscope as above. Representative images were acquired on the green 

and red channel (excitation BP, 530-585 nm; beam splitter FT, 600 nm; emission LP, 615nm) and 

superimposed with ImageJ software. 

 

FN Matrix Formation 

The ability of fibroblasts to secrete and deposit FN into the extracellular matrix fibrils (i.e., late 

matrix) was examined also via immunofluorescence. For that, 3 x 104 cells/well were cultured on the 

different substrates for 3 days in serum-containing medium. At the end of incubation, the cells were 

fixed and saturated as previously described and further stained with a polyclonal rabbit anti-FN 

antibody (Santa Cruz Inc., 9068) dissolved in 1% bovine serum albumin (BSA) in PBS for 30 min, 

followed by goat anti-rabbit Cy3-conjugated (Jackson ImmunoResearch) secondary antibody for 30 

min before being washed and mounted with Mowiol. 
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Results 

 

Randomly and aligned fibers were prepared with similar diameters (approximately 3 μm). Figure 

1 shows the SEM micrographs of the electrospun PEA fibers on glass coverslips. Even if simple 

observation of the SEM pictures allows one to appreciate the distribution of the fibers, the existence 

of a characteristic direction in the case of Figure 1B and the lack of any principal direction in Figure 

1A were assessed by calculating the FFT output for each case, which result in the existence of a 

Figure 1. SEMmicrographs of PEA fibers (A) randomly distributed and (B) aligned on glass coverslips. 

 

Figure 1. SEMmicrographs of PEA fibers (A) randomly distributed and (B) aligned on glass coverslips. 

Figure 2. FFT output images of (A) aligned and (B) randomly deposited PEA microfibers on glass coverslips. Normalized angular 

intensity distribution of (C) aligned and (D) randomly deposited fibers. 

 

Figure 2. FFT output images of (A) aligned and (B) randomly deposited PEA microfibers on glass coverslips. Normalized angular 

intensity distribution of (C) aligned and (D) randomly deposited fibers. 
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maximum for pixel intensity distribution for the aligned fibers, that corresponds to the direction of 

alignment and the lack of any characteristic direction for the so-called randomly distributed 

electrospun fibers (Figure 2). 

Figure 3 shows the three-dimensional view of the aligned and randomly distributed electrospun 

Figure 3. Three-dimensional view of the electrospun PEA fibers by AFM: (A) randomly distributed and (B) aligned fibers on glass 

coverslips. The vertical scale is 2 μm. 

 

Figure 3. Three-dimensional view of the electrospun PEA fibers by AFM: (A) randomly distributed and (B) aligned fibers on glass 

coverslips. The vertical scale is 2 μm. 

Figure 4. FN assembly on PEA fibers as observed by AFM (phase, right; amplitude, left). PEA fibers were electrospun on glass 
coverslips, and FN was adsorbed for 10 min from a solution with a concentration of 20 μg/mL. The FN network is only assembled on 
the PEA fibers and not on the underlying glass substrate. 

 

Figure 4. FN assembly on PEA fibers as observed by AFM (phase, right; amplitude, left). PEA fibers were electrospun on glass 
coverslips, and FN was adsorbed for 10 min from a solution with a concentration of 20 μg/mL. The FN network is only assembled on 

the PEA fibers and not on the underlying glass substrate. 
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fibers. This figure 3 allows one to infer the real three dimensionality of the fibers, on which protein 

adsorption and cell adhesion is going to be investigated. The height of the fibers is approximately 2 

μm. 

Figure 4 shows AFM pictures (different magnifications, phase, and amplitude magnitudes) of the 

PEA fibers after FN adsorption from a solution with a concentration of 20 μg/mL for 10 min. Large 

fiber topography prevents FN to be identified from the height magnitude in AFM. Nevertheless, the 

phase magnitude reveals the existence of a FN network assembled on the electrospun PEA fibers: 

a substrate-induced FN fibrillogenesis in vitro in the absence of cells.30, 31 Only some salts were 

observed on the underlying glass substrate without any trace of the protein network on it. FN 

distribution on the substrate is not well-observed from the amplitude magnitude, even if some traces 

can be identified from the 2 μm image (Figure 4). However, the amplitude magnitude is appropriate 

for identification of the electrospun PEA fibers. 

Figure 5 shows the AFM images of FN adsorbed on plane PEA substrates after immersion for 10 

min at protein solutions of different concentrations: 2, 2.5, 3.3, 5, 20, and 50 μg/mL. The lowest 

concentration (Figure 5A) results in isolated extended FN molecules homogeneously distributed on 

the material. For a concentration of 2.5 μg/mL (Figure 5B), FN molecules are observed in a higher 

density. However, extended FN molecules tend to align, suggesting the initial formation of 

intermolecular connections (Figure 5B). FN conformation in Figure 5C suggests the incipient 

formation of a protein network on the material when FN was adsorbed from a solution with a 

concentration of 3.3 μg/mL. Protein adsorption from higher solution concentrations gives rise to the 

Figure 5.  AFM phase image of single FN molecules on PEA: (A) isolated molecule, (B) two FN molecules interacting through the 
amino terminal (I1-5) domains, (C) assembly of FN molecules into an incipient network, (D) assembly of FN into a non-completely 
interconnected network, (E) interconnected FN network, and (F) thickening of protein arms at higher  concentrations. FN  was 

adsorbed for 10 min  from solutions  with a concentration of 2, 2.5, 3.3, 5, 20, and 50 μg/mL, respectively. 

 

Figure 5.  AFM phase image of single FN molecules on PEA: (A) isolated molecule, (B) two FN molecules interacting through the 
amino terminal (I1-5) domains, (C) assembly of FN molecules into an incipient network, (D) assembly of FN into a non-completely 
interconnected network, (E) interconnected FN network, and (F) thickening of protein arms at higher  concentrations. FN  was 
adsorbed for 10 min  from solutions  with a concentration of 2, 2.5, 3.3, 5, 20, and 50 μg/mL, respectively. 



Chapter 3   |                                                                BIOLOGICAL ACTIVITY OF THE SUBSTRATE-INDUCED FIBRONECTIN NETWORK: 
INSIGHT INTO THE THIRD DIMENSION THROUGH ELECTROSPUN FIBERS 

Langmuir, 2009 

 
133 

formation of FN networks on the material with higher cross-link density, i.e., a higher number of 

cross-link point and lower distance between them (panels D-F of Figure 5).  

The left column in Figure 6 represents the overall morphology of fibroblasts adhering for 2h on FN-

coated PEA fibers and control glass, visualized via staining for actin. Irregularly spread cells 

representing multiple projections were typically observed on randomly dispersed PEA fibers (Figure 

6C), presumably resembling early stellate morphology, apart from the fibroblasts on control glass 

Figure 6. Overall morphology of fibroblasts adhering on (C and D) random and (E and F) aligned FN-coated PEA fibers compared 
to the (A and B) control of FN-coated glass vizualized by actin (A, C, and E) or double stained for vinculin (red) and actin (green) (B, 
D, and F). The line in E represents the main direction of PEA fiber alignment. Magnification for A, C, and E, 10x; bar, 200 μm. 

Magnification for B, D, and E, 100x; bar, 20 μm. 

 

Figure 6. Overall morphology of fibroblasts adhering on (C and D) random and (E and F) aligned FN-coated PEA fibers compared 
to the (A and B) control of FN-coated glass vizualized by actin (A, C, and E) or double stained for vinculin (red) and actin (green) (B, 
D, and F). The line in E represents the main direction of PEA fiber alignment. Magnification for A, C, and E, 10x; bar, 200 μm. 
Magnification for B, D, and E, 100x; bar, 20 μm. 
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(Figure 6A), which shows a typical (for 2D substrata) flattened and polarized morphology without 

prevalent orientation of cells. Conversely, an extended cell shape, parallel to the orientation of the 

fibers, was observed on aligned PEA fibers (Figure 6E). Cells linearly organize focal adhesion 

complexes, particularly in the contact zones with PEA fibers (Figure 6F), and well-developed actin 

stress fibers inserting into the focal adhesions mostly at the extended cell edges (in yellow). On 

random PEA fibers (Figure 6D), the cells represent less oriented but prominent actin cytoskeleton 

with well-developed focal adhesion complexes following the multiple directions of the fibers. On 

control FN- coated glass (Figure 6B), as expected, the fibroblasts represent prominent actin stress 

fibers inserting to the well-developed focal adhesion at cell edges.30 It must be remarked here that, 

if the same experiment is performed without adsorbing any FN on PEA, no cell adhesion is found. 

Late FN matrix formation after 3 days of culture was also followed via immunofluorescence (Figure 

7). It was found that the cells are able to synthesize and deposit FN matrix fibrils on both the 

randomly distributed and aligned PEA fibers as well as the control glass. However, matrix distribution 

is not spatially organized either in the randomly distributed fibers or on the control glass, but FN 

fibrils clearly follow the direction of PEA fibers when deposited on the aligned samples (Figure 7C). 

  

Figure 7.  FN matrix formation by NHD fibroblast on FN-coated PEA fibers after 3 days of culture: (A) control glass, (B) randomly 

deposited fibers, and (C) aligned fibers. The line in (C) shows the direction of electrospun fibers. 

 

Figure 7.  FN matrix formation by NHD fibroblast on FN-coated PEA fibers after 3 days of culture: (A) control glass, (B) randomly 

deposited fibers, and (C) aligned fibers. The line in (C) shows the direction of electrospun fibers. 
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Discussion 

 

It is well-accepted that FN fibrillization, i.e., the formation of a FN matrix, is a process driven by 

living cells taking place because of the bidirectional interaction between integrins and the adhesion 

motifs of the FN molecule [e.g., arginine-glycine-aspartate (RGD) sequence] from one site and the 

actin cytoskeleton from the other.17 We have recently shown that FN is able to self-assemble into a 

network on hydrophobic plane PEA in the absence of cells; that is to say, as a consequence of the 

protein-material interaction, leading to a so-called substrate-induced FN fibrillogenesis.30, 31 

Moreover, this material-induced fibrillogenesis is a dynamic process that strongly depends upon the 

amount of protein adsorbed on the substrate and the adsorption time.30 

This work shows that the formation of a FN network on a PEA substrate is not restricted to plane 

surfaces but that FN fibrillogenesis can take place on topographic cues, e.g., the electrospun 3D 

fibers, either randomly distributed or aligned. Moreover, FN fibrillogenesis does not occur on the 

underlying glass, although the protein is also adsorbed on this surface,30 but only on the fraction of 

the substrate covered by PEA fibers (Figure 4). This feature supports the hypothesis that the 

phenomenon occurs only independently of the topological (2D/3D) disposition of the substrate.  

The development of a FN network in the absence of cells gains a distinct bioengineering interest 

because it is a way to improve the biocompatibility of materials. It is well-documented that cells 

recognize faster and with higher affinity already assembled FN fibrils versus adsorbed protein.17-19, 

34-36 The existence of cell-free routes able to induce the formation of FN fibrils from isolated 

molecules have been described in the literature and include (i) the exposition of sulfhydryl groups 

(able to form disulfide-bonded FN multimers) by adding denaturants, e.g., guanidine 3M,35  (ii) 

reduction of disulfide bonds that promotes unfolding of the molecule and non-covalent binding 

interactions among FN molecules,36 and (iii) the addition of a fragment from the first type-III repeat 

of FN that induces spontaneous disulfide cross-linking of the molecule into multimers.37 Apart from 

these biochemical routes to induce FN assembly, it has been shown that FN can be assembled into 

networks after adsorption on certain substrates,(iv) underneath dipalmitoyl phosphatidylcholine 

(DPPC) monolayers, which resemble the major lipid fraction of cell membranes,28 and (v) a super 

hydrophobic surface made of elastic micropillars.29 Both of these situations require the existence of 

mechanical tension to drive the process. The formation of FN networks on PEA (Figure 4) must be 

a consequence of the following sequence of events: 

(1) Conformational change upon FN adsorption on PEA. It is known that FN has a compact folded 

structure in physiological buffer that is stabilized through ionic interactions between arms.38 

The FN (a vinyl backbone with –COOCH2CH3side chain) gives rise to conformational 

changes in the molecule that lead to the extension of the protein arms (Figure 5A). Adsorption 
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of FN on slightly charged surfaces (negative neat group in the – COO –   group) gives rise to 

elongated structures of the molecule, as obtained for SiO2and glass.13,39  It is likely that FN 

orients at the surface, so that its hydrophobic segments interact with the methyl groups in 

PEA, maybe throughout the heparin-binding fragment, as proposed for the FN-DPPC 

interaction,28 but with more efficient arm extension results because of the neat negative 

charge of the surface. 

(2) Enhanced FN-FN interaction on the PEA substrate. The adequate conformation of individual 

FN molecules as the adsorption process continues favors FN- FN interactions, probably 

throughout the interaction between I1-5 and III1-2 domains located near their amino side 3.  

Figure 5B shows the relative orientation of two FN molecules compatible with this hypothesis. 

(3) New proteins are preferentially adsorbed in close contact to FN molecules already present 

on the substrate (Figure 5C), probably as a consequence of the presence of polar-oriented 

FN molecules enhancing the collision rate of FN self-assembly sites,28  which finally gives rise 

to the initial formation of a protein network on the substrate. This process leads to a well-

interconnected network of FN on the surface of the substrate regardless of its topographic 

disposition (Figure 4).30,31 

Figure 8 sketches the above-described sequence of events leading to this substrate-

induced FN fibrillogenesis. Adsorption from solutions of higher concentrations leads to the 

formation of a protein network with thicker arms (panels D-F of Figure 5). The formation of a 

FN network on PEA is not a universal property of this protein. For example, a similar network 

was found for fibrinogen,40 but only globular-isolated molecules were observed after laminin 

adsorption.41 

Figure 8. Sketch of the process leading to FN assembly on PEA surfaces. (1) FN molecules are in compact 
(folded)conformation in solution. (2) Adsorption of (individual) first FN molecules on PEA results in unfolding of the protein 
and extension of its arms. (3) FN-FN interactions are enhanced on the substrate leading to a self-assembled FN network. 

 

Figure 8. Sketch of the process leading to FN assembly on PEA surfaces. (1) FN molecules are in compact 
(folded)conformation in solution. (2) Adsorption of (individual) first FN molecules on PEA results in unfolding of the protein 

and extension of its arms. (3) FN-FN interactions are enhanced on the substrate leading to a self-assembled FN network. 
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More importantly however is that this FN network that assemblies spontaneously on PEA fibers is 

biologically active (Figure 6) even more than FN directly adsorbed on the underlying glass (Figure 

6), but still the substrate-induced FN network cannot be considered to be equivalent to that 

assembled by cells (even if some characteristic features are shown; e.g., both of them are 

deoxycholate-insoluble). It is evident that cells tend to interact with PEA fibers rather than glass and 

start to orient, modifying their characteristic spread morphology, following the fibers direction (panels 

E and F of Figure 6). Complementary material shows a movie of living cells, which migrate 

throughout the surface, in a real tactile exploration, until a PEA fiber is found. Afterward, cell 

morphology is modified to adapt cell-substrate contact along the electrospun PEA fiber. The well-

developed focal adhesion complexes and the insertions of actin stress fibers in these complexes 

point to a proper transmission of signals by integrins to the cell interior. Interestingly, when adhering 

on random PEA fibers, cells tend to develop a rounded morphology with multiple projections, which 

resemble stellate morphology, characteristic for cells in the 3D environment. This also means that 

cells receive proper signals coming from the FN network on the PEA fibers. Moreover, it applies to 

the oriented fibers as well because fibroblasts immediately acquire extended morphology with 

asymmetrical organization of the adhesive complexes (Figure 6F), suggesting activation of their 

motility. In fact, fibroblast movement on PEA fibers is well-demonstrated in the complementary 

movie (see the Supporting Information); also, the cells may “jump” from the supporting glass to the 

PEA fibers, e.g., preferring to move on the FN network. 

Late FN matrix formation, after 3 days of culture, was again influenced by the formation of the FN 

network on the PEA fibers, reflecting the high biological activity of the pre-organized protein. Matrix 

formation was excellent on both the PEA fibers and control glass; however, in agreement with the 

initial cell adhesion, newly synthesized FN is preferentially deposited on PEA fibers, as is clearly 

visible in panels B and C of Figure 7 for both types of substrates. Thus, one can assume that, by 

tailoring the fiber orientation, we can control the organization of the provisional FN matrix secreted 

by the cells. 
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Conclusions 

 

We have further investigated self-assembly of FN on PEA leading to the formation of a protein 

network, e.g., a case of spontaneous FN fibrillogenesis without cell involvement. AFM images of 

individual molecules during the first stages of the process suggest a mechanism in which FN 

molecules (from a folded conformation in solution) assemble on the substrate as a consequence of 

protein unfolding upon adsorption. We have obtained FN network formation on electrospun PEA 

fibers, which allows one to conclude that the process is not dependent upon topological constraints 

(2D versus 3D) and, moreover, provides a direct way to proof the biological activity of the assembled 

FN; cells respond to it and to the topographical work by orienting themselves in contact with the 

adsorbed protein layer. However, it is by no means discarded that other proteins that do not induce 

the formation of a FN network lead to cell orientation on polymer fibers as a consequence of the 

complex cell-material interaction process that involves reorganization of the initial protein layer. 

Cells interact well with the assembled FN network on the PEA fibrils, which leads to their alignment 

and deposition of the spatially oriented FN matrix, one route to control their behavior in the long 

term. 
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Preface to Chapter 4 

 

This paper is a result from our further ongoing research with the group of Prof Sanchez connected 

with the nanoscale behavior of ECM proteins on surfaces with controlled density of -OH groups. In 

this case the adsorbed protein was fibrinogen (FBG), chosen because of its unique multifunctional 

properties. Besides important blood clotting factor, FG acts also as a soluble ECM protein having 

strong impact on tissue regeneration and wound healing. In this work we showed that, similarly to 

FN, the supramolecular organization of FG changed from an organized network-like structure on the 

most hydrophobic poly(ethyl acrylate) (PEA) surface (-OH0) to dispersed molecular aggregates 

as the fraction of -OH groups increases. Its biological activity was further corroborated utilizing 

human umbilical vein endothelial cells (HUVEC) as model system, showing the best cellular 

interaction on pure PEA. This result confirmed our observations that laterally associated networks 

of ECM proteins are strongly bioactive - a property that we further explored, likewise the FN network 

before, making use of electrospun PEA nanofibers in order to provide 3D cues to the cells in a 

putative tissue engineered scaffold. 

In summary, the FG network assembled on the polymer fibers gave rise to a strongly bioactive 

scaffold able to direct cell orientation along the fibers (random or aligned), and to promote 

cytoskeleton organization and focal adhesions formation. Details for this study may be found in the 

original paper presented below. Details for this study may be found in the original paper "Fibrinogen 

organization at the cell–material interface directs endothelial cell behavior", presented in this 

Chapter. 
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Abstract 

 

Fibrinogen (FG) adsorption on surfaces with controlled fraction of –OH groups was investigated 

with AFM and correlated to the initial interaction of primary endothelial cells (HUVEC). The –OH 

content was tailored making use of a family of copolymers consisting of ethyl acrylate (EA) and 

hydroxyl ethyl acrylate (HEA) in different ratios. The supramolecular distribution of FG changed from 

an organized network-like structure on the most hydrophobic surface (–OH0) to dispersed molecular 

aggregate one as the fraction of –OH groups increases, indicating a different conformation by the 

adsorbed protein. The best cellular interaction was observed on the most hydrophobic (–OH0) 

surface where FG assembled in a fibrin-like appearance in the absence of any thrombin. Likewise, 

focal adhesion formation and actin cytoskeleton development was poorer as the fraction of hydroxy 

groups on the surface was increased. The biological activity of the surface- induced FG network to 

provide 3D cues in a potential tissue engineered scaffold, making use of electrospun PEA fibers (–

OH0), seeded with human umbilical vein endothelial cells was investigated. The FG assembled on 

the polymer fibers gave rise to a biologically active network able to direct cell orientation along the 

fibers (random or aligned), promote cytoskeleton organization and focal adhesion formation. –OH  

 

Keywords: fibrinogen, cell–material interactions, HUVEC, electrospun fibers, fibrinogen 

organization, cell–material interface, endothelial cell behavior, ethyl acrylate, hydroxyl ethyl acrylate 



Chapter 4   | FIBRINOGEN ORGANIZATION AT THE CELL–MATERIAL INTERFACE DIRECTS ENDOTHELIAL CELL BEHAVIOR 
Journal of Bioactive and Compatible Polymers, 2011 

 
145 

Introduction 

 

Fibrinogen (FG) is a fibrous glycoprotein normally present in blood plasma and involved in several 

key biological functions including hemostasis, wound healing, inflammation, and angiogenesis.1FG 

influences endothelial cell adhesions, motility, and growth during events associated with blood-

coagulation and wound repair,2-4 and, therefore, is recognized as fundamental for maintaining the 

balance between prothrombotic and fibrinolytic properties of endothelium during wound repair.4-6 

The FG molecule consists of three pairs of polypeptide chains, designed as A, B, and, with 

molecular masses of 66, 52, and 46 kDa, respectively, which are linked by 29 disulfide bonds.1 

These six polypeptides are organized into independently folded units: a central E-domain, which 

includes the N-terminus of all six polypeptide chains, and two terminal D-domains which include the 

B- and -chains. The carboxyl-terminal of the A-chain – the C-domain – departs from the D 

fragment and either associate to the E-domain to form a single globular domain or alternatively, 

form appendages with a certain degree of mobility.
7 

The cleavage of the small A and B sequences 

from the Aa- and Bb-chains by thrombin in the E-domain yields fibrin, which is able to polymerize. 

The length of an individual FG molecule is 45–60 nm.8, 9 

The interaction of FG with a broad range of material surfaces has been extensively studied during 

the recent decade through different techniques,10 including Atomic Force Microscopy (AFM).11–14 

The wettability of material surfaces is considered to be one of the most important parameters 

affecting the biological response of adsorbed proteins. However, FG adsorption has led to 

inconsistent conclusions, especially in terms of its conformation at the material interfaces.2,15,16,17 

In a recent investigation of FG adsorption and distribution on a family of model polymer surfaces 

consisting of poly(ethyl acrylate) (PEA) and poly(hydroxyl ethyl acrylate) (PHEA) in different ratios, 

we tailored the wettability by changing the number of hydroxy groups present in the system without 

modifying any other chemical functionality.18 We found that the amount of FG adsorbed on these 

substrates decreased as the fraction of  –OH groups increased,
18 

which is a general trend observed 

in the literature.19,20 However, we also found good cellular interaction on the most hydrophobic 

surface of pure PEA (e.g., in the absence of –OH groups) due to the spontaneous formation of FG 

networks.18 

In this study, we investigated, in detail, the biological activity of the FG network depending on the 

fraction of –OH groups and as well as the dimensions of the substrate using human umbilical vein 

endothelial cells (HUVEC). The HUVEC were chosen based on their role in determining the 

neovascularization potential of implants21,22 which is particularly important in tissue engineering 

strategies.22,23 To date, blood contacting devices including small diameter vascular grafts, stents, 

and heart valves, suffer from a common defect – the lack of significant endothelial cells ingrowth, 

resulting in an accelerated device failure.24Consequently, the organization of FG at the material 
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interface is critical for bioengineering successful interactions with endothelial cells25– which should 

be considered to mimic the natural organization of vessel wall. 

The overall morphology, focal adhesion formations, and cytoskeleton development of HUVEC 

adhering on model surfaces with different OH contents were followed. We used FG-coated PEA 

fibers obtained via electrospinning to demonstrate the potential of cellular interaction in 3D of these 

scaffolds for tissue engineering applications.26, 27 
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Materials and methods 

 

Preparation of ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) copolymers 

The copolymer sheets were obtained by the copolymerization of both monomers EA (Aldrich, 99% 

pure) and HEA (Aldrich 96% pure), in predetermined proportions; the photoinitiator was benzoin 

(0.1 wt%, Scharlau, 98% pure) with 2 wt% ethylene glycol dimethacrylate (Aldrich, 98% pure) as 

the cross-linking agent. Five monomer feeds were chosen, based on the weight fraction of HEA in 

the initial mixture of 1, 0.7, 0.5, 0.3, and 0 (hereafter –OHx, will refer to the sample with percentage 

x of HEA in the copolymer). After polymerization, low molecular mass substances were extracted 

from the material by refluxing in ethanol for 24 h and then drying in vacuum to a constant weight. 

Small disks (~10 mm diameter) were cut from the polymerized plates for the protein adsorption and 

cell adhesion studies. 

PEA was dissolved in hexafluoroisopropanol at 30 g/mL at room temperature. Randomly 

deposited PEA microfibers with size in the range of 2–3 mm were obtained by electrospinning the 

polymer solution for 2 min onto a 15 mm round-shaped glass coverslips (Thermo Scientific/Menzel-

Glaser, Germany) placed on a grounded aluminum foil. The applied voltage was 20 kV, 125 mm 

from the collector, and the flow rate 300 L/h. Aligned fibers were obtained under the same 

conditions but the polymer solutions were electrospun for 5–6 min onto a rotating drum (1000 rpm) 

consisting of two parallel plastic disks (120 mm diameter) spaced at 15 mm that are mounted to the 

same axis and connected in their periphery with 0.5 mm grounded coiled metal wire (21 parallel 

coils in 16 mm). The fibers, which align perpendicularly between the wires, were collected on glass 

coverslips. 

 

Characterization of Poly(ethyl acrylate-co-hydroxylethyl acrylate) 

 

Scanning electron microscopy. 

The scanning electron microscopy (SEM) analysis of the electrospun fibers was carried out on a 

Jeol JSM-5410 scanning electron microscope. Samples were coated with a conductive layer of 

sputtered gold. The micrographs were taken at an accelerating voltage of 15 kV for suitable image 

resolution. 

 

Swelling and contact angle measurements 

The equilibrium water content (mass of water absorbed by the dry mass of the substrate) and the 

water contact angle (WCA) were measured (Dataphysics OCA) for the different substrates. Each 

experiment was performed in triplicate at room temperature. 
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X-ray photoelectron spectroscopy. 

The X-ray photoelectron spectroscopy (XPS) experiments were performed on a PHI 5500 Multi-

technique System (from Physical Electronics) with a monochromatic X-ray source and calibrated 

using the 3d5/2line of Ag. The analyzed area was a circle of 0.8 mm diameter, and the selected 

resolution for the spectra was 23.5 eV of pass energy and 0.1 eV step
À
1. All measurements were 

made in an ultra-high vacuum chamber. The XPS elemental sensitivity factors, according to the 

MULTIPAK program for PHI instruments, were used. An automatic XPS signal-fitting software 

(developed under MATLAB v7.2, The MathWorks Inc., Natick, MA, USA) was used to deconvolute 

the spectra.
28 

The fitting software makes use of an independent Voigt function per peak (which, in 

our case, means four Voigt functions to fit the C 1s spectra and three Voigt functions to fit the O 1s 

peaks). 

 

Atomic force microscopy. 

Surfaces for AFM were prepared as follows. FG from human plasma (Sigma) was adsorbed on 

the different substrates by immersing the material disks in 20 g/mL solutions of phosphate-buffered 

saline (PBS) for 10 min. AFM was performed in a NanoScope III from Digital Instruments (Santa 

Barbara, CA) operating in the tapping mode; the Nanoscope 5.30r2 software version was used. Si-

cantilevers from Veeco (Manchester, UK) were used with force constant of 2.8 N/m and resonance 

frequency of 75 kHz. The phase signal was set to zero at a frequency 5–10% lower than the 

resonance one. Drive amplitude was 200 mV and the amplitude setpoint (Asp) 1.4 V. The ratio 

between the amplitude set point and the free amplitude (Asp/A0) was kept equal to 0.7. 

 

Cell cultures 

HUVEC (PromoCell) were cultured in endothelial cell growth medium supplemented with 

SupplementMix (PromoCell) containing 0.4% ECGS/H, 2% fetal calf serum, 1 ng/mL epidermal 

growth factor, 1 mg/mL hydrocortison, and 1 ng/mL basic fibroblast factor. For the adhesion 

experiments, the cells were detached from around confluent flasks with Trypsin/EDTA (Invitrogen) 

and the remained trypsin activity was stopped with 100% FBS before washing two times with 

medium without supplements. The cells were then counted and reconstituted. 

 

Cell adhesion and overall morphology 

To determine the overall cell morphology of HUVEC adhering to different samples, 5 x 104 

cells/well were seeded in 24-well TC plates (Costar) containing the samples for 2 h in serum free 

medium. The cells were then fixed with 4% paraformaldehyde (10 min) and permeabilized with 0.5% 

Triton X-100 for 5 min. The actin cytoskeleton was stained with 20 g/mL AlexaFluor-488 phalloidin 

(Molecular Probes) in PBS before the samples were washed and mounted in Mowiol (Polysciences 
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Inc.). Images of the adhered cells were obtained at low magnification (10x to get the overall cell 

morphology), or at higher magnification (63x to follow the organization of actin filaments), using the 

green channel of a fluorescent microscope (Zeiss, Axiovert 40) equipped with digital camera IMag 

(InRey Solutions, Bulgaria) and the corresponding software. 

 

Visualization of focal adhesions 

To visualize focal adhesions, the fixed and permeabilized samples were saturated with 1% 

albumin in PBS (15 min) and immunofluorescently stained for vinculin with monoclonal anti-vinculin 

antibody (Sigma, cat no. V9131) dissolved in 1% BSA in PBS for 30 min, followed by Cy3-

conjugated Goat Anti-Mouse IgG (H+L) (Jackson ImmunoResearch, cat. no 115-165-062) as 

secondary antibody (30 min). To simultaneously visualize actin, FITC-labeled phalloidin (Invitrogen) 

was added to the secondary antibody solution at a final concentration 1:100. The samples were 

viewed and photographed with an inverted fluorescent microscope. Representative images were 

acquired on the green and red channel and superimposed with ImageJ software. 
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Results 

 

The data presented in Table 1 show a significant decrease in the WCA with increasing amounts 

of HEA in the copolymer, from 89 for pure PEA ( –OH0) to 45 for pure PHEA ( –OH100). Topography 

of the surfaces, which is known to be a parameter able to influence cell behavior, was examined by 

AFM prior to protein adsorption and yielded similar roughness parameters regardless the polymer 

composition. The roughness parameters were Ra = 18 ± 4 nm and Rms = 22 ± 4 nm (Ra is the average 

height deviations; Rms is the standard deviation of the height values). 

The fraction of  –OH groups on all the surfaces was assessed by XPS (Table 1). The fraction of 

hydrophilic units on the surface was similar to the initial ratio of HEA in the feeding mixture of co-

monomers. Thus, most of the hydroxyl groups in the system remain available to interact with the 

biological media. 

 

FG distribution on surfaces with tailored –OH content 

The FG distribution (Figure 1) is observed by AFM after adsorption on the different substrates 

from a 20 mg/mL solution, which is the concentration afterwards employed for cell culture purposes. 

This protein concentration does not reveal the conformation of single FG proteins since FG fibrils 

are present in all samples: rather than single FG molecules, the AFM images show protein patterns 

with different topologies. The formation of a FG network takes place on pure PEA (–OH0), the degree 

Figure  1. Phase signal AFM images after FG adsorption on substrates with controlled OH surface densities. Insets show individual 

FG molecules representative of extended (for OH0and OH30) and globular (for OH50, OH70, and OH100) conformations. 

 

Figure  1. Phase signal AFM images after FG adsorption on substrates with controlled OH surface densities. Insets show individual 

FG molecules representative of extended (for OH0and OH30) and globular (for OH50, OH70, and OH100) conformations. 
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of interconnection of the protein fibrils is diminished for samples with higher hydroxy contents, while 

it is enhanced again on the most hydrophilic surface ( –OH100). Detailed information on this process 

can be found in Hernandez et al.18 Furthermore, the adsorption from lower concentration solutions 

(2 g/mL) provided the identification of FG molecules in an extended conformation on –OH0 and –

OH30 while being mostly globular-like aggregates on –OH50 and –OH70 (Figure 1, inset). 

 

Cellular interaction depending on surface –OH content 

Substrates were immersed overnight in a FG solution (20 mg/mL) prior to cell culture. The cell 

morphology of the HUVEC on the different FG-coated substrates and the control glass, after 

culturing and actin staining, is shown in Figure 2. The cell density and spreading depended on the 

–OH fraction on the surface. However, most elongated cells, similar to those on the control glass, 

were only observed on the most hydrophobic substrate –OH0; as the –OH fraction in the material 

increased, the number of attached cells reduced and the spreading diminished. The substrate 

wettability clearly dropped (Table 1) as the –OH density decreased. Only rounded cells were 

observed on the more hydrophilic systems (–OH50and –OH70) even when the cell density did not 

differ significantly (Figure 2). 

The development of an actin cytoskeleton was observed at higher magnification (Figure 3) which 

allowed us to establish the degree of maturation of the F-actin fibers on the different FG-coated 

substrates. On the more hydrophobic polymers (–OH0 and –OH30), the cells spread on the surface 

displaying a well-defined and developed actin cytoskeleton with mature F-actin cables (Figure 3). 

Higher fractions of hydroxyl groups in the substrate lead to a less spread morphology and only 

initial-peripheric trends of F-actin were visible (–OH50and –OH70). Cells on the most wettable 

Figure  2. Distribution of HUVEC on the material surfaces after a 3 h culture after phalloidin staining for actin. 

 

Figure  2. Distribution of HUVEC on the material surfaces after a 3 h culture after phalloidin staining for actin. 
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substrate (–OH100) had round shapes with only a shadow of non-polymerized actin. 

The organization of cellular proteins involved in the formation of the focal adhesion complexes 

provided an opportunity to observe the effectiveness of cell-to-substrate interactions. The 

distribution of vinculin  in  fibroblasts  adhering  on the  FG - coated substrates is shown in Figure 

4. Well-defined focal adhesions were found only on the more hydrophobic surfaces (–OH0, and –

OH30) and on the control glass. Even if vinculin had been expressed in the more hydrophilic 

Figure  3. F-actin cytoskeleton development of HUVEC on the different substrates with controlled fraction  of hydroxy groups. 

 

Figure  3. F-actin cytoskeleton development of HUVEC on the different substrates with controlled fraction  of hydroxy groups. 

Figure  4. Focal adhesion formation for HUVEC on the different substrates and the control glass through immunofluorescence for 

vinculin 

 

Figure  4. Focal adhesion formation for HUVEC on the different substrates and the control glass through immunofluorescence for 

vinculin 
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substrates, it was not organized into focal contacts but randomly distributed along the cell periphery 

(Figure 4). 

 

Electrospun PEA microfibers (OH0) coated with FG 

Random and aligned PEA fibers were prepared via electrospinning with diameters of 

approximately 3 mm. Representative SEM micrographs of electrospun PEA fibers on glass 

coverslips are seen in Figure 5. The SEM images show the distribution of the fibers, the existence 

of a characteristic direction in the case of Figure 5(b) and the lack of any principal direction in Figure 

5(a). 

AFM images (different magnifications, phase, and magnitude of the amplitude) of the PEA 

electrospun fibers after FG adsorption from a solution of concentration 20 mg/mL are shown in 

Figure  5. SEM micrographs of PEA fibers (a) randomly distributed and (b) aligned on glass coverslips 

 

Figure  5. SEM micrographs of PEA fibers (a) randomly distributed and (b) aligned on glass coverslips 

Figure  6. FG assembly on PEA fibers as observed by AFM (phase and amplitude). PEA fibers were electrospun on glass coverslips, 
and FG was adsorbed for 10 min from a 20 mg/mL solution. The FG network only assembled on the PEA fibers and not on the 
underlying glass substrate. 

 

Figure  6. FG assembly on PEA fibers as observed by AFM (phase and amplitude). PEA fibers were electrospun on glass coverslips, 
and FG was adsorbed for 10 min from a 20 mg/mL solution. The FG network only assembled on the PEA fibers and not on the 
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Figure 6. Large fiber topography prevented FN to be identified. However, the phase magnitude 

revealed the existence of a FG network assembled on the electrospun PEA fibers, in the absence 

of thrombin or cells, as a consequence of the protein–material interactions. Some salt crystals were 

observed on the underlying glass substrate without a trace of the protein network on it. FG 

distribution on the PEA substrate was not observable at this magnitude of the amplitude, although 

some topographic signs were identified in the 2 mm image (Figure 6). However, this magnitude of 

the amplitude was sufficient to identify the electrospun PEA fibers. 

Figure 7. Overall morphology of HUVEC adhering on (c, d) random and (e, f) aligned FG-coated PEA fibers compared to the (a, b) 

control of FG-coated glass visualized by actin (a, c, and e) or double stained for vinculin (red) and actin (green) (b, d, and f). 

 

Figure 7. Overall morphology of HUVEC adhering on (c, d) random and (e, f) aligned FG-coated PEA fibers compared to the (a, b) 

control of FG-coated glass visualized by actin (a, c, and e) or double stained for vinculin (red) and actin (green) (b, d, and f). 
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Cellular interaction with electrospun PEA microfibers 

The left column in Figure 7 represents the overall morphology of HUVEC adhering after 2 h on the 

FG-coated (electrospun) PEA fibers and control glass samples for comparison, visualized via 

staining for actin. Irregularly spread cells representing multiple projections were typically on the 

randomly dispersed PEA fibers (Figure 7(c)), presumably resembling early stellate morphology in 

response to the underlying substrate, apart from the cells on the control glass (Figure 7(a)), had a 

typical (2D substrata) flattened and polarized morphology without prevalent orientation of the cells. 

Conversely, an extended cell shape, parallel to the orientation of the fibers, was observed on the 

aligned PEA fibers (Figure 7(e)) that corroborated with the focal adhesion complexes and well-

developed actin stress fibers inserting into them (in yellow), particularly in the contact zones with 

PEA fibers (Figure 7(f)). Conversely, on random PEA fibers (Figure 7(d)), actin cytoskeletons were 

rather cortically accumulated, combined with well-developed longitudinal stress fibers inserting into 

the prominent focal adhesion plaques that follow multiple directions of the underlying polymer fibers. 

On the control FG-coated glass (Figure 7(b)), the cells were ‘classical’ actin cytoskeleton with stress 

fibers inserting into regularly dispersed focal adhesion at cell edges.  
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Discussion 

 

Biofunctionalization of blood contact devices is a strategy used to achieve endothelialization and 

to prevent failure upon implantation.29–31 We found that FG adsorption in vitro can be triggered by 

the amount of OH groups in the surface and that endothelial cell behavior is then directed in this 

way. 

It is known that protein adsorption on a synthetic surfaces triggers the biological response of the 

material.32,33,34 The copolymer substrates employed in this study were based on the random 

combination of ethyl acrylate and HEA monomers that have vinyl backbone chains with  –

COOCH2CH3  and  –COOCH2CH2OH  side groups. The surface density of –OH groups is easily 

varied without modifying any other chemical functionality of the system. The sequential 

incorporation of hydroxyl groups on the material surface was assessed by XPS (Table 1). The 

concentration of –OH groups determines both the wettability and the hydrophilicity of the substrate, 

while the surface roughness remains unaffected (Table 1). 

We found that both the FG adsorption and distribution on this family of polymers determined the 

initial interaction with endothelial cells. The amount of adsorbed FG decreased monotonically as the 

fraction of hydroxyl groups increased (Table 1).18–20 However, the different distributions of FG on 

the surface led to different cell behaviors; the cells spread well on the hydrophobic substrate with 

excellent adhesion, but round cells were found on the hydrophilic one (Figures 2 and 3). It is known 

that, excluding platelets, cell adhesion to FG is mediated by the v3 integrin which recognizes the 

RGD sequence near the C-terminus of the A chain of the FG molecules, (RGDF at A95-98 and 

RGDS at A572-575).35–39 The conformation of the adsorbed FG on the most hydrophobic 

substrates permitted the recognition of the RGD sequence by the integrins, which was prevented 

on the hydrophilic surfaces.19, 20 

Endothelial cell interactions on the FG-coated substrates containing up to 30% hydroxyl groups 

(–OH0, –OH30) was accompanied by the formation of the actin cytoskeleton, focal adhesion plaques, 

and spread morphology. This indicated that the conformation of the protein was able to enhance 

the cell–FG interactions, even if the number of cells adhered on the substrate was lower as the 

surface density of adsorbed FG (Figures 1 and 2 and Table 1). 

High amounts of hydroxyl groups in the substrate (samples –OH50, –OH70, and OH100) resulted in 

a qualitative change of the cell–material interactions; the cells, which barely adhered to the 

substrate, had rounded morphology and lacked focal adhesion contacts and actin cytoskeleton. 

Since the amount of adsorbed FG on the higher hydroxyl content in the substrate was only slightly 

lower (Table 1), we ascribed this behavior to the different distributions and conformation of the 

protein on the substrate. 

Interestingly, the FG organized into a biological active protein network upon adsorption on PEA 
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(Figure 1), with patterns similar to those found by Gettens et al.6 and to those observed by Sit and 

Marchant 40 in the process of fibrin assembly on graphite in the presence of thrombin. One way to 

establish intermolecular interactions between FG molecules involves the electrostatic bonds 

between the globular C-termini (which are negatively charged) and the overall positive charge of 

the E-domain.41 Similarly, the C-termini were also able to bind to themselves.7 The extended 

conformation of the FG molecules on PEA supported the formation of intermolecular interactions 

after protein adsorption on the material surface (Figure 1, inset). This study shows that the formation 

of a FG network on a PEA substrate is not restricted to plane surfaces but that it can resemble 

distinct topographic cues that are recognized by endothelial cells, when deposited on the 

electrospun 3D fibers (Figure 3). 

Other ECM proteins were previously investigated on this family of polymers concerning protein 

adsorption by AFM.18,42,43,44 Particular features were obtained that reflect the difficulty in establishing 

general rules concerning the effect of material properties on protein adsorption. 

More importantly, the FG network that assembled spontaneously on the PEA fibers is biologically 

active (Figure 7). Evidently, the cells interacted with the PEA fibers and started to orient, modifying 

their characteristic flattened morphology on glass, following the fibers direction (Figure 7(e) and (f)). 

The cell morphology was then modified to adapt cell-substrate contact along the electrospun PEA 

fiber. The well-developed focal adhesion complexes and the insertions of actin stress fibers in these 

complexes point to a proper transmission of signals by the integrins to the cell interior. Interestingly, 

when adhering to random PEA fibers, the cells tend to develop a rounded morphology with multiple 

projections, which resemble stellate morphology, characteristic of cells in a 3D environment. In fact, 

this protein network represents a rather 2.5 D substrate (for cellular dimensions), which means that 

the cells receive proper signals from the FG network. Moreover, it also applies to the oriented fibers 

where endothelial cells immediately acquire extended morphology with asymmetrical organization 

of the adhesive complexes (Figure 7(f)), thus indicating activation of their motility. 
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Conclusions 

 

FG was organized into a network-like structure upon adsorption on PEA. The fraction of OH groups 

in the system was increased by copolymerizing with HEA which led to a different distributions of FG 

on the substrate (globular-like pattern) and lower surface density of adsorbed protein. A lower 

number of attached cells, without focal adhesion plaques and scarce actin cytoskeleton, were found 

as the fraction of OH groups in the copolymer increased. After adsorption on the electrospun PEA 

fibers the network organization of FG on the material interface provided specific 3D cues that 

triggered endothelial cell behavior. The cellular interactions with this FG structure gave rise to the 

formation of extended morphologies, well-developed focal adhesion plaques and polarized 

cytoskeleton following the underlying FG-coated electrospun polymer. 
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Preface to Chapter 5 

 

This part of the Thesis reflects the switch in our concept to a more efficient geometric control of 

the cellular interaction, using nanofibers consisting of natural ECM protein. Indeed, our previous 

studies clearly showed that cells are able to accept organizational stimuli from the substratum on 

which they attach, and this is а way to control their behavior. However, the cells also respond to the 

mechanical properties of their environment, which is difficult to control on planar substrata. On the 

other hand, when ECM proteins polymerize in vivo, they usually generate a complex fibrillar 

structures, possessing except distinct mechanics also some recognition sequences that are specific 

for the ECM proteins themselves. Such a setting is sensed directly by the cellular adhesive 

machinery. A large and growing body of evidences shows that when facing fibrillar environment, the 

cells utilize different signaling mechanisms and this is further complicated by the fact that they 

recognize such signals in a 3D system. Accordingly, we anticipate that the fibrillar structuring not 

only influences the ECM organization, but also possess specific recognition cues that effect cellular 

behavior. Therefore in this study, utilizing an original protocol for electrospinning, we used native 

fibrinogen (FBG) as material to produce nanofibers considering that it is a natural ECM protein 

specifically recognized by the cells (via αvβ3 integrin). Moreover, FBG interacts very well with 

endothelial cells (HUVEC), already demonstrated in Chapter 4, which cells we used again here as 

a model system considering easier translation of results for vascular tissue engineering 

purposes, (see Chapter 6). We showed that native FBG nanofibers not only provoke faster cellular 

interaction (compared to FBG coated planar substrata), but also affect the spatial orientation of cells, 

likewise previously observed with PEA nanofibers, (see Chapter 3 and Chapter 4). Furthermore, 

here we provide for the first time evidence (time-laps movie) that the aligned FBG nanofibers may 

be used as tool for guiding the directional movement of endothelial cells.  

Details for this study may be found in the original paper "Fibrinogen nanofibers for guiding 

endothelial cell behavior", presented in this Chapter. 
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Abstract 

 

This paper describes the biological consequences of presenting electrospun fibrinogen (FBG) to 

endothelial cells as a spatially organized nanofibrous matrix. Aligned and randomly oriented FBG 

nanofibers with an average diameter of less than 200 nm were obtained by electrospinning of native 

FBG solution. Electrophoretic profiling confirmed that the electrospun FBG resembled the native 

protein structure, and fluorescent tracing of FITC-labeled FBG showed that electrospun fibers 

withstood immersion in physiological solutions reasonably well for several days. With respect to 

cellular interactions, the nanofibrous FBG matrix provided better conditions for initial recognition by 

human umbilical vein endothelial cells compared to pre-adsorbed FBG on a flat surface. 

Furthermore, the spatial organization of electrospun FBG fibers presented opportunities for guiding 

the cellular behavior in a way that is not possible when the protein is presented in another form (e.g. 

adsorbed or soluble). For example, on aligned FBG fibers, cells rapidly oriented themselves along 

the fibers, and time-lapse recordings revealed pronounced cellular movements restricted to the fiber 

direction. In great contrast, on randomly deposited fibers, cells acquired a stellate-like morphology 

and became locally immobilized by the fibers. We also show that the FBG fiber orientation 

significantly influenced both the cytoskeleton organization in confluent cell layers and the orientation 

of the extracellular fibronectin matrix secreted by the cells. In conclusion, this study demonstrates 

that electrospun FBG nanofibers can be a promising tool for guiding endothelial cell behavior for 

tissue engineering applications. 
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Introduction 

 

Cellular interactions with foreign materials initially rely on fundamental processes such as protein 

adsorption 1 and ligand–receptor interactions 2, which determine the subsequent cellular interaction 

and response. In fact, those initial events mimic to a certain extent the natural interaction of cells 

with the extracellular matrix (ECM) 3, a notion that is required not only for understanding 

biocompatibility, but also for biology and medicine in general, since tissue development in 

multicellular animals heavily relies on the ability of cells to synthesize and organize ECM – a fact 

that cannot be underestimated in biomaterials science. 

Basically, the ECM is a structure consisting of glycosaminoglycans (a gel-like matter) and spatially 

organized matrix fibrils (e.g. collagen, laminin, fibronectin, etc.) whose length in some cases greatly 

exceeds that of individual cells.4 The importance of correct regulation of fibril deposition is 

exemplified by diseases such as osteogenesis imperfecta (caused by mutations in collagen genes), 

fibrosis (i.e., ectopic accumulation of ECM), as well as by its frequent appearance in degenerative 

tissue disorders.5,6 The biological relevance of fibrillar nanostructures is also clearly reflected in the 

efforts made in the fields of biomaterials and tissue engineering to reproduce and apply ECMlike 

fibers, e.g. by electrospinning7 or by self-assembly.8 Despite the promise of such techniques, there 

is still a need to understand how cells respond to complex structures that contain both spatial and 

biological information. 

Among the different fibrillar proteins, fibrinogen (FBG)9 is of particular interest for tissue 

engineering applications due to its many biological functions. FBG is a soluble protein secreted into 

the plasma in high amounts mainly by hepatocytes, and it plays a key role in the coagulation cascade 

and as a bridging molecule for platelet aggregation.10 FBG and its derivative fibrin also serve as a 

provisional ECM in some injured tissues,11 and is involved in wound healing,12 tissue regeneration,13 

inflammatory cell response,14 and angiogenesis.15 Thus, the consistency of using fibrin(-ogen) as a 

tissue sealant and/or scaffold for cellular therapies16 has been explored for example in 

cardiovascular, bone, cartilage, and skin tissue engineering applications.17–20 Interestingly, 

extrahepatic cells such as lung, intestinal and cervical epithelial cells also secrete FBG21–23 which 

then can integrate as a recognizable part of the natural ECM of these cells in the form of non-

covalently assembled fibrils.24 Finally, considering the previously established fact in our laboratory 

that FBG undergoes significant spatial organization and remodeling into fibrillar structures in contact 

with endothelial cells,25 we anticipated that the organization of FBG molecules in matrixlike 

configurations could have significant impact on subsequent cell behavior. Therefore the aim of this 

paper was to carefully explore how endothelial cells, here using primary human umbilical vein 

endothelial cells (HUVECs) as a model system, respond to spatially organized nanofibers produced 

from electrospinning of pure FBG solution. For that purpose, we built on the work of Bowlin and 

coworkers26 who first succeeded in preparing electrospun native FBG nanofibers. Although it has 
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been previously described that cells such as fibroblasts easily colonize electrospun FBG scaffolds,27 

the fiber stability in aqueous environments and the cellular recognition and locomotor activity toward 

spatially organized FBG nanofibers are unknown. In this study we address these questions, which 

comprise the novelty of the obtained results. 

  



Chapter 5   |                                                                  FIBRINOGEN NANOFIBERS FOR GUIDING ENDOTHELIAL CELL BEHAVIOR 
Biomaterials Science, 2013 

 
169 

Materials and methods 

 

Electrospinning of fibrinogen nanofibers 

Fibrinogen nanofibers were prepared as previously described.26 Briefly, fibrinogen from bovine 

plasma (Sigma-Aldrich) was dissolved at 100 mg mL−1 in 1-1-1,3-3-3-hexafluoroisopropanol (HFIP) 

(Sigma-Aldrich) mixed (9 : 1) with 10× concentrated DMEM (Invitrogen). The obtained FBG solution 

was centrifuged at 4000 rpm for 10 minutes and the supernatant was loaded in a conventional 10 

mL syringe (BD-Scientific). For electrospinning of that solution we used a home-made setup based 

on a high voltage supply (Glassman High Voltage Inc.), a syringe pump (AITECS), and a grounded 

collector. Randomly deposited FBG nanofibers were obtained by vertical electrospinning of the 

polymer solution onto glass coverslips (ϕ 15 mm, Thermo Scientific) placed on aluminum foil that 

covered the collector. The applied voltage was 20–25 kV, the distance between the needle tip and 

the collector was 125 mm, and the pump flow rate was 0.3 mL h−1. Aligned fibers were obtained 

using the same spinning conditions, but with an original and simple method of collection based on 

a rotating drum (Fig. S1). Basically, two plastic discs (ϕ 120 mm) were mounted on a common axis 

and separated by 100 mm. Thin metal wires were stretched between the disc peripheries to form 

parallel strings at 16 mm distance from each other. While rotating the common axis (600–800 rpm), 

the nanofibers aligned between the metal wires, and they could thereafter be easily collected onto 

glass coverslips. 

 

Morphological fiber characterization 

The electrospun FBG fibers were morphologically characterized by scanning electron microscopy 

(SEM, Jeol JSM-5410) at the Center for Biomaterials and Tissue Engineering at the Technical 

University of Valencia (Spain). Before analysis, the samples were coated with a conductive layer of 

sputtered gold. The SEM micrographs were taken at an accelerating voltage of 15 kV in order to 

ensure good image resolution. Fast Fourier Transformation (FFT) outputs of the scanning electron 

micrographs were then used to characterize the alignment of the fibers.28 The analysis of the SEM 

micrographs was performed with ImageJ (NIH) and the oval profile plug-in (authored by William 

O’Connnell). Briefly, a circular projection was placed on the FFT frequency distribution outputs of 

the micrographs and the radial sums of the pixel intensities for each degree between 0 and 180° 

were collected. The pixel intensity was then plotted as a function of its angle of acquisition. 

Distribution data were normalized to a baseline value and plotted in arbitrary units, allowing different 

data sets to be directly compared. 
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Chemical fiber characterization 

The effect of the electrospinning process on the protein configuration was investigated using 

classical SDS-PAGE for pure FBG, electrospun FBG nanofibers, and fibrin gel under reducing 

conditions. Fibrin gel was obtained by adding thrombin (Sigma-Aldrich; 2.0 NIHU mL−1) and 2.5 mM 

CaCl2 to a 2 mg mL−1 fibrinogen solution. The reduced protein samples were prepared by adding 

10% (v/v) of 5% β-mercaptoethanol in sample buffer to the protein samples, and after boiling the 

obtained samples at 100 °C for 5 minutes, they were loaded in a 10% polyacrylamide gel, 

electrophoresed using vertical slab apparatus (BioRad), and thereafter stained by Coomassie Blue. 

To estimate the chemical stability of the FBG nanofibers under physiological-like conditions, 

fluorescein isothiocyanate-labeled FBG (FITC-FBG) was added to the FBG polymer solution (0.14 

mg mL−1) before electrospinning. In this way, FITC-FBG/FBG nanofibers were obtained as random 

fibers on glass coverslips. The weight of each sample was measured before and after the 

electrospinning process to ensure equal mass of nanofibers on each coverslip (1.0 mg). The 

samples were then incubated in a standard culture environment (37 °C, 5% CO2) in 0.5 mL of either 

PBS or culture medium(EndoGRO, Invitrogen) for different time periods: 5, 24, and 72 hours, 

respectively. After incubation, the supernatant was removed and the remaining nanofibers were 

dried at room temperature. Then all the samples, including fresh control samples not exposed to 

any aqueous environments, were immersed in 0.2 M NaOH until the fibers were completely 

dissolved and no visible debris were present in the solution (48 hours at 37 °C). Finally, the sample 

extracts were resuspended and analyzed fluorometrically (FluoroMax-4, HoribaJobin Yvon; 

excitation 494 nm, emission 525 nm). 

 

Cells 

Human umbilical vein endothelial cells (HUVECs) were purchased from MilliPore (Spain), and 

cultured at 37 °C and with 5% CO2 in complete EndoGRO medium containing 2% fetal bovine serum 

(FBS). For experiments, cells were harvested and washed two times in FBS-free medium. Typically, 

the cell seeding density was 5 × 104 cells per sample in 2.0 mL of culture medium in 24-well TCPS 

plates (Nunc) containing the samples. 

 

Fast cell adhesion assay 

To investigate the initial cellular recognition of the nanofibers, a fast cell adhesion assay was 

performed as previously described.29 Briefly, cells were seeded in serum-free EndoGRO medium on 

randomly deposited FBG nanofibers and on glass coverslips coated with FBG (50 μg mL−1). At 5 

and 20 minutes after plating, cells were washed, fixed with 4% paraformaldehyde, permeabilized 

with 0.5% Triton-X 100, and stained for the actin cytoskeleton and nuclei with FITC-phalloidin 

(Invitrogen) and Hoechst 34580 (Invitrogen) dissolved in PBS containing 1% albumin. Stained cells 
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were photographed using an inverted fluorescent microscope (Axio Observer Z1, Zeiss), and cells 

were counted from 20 randomly chosen microscopic fields on each sample. 

 

Overall cell morphology and alignment to fibers 

The overall morphology of HUVECs cultured on randomly and aligned electrospun FBG fibers was 

evaluated after 2 hours of incubation under serum-free conditions. For that purpose, cells were 

washed, fixed, and stained for actin and nuclei as described in the previous section, and at least 

three representative images of cells were acquired under each magnification and sample condition. 

Cell orientation on both aligned and random nanofibers was evaluated by analyzing 40 randomly 

chosen cells from one representative image using ImageJ (NIH). Briefly, the image of the cell on 

aligned nanofibers was rotated so that the approximate fiber direction was set perpendicular to the 

horizontal image baseline which was used as a reference direction (i.e. 0°). Images of cells on 

random samples were not rotated because of the absence of a reference direction. The longitudinal 

axis of each cell and its angle against the baseline were then determined. The data were finally 

normalized and plotted in a distribution histogram between 0 and 180° at 20° intervals. In this way, 

a perfect cell alignment to the fibers occurred at 90° (i.e. the interval 80–100°). 

 

Visualization of focal adhesion complexes 

To visualize focal adhesions, fixed and permeabilized cells were saturated with 1% BSA in PBS 

for 15 minutes and stained with monoclonal anti-vinculin antibody (Sigma) (dilution 1 : 800) for 30 

minutes followed by another 30 minutes of incubation with secondary goat anti-mouse AlexaFluor® 

555-conjugated antibody (Abcam). In addition, FITC-phalloidin was used as described above to 

stain for the actin cytoskeleton. 

 

Time-lapse recording 

To monitor cellular movements on the random and aligned FBG nanofibers, cells growing in the 

culture flask were fluorescently labeled overnight with CellTracker Green CMFDA (Invitrogen) 

according to the supplier’s instructions. The stained cells were harvested and seeded onto random 

and aligned nanofiber samples for 2 h in serum-free medium. Live imaging of the cells was then 

initiated using an inverted fluorescent microscope (Axio Observer Z1) equipped with an onstage 

mini-chamber providing appropriate culture conditions (37 °C, humidified atmosphere, 5% CO2). 

Consecutive images were recorded using AxioVision software (Zeiss) every five minutes during a 

total period of six hours. 

 

Cell motility 

To characterize the patterns of cellular movement, the timelapse movies were analyzed using the 

ImageJ Manual Tracking plugin (developed by FP Cordelières, Institut Curie, Orsay, France). Path 
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trajectories of 20 randomly chosen cells were analyzed, and from it the main track length was 

calculated. The main track orientation was measured as for cell alignment (see above) and plotted 

in the distribution histogram between 0 and 180° at 20° intervals. 

 

Long-term cultures 

To follow the long-term behaviour of HUVECs on FBG nanofibers, 3 × 104 cells were cultured on 

random and aligned samples for up to 7 days in complete EndoGRO medium. At the end of  

the incubation the cells were fixed and stained for actin and the nucleus as described above. 

 

Fibronectin matrix formation 

HUVECs secretion of the fibronectin (FN) matrix was examined via immunofluorescence. For that 

purpose, 3 × 104 cells per sample were cultured for three days in complete EndoGRO medium. At 

the end of the incubation, the cells were washed, fixed, and stained with a polyclonal rabbit anti-FN 

antibody (Santa Cruz) for 30 minutes, followed by secondary goat antirabbit AlexaFluor® 555-

conjugated antibody (Abcam). 

 

Statistical analysis 

Each datum is expressed as mean ± standard deviation if not indicated otherwise. Statistical 

significance was determined by a two-tailed independent Student’s t-test and p < 0.05. 
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Results 

 

Characterization of electrospun FBG fibers 

Electrospinning of 100 mg mL−1 FBG in HFIP allowed for the production of homogeneous 

nanofibers with an average diameter of 192 ± 46 nm (n = 50) as determined from SEM micrographs. 

By changing the way the fibers were collected during the electrospinning process, it was possible to 

obtain fibers that were either randomly deposited over the sample or aligned along a common 

direction (Fig. 1). Specifically, the pixel intensity distribution obtained from FFT analyses of the SEM 

micrographs revealed that 50% more fibers were oriented in the range of 85 to 95° on aligned 

samples compared to random samples. To study the influence of the electrospinning process on the 

FBG structure, a SDS-PAGE was performed (Fig. 2a). The electrophoretic profile of electrospun 

FBG (dissolved in sample buffer) was observed to be identical to the profile of native FBG protein. 

In contrast, fibrin (i. e. thrombin-treated FBG) displayed an additional band (between B′β′ and γ) due 

to fibrinopeptide loss from the polymer backbone. The stability of the FBG nanofibers in aqueous 

solutions was estimated by extracting FITC-FBG from electrospun FBG/ FITC-FBG nanofibers that 

had been immersed in PBS or EndoGRO medium for different time periods (Fig. 2b). It was found 

that the fluorescent signal measured in the extracted samples decreased with time in both solutions, 

representing a loss of FITC-FBG from the electrospun fibers into solution. After 72 hours of 

Figure 1. SEM imaging depicted the spatial organization of electrospun FBG fibers in random (A) and aligned (B) configurations. 
The spatial organization of fibers was characterized by FFT analysis and then plotted as pixel intensity against the angle of acquisition 
(C). 

 

Figure 1. SEM imaging depicted the spatial organization of electrospun FBG fibers in random (A) and aligned (B) configurations. 
The spatial organization of fibers was characterized by FFT analysis and then plotted as pixel intensity against the angle of acquisition 

(C). 
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incubation, 24% of fluorescent signal was lost in fibers incubated in PBS. In EndoGRO medium, the 

fluorescent signal was, in general, weaker at all time points, and by 72 hours the fluorescent signal 

had decreased to 36% of its original intensity. 

 

Cellular interactions with FBG nanofibers 

The cellular recognition and response to the FBG nanofibers were first evaluated using the so-

called “fast adhesion” assay, i.e. cell adhesion was measured when any differences in the affinity of 

Figure 2. Characterization of the stability of electrospun FBG fibers. (A) SDS-PAGE profiles of pure FBG, electrospun FBG, and 
fibrin. (B) Fluorescence intensity was measured in counts per second (CPS) of extracted electrospun FBG/FITC-FBG incubated in 

PBS or EndoGRO medium (EGM) for different time periods. Error bars show standard error. 

 

Figure 2. Characterization of the stability of electrospun FBG fibers. (A) SDS-PAGE profiles of pure FBG, electrospun FBG, and 
fibrin. (B) Fluorescence intensity was measured in counts per second (CPS) of extracted electrospun FBG/FITC-FBG incubated in 
PBS or EndoGRO medium (EGM) for different time periods. Error bars show standard error. 

Figure 3. HUVEC attachment to FBG-coated glass coverslips (grey bars) and electrospun FBG nanofibers (red bars) at 5 and 20 

minutes after plating. Data show the average cell number per microscopic field. 

 

Figure 3. HUVEC attachment to FBG-coated glass coverslips (grey bars) and electrospun FBG nanofibers (red bars) at 5 and 20 
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integrin receptors to their ligand might be easily distinguished, and which typically occurs within a 

few minutes after seeding.29 As shown in Fig. 3, after five minutes of incubation almost two times 

more cells were counted on FBG nanofibers compared to regular FBG-coated samples. However, 

already after 20 minutes of incubation, cell adhesion on FBG nanofibers and regular FBG-coating 

was equilibrated. After two hours of incubation, cells had been given enough time to develop their 

shape, and we then examined the overall cell morphology. When adhered to regular FBG-coated 

samples  the cells presented a typical flattened morphology (Fig. 4a) comprising random cell 

polarization and a well- developed cytoskeleton with actin fibers that inserted into focal adhesions 

complexes (Fig. 4d). In sharp contrast, adhesion to random nanofibers promoted an irregular cell 

shape with multiple cytoplasmic projections extending towards differently oriented fibers (Fig. 4b). 

The cell protrusions showed high accumulation of actin that co-localized with vinculin in the focal 

adhesions (Fig. 4e) which often inserted long actin fibers with centripetal organization, suggesting 

that cells insert some traction over the nanofibers. On aligned FBG nanofibers, the cells acquired a 

Figure 4. Cellular interactions with FBG nanofibers after 2 hours of incubation in serum-free medium. (A–C) Overall cell morphology 

of HUVECs on adsorbed FBG (A), randomly deposited nanofibers (B), and aligned nanofibers (C), where the direction of fiber 
alignment is indicated by the white arrow. (D–F) Immunofluorescent micrographs showing the development of focal adhesion 
complexes (vinculin in red) and the actin cytoskeleton (phalloidin in green) on adsorbed FBG (D), random nanofibers (E), and aligned 
nanofibers (F). (G–I) Distribution of cell orientation on adsorbed FBG (G), randomly deposited nanofibers (H), and aligned nanofibers 

(I), measured as the angle between the longitudinal cell axis and the line perpendicular to the nanofiber direction 

 

Figure 4. Cellular interactions with FBG nanofibers after 2 hours of incubation in serum-free medium. (A–C) Overall cell morphology 
of HUVECs on adsorbed FBG (A), randomly deposited nanofibers (B), and aligned nanofibers (C), where the direction of fiber 
alignment is indicated by the white arrow. (D–F) Immunofluorescent micrographs showing the development of focal adhesion 
complexes (vinculin in red) and the actin cytoskeleton (phalloidin in green) on adsorbed FBG (D), random nanofibers (E), and aligned 
nanofibers (F). (G–I) Distribution of cell orientation on adsorbed FBG (G), randomly deposited nanofibers (H), and aligned nanofibers 
(I), measured as the angle between the longitudinal cell axis and the line perpendicular to the nanofiber direction 
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morphology strongly associated with the spatial organization of the underlying nanofibers. They 

typically presented an extended morphology that strongly followed the fibers orientation (Fig. 4c). 

The elongated cell shape corresponded to the highly extended actin stress fibers that were inserting 

into relatively small focal adhesion complexes located mostly at the polarized cell edges (Fig. 4f). 

Analysis of cell orientation with respect to the underlying fibers showed that cells oriented along the 

distributed in all directions (aligned fibers (Fig. 4i), while on random fibers and the regular FBG-

coated sample the cell orientation was equally Fig. 4g and 4h). 

 

Cell motility 

Time-lapse recordings demonstrated that the cells were highly motile on the aligned FBG 

nanofibers (see ESI videos 1 and 2†), with individual cells undergoing the typical motile cycle of 

extending a leading cell edge, followed by traction of the tail cell edge. While most of the cells on 

aligned FBG nanofibers carried out a linear path of translocation, cells on random nanofibers 

performed rather oscillatory and relatively short movements and in different directions (see ESI 

videos 3 and 4). Quantitative analysis of cell motions confirmed that cellular movements on aligned 

nanofibers clearly coincided with the fiber orientation, while cells on random nanofibers did not 

display any preferred direction of movement (Fig. 5a). Moreover, cells on aligned nanofibers were 

confirmed to traverse significantly longer distances (track length) than cells on random nanofibers 

(Fig. 5b) 

 

Figure 5. Cell motility on FBG nanofibers. (A) HUVEC cell tracks on random (upper left) and aligned nanofibers (upper right). Scale 
bars represent 100 μm. The distributions of the cell track orientation on random and aligned fibers are shown below each graph. (B) 
Average cell track length on random and aligned FBG 

 

Figure 5. Cell motility on FBG nanofibers. (A) HUVEC cell tracks on random (upper left) and aligned nanofibers (upper right). Scale 
bars represent 100 μm. The distributions of the cell track orientation on random and aligned fibers are shown below each graph. (B) 

Average cell track length on random and aligned FBG 
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Long-term cell culture on FBG nanofibers 

To follow the long-term fate of HUVECs grown on FBG nanofibers, cells were cultured on both 

random and aligned samples for up to 7 days. First, to learn whether the orientation of underlining 

nanofibers affected the ECM deposition, the cell layers were stained for FN after three days of 

incubation. On random fibers, the cell-secreted FN was rather stochastically distributed (Fig. 6a) 

while on aligned nanofibers the FN matrix clearly assembled along the main fiber direction (Fig. 6b). 

When cells were cultured further in time, they formed confluent layers on both aligned and random 

nanofibers within 5–7 days. By staining the cells for their actin cytoskeleton at the end of the culture 

period, remarkable differences in the organization of cells within the confluent cell layers depending 

on the spatial organization of the fibers could be observed. On aligned samples, the orientation of 

the actin cytoskeleton was dominated by the direction of underlying nanofibers, resulting in a uniform 

linear pattern coinciding with the cell polarization (Fig. 6d).In contrast, on random samples there 

was no specific orientation of the actin bundles (Fig. 6c).  

  

Figure 6. Deposition of fibronectin secreted by HUVECs cultured for 3 days on random (A) and aligned FBG nanofibers (B). Indirect 
immunofluorescent staining of HUVEC cultured for 7 days on random (C) and aligned FBG nanofibers (D) with phalloidin (green) and 

Hoechst (blue). 

 

Figure 6. Deposition of fibronectin secreted by HUVECs cultured for 3 days on random (A) and aligned FBG nanofibers (B). Indirect 
immunofluorescent staining of HUVEC cultured for 7 days on random (C) and aligned FBG nanofibers (D) with phalloidin (green) and 
Hoechst (blue). 
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Discussion 

 

Successful cell–biomaterials interaction is critical for all tissue engineering applications, and 

depends not only on the adsorption of adhesive proteins,1 but also on the spatial organization of the 

proteins.29 Therefore, spatial engineering of cell– materials interfaces via reconstruction of 

supramolecular ECM protein structures is, in general, highly sought for,8,30 and precise reproduction 

of the fibrillar ECM organization is of specific importance as the ECM is by nature a fibrous structure. 

In that context, electrospinning of polymer solutions is known to be a potent engineering approach 

for a simple and fast production of biomimetic nanofibers that resemble natural ECM fibrils,31 and it 

has been repetitively used to create ultrathin fibers from a variety of different matrix proteins,32 

including fibrinogen and fibrin.26,33 The latter achievements are of interest for multiple reasons. For 

example, fibrin(ogen) is the main component of the provisional ECM during wound healing, and it is 

also a well-characterized acute phase protein of the innate immune response that attracts many 

adhesive glycoproteins to serve as a reservoir for growth factors, proteases, and protease 

inhibitors.34,35 Moreover, FBG acts as regular ECM for several epithelial cells where it, interestingly, 

assembles into non-covalent fibrils,24 which emphasizes the importance of the spatial organization 

of the protein itself. That observation raises the question: to what extent cells recognize and respond 

to spatially organized FBG sized in the range of natural ECM fibrils? At the same time, little is still 

known about the role of fibrillar FBG structures that are not formed via the traditional conversion of 

FBG into insoluble fibrin, i.e. by enzymatic cleavage by thrombin and further stabilized by 

transglutaminase (i.e. factor XIII).9 To address those questions, we herein used tailor-made 

technology for deposition of FBG nanofibers in either random or aligned configurations. Using 

established protocols26 we obtained fibers with an average diameter of 192 nm, which compares 

well with previously reported values between 80 and 700 nm depending on the FBG concentration 

(80–170 mg mL−1).26 However, two important aspects of electrospun FBG need to be clarified: (1) 

the influence of the electrospinning process on the protein structure and (2) the long-term stability 

of the electrospun fibers in physiological aqueous environments. In this context, one has to 

remember that it is still not clear how FBG becomes insoluble during electrospinning. One possibility 

is that FBG is normally cleaved to fibrin if traces of thrombin are present in commercial FBG. Here, 

our electrophoretic data clearly showed that FBG did not convert to fibrin during electrospinning as 

it did not display the additional band present in fibrin caused by the fibrinopeptide loss 9. This 

observation confirms that FBG molecules within the electrospun nanofibers assemble and become 

insoluble by other mechanisms. One can consider the possibility that electrospinning provides the 

conditions where FBG molecules polymerize by van der Waals forces of attraction that overcome 

the electrostatic forces of repulsion, giving rise to a peculiar amyloid-like product (aggregate) similar 

to those described under some pathological conditions (e.g. Alzheimer’s disease).36 It should also 

be kept in mind that extrahepatic FBG assembles into an insoluble matrix fibrils in presence of cells 
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(fibroblasts, lung and mammary epithelial cells), in a process where cryptic beta residues are 

exposed to form FBG fibrils.35 However, the relevance of such an assembly mechanism in absence 

of cells is not clear. 

With respect to the second issue mentioned above, i.e. the long-term stability of electrospun FBG 

fibers under aqueous conditions, it has been detailed by Baker et al. that the mechanical properties 

of electrospun FBG fibers decrease significantly when the fibers are immersed in wet environments 

(e.g., the stiffness decreases more than 1000 times).37 Therefore, to understand how aqueous 

conditions affected the electrospun FBG fibers, we used FITC-labeled FBG for fluorescent tracing 

of the protein under physiological solutions. That approach revealed that approximately 5% of the 

protein fibers dissolved during 24 hours of incubation. In our view, that degradation rate is not an 

obstacle as initial cellular interactions go very fast, typically within minutes (Fig. 3), and also the 

endothelial cells will secrete many other matrix proteins (e.g. fibronectin, von Willebrand factor, etc.) 

during the first 24 hours from seeding, which will follow the initial fiber orientation and thus contribute 

to the cellular response. Indeed, our study demonstrates coextensive organization of FN matrix fibrils 

at the third day of incubation (Fig. 6). Nevertheless, upon prolonged incubation times, about 30% of 

the electrospun FBG fibers were dissolved, and such degradation has to be carefully considered for 

potential biomedical applications. 

Following the initial characterization of the electrospun fibers in acellular environments, we then 

turned our attention to cellular interactions with the electrospun FBG fibers. It is known that FBG 

expresses a number of cell-binding domains identified on Aα, Bβ and γ-chains. Specifically, the RGD 

integrin-binding sequence in the Aα-chain and the heparin binding domain within the Bβ-chain 

particularly mediate cell–matrix interactions.35,38 According to the electrophoretic profile of FBG 

fibers, the Aα, Bβ and γ-chains were maintained intact after electrospinning, and thus the 

electrospun FBG fibers were expected to efficiently promote cell adhesion. Indeed, our data showed 

that cells adhered equally well on FBG fibers as on glass coverslips coated with FBG. Interestingly, 

we also showed that the adhesion process went significantly faster on fibrillar FBG compared to 

FBG adsorbed on a flat surface (Fig. 3). Considering that the fibers were deposited in a random 

layer dense enough to not permit penetration of cells (i.e. cell adhesion was constrained to a limited 

surface area), and that the ligand-concentrations on both fibrillar and flat substrata were saturated 

with respect to optimal cell adhesion (about 30 μg mL−1 is sufficient to give maximal cell adhesion 

according to our own experience), the observed fast cell adhesion on fibrillar FBG indicates an 

important role of the spatial ligand organization to rapidly engage in integrin activation. Similar 

observations were made by Cukierman et al.29 proposing that cell–matrix interactions in three-

dimensions occur as a combination of normal focal adhesions and fibrillar adhesions that together 

mediate cell adhesion much more efficiently than any of those mechanisms do alone. It seems that 

such advanced matrix-binding structures are pre-synthesized during culture, and when cells are 

back in a matrix-like environment they rapidly regenerate them.29 Such adhesion mechanisms could 
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explain the improved fast cellular interactions with nanofibrous FBG, although one also has to 

consider the pure geometrical response to the (nano) fibrous environment.43 Recent studies indicate 

that cells sense and respond to different nanofiber geometries. For example, Li et al. showed that 

chondrocytes secrete an increased amount of ECM when seeded on nanofibers compared with the 

microfiber matrix.44 It is still not clear how cells recognize and respond to certain fibrillar patterns, 

which should not be equalized with “classical” topographic environments as they differ in many 

aspects. For example, microscopic analysis and time-lapse imaging revealed that an isotropic 

topography (having identical values of a property in all directions) did not alter cell morphology but 

highly induced cell motility.45 Our studies, however, with random nanofibers clearly show that 

multidirectional fiber orientation affects cell morphology, accompanied by cell immobilization. On the 

other hand, an anisotropic environment can have variable impact on cell behavior (e.g. depending 

on the ridge–groove ratio), while the highly aligned FBG nanofibers induced elongated cell 

morphology, and importantly provoked directional cell movement. It is generally difficult to match the 

topographic cell response with the bioactivity of nanofibers. Nevertheless, our results confirm the 

relevance of studying and learning more about the reciprocal and adaptive interactions between 

cells and the surrounding matrix in the interface between two and three dimensional 

environments.39,43 

Another important issue that we want to stress on, and which connects with the above observation, 

is the morphological response of adhering endothelial cells. We found clear differences in the overall 

cell morphology depending on the spatial organization of fibers. On aligned fibers, cells presented 

an extended morphology that strongly followed the fiber orientation, while on random nanofibers, 

cells spread in multiple directions. The presence of highly extended actin stress fibers inserting into 

focal adhesions suggests that endothelial cells on aligned nanofibers exert traction over the fibers. 

Also on randomly oriented fibers, cells were shown to form protrusions containing focal adhesions, 

suggesting strong cellular interaction with the substratum. Interestingly, the overall shape of 

endothelial cells on random fibers resembles, to a large extent, the stellate-like morphology 

characteristic for cells residing in three dimensional environments,39 suggesting that cells read the 

geometry of the underlining nanofibrous substratum (i.e., 2.5D). One should also consider that 

nanofibers do not provide enough surface area for larger clustering of integrins and thus resemble 

more the natural 3D ECM environment.40 On both aligned and random fibers we observed small 

focal adhesion complexes (explained by the small surface area of the fiber itself, rather than 

insufficient contact), which resemble the natural matrix contacts. Collectively, this study provides 

morphological evidence for well-established focal adhesion complexes and even for the 

development of matrix contacts that could explain the facilitated initial adhesion of endothelial cells 

on FBG nanofibers. 

Beyond the events of initial cellular adhesion and subsequent spreading, time-lapse studies 

revealed the patterns of cell migration on the FBG nanofibers. Understanding the factors that control 
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cell migration is, in general, important when designing implants for optimal cellular infiltration and 

integration with native tissue. In accordance with other studies,41 we show that endothelial cells not 

only oriented themselves well to aligned nanofibers, but also that they moved significantly along 

them. Conversely, on randomly deposited fibers, cells were locally immobilized and their 

accumulated traversed distance was reduced, presumably by their strong anchorage from multiple 

projections extended to differently oriented fibers. Nevertheless, while guiding the movement of cells 

in a specific direction is important for recruitment of endothelial cells, e.g. for colonization of scaffolds 

or angiogenesis, local immobilization of cells may also be of interest for tissue engineering 

applications, e.g. for controlled cell behavior on blood contacting devices where up-regulation of the 

adhesive phenotype might be very important.42 Our data indicate that abrogated motility of HUVECs 

on random fibers could support their local immobilization to the device. In our present work we are 

now exploring how the balance of adhesive and motile phenotypes influences the cellular 

differentiation, trying to address the problem of endothelial cells dedifferentiation. 

We finally explored whether FBG nanofibers were able to affect the long-term behavior of 

endothelial cells. For that purpose we cultured HUVECs on random and aligned nanofibers for one 

week, and interestingly, the orientations of the underlying nanofibers were clearly reflected in the 

organization of the confluent cellular layers. Not only was the cellular actin cytoskeleton well-aligned 

with the fiber direction, but the newly generated fibronectin fibrils also followed the organization of 

the cytoskeleton and the nanofiber direction. Those observations suggest that the described aligned 

FBG nanofibers are a promising template for oriented ECM deposition. 
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Conclusions 

 

This study provides insights into how endothelial cells respond to spatially organized ECM-like 

stimuli such as pure FBG nanofibers. Being relatively stable for several days under physiological 

conditions, FBG nanofibers were well recognized by HUVECs and showed a clear ability to modulate 

cell behavior via the orientation of the fibers. Collectively, this study shows that FBG nanofibers have 

potential for tissue engineering applications, but also that they represent a simple model system that 

can allow for further explorations of the natural interaction between cells and their extracellular 

environment. 
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Preface to Chapter 6 

 

This chapter does not provide any new concept, neither different cellular system. It is dedicated 

on the development of a new type of hybrid nanofibers considered for vascular tissue 

engineering and stress on their application.  

As shown in the previous Chapter 5 we have successfully electrospun native fibrinogen nanofibers. 

However, although these fibers were well recognized by endothelial cells, they presented poor 

mechanical properties, being too soft and easily breakable in contact with liquids. This was a reason 

why we could not study the dorsal cell response, i.e. the situation when cells receive a signal from 

the 3rd dimension. Here we reported 

the development of novel hybrid 

fibrinogen / polylactic acid (FBG/PLA) 

nanofibers with improved mechanical 

properties, but retaining the good cell-

recognition properties of native FBG. 

This part of the Thesis describes some 

technological aspects of their 

production alongside with their biological characterization. The emphasis is on the role of the 

nanofibers organization upon contact with the dorsal and ventral cell surfaces, using HUVEC as a 

relevant cell model and time-laps microscopy to follow their motility. The functional tests showed 

that endothelial cells possess lowered activity (decreased nitric oxide (NO) secretion) when cultured 

on aligned nanofibers, presumably as a consequence of increased cell mobility that was also 

observed. This suggests that randomly organized nanofibers are these that may support the 

endothelialization of implants, while aligned nanofibers are more suitable for guided 

neovascularization promoted by the improved directional migration of the cells on them. 

Note: The described composite FBG/PLA nanofibers were successfully applied in two European 

projects in the field of Tissue engineering conducted in our group, namely: STRUCTGEL (FP7 

Euronanomed) and FIBROGELNET (FP7-PEOPLE-2012-IAPP). These projects are dealing with 

the development of soft nanofibrous construct for cellular therapy of degenerative skeletal disorders, 

which demonstrates applicability of the hybrid nanofibers far beyond the scope of the present work.  

Complete details for this study may be found in the original paper "Electrospun FBG–PLA 

nanofibers for vascular tissue engineering", presented in this Chapter.

Electrospun tubes made of hybrid PLA/FBG nanofibers and produced in 
our laboratory by original technique, developed by the auther of this Thesis 

 

Electrospun tubes made of hybrid PLA/FBG nanofibers and produced in 
our laboratory by original technique, developed by the auther of this Thesis 
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Abstract 

 

Here we report on the development of a new type of hybrid fibrinogen–polylactic acid (FBG–PLA) 

nanofibers (NFs) with improved stiffness, combining the good mechanical properties of PLA with 

the excellent cell recognition properties of native FBG. We were particularly interested in the dorsal 

and ventral cell response to the nanofibers’ organization (random or aligned), using human umbilical 

endothelial cells (HUVECs) as a model system. Upon ventral contact with random NFs, the cells 

developed a stellate-like morphology with multiple projections. The well-developed focal adhesion 

complexes suggested a successful cellular interaction. However, time-lapse analysis shows 

significantly lowered cell movements, resulting in the cells traversing a relatively short distance in 

multiple directions. Conversely, an elongated cell shape and significantly increased cell mobility 

were observed in aligned NFs. To follow the dorsal cell response, artificial wounds were created on 

confluent cell layers previously grown on glass slides and covered with either random or aligned 

NFs. Time-lapse analysis showed significantly faster wound coverage (within 12 h) of HUVECs on 

aligned samples vs. almost absent directional migration on random ones. However, nitric oxide (NO) 

release shows that endothelial cells possess lowered functionality on aligned NFs compared to 

random ones, where significantly higher NO production was found. Collectively, our studies show 

that randomly organized NFs could support the endothelization of implants while aligned NFs would 

rather direct cell locomotion for guided neovascularization. 

 

Keywords: electrospun nanofibers; endothelial cells; vascular tissue engineering; fibrinogen; 

polylactic acid; guided cellular behavior 
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Introduction 

 

The reconstruction of an altered tissue or organ by bioengineered scaffolds seeded with living cells 

holds enormous promise, (Dvir et al., 2010), particularly in relation to the purposes of today’s 

vascular tissue engineering, (Cleary et al., 2012). The use of synthetic conduits for the development 

of artificial vessels is, however, severely limited by their insufficient coverage with endothelial cells, 

often resulting in graft failure, which particularly relates to small-diameter arteries (Cleary et al., 

2012). This situation urgently calls for the development of novel constructs resembling the natural 

architecture of the vessel wall, where cells can grow and remodel their extracellular matrices (ECMs) 

(Cleary et al., 2012). It is widely appreciated that the geometry of the surrounding matrix is a key 

parameter in engineering tissues. Indeed, distinct organizational features (Arnold et al., 2004), 

including adhesive micro and nano-patterns, (Dvir et al., 2010; Thery et al., 2006), 

Most of these studies, however, involve planar substrates that are ideal for characterizing 

morphological cell responses but lack the real three-dimensional (3D) architecture necessary for the 

establishment of a functional tissue, (Dvir et al., 2010). Conversely, studies on cells encapsulated 

in hydrogel systems provide an adequate 3D micro-environment but lack the hierarchical fibrillar 

organization of ECM and its mechanical properties, (Lutolf and Hubbell, 2005; Dvir et al., 2010). 

Fibrillar structures provoke cellular interactions, apart from providing better mechanical support. 

They can also guide directional cell movements, (Dvir et al., 2010). Therefore, the implications of 

electrospining technology for producing fibrous scaffolds have received much attention in tissue 

engineering, due to the morphological and dimensional similarity of synthesized nanofibers to the 

natural ECM (recently reviewed by Liu et al., 2013). Moreover, during electrospinning the nanofibers 

can be orientated depending on the fiber collection set-up, (Baji et al., 2010) and recent studies 

have shown that such orientated nanofibers can guide the spatial arrangement of cytoskeletal 

proteins, resulting in their elongation along the direction of fibers orientation, (Liu et al., 2009; 

Guelcher and Goldstein, 2009). However, relatively little is known about whether fiber orientation 

can influence overall cell behavior and cell-specific functionality, (Fu and Wang, 2012), particularly 

of endothelial cells, which are a principal cellular component of the vessel wall, (Fang et al., 2011). 

Current studies in the field show that nanofibrous scaffolds should be considered as ideal candidates 

for the engineering of the vessel wall because they mimic the fibrillar structure of the ECM, (Ma et 

al., 2005; Steven and George, 2005; Swartz et al., 2005), provide the desired mechanical stability 

(Edelman, 1999) and topographical features that encourage the interaction and growth of 

endothelial cells, (Chiu et al., 2005; Nisbet et al., 2007; Kumar and Krishnan, 2001). 

Utilizing established protocols, (Wnek et al., 2003; He et al., 2011; Perumcherry et al., 2011), we 

have previously electrospun native fibrinogen (FBG) nanofibers (NFs) in consideration of distinct in 

vitro studies on cell behavior and potential vascular tissue engineering applications, (Gugutkov et 
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al., 2013). Although these fibers were well recognized by endothelial cells, they presented poor 

mechanical properties, being too soft and easily breakable in contact with cells. Here we report on 

the development of a novel type of hybrid fibrinogen–polylactic acid (FBG– PLA) nanofibers with 

improved mechanical properties, but at the same time retaining the good cell-recognition 

characteristics of native FBG. This paper describes some aspects of their production and biological 

characterization, emphasizing the role of NFs organization upon contact with the dorsal or ventral 

cell surfaces, using human umbilical endothelial cells (HUVECs) as a relevant cell model. 
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Materials and methods 

 

Electrospinning of FBG–PLA nanofibers 

For the production of composite FBG–PLA nanofibers, fibrinogen from bovine plasma (Sigma-

Aldrich) and poly-LDL-lactic acid 70:30 (PURAC) were separately dissolved in 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP; Sigma-Aldrich). PLA (4% w/v) was dissolved overnight at room 

temperature under continuous agitation. Fibrinogen (100 mg/ml) was dissolved in a 9:1 mixture of 

HFIP and 10× Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) and centrifuged at 4000 

rpm for 10 min. The supernatant was carefully collected, mixed with the PLA solution (1:1 v/v) and 

loaded into a syringe pump (AITECS). For electrospinning, we used a conventional set-up based 

on a high voltage supply (Glassman High Voltage Inc.) and a grounded collector. Randomly 

deposited nanofibers were obtained by vertical electrospinning onto 15 mm round glass coverslips 

(Thermo Scientific) placed on aluminum foil. Aligned fibers were obtained using an original method 

of collection, as recently described (Gugutkov et al., 2013). The applied voltage in both cases was 

25–30 kV, the distance between the needle tip and the collector was 125 mm, and the pump flow 

rate was set to 0.5 ml/h. 

 

Characterization of nanofibers 

 

Fiber morphology and alignment 

The electrospun FBG–PLA fibers were coated with a conductive layer of sputtered gold and then 

viewed by scanning electron microscopy (SEM) at 15 kV (Jeol JSM-5410). Fast Fourier transform 

(FFT) outputs of the SEM micrographs were used to characterize fiber alignment (ImageJ with Oval 

profile plug-in). Briefly, a circular projection was placed on the FFT frequency distribution outputs 

and the radial sums of the pixel intensities for each angle (0–180°) were calculated. Pixel intensity 

was then plotted as a function of its angle of acquisition. Distribution data were normalized to a 

baseline value and plotted in arbitrary units. 

 

Atomic force microscopy 

Nanofibers of different composition (composite FBG–PLA, pure FBG and pure PLA, respectively) 

were incubated at 37°C in phosphate-buffered saline (PBS) for either 1 day or 1 week, to 

characterize their stability. After incubation, the fibers were dried under a nitrogen flow and their 

morphology and mechanical properties were evaluated using atomic force microscopy (AFM). For 

that purpose, a Nanowizard® 3 Bioscience AFM (JPK Instruments AG) was used in the quantitative 

imaging (QI™) mode, with a set-point of 0.4 V, a Z length of 0.7 μm and an extend/retract time of 7 

ms. Cantilevers with a spring constant of 2.8 N/m (Bruker) were used. The height, slope and 
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adhesion images were obtained from the force spectroscopy curves recorded for each pixel of the 

scanned areas (256 × 256 pixels). 

The mechanical stiffness of the nanofibers was measured through nanoindentation experiments 

performed via AFM. Nanoindentations were carried out in a MultiMode AFM from Bruker (Billerica, 

MA, USA), using cantilevers (OTR8 from Bruker) with a 0.57 N/m spring constant and a square 

pyramidal tip with a half-angle of 35°. Calibration of the tip sensitivity was performed under the same 

conditions as the experiments, using a flat rigid surface, and the value was used to correct the force–

height curves for the deflection of the cantilever. The stiffness was then calculated using the slope 

of the force–penetration curves, as described elsewhere (Forner et al., 2009). 

 

Stability 

To determine the stability of FBG-containing nanofibers in aqueous surroundings, we labelled FBG 

with fluorescein isothiocyanate (FITC; 0.1 mg/ml) before electrospinning. Nanofibers containing 

known amounts of FITC–FBG (0.2% from the total protein) were then electrospun in controlled 

quantities (1.0 mg) and thereafter incubated at 37°C in PBS for up to 72 h. After incubation, the 

supernatant was collected and its fluorescence was measured (494 nm excitation, 525 nm emission; 

FluoroMax-4, Horiba-Jobin Yvon). Pure FBG nanofiber samples, obtained as previously described 

(Gugutkov et al., 2013) and containing the same amount of FITC-labelled FBG, were used as the 

control. 

 

Cells 

Human umbilical vein endothelial cells (HUVECs) were obtained from MilliPore and cultured in 

complete EndoGRO medium (MilliPore) with 2% fetal bovine serum (FBS). For the experiments, 

cells were harvested with trypsin–EDTA, which was subsequently inactivated by FBS, and washed 

twice in FBS-free medium. The cells were seeded on nanofiber samples placed in standard 24-well 

plates, typically using 2.0 ml medium. 

 

Cell morphology and visualization of focaladhesion complexes 

Overall cell morphology on randomly and aligned electrospun FBG–PLA nanofibers was evaluated 

after 2 h of incubation in serum-free conditions (cell seeding density 5 × 104 cells/sample) and also 

after 7 days of incubation in the presence of FBS (cell seeding density 3 × 104 cells/sample). After 

incubation, the cells were washed with PBS, fixed with 4% paraformaldehyde, permeabilized with 

0.5% Triton-X100, and stained with FITC–phalloidin (Invitrogen) for actin cytoskeleton and Hoechst 

34580 (Invitrogen) for nuclei. Focal adhesions were visualized with monoclonal anti-vinculin 

antibody (Sigma-Aldrich) followed by goat anti-mouse AlexaFluor® 555-conjugated secondary 

antibody (Abcam). Cells were photographed using an inverted fluorescent microscope (Axio 
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Observer Z1, Zeiss) and at least three representative images were acquired for each sample 

condition. 

 

Nitric oxide production 

A Nitric Oxide Assay Kit (Enzo, Life Science) based on the Griess reaction was used to 

colorimetrically determine total nitrate levels in the culture supernatants after 1 and 3 days of cell 

culture on random and aligned FBG–PLA NFs. As no significant difference in cell growth was found 

between random and aligned NFs and a control sample (glass coated with 50 μg/ml FBG at 37°C 

for 30 min) after 7 days of culture, direct comparison of the photometric signals without normalization 

to cell numbers was done. 

 

Long-term cultures 

To follow the long-term cell response to random and aligned NFs, 3 × 104 cells were seeded on 

the samples and cultured for 7 days in complete EndoGRO medium, which was exchanged each 

second day. At the end of incubation the cells were fixed and stained for actin and nuclei, as 

described above. In addition, cell-produced fibronectin (FN) matrix was visualized by 

immunofluorescence, using polyclonal anti-FN antibody (Sigma, cat. no. F3648) followed by 

AlexaFluor® 555 anti-rabbit secondary antibody (Invitrogen, cat. no. A21428). Cell density was 

determined by counting the cell nuclei in four randomly chosen squares from low-magnification 

fluorescent images. 

 

Cell mobility 

To investigate how FBG–PLA nanofibers influence cell mobility, we distinguished between dorsally 

and ventrally applied nanofibers. In the latter case, time-lapse recordings of HUVECs were initiated 

1 h after cell seeding (3 × 104 cells/sample) on FBG–PLA nanofibers and proceeded for 6 h (12 

images/h), using an on-stage mini-chamber coupled to the microscope (Axio Observer Z1, Zeiss) 

to assure appropriate cell culture conditions (37°C, humidified atmosphere and 5% CO2). To 

investigate the dorsal cell response to nanofibers, confluent layers of HUVECs produced on glass 

slides were scratched with a sterile pipette tip to produce an artificial wound (ca. 1 mm wide). The 

cell layers were then covered with random or aligned nanofibers deposited onto 10 mm cylindrical 

Teflon rings, to ensure intimate contact of the cells with the NFs, and recorded as above for up to 

12 h. Time-lapse recordings were processed using the MTrackJ plugin of ImageJ (developed by the 

Biomedical Imaging Group of Erasmus University Medical Centre, Rotterdam, The Netherlands). 

Path trajectories of 15 (ventral experiment) and 20 (dorsal experiment) randomly chosen cells were 

traced manually, following their positions at each tenth frame of the time-lapse records to analyze 

their motile behavior. 
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Statistical analysis 

Data are expressed as mean ± standard deviation (SD) unless indicated otherwise. Statistical 

significance was determined by two-tailed independent Student’s t-test (p < 0.05). 
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Results 

 

Morphology and mechanical properties of electrospun FBG–PLA nanofibers 

Composite FBG–PLA nanofibers were obtained by electrospinning a mixture of FBG and PLA in 

HFIP, collected as a homogeneous layer of either random or aligned fibers (Figure 1A, B). In the 

latter case, pixel intensity distribution obtained from FFT analyses of representative SEM fiber 

images revealed that the majority of the fibers aligned within 10° of the major fiber direction (Figure 

1C, D). The main fiber diameters determined from SEM images are shown in Figure 1E; 398 ± 128 

nm for random fibers and 250 ± 160 nm for aligned ones (n = 100). The mechanical properties of 

dry nanofibers were determined by nano-indentations, using AFM. Figure 1F shows that 

reinforcement of FBG nanofibers with PLA substantially increased the local stiffness of the fibers 

from 30 ± 10 Nm to 275 ± 50 Nm. Meanwhile, pure PLA fibers were significantly stiffer than 

composite nanofibers (4000 ± 400 Nm).   

Figure 1. SEM images representing the spatial organization of electrospun FBG–PLA nanofibers in (A) random and (B) aligned 
configurations. The spatial organization of fibers is characterized by FFT analysis: (C) pixel intensity plotted against the angle of 
acquisition; (D) pixel intensity around 90° indicates fiber alignment, which is absent in the random samples in (C). (E) Average fiber 
diameter and (F) stiffness of the pure PLA, composite FBG–PLA and pure FBG nanofibers measured by AFM; *statistically significant 
difference (p< 0.05) 

 

Figure 1. SEM images representing the spatial organization of electrospun FBG–PLA nanofibers in (A) random and (B) aligned 
configurations. The spatial organization of fibers is characterized by FFT analysis: (C) pixel intensity plotted against the angle of 
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Stability of electrospun fibers in physiological solution  

The stability of composite and pure nanofibers in aqueous solutions was initially estimated from 

morphological changes using AFM. After 7 days of incubation in PBS at 37°C, both FBG and FBG–

PLA fibers presented clear changes in their morphology, as judged by AFM adhesion strength 

magnitude images. Over the same period, pure PLA fibers remained unaltered (Figure 2). However, 

AFM height images did not reveal any significant differences in surface roughness, suggesting less 

sensitivity of this approach, but also implying that degradation is rather negligible. No evidence for 

degradation was found at intermediate times (data not shown), indicating that the samples were 

unaltered over shorter periods of incubation. Fiber stability was further characterized by measuring 

fluorescence release from electrospun FBG–PLA composite fibers containing FITC–FBG.  For 

comparison, pure FBG nanofibers containing the same amount of FITC–FBG (0.2% from the total 

protein) and prepared according to a previously described protocol (Gugutkov et al. 2013) were 

Figure 2. AFM adhesion images of pure FBG (upper row), pure PLA (middle row) and composite FBG–PLA nanofibers (lower row) 
at days 0 (left) and 7 (right), i.e. after incubation of the samples for 1 week in PBS. No signs of degradation were observed for the 
pure PLA samples, but slightly rougher surfaces can be obtained on pure FBG and composite FBG–PLA fibers after 1 week. However, 
from the inserts showing AFM height images of the same samples, a rather unnoticeable change in morphology was observed, 
implying very little degradation 

 

Figure 2. AFM adhesion images of pure FBG (upper row), pure PLA (middle row) and composite FBG–PLA nanofibers (lower row) 
at days 0 (left) and 7 (right), i.e. after incubation of the samples for 1 week in PBS. No signs of degradation were observed for the 
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used. As shown in Figure 3, the fluorescence signal in the supernatant increased gradually with 

incubation time, and the kinetics of FITC–FBG release were very similar for pure FBG and 

composite FBG–PLA nanofibers. 

 

Cellular response upon ventral contact with FBG–PLA nanofibers  

The response of HUVECs to ventral contact with composite nanofibers was first evaluated 

morphologically in a short-term experiment. After 2 h of incubation, adhesion to random nanofibers 

promoted an irregular cell shape, with multiple cytoplasmic projections extending towards differently 

orientated fibers (Figure 4A, C). The cell protrusions showed high accumulation of actin that co- 

Figure 3. Characterization of the stability of electrospun FBG-PLA fibers. Kinetics of FITC–FBG release from (A) composite FBG–
PLA and (B) pure FBG samples. Fibers containing 1% FITC-labelled FBG were incubated for 5, 24 and 72 h in PBS and the 
fluorescence intensity of the supernatants was measured. The values for 24 and 72 h were normalized to the signal of 5 h, accepted 

as reference; *statistically significant difference (p< 0.05) 

 

Figure 3. Characterization of the stability of electrospun FBG fibers. Kinetics of FITC–FBG release from (A) composite FBG–PLA 
and (B) pure FBG samples. Fibers containing 1% FITC-labelled FBG were incubated for 5, 24 and 72 h in PBS and the fluorescence 
intensity of the supernatants was measured. The values for 24 and 72 h were normalized to the signal of 5 h, accepted as reference; 
*statistically significant difference (p< 0.05) 
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localized with vinculin in focal adhesions (Figure 4C), where long actin fibers with centripetal 

organization inserted, suggesting firm adhesive interaction with the fibers. On aligned fibers (Figure 

4B, D) the cells acquired an extended morphology that strongly followed the orientation of the fibers. 

The highly extended actin stress fibers inserted into well-developed focal adhesion complexes 

Figure 4. Cellular interactions with FBG–PLA nanofibers. Overall morphology of HUVECs after 2 h of incubation on (A) random and 
(B) aligned nanofibers. Visualization of focal adhesion complexes by vinculin (red) and actin cytoskeleton (green) on (C) random and 
(D) aligned nanofibers; nuclei are stained with Hoechst (blue). Visualization of cell tracks on (E) random and (F) aligned nanofibers; 
time lapses were recorded using phase-contrast (magnification = × 10); the direction of alignment of the fibers (if any) is indicated 
by a red line 

 

Figure 4. Cellular interactions with FBG–PLDLA nanofibers. Overall morphology of HUVECs after 2 h of incubation on (A) random 
and (B) aligned nanofibers. Visualization of focal adhesion complexes by vinculin (red) and actin cytoskeleton (green) on (C) random 
and (D) aligned nanofibers; nuclei are stained with Hoechst (blue). Visualization of cell tracks on (E) random and (F) aligned 
nanofibers; time lapses were recorded using phase-contrast (magnification = × 10); the direction of alignment of the fibers (if any) is 
indicated by a red line 
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(Figure 4D) indicate that the cells exercised traction over the nanofibers. Time-lapse recordings 

further demonstrated that HUVECs were highly motile on aligned FBG–PLA nanofibers (see 

supporting information, Video S1), with individual cells undergoing the typical motile cycle of 

extending a leading cell edge, followed by traction of the tail cell edge. While most of the cells on 

aligned FBG–PLA nanofibers carried out a linear path of translocation (Figure 4F), tracking analysis 

of cell motion (see supporting information, Video S2) showed that cells on random nanofibers 

performed restricted movements in arbitrary directions (Figure 4E), resulting in a shorter travelled 

distance than cells on aligned nanofibers.  

 

Cellular response to dorsal contact with FBG–PLA nanofibers 

To study the cellular response to dorsal application of FBG– PLA nanofibers (i.e. 3D response), 

we overlaid random or aligned nanofibers on artificial wounds created in confluent cell layers and 

then recorded cell migration (see supporting information, Videos S3 and S4). Tracking analysis 

revealed that the HUVECs moved without any preferred direction, i.e. showing disorientated 

Figure 5. Cell-tracks analysis during the wound-healing experiment. Random (A, C) and aligned (B, D) FBG–PLA nanofibers were 
applied to the dorsal cell surface of the confluent HUVECs layer where artificial wounds were previously created (see Materials and 
methods). Cell tracks (yellow) were obtained by analysis of the time-lapse movies (MTrack, ImageJ) during the first 1 h (A, B) and 

after 12 h (C, D) of incubation 

 

Figure 5. Cell-tracks analysis during the wound-healing experiment. Random (A, C) and aligned (B, D) FBG–PLA nanofibers were 
applied to the dorsal cell surface of the confluent HUVECs layer where artificial wounds were previously created (see Materials and 
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migration within 12 h of recording, when coated with random nanofibers (Figure 5A,C).As a 

consequence, the cells traversed relatively short distances on random fibers and remained near the 

altered wound edges. Conversely, when the cells were covered with aligned nanofibers (Figure 5 

B,D) they were confined to traversing significantly longer distances, resulting in uniform wound 

coverage within 12 h.    

 

Long-term cell culture on FBG–PLA nanofibers 

No significant difference in cell growth was found between random and aligned NFs as well as 

control samples of FBG-coated glass substrata, even after 7 days of culture (see Table1). Fiber 

orientation was, however, observed to affect both cellular organization and ECM deposition in long-

term cultures. The actin cytoskeleton aligned with the fiber direction, resulting in stochastic 

orientation of cellular actin bundles of cells grown on random fibers (Figure 6A) or in a uniform linear 

Figure 6. Indirect immunofluorescent staining of HUVECs cultured for 7 days on (A) random and (B) aligned FBG-PLA nanofibers 
by phalloidin (green, actin) and Hoechst (blue, nuclei). Deposition of fibronectin secreted by HUVECs cultured for 7 days on (C) 

random and (D) aligned FBG–PLDLA nanofibers 
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pattern incells on aligned fibers, coinciding with the cell polarization (Figure 6B). Similarly, fibronectin  

(FN) secreted by cells after 7 days of incubation was mainly stochastically deposited around cells 

grown on random FBG–PLA fibers (Figure 6C). In contrast, FN matrix produced by cells grown on 

aligned fibers clearly assembled along the main fiber direction (Figure 6D). No significant difference 

in cell numbers was found for both random and aligned samples compared to controls after 7 days 

of culture (Table 1).  

 

Nitric oxide secretion 

To learn whether the NFs organization may affect the functional activity of HUVECs, we monitored 

the secretion of nitric oxide (NO) at two different time points. After 1 day of culture, no difference in 

NO secretion was found between random and aligned samples (Figure 7A); 2 days later, however, 

the cells cultured on random fibers secreted significantly higher amounts of NO than cells on aligned 

fibers (Figure 7B).  

  

Figure 7. Nitric oxide production of HUVECs cultured onto FBG-PLA nanofibers at day 1 (A) and day 3 (B) of incubation. Asterisk (*) 

indicates p<0.05 
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Discussion 

 

In a previous study (Gugutkov et al., 2013), we developed pure FBG nanofibers via 

electrospinning, a method that has been repeatedly used to create ultrathin fibers from a variety of 

matrix proteins (Wnek et al., 2003; Perumcherry et al., 2011). While pure FBG fibers were well 

recognized by endothelial cells, they had poor mechanical properties which hampers their 

application as scaffold materials in vascular tissue engineering. Therefore, we describe here a novel 

type of hybrid FBG–PLA nanofibers with strongly improved mechanical stability, but retaining the 

favorable cell-recognition properties of native FBG. 

Utilizing established protocols (Wnek et al., 2003; He et al., 2011; Perumcherry et al., 2011), we 

obtained fibers with an average diameter of 300 nm that compared well with other FBG-based 

nanofibers (He et al., 2011). However, we observed that the diameters of aligned fibers are more 

heterogeneous than random fibers, presumably because of the turbulence forces caused from the 

rotating collector, with the result that small fibers are less orientated. 

Three important aspects of our composite FBG–PLA fibers need to be clarified: (a) the influence 

of the electrospinning process on the protein structure; (b) the long-term stability of the electrospun 

fibers in a physiological environment; and (c) the improved biomechanical properties of these 

nanofibers. In this context, one has to consider that it is still not clear how FBG becomes insoluble 

during electrospinning. One possibility would be that FBG is cleaved to fibrin if traces of thrombin 

are present in commercially available FBG. However, we previously excluded that possibility by 

showing that FBG did not convert to fibrin during electrospinning (Gugutkov et al., 2013), as it did 

not display the typical electrophoretic band (between B′β’ and γ) present in fibrin and caused by 

fibrinopeptide loss from the polymer backbone (Mosesson, 2005). We thus hypothesize that 

electrospinning provides conditions where FBG molecules convert to an insoluble form by attractive 

van der Waals’ forces that overcome the electrostatic forces of repulsion. It should also be kept in 

mind that an insoluble FBG exists also in nature, as extrahepatic FBG can assemble into insoluble 

matrix fibrils in the presence of cells such as lung and mammary epithelial cells (Pereira et al., 2002; 

Rybarczyk et al., 2003). In that case, the cells are presumed to be involved in a process in which 

cryptic β-residues are exposed to form FBG fibrils (Rybarczyk et al., 2003). Although the relevance 

of such an assembly mechanism in the absence of cells is not clear, it may have consequences for 

the long-term stability of the nanofibers. We therefore used fluorescently labelled FBG (FITC–FBG) 

and traced the release of FITC from the fibers as they were exposed to physiological conditions. 

Due to difficulties in measuring the initial amount of protein in the fibers (tightly packed FBG 

molecules cannot be completely extracted), we had to measure the relative loss of FITC–FBG into 

the medium, comparing with pure FBG nanofibers as a control. Both FITC–FBG–PLA and FITC–

FBG nanofibers had similar release kinetics of FITC–FBG, indicating the entrapment stability of 
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FBG. Considering, as previously shown, that approximately 5% of the protein from pure FBG fibers 

dissolves within 1 week (Gugutkov et al., 2013), we concluded that the protein is stably incorporated 

within the polymer backbone and that the composite FBG–PLA fibers are sufficiently stable under 

physiological conditions. 

Regarding the biomechanical properties, composite FBG–PLA nanofibers were significantly stiffer 

than pure FBG nanofibers, but much softer than pure PLA fibers when measured in the dry state. It 

should be emphasized, however, that pure FBG nanofibers possess extremely poor mechanical 

properties when immersed in wet conditions. Their elastic modulus decreases >1000 times (detailed 

by Baker et al. 2012), which makes their applicability in tissue engineering really questionable. For 

example, in our previous studies we could not introduce pure FBG fibers to the dorsal cell surface 

of HUVECs as the fibers broke immediately upon contact with the water surface. However, the 

elastic modulus of the new FBG– PLA fibers increased >100 times (Figure 2B), which in fact made 

possible the artificial wound settings described in this study (where we applied fibers over the cell 

layers through the medium). In our view, this is the main advantage of the FBG–PLA nanofibers – 

they combine the very good mechanical properties of PLA with the excellent biological properties of 

native FBG. In this context, although the technological aspects of producing artificial vessels are 

beyond the scope of this paper, we would like to emphasize that now we succeed in producing 

tubular structures using randomly deposited electrospun FBG–PLA NFs (over a rotating 2 mm metal 

drumstick), which was not possible with pure FBG NFs (see supporting information, Figure S1). 

Moreover, the surface of this scaffold is less thrombogenic, owing to lowered platelet aggregation 

at the surface of composite FBG–PLA NFs (whole blood test) in comparison with pure FBG NFs, 

thus acquiring surface properties similar to the relatively inert pure PLA fibers (see supporting 

information, Figure S2). 

However, despite the promise of the composite fibrous scaffold, there is still a need to understand 

how cells respond to the spatial orientation of NFs, providing obviously ‘readable’ biological cues. 

Therefore, another issue we want to stress here is the morphological response of adhering 

endothelial cells to the nanofibers. We found clear differences in overall cell morphology, depending 

on the spatial organization of the fibers. On aligned fibers, the cells presented an extended 

morphology that strongly followed the orientation of the fibers, while on random ones they spread in 

multiple directions. It is well documented that, despite belonging to a common type, the cells display 

a variety of shapes, depending on the geometries of the adhesive environments on which they adapt 

their cytoskeletons (Théry et al., 2006). Indeed, the presence of highly extended actin stress fibers 

inserting into focal adhesions suggests that endothelial cells exert significant traction over the FBG–

PLA fibers. Interestingly, the overall shape of HUVECs on random fibers resembles, to some extent, 

the stellate-like morphology characteristic of cells residing in 3D environments (Grinnell, 2003). This 

leads to the conviction that endothelial cells can ‘read’ the geometry of the underlining nanofibers 
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and, because they cannot enter between fibers, they perceive them rather as topography (i.e. 2.5D). 

It should be emphasized, however, that the appearance of well-established matrix contacts 

suggests that FBG–PLA nanofibers provide enough ligand density for the clustering of integrins, i.e. 

spaced in a < 60–70 nm distance, required for the assembly of focal complexes (Geiger et al. 2009). 

Collectively, this study provides morphological evidence that endothelial cells interact very well with 

the composite FBG–PLA fibers, which sets them among the prospective biomimetic scaffolds for 

vascular tissue engineering. 

Beyond the events of initial morphological response, the time-lapse studies revealed that cell 

migration patterns also depended on the spatial orientation of the nanofibers. Understanding the 

factors that control cell migration is, in general, a key issue when designing implants for optimal 

integration with native tissue. In accordance with other studies (Sundararaghavan et al., 2013), we 

show here that HUVECs not only orientated themselves to aligned nanofibers but also migrated 

along them. The difference in cell migration on aligned fibers compared to randomly orientated fibers 

was particularly dramatic in the artificial wounds experiments, where aligned fibers were dorsally 

applied over the cells. In that case, the HUVECs migrated towards the empty regions of the wound, 

resulting in fast wound coverage. Conversely, when adhering to randomly deposited fibers, or when 

overlaid with them in the wound experiments, the cells were locally immobilized, most probably 

because of their anchorage with multiple projections. Nevertheless, while guided directional cell 

movement might be important for the recruitment of endothelial cells on scaffolds promoting 

angiogenesis, local immobilization of cells on randomly organized fibers could also be of interest, 

e.g. for the endothelization of blood-contacting devices, where the upregulation of the adhesive 

machinery is very important (de Mel et al., 2008). While tissue neovascularization and integration of 

many implants with the host circulation still remains a major barrier for the transplantation of 

engineered tissues – a field that has not yet identified an effective strategy (Lovett et al., 2009) – 

nanofibers that efficiently guide cell migration could be an important tool. Indeed, recent progress in 

this field suggests that allowing vascular cells to form orientated rudimentary vascular networks, 

either in vitro (prevascularization) or in vivo, might result in enhanced integration of grafted 

endothelial cells with the host vasculature (Kang and Bischoff, 2011; Baranski et al., 2013). Our 

studies contribute to the field by showing that an orientated nanofibrous scaffold can be used as a 

tool for the guided vascularization of implants. In addition, we show that the balance of adhesive 

and motile phenotypes influences the functionality of endothelial cells. In particular, we found that 

the orientation of the underlying nanofibers was clearly reflected in the organization of the confluent 

cell layers. Not only was the cellular actin cytoskeleton well aligned with the fiber direction, but the 

newly generated fibronectin matrix fibrils also followed its organization along the nanofiber direction. 

Those observations suggest that nanofibers orientation might be a key to regulated fibronectin 

matrix assembly, which may serve as a template for tailored ECM deposition. Interestingly, although 
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cells grew equally well on both type of nanofibers (Table 1), randomly orientated nanofibers 

provoked endothelial cells to produce significantly more NO, allowing the cells to better influence 

local vessel contractility and platelet activation (Förstermann and Münzel, 2006). 

 

 

 

Conclusion 

 

We report on successful electrospinning of novel composite FBG–PLA nanofibers that combine 

the good biomechanical properties of PLA with the excellent cell recognition properties of native 

FBG. Random nanofibers provoked a stellate-like morphology of endothelial cells, with multiple 

cytoplasmic projections, which made them relatively immobile. Conversely, an elongated cell shape 

combined with a significantly increased cell mobility and faster wound coverage were observed on 

aligned NFs. However, NO release assay showed that HUVECs possessed lower functionality on 

aligned NFs than on randomly deposited ones. Collectively, our studies show that randomly 

organized NFs may support the endothelization of blood-contacting devices, while aligned ones 

could provide a tool for the guided neovascularization of implants. 
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Figure S1.   Electrospun tubes produced from FBG–PLA nanofibers. Images were taken with a 

ZEISS SteREO Lumar V12 stereomicroscope in conventional light mode; 

magnifications = × 4 (top) and ×20 (bottom) 

Figure S2.   Adhesion and aggregation of platelets on FBG, FBG–PLA and PLA nanofibers upon 

incubation in fresh blood (whole blood test). The platelets are stained for actin 

(phalloidin, green) while fibrinogen is visualized by polyclonal anti-FBG antibody 

followed by secondary AlexaFluor 555 antibody (red) 
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Video S1.   Time-laps record of HUVEC in ventral contact with aligned FBG/PLA nanofibers. Cell 

tracking in orange Video S2. Time-laps record of HUVEC in ventral contact with 

randomly deposited FBG/PLA nanofibers. Cell tracking in orange 

Video S3.    Dorsal response of HUVEC to aligned FBG/PLA nanofibers. Modified wound healing 

assay. Cell tracking in red Video S4. Dorsal response of HUVEC to randomly 

deposited FBG/PLA nanofibers. Modified wound healing assay. Cell tracking in red 
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CONCLUSIONS 

 

 

This thesis demonstrates that tailoring of the spatial organization of matrix proteins at cell-

biomaterials interface can be used for guiding the cellular behavior - an issue that might have strong 

impact on the nowadays tissue engineering and regenerative medicine. Two systems were 

developed, both providing spacially organized cues to the adhering cells that mimick the fibrillar 

aspect of ECM: the first one is based on the phenomenon of substratum-driven protein assembly 

and the second one – on electrospun nanofibers.  

More specifically, exploring the substratum-driven protein assembly the following scientific issues 

were successfully solved: 

 Participation in the discovery of a new phenomenon – the substratum driven protein assembly 

that involves the adsorption behavior of at least two matrix proteins: fibronectin and fibrinogen. 

 Detailed studies on the optimization of fibronectin and fibrinogen networks formation reveal an 

optimal substratum for its assembly: PEA – a polymer characterized with strong hydrophobicity 

and complete absence of –OH groups.  

 The engineered protein networks were further biologically characterized utilizing endothelia cells 

and fibroblasts as cell models.  

 Given that protein networks are well recognized by the cells, the conditions for the cellular 

interaction were optimized in both 2D and 3D systems, showing that they corroborate with the 

maximal fibronectin and fibrinogen networks assembly. Thus, the biological significance of the 

phenomenon and its applicability for nanoscale tissue engineering was unequivocally confirmed. 

 

Concerning the development and use of the fibrinogen based nanofibers the following challenging 

tasks were successfully completed:  

 A novel tailor-made device and corresponding technology for the production of nanofibers in 

random and aligned configuration was developed and optimized.  

 Three novel types of nanofibers consisting of pure FBG, composite FBG/PLA and pure PEA, in 

both random and aligned configuration were successfully designed and produced  

 The newly developed nanofibers were used to introduce positional cues to the adhering cells in 

either random or aligned geometry utilizing two cellular models - endothelial cells and fibroblast. 

The PEA nanofibers were used in the studies outlined above on the 3D aspect of FN and FBG 

networks.    

 Studies on the initial cellular interaction with differently organized nanofibers were performed 

and the morphological and functional response of endothelial cells was evaluated in both 2D and 

3D environments. It was found that random nanofibers tend to immobilize the calls and promote 
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their functionality (by means of NO secretion), while the aligned nanofibers support the 

directional cell migration and diminish NO secretion.  

 The applicability of the fibrinogen-based nanofibers for vascular tissue engineering purposes 

was demonstrated, providing an important information that randomly organized fibers are more 

suitable for the endotelialization of putative implants, while random ones are rather applicable to 

direct their neovascularization. In addition, tubular structures from random nanofibers were 

produced as an attempt to engineer small diameter vascular grafts.
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PERSPECTIVES 

 

 

Collectively, this PhD thesis provides significant body of published research demonstrating 

succesful engineering of two systems for guiding the cellular behavior. 

 

 The phenomenon of substratum-driven protein assembly is currently a topic for extensive 

research in the group of Prof Salmeron Sanches (University of Glasgow) with our partial 

cooperation within the project MAT2012-38359-C03-03 (2012-2014) HELINSINERGY. 

Furthermore, the substratum driven protein assembly has many potential applications, for 

example, for improving the biocompatibility of strongly hydrophobic materials and controlled 

release of bioactive molecules. It is also of fundamental interest for better understanding of 

proteins behavior on surfaces. 

 

 The application of electrospun nanofibers that closely mimic the ECM organization comprises 

an independent work of the author of this thesis. The application of the developed electrospun 

nanofibers went far beyont the topic of the presented research. Fibrinogen based nanofibers 

were succesfully implicated in two European projects (see Chapter 5) dealing with 

differetntiation of mesenhymal stemm cells for bone and cartilage tissue engineering 

purposes. The personal research interests of the author are currently dedicated on the 

engineering of small diameter vascular grafts (see picture in Chapter 6) based on FBG/PLA 

nanofibers combined with living cells. In a more global plan, other tissue engineering applications 

are forseen, such as fabrication of wound healing mats, elaboration of protable electrospinning 

device for direct application of autologous fibrinogen nanofibers onto wounded skin, scaffolding 

for myoblast and myocardial differentiation of stem cells, controlled migration of cells in biological 

gradients, etc. 
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PHEA Poly(ethylacrylate) 
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Rho-GTPases Rho family of guanosine triphosphateases 
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SEM Scanning Electron Microscopy 

SyMBS Synergistic metal ion binding site 
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TE Tissue engineering 

TGF-β Transforming growth factor beta 

THF Tetrahydrofuran 
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