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Dual REPS: A Generalization of Relative Entropy Policy
Search Exploiting Bad Experiences

Adrià Colomé, and Carme Torras

Abstract—Policy Search (PS) algorithms are nowadays widely used for
their simplicity and effectiveness in finding solutions for robotic problems.
However, most current PS algorithms derive policies by statistically
fitting the data from the best experiments only. This means that those
experiments yielding a poor performance are usually discarded or given
too little influence on the policy update. In this paper, we propose a
generalization of the Relative Entropy Policy Search (REPS) algorithm
that takes bad experiences into consideration when computing a policy.
The proposed approach, named Dual REPS (DREPS) following the
philosophical interpretation of the duality between good and bad, finds
clusters of experimental data yielding a poor behavior and adds them
to the optimization problem as a repulsive constraint. Thus, considering
there is a duality between good and bad data samples, both are taken
into account in the stochastic search for a policy. Additionally, a cluster
with the best samples may be included as an attractor to enforce faster
convergence to a single optimal solution in multi-modal problems. We
first tested our proposed approach in a simulated Reinforcement Learning
(RL) setting and found that DREPS considerably speeds up the learning
process, especially during the early optimization steps and in cases where
other approaches get trapped in between several alternative maxima.
Further experiments in which a real robot had to learn a task with a
multi-modal reward function confirm the advantages of our proposed
approach with respect to REPS.

Index Terms—Reinforcement Learning, Policy Search, Relative En-
tropy Policy Search (REPS), Low-reward data reuse.

I. INTRODUCTION

The goal of Reinforcement Learning (RL) algorithms [1] is to
find a policy π that, in each situation, provides the best action to
execute so as to maximize reward. For this purpose, RL algorithms
iteratively explore a search space through a series of experiments to
progressively improve the policy. While approaches as deep learning
have been gaining popularity in the last years, RL is still better suited
to robotic applications due to the limited amount of data required
[2]. Some forms of deep reinforcement learning are currently being
explored, but so far their application still requires many data samples
[3].

Policy Search (PS) [4], [5] is a variant of RL very suitable for the
cases where the policy can be parameterized, a common situation
in robot motion applications [6]. The search for a good policy is
therefore performed directly in the parameter space characterizing
the policy. Finding the best policy becomes a stochastic optimization
problem. PS methods can be gradient-based, as in the case of
Policy Improvement with Path Integrals [7]–[9], or gradient-free, as
in Relative Entropy Policy Search (REPS) [10], [11]. Both types
of PS (and others in literature [6]) try to optimize the policy
parameters θ, so that an expected reward J(θ) is maximal. After
each trajectory reproduction, namely rollout, the reward/cost function
is evaluated and used to search for a set of parameters that improves
the performance over the initial movement.

However, these ideas have resulted in algorithms that require
several rollouts to find a proper policy update. In addition, most PS
algorithms compute an associated weight for each trajectory reward,
to later obtain a new policy given the parameters and weights for
each rollout. This ends up being an elitist way of updating the policy,

The authors are with the Inst. de Robòtica i Inf. Ind., CSIC-UPC, Barcelona,
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which just takes good rollouts into consideration, usually discarding
experiments with bad outcomes.

Along this work, we present a generalization of REPS, called Dual
REPS (DREPS), where we take into account the duality of good and
bad experiences in our proposed policy update. To this end, we will be
using REPS as a reference PS algorithm. Formally, REPS [10], [11]
finds the policy π∗ that maximizes the expected reward for a given
task. The REPS algorithm uses Kullback-Liebler (KL) divergence
[12], which is a non-symmetric indicator of the difference between
two probability distributions p, q over a random variable x:

KL(p‖q) =

∫
p(x)log

p(x)

q(x)
dx. (1)

In this work, we will represent the policies by probability distributions
over a set of parameters. A policy π(θ) can then be represented by
a normal distribution with mean µω and covariance Σω , generating
samples θ ∼ N (µω,Σω). Given the previous policy q(θ), REPS
obtains the new policy π(θ) by adding a KL-divergence bound ε
between the newly obtained policy and the previous one to the
optimization of the expected reward. The bound on the KL-divergence
limits the variation on the new policy and prevents the PS algorithm
from being too greedy. Such too greedy algorithms may cause severe
problems in some robotics applications, where a drastic change in
the policy could result in an unpredictable, dangerous behavior of
the robot. The new policy π∗ is then computed as the solution of:

π∗ = argmaxπ
∫
π(θ)R(θ)dθ

s.t. ε ≥ KL(π(θ)‖q(θ))
1 =

∫
π(θ)dθ

(2)

where θ are the parameters, R(θ) is their associated reward, and
π(θ) is a probability distribution over the parameter space.

Solving the constrained optimization problem (2) provides a solu-
tion of the form [10]

π∗ ∝ q(θ)exp(−R(θ)/η), (3)

where η is the Lagrange multiplier for the KL bound. Given the
value of η and the rewards, the exponential term in (3) acts as
a weight to be used with the samples θk in order to obtain the
new policy, usually with a Gaussian Weighted Maximum Likelihood
Estimation (WMLE). However, it has been shown [13] that the
ordering of the KL arguments used in REPS - KL(π(θ)‖q(θ)) instead
of KL(q(θ)‖π(θ)) - has an averaging-between-solutions behavior,
sometimes producing non-optimal solutions due to competition be-
tween two or more close local optima. Such KL ordering generates
a solution with a high probability where data presents a high reward,
therefore averaging between modes in Gaussian distributions. Using
the reverse ordering would help to find a single solution faster, as
such approach would find a solution with low probability values
where data has low reward [13], therefore focusing on only one
mode. However, there is no closed REPS solution using KL(q‖π)
instead of KL(π‖q). While the former KL ordering seems more
appropriate for most RL applications, its analytic unsolvability makes
its application impractical. Along this paper we will show that our
proposed DREPS algorithm avoids the aforementioned averaging-
between-solutions behavior, exhibiting a good ability to escape from
getting trapped in between local maxima.

For our proposed DREPS algorithm to fit in the current trends
of RL, we assume that policies are encoded as multivariate normal
random distributions. Such encoding, as well as representing the
clustered samples by Gaussian distributions, allows us to solve the
resulting equations analytically and obtain a closed-form solution.

In the following section, we will detail how to build a clustered data
structure for DREPS, followed by the algorithm’s derivation, which is
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done similarly to REPS and other information-theoretic Policy Search
approaches [14].

II. THE DUAL REPS ALGORITHM

The idea behind Dual REPS (DREPS) is to use clustered badly-
performing data samples as a repulsive field and good-performing
ones as an attractor within the policy search algorithm. For this
purpose, we assume that we can cluster the data from a set of
experiments and encode such information as a constraint in the
optimization problem. The natural way of adding this new constraint
has been to set a minimum/maximum KL-divergence between the
bad/good data clusters and the new policy. This will act as a
repulsive/attractive field from these clusters in the policy update.

In this section, we will first explain how to select and fit these
data clusters, which will be labeled bad/good data, to later present
the whole mathematical derivation of the proposed DREPS algorithm.
The clusterization presented in this paper is an attempt at finding a
reliable way of clustering parameter data with aggregated rewards
which could be used in the DREPS algorithm. While such proposed
clustering has proved effective, we note that it is just a tool to obtain
the input needed for the DREPS algorithm itself. The clusters are
fitted with Gaussian distributions that are then used for the policy
search update. Throughout this section, we will use Clow as the
set of low-performing data clusters, with its cardinal represented as
|Clow|, and Chigh as the set of |Chigh| high-performing data clusters.
Additionally, for simplicity of notation we will use C = Clow∪Chigh
with cardinal c = |C|.

A. Clustering

The low-performance and high-performance samples may be
spread out in the parameter space. Therefore, we have opted for
grouping the samples with a bad/good reward in several clusters,
so as to represent them by Gaussians to be included in the policy
update. In such clustering, we assume the reward function is smooth
almost everywhere in a mathematical measure theory sense, as well
as a good repeatability of the reward value wrt. variability in the
policy parameters. If the repeatability is low, i.e., the reward obtained
in several runs with the same parameters differs significantly, such
noise might be transferred to the clustering algorithm.

In order to obtain such clusters, we decided to use K-means
clustering, considering both the sample vectors and the rewards
generated by them. Hence, we append a transformed reward f(rk),
with rk , R(θk), to every sample θk ∼ N (µω,Σω), k = 1, ..., N ,
N being the number of rollouts per policy update. Then, we use
the vectors

[
θTk − µTω , f(rk)

]T
as input to a K-means clustering

with a given fixed number of clusters. The usage of such f(rk)
is to properly scale the relative importance between rewards and
parameters in the clustering. Otherwise, either one or the other could
have a too-large influence, as seen in Fig. 1. We used the K-means
clustering algorithm in MATLAB. However, such implementation
[15] initializes the cluster centers by randomly selecting a number
of points from the dataset. This resulted in a non-deterministic way
of clustering points, so the clusters are initialized using the algorithm
proposed in [18] instead.

We perform two independent clustering processes on the same data,
using two different reward transformations, to obtain the low- and
high-performance clusters. The reason for these two transformations
is to increase the importance of the reward dimension in the clustering
(amplifying either the low or high values), while maintaining the
proportionality in the samples. Note that, as we are clustering the
data twice with the last component being different, some clusters in
Chigh might overlap with those in Clow.

1) Obtaining the high-performance clusters: Given the vector of
rewards r = {r1, ..., rN}, we define:

f(rk) = ρ ·
√

tr(Σω)
rk −min(r)

max(r)−min(r) + 10−9
, (4)

where ρ is a relative importance weight, which will keep the sample
reward importance proportional to the sample variability during the
clustering part of DREPS. This transformation of the reward firstly
normalizes the values to [0, 1] and then scales such values to a similar
magnitude to that of the parameter variance. Otherwise, as mentioned
earlier, undesired clusterization like those displayed in Fig. 1 (left and
middle) could be obtained, where data are clustered by reward only
or by parameters only. A value of ρ = 10/D, D being the number of
parameters, has been used throughout this paper. Once the data has
been prepared, we run the K-means clustering algorithm and obtain
a cluster label for each sample, indicating to which cluster it has
been assigned. Taking the average transformed reward for each of the
clusters, we separate them into two groups (using a 1−dimensional
K-means clustering with 2 clusters). The group with the best average
rewards will be the clusters we will consider as high-performance
clusters and we will gather them in the set Chigh. We may define a
maximum number of low-performing clusters, consider only a single
cluster, or let the algorithm choose the number of high-performance
clusters.

2) Obtaining the low-performance clusters: The only difference
with the just described clustering process is that here we use
1/max(rk, 10−9) instead of rk in (4). In this way, we obtain a set of
clusters Clow with low-performance data. The use of the inverse of
rk helps to discriminate better the low-performing samples in order
to obtain the repulsive clusters. The supplementary material includes
a video comparing the proposed 2-step clustering using the inverse
of the reward and 1-step clustering without using such inverse.

Next, we fit each cluster in C with a Normal distribution gi ∼
N (µi,Σi) using their associated transformed rewards as weights in
an WMLE to obtain the resulting parametrizations for each cluster
i ∈ C, {µi,Σi}. Given the reward function in Fig. 2, Fig. 3
shows an example of the classification of the sample points with
K-means clustering, while Fig. 4 displays their associated rewards,
and the Normal distributions resulting from the WMLE using a
total of 3 clusters, 2 of them being considered as having a low
performance. No high-performance cluster is used as attractor in this
example. The plot shows the effectiveness of the clustering algorithm
at detecting poorly performing areas in the policy space. Moreover,
an experimental test of the robustness of the proposed clustering wrt.
sampling variability has been included in the supplementary material.
Algorithm 1 summarizes the process of computing the clusters given
the data samples.

B. DREPS Derivation

Given the information provided by the clustering in the previous
section, we will use the computed clusters, represented as Gaussian
distributions gi ∼ N (µi,Σi), i ∈ C, as repulsive or attractive data
for the optimization problem, which now becomes:

π∗ = argmaxπ
∫
π(θ)R(θ)dθ

s.t. ε ≥= KL(π‖q)
1 =

∫
π(θ)dθ

ξ ≤ KL(π‖gi) , i ∈ Clow
KL(π‖gi) ≤ χ , i ∈ Chigh,

(5)

where ε is the bound on the KL-divergence for the REPS algorithm,
and ξ, χ are the minimum and maximum KL-divergence we want to
have between the new policy and the precomputed low-performance
and high-performance clusters, respectively. Note that the condition
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Fig. 1. Clustering variants with different reward treatments of the 3-dimensional data points consisting of two random variables and the transformed reward
without (and with) the proposed rescaling in Eq.(4). Left plot: Clustering using unnormalized rk with a too large scale wrt. parameter variability. On the
contrary, the center plot shows the result of using f(rk) with a too low weight wrt. parameter variability. The right plot shows the proposed relative weighting
in Eq.(4).

Algorithm 1 K-means clustering for DREPS
Input:
Sample vector θk, rewards rk, ∀k = 1, ..., N
Number of dual clusters c

1: Transform the rewards to more discriminating values f(rk) with
(4).

2: Perform standard K-means clustering with [θk, f(rk)] and obtain
c clusters.

3: Compute the average transformed reward f(r)i for each cluster
i = 1..c.

4: Choose the clusters with the best average transformed reward,
manually or with a 2-cluster K-means approach, and assign them
to Chigh.

5: Transform the Rewards by using 1/rk instead of rk in (4) to
obtain f(1/rk).

6: Perform standard K-means clustering with [θk, f(1/rk)] and
obtain c clusters.

7: Choose the clusters with the highest average inverse reward,
manually or with a 2-cluster K-means approach, and assign them
to Clow.

8: for i ∈ C do
9: Compute µi,Σi with reward-Weighted Maximum Likelihood

Expectation (WMLE) using points assigned to cluster i, using
the transformed rewards as weights.

10: end for

ε ≤ KL(π‖q) could be included in the Chigh restriction. However, we
decided to keep it separate to make clear that here the KL-divergence
is not with respect to a cluster, but with respect to the previous policy
parameters and will always be mantained, while Chigh may be an
empty set and represents a more local influence. The solution of (5)
can be found analytically by using Lagrange multipliers and has the
form

π(θ) ∝ q(θ)
η

η+ω−ν
∏
i

gi(θ)
ωi−νi
η+ω−ν exp

(
R(θ)

η + ω − ν

)
, (6)

Fig. 2. Reward function used as a clustering illustrative example and in the
experimental section (see (12)).

where η is the Lagrange multiplier of the first KL constraint in (5) and
ν =

∑
νi, ω =

∑
ωi are the multipliers for the other KL constraints.

These variables can be found by minimizing the dual function of the
optimization problem (see the appendix for its derivation). Note that
in this paper we will use ν and ν =

[
ν1, ..., ν|Clow|

]
. Analogously,

we will be using ω and ω. Hence, the optimal Lagrange multipliers
are the ones obtained by solving:

{η∗,ν∗,ω∗} = argminη,ν,ωh(η,ν,ω), (7)
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Fig. 3. Result of classification with K-means clustering of the 3-dimensional
data points consisting of two random variables and the transformed reward
for the reward function in Fig. 2.

Fig. 4. Result of applying Algorithm 1 to the data points color coded from
red (low reward) to blue (high reward). After clustering using the transformed
reward as displayed in Fig. 3, the two lowest-performing clusters are fitted
with Gaussians using WMLE and are here shown in black.

with h(η,ν,ω) derived in the appendix:

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑

i∈Clow

(νiξ)+

+(η + ω − ν)log

 1
N

N∑
k=1

q
ν−ω
η+ω−ν
(k)

∏
i∈C

gi

ωi−νi
η+ω−ν
(k)

exp
(

rk

η + ω − ν

) .
(8)

Thus, once the Lagrange multipliers η,ν,ω have been found, one
can update the policy by using WMLE, with the weights dk for each
rollout coming from the samples and the solution form shown in (6):

dk = q
ν−ω
η+ω−ν
(k)

∏
i∈C

gi
ωi−νi
η+ω−ν
(k) exp

(
rk

η + ω − ν

)
. (9)

Algorithm 2 Dual Relative Entropy Policy Search (DREPS)
Input:
Parameters ε, ξ, χ, and rollouts per update N
Previous policy q(θ)

1: for k = 1..N do Perform an experiment using θk, a sample
from the policy q(θ). Compute reward rk.

2: end for
3: Perform both steps of K-means clustering as defined in Sec. II-A

and obtain gi ∼ N (µi,Σi), for i ∈ C
4: Compute the probabilities of each rollout for the previous policy
q(θk) and the dual policies gi(k) = gi(θk) for k = 1..N and
i ∈ C.

5: Perform optimization to find η,ν,ω with the dual function in
(7).

6: Find weights dk for each rollout k as in (9).
7: Perform WMLE with the obtained weights dk and parameter

vectors θk to find the new policy π.

In Algorithm 2 we summarize the DREPS algorithm for clarity.
Note that, for ν = 0 and ω = 0, the effect of the clustered data

would be none and the algorithm should behave exactly as REPS.
Indeed, for ν = 0 and ω = 0 the solution in (6) becomes:

π(θ) ∝ q(θ)exp
(

R(θ)

η

)
, (10)

and the dual function to optimize is

h(η) = ηε+ ηlog

[
1

N

N∑
k=1

exp
(
rk
η

)]
, (11)

which are the REPS solution and the dual function, respectively.
Thus, setting the influence of the dual policies gi to zero, we can
see that our proposed algorithm reduces to REPS and, therefore, it is
a generalization of REPS. An experiment with a real robot described
at the end of Section III-B experimentally confirms this theoretical
remark in unimodal problems.

III. EXPERIMENTS

In this section, we present two experimental setups to assess the
performance of our proposed algorithm, especially in multi-modal
problems: First, a 2-D example of a multi-modal reward function,
and second, a multi-modal real robotic problem.

A. Multi-modal 2D reward function

To evaluate how the proposed algorithm performs, we built an
example task in which the policy is to sample points θk, k =
1, ..., N in a 2-dimensional space and, for each sample, evaluate a
reward function rk consisting in a high reward at three given points
ψ1,ψ2,ψ3 and very low reward in between:

rk = 10‖
∑
i=1..3

(
ψi
3

)
− θk‖ − 5

∑
i=1..3

‖ψi − θk‖ (12)

The reward function is displayed in Fig. 2, where one can note that
there are 3 possible candidates for an optimal solution.

To find the optimal point on the plane, we initialize the policy with
µω = 0 and Σω = I, and 100 samples are evaluated for every policy
update, reusing up to 400 previous samples. When using REPS with
a KL bound of ε = 0.5 for this optimization problem, we noticed
that the learning curve had a plateau in most cases (see Fig. 5),
corresponding to the algorithm averaging the rewards of two of the
optimal points (see Fig. 6). The REPS algorithm keeps obtaining
samples near both candidates and cannot improve the policy further
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until significantly more samples get closer to one of the candidates
than the other, moving the policy towards one of the solutions. As
a result, the more rollouts per policy update used, the more likely
REPS is to stay longer in such plateau.

Fig. 5. Learning curve of the REPS algorithm for the 2D optimization
example. The algorithm gets stuck in a plateau averaging between two
solutions (see Fig. 6) between the 7th and 21th policy updates.

Fig. 6. Gaussian policy resulting from applying REPS to the multi-modal 2D
optimization example. As shown here, REPS averages between two solutions,
and keeps doing so for several iterations, as can be seen in the video included
in the supplementary material.

If, instead of REPS, we use our proposed approach DREPS, the
effect of the repulsive Gaussian in the middle allows the algorithm
to quickly avoid this plateau and keep on with the optimization. We
compared the performance of a REPS algorithm (REPS), a dual REPS
algorithm with 3 repulsive Gaussian, and none attractive (nDREPS),
and the full DREPS algorithm with one attractive Gaussian and up
to 4 repulsive ones (DREPS). In the latter case, we let the algorithm
itself decide how many repulsive clusters it would use with a 2-cluster
K-means, as explained in Sec.II-A, i.e.: |Clow| ≤ 4, |Chigh| = 1, and
parameters ξ = 5, χ = 2ε. We performed 50 learning experiments for
both REPS and DREPS, and the results are displayed in Fig. 7, where
we can see that nDREPS performs better than REPS, but both are
outperformed by the full DREPS. A video comparing the evolution
of REPS vs. DREPS can be found in the supplementary material.
The scalability of the proposed approach has been assessed using

Fig. 7. The learning curves for the multi-modal 2D optimization example,
averaged for 50 experiments each (mean and 2-standard deviations are
plotted), show the advantage of using the DREPS algorithm.

the same problem in a larger-dimensional parameter space, and the
results have been included in the supplementary material as well.

B. Real robot multi-modal problem

As a second experiment, we programmed a Barrett WAM robot so
that its end-effector would follow a straightline trajectory with fixed
orientation (facing down) and fixed z component, from a starting
position towards a goal position. Two bottles were added on the
way as seen in Fig. 8 and, using RL, the robot had to adapt the
trajectory to an S-shaped motion that would not knock down any
of the bottles. The trajectory was encoded as a Dynamic Movement
Primitive [19] initialized to a straightline with 10 Gaussians per DoF
equally spaced in time, to a total of 20 parameters, representing the
linear multipliers of such fixed Gaussians, to characterize the x and y
components of the trajectory. The same implementation of DREPS as
in the simulated experiment, with identical algorithmic parameters,
was used.

Regarding the reward function to optimize, an initial approach was
taken with strong penalizing terms for knocking down the bottles and
the length of the trajectory:

R = −2Nbottlesdown − 0.15Ltrajectory, (13)

where Nbottlesdown is the number of bottles knocked down (0, 1
or 2) and Ltrajectory is the trajectory length in meters. The relative
weights of these terms were set to 2 and 0.15, respectively, giving a
higher importance to task accomplishment in the reward function, as
usually done in literature [6].

With this setting, DREPS outperformed REPS in convergence
velocity, as we can see in Fig. 9. Obviously, all the final solutions
obtained with both REPS and DREPS were of the two left-most
cases of Fig. 10, which was to be expected given the reward function
in (13), but they were not the desired solutions. For this reason,
we added a term penalizing the fact that the robot would not cross
between the bottles. To do so, we evaluated in which side of the
line drawn in Fig. 8 the arm was when passing by each of the two
bottles, and a term was added to the reward function penalizing when
it was on the same side. Note that this term allows for symmetric
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Fig. 8. Experimental setup for a real robot experiment where the robot must
learn to perform an S-shaped motion between the two bottles.

Fig. 9. Learning curves for REPS and DREPS with the reward function in
(13). Policy updates were calculated after every 50 rollouts. The advantage of
using DREPS is even more evident in the learning curves plotting the mean
and the Standard Error of the Mean (SEM) with 95% confidence intervals
included in the supplementary material.

solutions as the two right-most ones, plotted in blue, in Fig. 10. The
new reward function would then be:

R = −2Nbottlesdown − 0.15Ltrajectory − 4Icross, (14)

where Icross indicates whether the robot did or did not cross between
the bottles (Icross = 1 in case the robot did not cross, and Icross = 0
in case it crossed). The relative weight of such added term was set
to 4 to have the same negative effect in the reward function as if
knocking down the two bottles.

We also performed 50 simulated experiments of 100 policy updates
with 50 rollouts each and the learning curves with the mean and
2-standard deviations can be seen in Fig. 11. REPS obtained a
satisfactory solution in 35 out of 50 experiments, while DREPS
solved the problem correctly in 47 of them. Moreover, the average

Fig. 11. Learning curves for REPS and DREPS with the reward function in
(14). Policy updates were calculated after every 50 rollouts.

reward for the unsatisfactory solutions obtained by REPS was −4.12,
while the average reward for the unsatisfactory solutions obtained by
DREPS was −2.80. This is due to the fact that REPS is more likely to
prematurely converge to one of the two left-most solutions in Fig. 10,
while DREPS’s repulsive term pushes the solutions away from those,
which actually yield a lower reward than the magenta solutions in
the middle of Fig. 10.

Regarding the computational time of the clustering, Alg. 1 took
an average of 0.52s in an i5-2400S CPU at 2.50GHz for the bottle
experiment, clustering 50 samples of dimension 20. Such additional
computational cost, together with the cost of Alg. 2, makes our
approach more CPU-demanding than REPS. However, real robot
motion is more time demanding and costly than such computational
time every N robot motions. In particular, looking at Fig. 9, such
increment on computing time results in a better learning curve, thus
requiring less real-robot experiments. A video comparing REPS and
DREPS in the bottle avoiding task can be found in the supplementary
material, together with the execution on the real robot of the final
trajectory found by DREPS.

C. Real robot uni-modal problem

Moreover, we tested the performance of DREPS on a uni-modal
reward task, namely drawing a circle, in which the same 7-DoF
WAM robot had to improve an initial motion towards a 3D circle-
tracking motion. We kinesthetically taught a 7-DoF WAM arm to
follow a circular trajectory in the Cartesian space with its wrist. The
circle best fitting the initial trajectory, which was very inaccurate,
was computed and a cost function consisting in a point-to-point
deviation from that circle, plus an acceleration-penalizing term, was
considered. We fitted the taught trajectory with a Dynamic Movement
Primitive (DMP). 12 Gaussians equally spaced in time were used for
each DoF, as the trajectory to be learned was a complex 20-second
movement. This generated a set of 84 parameters, representing the
linear multipliers of such Gaussians. After applying both REPS and
DREPS algorithms, the outcome after 50 learning experiments was
very similar, which could be expected due to the uni-modality of
the problem. The learning curves for both REPS and DREPS can be
seen in Fig. 12. As theoretically anticipated in Section II-B, DREPS
displayed the same behavior as REPS in terms of learning speed and
resulting trajectories, as also shown in the supplementary material.
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Fig. 10. Schematic visualization of some representative trajectories obtained for the real-robot experiment using the reward in (14). The bottles (in black)
have been expanded with a safety threshold corresponding to the width of the arm’s end effector (gray). The left-most plots show trajectories with a low
reward (< −4) due to the robot not crossing in-between the bottles. The center plots with trajectories in magenta show solutions with a reward between
(−3,−2), while examples of quasi-optimal trajectories are shown in blue on the right-most plots, corresponding to a reward (> −1).

Fig. 12. Learning curves for REPS and DREPS for a simulated uni-modal
problem with real robot data. Both algorithms show the same performance as
expected for a uni-modal task.

IV. CONCLUSIONS

In this work, we developed a generalization of the Policy Search
(PS) algorithm known as Relative Entropy Policy Search. Such
generalization, which is equal to REPS if the clusterization is omitted,
considers the possibility of using both bad experiences to have a
repulsive effect, and best data to encourage approaching the best-
performing areas. This helps to influence the solution away from
bad data collected during sampling/experimentation. While the per-
formance of REPS and DREPS is similar in purely convex problems,
our algorithm shows to be effective at preventing the loss of time in
plateaus by other algorithms, as seen in the learning curve in Fig. 7,
without the need of using a multi-modal solution as in Hierarchical
REPS [11].

Clusterization prior to the application of DREPS as presented in
this paper has proved effective, but future work includes a deeper
study of this topic, testing if other clustering algorithms or approaches
to obtain the attractive and repulsive clusters could yield better results.

The proposed algorithm, while showing a very similar behaviour to
REPS in uni-modal problems, is very suitable in cases where there is a
multi-modal solution to the problem, but the user only needs a single

solution. Multi-modal PS approaches would need more samples in
order to fit the different possible solutions, while DREPS focuses on a
single solution and refines it faster. We have first assessed the benefits
of using DREPS using a synthetic multi-modal reward function. Then,
experiments in a real robot setup have been performed, using DMPs
to parametrize robot motion [17] in a task with a multi-modal reward
function, and the results confirm the better performance of DREPS
versus REPS.

APPENDIX A
DERIVATION OF THE DUAL OBJECTIVE FUNCTION

Given the optimization problem (5), we can compute the lagrangian
as:

L =
∫
π(θ)R(θ)dθ + η

(
ε−

∫
π(θ)logπ(θ)

q(θ)
dθ
)

+
∑

i∈Clow

νi

(∫
π(θ)log

π(θ)

gi(θ)
dθ − ξ

)
∑

i∈Chigh

ωi

(
χ−

∫
π(θ)log

π(θ)

gi(θ)
dθ

)
+ λ

(∫
π(θ)dθ − 1

)
(15)

where η, νi,ωi, ∀i are positive. Differentiating with respect to π(θ)
(and omitting θ for simplicity) we obtain

∂L
∂π

= R− η(logπ − logq + 1) + λ

+
∑

i∈Clow

νi(logπ − loggi + 1)

−
∑

i∈Chigh

ωi(logπ − loggi + 1)

(16)

which, setting ∂L
∂π

= 0 and isolating logπ becomes:

logπ = R
η+ω−ν + ηlogq

η+ω−ν +

∑
i∈Chigh

ωiloggi

η+ω−ν

−
∑
i∈Clow

νiloggi
η−ν − η+ω+λ−ν

η+ω−ν

(17)

with ν =
∑
i∈C

νi, and setting Z = exp
(
η+ω+λ−ν
η+ω−ν

)
, we obtain

π = Z−1qη/(η+ω−ν)
∏
i∈C

g
ωi−νi/(η+ω−ν)
i exp

(
R

η + ω − ν

)
(18)
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where, given that 1 =
∫
π(θ)dθ,

Z =

∫
θ

qη/(η+ω−ν)
∏
i∈C

g
ωi−νi/(η+ω−ν)
i exp

(
R

η + ω − ν

)
dθ.

(19)
Now, reinserting (18) into (15), we obtain a dual function for the

lagrangian problem:

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑

i∈Clow

(νiξ)+λ+η+ω−ν (20)

where, isolating λ+η+ω−ν from Z in equation (19) and inserting
it into (20):

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑

i∈Clow

(νiξ)

+(η + ω − ν)log
∫
θ q

η/(η+ω−ν)∏
i∈C g

ωi−νi/(η+ω−ν)
i exp

(
R

η+ω−ν

)
.

(21)
We can now replace the integral over a sum of samples to obtain

the dual objective function:

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑

i∈Clow

(νiξ)+

+(η + ω − ν)log

 1
N

N∑
k=1

q
ν−ω
η+ω−ν
(k)

∏
i∈C

gi

ωi−νi
η+ω−ν
(k)

exp
(

rk

η + ω − ν

) .
(22)

This dual function can be evaluated provided we can compute the
probability of a given trajectory for both the previous policy q and
the dual policies gi. These can be computed from the direct policy
evaluation or, in cases where the outcome is a sequence of states,
by multiplying the transition probabilities for all the timesteps of a
sequence. For numerical stability reasons, we recommend to directly
compute the log-probability of such normal distribution.

From the mathematical perspective, there is no guarantee that this
problem will always be convex for ν, thus in order to minimize the
dual function h, we set a minimum value for νi in the active-set
optimization of the dual function, it being an indicator of the mini-
mum influence we want the dual policies to have. If gi are defined
by fitting a normal distribution given some clustered samples with
their associated rewards (assuming rewards are negative, and closer
to zero is considered better), we can, for example, set νi = ν 1√

|Ri|
,

with ν =
∑
i νi and Ri the average reward for the i-th cluster.

Additionally, in some circumstances the solution provided by
the solver might not be fully respecting the ε bound on the KL-
divergence. This comes from trying to find a probability distribution
with a min/max dissimilarity with respect to other distributions, which
could then become a set of restrictions impossible to comply with. For
that reason, the KL-divergence of the solution found was evaluated
after the policy update, and in case KL(π‖q) > ε, the gradient
of the KL of the solutions found with respect to νi, χ and ξ was
iteratively obtained, performing gradient descent on these parameters
until a suitable solution within the KL-divergence bound was found.
In order to perform such gradient descend, it is vital that the K-means
clustering initialization is performed in a deterministic manner, as in
[18]. Furthermore, when no convergence is reached after a certain
number of iterations, ν is set to zero for that policy update and the
optimization is performed only with attractor Gaussians.
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[10] J. Peters, K. Mülling and Y. Altün, ”Relative Entropy Policy Search”.
24th National Conf. on Artificial Intelligence, track 15, pp. 182-189, 2011.

[11] C. Daniel, G. Neumann and J. Peters, ”Hierarchical Relative Entropy
Policy Search”. Journal of Machine Learning Research, track 22, pp.
273-281, 2012.

[12] S. Kullback and R.A. Leibler, “On Information and Sufficiency”. Annals
of Mathematical Statistics 22, vol 1, pp. 79–86, 1951.

[13] G. Neumann, ”Variational Inference for Policy Search in Changing
Situations”, International Conference on Machine Learning (ICML), pp.
817-824, 2011.
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