
GMT: Enabling Easy Development and Efficient Execution
of Irregular Applications on Commodity Clusters

Alessandro Morari*†, Oreste Villa‡, Antonino Tumeo*,
Daniel Chavarría-Miranda*, Mateo Valero†

*Pacific Northwest National Laboratory - Richland, WA, USA
†Universitat Politecnica de Catalunya - Barcelona, Spain

‡NVIDIA - Santa Clara, USA

1. INTRODUCTION

Emerging high performance applications for bioinformat-
ics, big science, complex network analysis, community detec-
tion, data analytics, language understanding, pattern recog-
nition, semantic databases and, in general, knowledge dis-
covery present dataset sizes well over the petabyte scale and
exponentially growing. Only multi-node systems may al-
low in-memory processing of their datasets. However, these
applications exploit pointer- or linked list-based data struc-
tures such as graphs, unbalanced trees or unstructured grids
which exhibit poor spatial and temporal locality and are dif-
ficult to partition on distributed memory systems [2]. They
also have fine-grained data accesses that, paired with the un-
predictability, lead to low utilization of the available memory
and network bandwidth of modern clusters. These applica-
tions are inherently parallel, because they can spawn con-
current activities for each element of their datasets, but they
also present high synchronization intensity.

In this poster we introduce GMT (Global Memory and
Threading library), a custom runtime library that enables
efficient execution of irregular applications on commodity
clusters. GMT only requires a cluster with x86 nodes sup-
porting MPI. GMT integrates the Partititioned Global Ad-
dress Space (PGAS) locality-aware global data model with
a fork/join control model common in single node multi-
threaded environments. GMT supports lightweight software
multithreading to tolerate latencies for accessing data on re-
mote nodes, and is built around data aggregation to maxi-
mize network bandwidth utilization.

2. PROGRAMMING MODEL AND API

Figure 1 summarizes GMT’s Application Programming
Interface (API). GMT provides a simple way to program
large-scale irregular applications on commodity clusters, with-
out neglecting performance. To reach this objective, the
runtime implements a PGAS data model across the cluster.
This relieves application developers of the partitioning of
the data structures across the nodes of the cluster. The pro-
grammer allocates the data structures, mostly arrays, in a
virtual global address space, and accesses them through get

and put operations. As in other PGAS approaches, GMT
also offer the opportunity to control the allocation policy,
maximizing locality exploitation. The programmer can allo-
cate data in a partitioned way, uniformly distributed across
all the nodes of the system, or locally, on the memory of
the node where the code is executing. The programmer can
also allocate data on all the nodes except the one where

the code is executing. In irregular applications, parallelism
mostly resides in loops (e.g., loops on all vertices or edges
of a graph). GMT provides a parallel fork construct, which
allows spawning different iterations of the loops as indepen-
dent tasks. GMT also supports nested parallelism (any task
can spawn other tasks). Developers also have direct access
to constructs for atomic compare and swap and atomic ad-
dition on individual elements of the global memory address
space. Load balancing is completely transparent. The run-
time takes care of distributing tasks across nodes, and on
the cores available on each node. GMT also supports task
locality: the programmer can spawn tasks that can execute
on any node of the system, only on the local node or only
on remote nodes.

3. GMT ARCHITECTURE

We built GMT around three main “pillars”: global address
space, latency tolerance through fine-grained software mul-

tithreading, and aggregation. Figure 1 illustrates the (high
level) architecture of GMT. GMT realizes a virtual global
address space across the nodes of the cluster. Each node
executes an instance of GMT. An instance of GMT includes
three different types of specialized threads, as follows: i.

Workers: execute the application code, partitioned in tasks;
ii. Helpers: manage global address space and incoming com-
munication; iii. Communication server : entry point to the
network, manages incoming and outgoing communication
at the node level with MPI. There are multiple workers and
helpers, but only one communication server per node. GMT
instances communicate through commands. The commands
include data accesses, synchronization and thread manage-
ment operations. They may also have data attached. Work-
ers only generate commands, while helpers receive and gen-
erate commands.The communication server transfers com-
mands from one node to the other through MPI. When a
task executes a data access or a synchronization operation
on a remote memory location, the worker generates the cor-
responding command and switches its execution context to
another task in its own private queue. This allows tolerating
network latency. To reduce overheads for fine-grained net-
work transactions, GMT aggregates the commands directed
towards a node before sending them out. GMT supports
two level of aggregation. The first one happens at the level
of the specialized threads. Before sending out commands,
workers and helpers accumulate them in different arrays de-
pending on their destination node. When an array is full
in terms of number of commands or in byte equivalent size

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Routine Functionality

gmt array gmt alloc(size, locality) Allocates a gmt array with the specified locality (partitioned, remote, local)
gmt free(gmt array) Memory freeing

gmt putNB(gmt array, offset, *data, size) Puts a local array into the gmt array starting at the specified offset (non blocking)
gmt putValueNB(gmt array, offset, value, size) Puts a value into the gmt array at the specified offset (non blocking)
gmt getNB(gmt array, offset, *data, size) Gets a portion of a gmt array starting from offset into a local array (non blocking)
gmt waitCommands() Waits completion of previous non-blocking operations

gmt put(gmt array, offset, *data, size) Blocking version of the put
gmt putValue(gmt array, offset, value, size) Blocking version of the put of a value
gmt get(gmt array, offset, *data, size) Blocking version of the get

gmt atomicAdd(gmt array, offset, value, size) Atomically adds a value to the value contained in a gmt array at the specified offset
gmt atomicCAS(gmt array, offset, oldValue, newValue, size) Exchanges a value with the value contained in a gmt array at the specified offset. Returns the old

value

gmt parFor(tot iters, chunk size, *tasks, *args, locality) Spawn tasks that executes the number of loop iterations, up to the total number of iterations, and
takes in input the specified arguments. Tasks are spawned on all the nodes of the system, locally or
remotely, and execute chunk size iterations each.

Table 1: GMT API summary

(commands may have data attached), or after a predefined
time interval (to guarantee a higher bound for the maximum
latency of a memory operation), the thread moves the data
in the shared aggregation queues for the whole node. There
are shared aggregation queues for each one of the possible
destination nodes. When one of the specialized threads finds
that the aggregation queue it is writing to is full (because
of the number of commands, or the equivalent byte size), or
the predefined time interval for aggregation has passed, it
prepares the data and copies them in one of the buffers that
the communication server uses to send out data.

Figure 1: GMT architecture

4. EVALUATION

We evaluated GMT on the Pacific Northwest National
Laboratory’s Olympus supercomputer [1]. Olympus is a
cluster of 604 nodes interconnected through QDR Infini-
band. Each Olympus’ node features two AMD Opteron 6272
(“Interlagos” at 2.1 GHz for a total of 32 integer cores) and
64 GB of DDR3 memory. We run GMT with 15 workers,
15 helpers and one communication server per node, and use
from 2 to 128 nodes.

Figure 2a shows the weak scaling of a simple queue-based
BFS (one memory access per edge) on GMT, measured in
million of traversed edges per second (MTeps). The graphs
used for these experiments are randomly generated, with 1
million of vertices for every node added. Each vertex has
at most 4000 edges connecting to random vertices in the
graph. Therefore, the larger graph used with 128 nodes has
128 million vertices and 258 billion edges for a memory foot-
print of ≈ 2 TBytes. GMT’s performance scales almost lin-
early while the size of the of the graph increases. Figure 2b
shows the strong scaling of BFS on GMT, compared to the
equivalent queue-based implementations for UPC, the Cray
XMT. The UPC implementation runs on Olympus. Given
the memory limitations of the other systems, for strong scal-

(a) Weak scaling

(b) Strong scaling
Figure 2: BFS results on GMT

ing experiments we used a random graph composed of 10
million vertices and 2.5 billion edges. We see that BFS on
GMT outperforms the other implementations. However, be-
cause the graph is relatively small, and GMT needs 2 million
tasks to fully utilize a system with 128 nodes and 15 workers,
its performance starts to decrease above 64 nodes.

5. CONCLUSIONS

We presented GMT, a Global Memory and Threading
library that enables efficient execution of irregular appli-
cations on commodity clusters. GMT integrates a PGAS
data substrate with fork/join parallelism. It provides a sim-
ple interface for designing applications with large, irregu-
lar data structures, without requiring data partitioning. It
allows expressing and extracting the large amounts of fine
grained, dynamic parallelism present in irregular applica-
tions through simple parallel loop constructs. GMT’s archi-
tecture employs specialized threads to realize its functional-
ity. The library is built around the concepts of lightweight
user level multithreading and data aggregation to reduce the
impact of fine grained, unpredictable data accesses typical
of irregular applications.

6. REFERENCES

[1] TOP500 - PNNL’s Olympus entry.
http://www.top500.org/system/177790.

[2] K. A. Yelick. Programming models for irregular
applications. SIGPLAN Not., 28:28–31, January 1993.

2

http://www.top500.org/system/177790

	Introduction
	Programming model and API
	GMT architecture
	Evaluation
	Conclusions
	References

