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Abstract: This paper studies the optimal power flow problem for resistive DC networks.
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by means of numerical simulations.
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1. INTRODUCTION

The DC networks emerged as reliable energy transmis-
sion system for both low voltage systems (such as house-
hold DC networks, Shivakumar et al. (2015)) and high
voltage applications (HVDC transmission systems, van
Hertem and Ghandhari (2010)). The Optimal Power Flow
(OPF) problem in electrical networks consists on finding
an optimal working point of the system ensuring a set
of constraints in terms of power, current and/or voltages
(Gavriluta et al. (2015)). Usually, the optimization implies
the minimization of a cost (loss) function that, expressed in
terms of voltages, depends on the weighted Laplacian ma-
trix. Since this matrix is positive semidefinite, the function
turns to be just convex. The use of the gradient method
to find the optimal point has been extensively used, but
stability problems could appear when the cost function
is no strictly convex, Arrow et al. (1958). Alternatively,
modification of the problem statement could skip this
requirement (see Cherukuri and Cortés (2015) or Feijer
and Paganini (2010)).

Recently, some papers proposed a port-Hamiltonian de-
scription of the gradient method T.W. Stegink et al. (2015)
and Stegink et al. (In press). The advantages of casting
the algorithm in the port-Hamiltonian form are twofold:
firstly, passivity-based properties can be used for the sta-
bility analysis and, secondly, the optimization algorithm
can be easily interconnected with the network, providing
stability of the whole dynamics. The optimization problem
of DC networks using the gradient method in a port-
Hamiltonian form was studied in Benedito et al. (2016).
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The main contribution there was to propose a change of
variables that renders the cost (loss) function in a strictly
convex function that guarantees the stabilization in the
minimum point assuming that the network is acyclic,
as many papers studying OPF (see for example Zhang
and Papachristodoulou (2015)). However, the interest of
cyclic networks is clear since they commonly appear in
electrical networks. Additionally, it is well known following
the Rosen’s Theorem (or nodal-mesh transformation) that
any network with internal nodes can be represented by
an equivalent meshed circuit, Rosen (1924). Moreover,
the inverse transformation (mesh-to-nodal) is subjected to
certain conditions, see necessary and sufficient conditions
for a mesh to star conversion in Wang and Tokad (1961).

2. PRELIMINARIES

2.1 Definitions

In this paper we consider a resistive DC network: a
undirected, connected, and weighted graph, G, with n
nodes (vertices) and m branches (edges). Following results
are obtained from classical graph books (Biggs (1974)).

Definition 1. 1 ∈ R
n is the vector consisting in only ones.

Definition 2. (Incidence matrix). Consider an arbitrary ori-
entation of the edges. The (vertex-edge) incidence matrix,
B ∈ R

n×m, is defined by the (k, l)-th elements as

bkl =

{

1 if the vertex k is the head of edge l
−1 if the vertex k is the tail of edge l
0 otherwise.

(1)

Definition 3. (Laplacian matrix). The weighted Laplacian
matrix can be defined as

W = BGB
T , (2)

where G is the m ×m diagonal matrix with the weights
of each edge (van der Schaft (2010)).
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From the definitions above, the following properties are
satisfied:

P1. ker(BT ) = {α1|α ∈ R}, then BT1 = 0. rank(BT ) =
n− 1.

P2. Consider a n−1 column matrix of BT , say B
T
1 , then:

(1) ker(BT
1 ) = {0} and rank(BT

1 ) = n− 1.
(2) BT

1 is a square matrix if the graph is a tree (the circuit
do not contain any cycle).

(3)
(

B1B
T
1

)

−1
B1 is the pseudoinverse matrix of BT

1 .

P3. The Laplacian matrix, W , has zero row-sum:
∑

lwkl = 0, k = 1, . . . , n

P4. 1 is a right eigenvector of W with eigenvalue 0, i.e.,
W1 = 0.

Proposition 1. Let BT
1 be a matrix with n− 1 columns of

BT and let S be the pseudoinverse matrix of BT
1 . Then,

• The set of eigenvalues of the matrix B
T
1 S is {0, 1},

• The column vectors of BT are eigenvectors of BT
1 S

with eigenvalue 1.
• The vectors of ker(B) are eigenvectors of BT

1 S with
eigenvalue 0.

Proof. Let c1, ..., cn−1, n − 1 column vectors of the ma-
trix BT , and let k1, ..., km−n+1 a basis of ker(B). Then,
c1, ..., cn−1, k1, ..., km−n+1 is a basis of R

m as they are
linearly independent, rank(B) = rank(BT ) = n − 1 and
dim(ker(BT )) + rank(BT ) = m.

On the one hand, BT
1 Skj = 0, ∀j, as ker(BT ) ⊆ ker(BT

1 ).
On the other hand we claim that BT

1 Sci = ci, ∀i. As
BT

1 SB
T
1 = BT

1 , if ci is a column vector of BT
1 , the claim

is proved. If not, from Property P1, ci = −BT
1 1 and then,

BT
1 Sci = −BT

1 1 = ci.

Corollary 1. The matrix B
T
1 S does not depend on the

selected BT
1 matrix.

Corollary 2. The set

B := {ψ ∈ R
m|(I −B

T
1 S)ψ = 0} (3)

is the span of the column vectors of BT and dim(B) = n−
1.

Remark 1. The Kirchhoff’s Current Law (KCL) in a cir-
cuit with external current sources, natural arises from the
incidence matrix as

Bi = iext, (4)

where i ∈ R
n are the current through the branches (edges),

and iext ∈ R
m are the injected currents at the nodes

(vertices).

2.2 Port-Hamiltonian representation of the gradient method
algorithm

The stability of the gradient method, for strictly convex
function was already studied in Arrow et al. (1958). Re-
cently, the stability analysis has been done using passive
systems properties in T.W. Stegink et al. (2015) and Ste-
gink et al. (In press), which entails a different perspective
that becomes very useful for interconnecting systems, see
Benedito et al. (2016) as example. In this subsection, the
port Hamiltonian representation of the gradient method
algorithm presented in T.W. Stegink et al. (2015) and
Stegink et al. (In press) is revised.

Consider the minimization problem defined by

min
x
f(x) (5)

s.t.Ax− b = 0, (6)

where x ∈ R
n, f : R

n → R, A ∈ R
p×n and b ∈ R

p.
The optimal vaule of (5)-(6) can be obtained finding the
saddle-point of the Lagrangian

L(x, λ) = f(x) + λT (Ax− b) (7)

where λ ∈ R
p. The gradient method for finding the

saddle-point of (7) is the following system of differential
equations:

ẋ = −∇f(x)−A
Tλ (8)

λ̇ = Ax− b (9)

and the port-Hamiltonian representation of the gradient
method is given by

ż =

(

0 −A
T

A 0

)

∇H −

(

∇f(x)
b

)

(10)

where z = (τxx, τλλ) and τx, τλ > 0 are symmetric positive
definite matrices. The Hamiltonian function is given by

H =
1

2
zT τ−1z (11)

where τ = blockdiag(τx, τλ), and the ∇(·) operator is used
for the gradient (as a column vector).

Let us define z∗ = (τxx
∗, τλλ

∗) as the (unique) equilibrium
point of (10) and the shifted Hamiltonian by

H∗ =
1

2
(z − z∗)T τ−1(z − z∗), (12)

and (10) is equivalent to

ż =

(

0 −A
T

A 0

)

∇H∗ −

(

∇f(x) −∇f(x∗)
0

)

. (13)

The asymptotic stability of (10) can be proved under the
following conditions.

Proposition 2. Assume that z∗ is an (unique) equilibrium
point of (10), ker(AT ) = {0} and f(x) is strictly convex.
Then, the dynamics in (10) will converge asymptotically
to z∗, i.e., (x, λ) → (x∗, λ∗).

Proof. (From T.W. Stegink et al. (2015)) The time
derivative of the shifted Hamiltonian

Ḣ∗ = −(x− x∗)T (∇f(x) −∇f(x∗)) ≤ 0 (14)

since f(x) is convex, and the equality holds if and only
if x = x∗ since f(x) is strictly convex. Using LaSalle’s
invariant principle, on the largest invariant set where
Ḣ∗ = 0, we have that λ = λ∗ as AT (λ − λ∗) = 0, that
proves the Proposition above.

3. MAIN RESULT

3.1 Problem statement

Consider a resistive DC network with n nodes and m
branches, with a resistor rkl > 0 (denoting the resistance
of the branch connecting nodes k and l) associated in each
branch and one voltage source in each node, vk where
k = 1, . . . , n.

From the Kirchhoff laws, the voltages (at each node) are
related with the currents (through each resistor) by

B
T v = Ri (15)



where v ∈ R
n and i ∈ R

m, are the voltage and current
vectors, respectively, B is the incidence matrix of the
network, and R = diag(rkl) > 0.

The control problem consists in to find an optimal voltage
vector vopt that minimizes the losses by Joule’s effect,
when some voltages or currents at the nodes are already
set. The network losses function is the sum of the losses
in all resistors, P (i) =

∑

rkli
2
kl, where k, l = 1, . . . , n, in a

matrix form
P (i) = iTRi. (16)

From the conductance of the kl-branch, gkl = 1
rkl

, the

conductance matrix can be defined as G = R−1, and
using (15), the cost function yields in terms of the weighted
Laplacian as

P (v) = vTW v, (17)
where (2) has been used.

Remark 2. Note that from Property P3, the weighted
Laplacian,W , is positive semidefinite but it is not positive
definite. Then, the loss function P (v) in (17) is not strictly
convex.

The OPF problem can be defined as

min
v
P (v) = vTW v (18)

s.t.T v − vd = 0 (19)

UW v − id = 0 (20)

where vd ∈ R
p and id ∈ R

q are, respectively, the voltage
references for certain nodes and the current references
injected in some other nodes, T ∈ R

p×n, U ∈ R
q×n with

p+ q ≤ n, and the matrix

Av :=

(

T

UW

)

(21)

is full rank.

3.2 Gradient method in DC networks

The port-Hamiltonian representation of the gradient
method applyied to the problem (18)-(20) is given by

ż =





W −T
T −WU

T

T 0 0
UW 0 0



∇H −





0
vd

id



 (22)

where z = (τvv, τTλT , τUλU ) and τv, τT , τU > 0 are
symmetric positive definite matrices, λT ∈ R

p, and λU ∈
R
q. The Hamiltonian function is given by

H =
1

2
zT τ−1z (23)

where τ = blockdiag(τv, τT , τU ).

Since P (v) is not strictly convex, the stability of (22)
can not be guaranteed using Proposition 2. However, the
stability of (22) can be proved when T meet certain
conditions, as is stated in the next proposition.

Let us define z∗ = (τvv
∗, τTλ

∗

T , τUλ
∗

U ) as an equilibrium
point of (22) and the shifted Hamiltonian by

H∗ =
1

2
(z − z∗)T τ−1(z − z∗), (24)

and (22) is equivalent to

ż =





W −T
T −WU

T

T 0 0
UW 0 0



∇H∗ (25)

Fig. 1. Resistive circuits examples: a) acyclic resistive
network, and b) cyclic resistive network.

The asymptotic stability of (22) can be proved under the
following conditions.

Proposition 3. Assume that z∗ is an equilibrium point of
(22), and 1 is not an eigennvector of τ−1

v T T τ−1
T T . Then,

the dynamics in (22) will converge asymptotically to z∗,
i.e., (v, λT , λU ) → (v∗, λ∗T , λ

∗

U ).

Proof. The time derivative of the shifted Hamiltonian

Ḣ∗ = −(v − v∗)TW (v − v∗) ≤ 0 (26)

since W is positive semidefinite, and the equality holds if
and only if v− v∗ ∈ ker(W ), i. e. v− v∗ = a1 with a ∈ R.

On the largest invariant set where Ḣ∗ = 0, we have that

ä1 = −aτ−1
v T

T τ−1
T T1, (27)

where we used that UW1 = 0 as 1 ∈ ker(W ). Then
a = 0 as τ−1

v T T τ−1
T T1 6= α1, and v = v∗. Using LaSalle’s

invariant principle, in the set we have that λT = λ∗T and
λU = λ∗U as

Av

(

λT − λ∗T
λU − λ∗U

)

= 0 (28)

and ker(Av) = {0}, that proves the Proposition above.

3.3 Change of coordinates

As pointed out in Section 3.2, the gradient method (22)
can oscillate when 1 is an eigennvector of τ−1

v T T τ−1
T T .

Tailored solutions to this stability problem could be setting
appropriated values to τv and τT , or premultiplying in (19)
any row of T by a factor different than one. Alternatively,
in this subsection we suggest a change of coordinates that
solves the stability problem independently on T , τT , since
τT > 0 is diagonal.

Similarly to Benedito et al. (2016), the following new set
of variables, ψ ∈ R

m, are defined
(

ψ
v0

)

=

(

B
T
1 B

T
0

0 1

)(

v1
v0

)

, (29)

v0 is the voltage at an arbitrary node, BT
0 is the column

of BT corresponding to the arbitray node, and BT
1 is a

n− 1 column matrix with the rest of columns of BT .

Proposition 4. The proposed map (29) defines the bijec-
tive linear map:

φ : Rn−1 × R → B × R

(v1, v0) → (BT
1 v1 +B

T
0 v0, v0)

where B := {ψ ∈ R
m|(I − BT

1 S)ψ = 0} and S is the
pseudoinverse matrix of BT

1 .

Proof. From Property P2.1, φ is injective and from Corol-
lary 2, φ is surjective.



From Proposition 4, the original voltages, v, can be ob-
tained from potentials ψ and v0, using

v =

(

v1
v0

)

=

(

S 1
0 1

)(

ψ
v0

)

, (30)

where S =
(

B1B
T
1

)

−1
B1, if the following condition is

fulfilled
(

I −B
T
1 S
)

ψ = 0. (31)

As
(

I −BT
1 S
)

is not full rank, condition (31) can be
written as

Dψ = 0, (32)

where D ∈ R
(m−n+1)×m is a full rank reduced matrix of

(

I −B
T
1 S
)

. Additionally, from Corollary 1, this result is
the same independently on the selected node.

Then, by using (2) and (30) in (17), the losses are now
given by the function

P (ψ) = ψTSTB1R
−1

B
T
1 Sψ, (33)

and the set of constrains yields
(

T1S T1
UW1S 0

)(

ψ
v0

)

=

(

vd

id

)

(34)

where matrices T and W has been split as follows

T = (T1 T0) , W = (W1 W0) (35)

with T1 ∈ R
p×(n−1), T0 ∈ R

p, W1 ∈ R
n×(n−1), W0 ∈ R

n.

Finally, the problem defined in (18)-(20) is redefined in
terms of ψ, v0 as follows

min
ψ

P (ψ) = ψTR−1ψ (36)

s.t. (T1S T1)

(

ψ
v0

)

− vd = 0 (37)

UW1Sψ = id (38)

Dψ = 0, (39)

where the fact B
T
1 Sψ = ψ imposed by (31) has been

included in (36) and the matrix

Aψ :=

(

T1S T1
UW1S 0

D 0

)

(40)

is full rank.

Based on the port-Hamiltonian representation of the gra-
dient method in (22), the optimal point of the problem
stated in (36)-(39) can be obtained from

ż = F∇H −Gb (41)

where

F :=











−R
−1 0 −S

T
T
T
1 −S

T
W

T
1 U

T −D
T

0 0 −1TT T 0 0
T1S T1 0 0 0

UW1S 0 0 0 0
D 0 0 0 0











, (42)

G
T := (0 0 I I 0) , bT :=

(

0 0 vd id 0
)

, (43)

the states are z = (τψψ, τ0v0, τTλT , τUλU , τDλD), where
λD ∈ R

m−n+1, τψ, τT , τU , τD > 0 are symmetric ma-
trices, τ0 > 0, and the Hamiltonian (11) with τ =
blockdiag(τψ , τ0, τT , τU , τD).

The stability of the gradient method (41) is guaranteed as
stated the following Proposition.

Proposition 5. Assume that

z∗ = (τψψ
∗, τ0v

∗

0 , τTλ
∗

T , τUλ
∗

U , τDλ
∗

D)

is an equilibrium point of (41). Then, the dynamics in (41)
with (42)-(43) will converge asymptotically to z∗, for any
selected node v0 such that 1 /∈ ker(T T

1 τ
−1
T T ).

Proof. The result is obtained similarly to Proposition 2,
defining a shifted Hamiltonian, H∗, that satisfies

Ḣ∗ = −(ψ − ψ∗)TR−1(ψ − ψ∗) ≤ 0, (44)

where the equality holds if and only if ψ = ψ∗. On the
largest invariant set where Ḣ∗ = 0, we have that

0 = −(v0 − v∗0)S
T
T
T
1 τ

−1
T T1 (45)

and then v0 = v∗0 as 1 /∈ ker(T T
1 τ

−1
T T ) and ker(ST ) = {0}

from Property P2.1. With this result we obtain that

Aψ

(

λT − λ∗T
λU − λ∗U
λD − λ∗D

)

= 0 (46)

and then λT = λ∗T , λU = λ∗U , λD = λ∗D as ker(AT
ψ) =

{0} (as Aψ is full rank). Invoking LaSalle’s invariance
principle, we have that (v0, λT , λU , λD) → (v∗0 , λ

∗

T , λ
∗

U , λ
∗

D)
as t→ ∞.

Corollary 3. The gradient method in (41) with (42)-
(43), and T such that τ−1T T τ−1

T T1 = 1 with τ =
blockdiag(τ1, ..., τk), k > 1 and τi 6= 0

• has an unique equilibrium point, z∗,
• and is globally asymptotically stable,

for any selected node v0.

4. EXAMPLE

The circuit in Figure 1b has been used to test the proposed
approach, where its weighted graph, G, has n = 6 nodes
(vertices) and m = 6 branches (edges). For simplicity, all
the resistance has been set at rkl = 1Ω, which implies
R = I. Also, a power flow were assigned arbitrary,
namely, nodes N3, N4, N5, and N6 are voltage or current
independent sources and nodes N1 and N2 are points of
common coupling or interconnection nodes. In order to
present the paper contributions, three cases are simulated
and performed using Matlab. For all cases, the simulation
starts with the null initial conditions: vk(0) = 0 V, ψk(0) =
0 V, and ikl(0) = 0 A.

4.1 Case A: Gradient method with the node voltages v and
convergencing responses.

Considering the dynamics of (22) with

T = (1 0 0 0 0 0) , U =

(

0 0 0 1 0 0
0 0 0 0 0 1

)

, (47)

τv = 0.05·I6, τT = 0.5, τU = 0.5·I2, v
d = 5 and id = (1, 2),

with initial conditions λT (0) = 0, λU (0) = 0 ∈ R
2.

According to matrices (47), p = 1, q = 2, the node voltage
reference for v1 is 5 V, and injected current references for
i4, and i6 are 1 and 2 A, respectively. Although, the speed
of convergence depends on the design parameters τi, for



simplicity all the enters are equals. At small values of τi,
the convergence is relatively fast, but there are oscillations
in the transient response.
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Fig. 2. Case A: Time responses of the node voltages, vk(t)
(solid blue), and the desired reference vd1 (dash red).
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Fig. 3. Case A: Time responses of the node injected
currents, ik(t) (solid blue), and the desired references
id4 and id6 (dash red).

Figures 2 and 3 show the simulation results. We can notice
that the final values of the node voltage and injected
currents, i.e., v1, i4, and i6, reach the desired values in
both cases.

4.2 Case B: Gradient method with the node voltages v and
oscillating responses.

For this case, the node voltage desired reference is changed,
therefore for the dynamics of (22), the following T and U

are selected:

T =

(

1 1 1 0 0 0
0 0 0 1 1 1

)

, U =

(

0 0 0 1 0 0
0 0 0 0 0 1

)

, (48)

and the rest of parameters are similar to Case A except
τT = 0.5 · I2, v

d = (2, 5) and λT (0) = 0 ∈ R
2. According

to (48), p = 2 and the constraints for the desired node
voltages are v1 + v2 + v3 = 2 and v4 + v5 + v6 = 5.

Since the selected matrices T , τT , τU , (48) does not satisfy
the sufficient condition of Proposition 3, it renders the
node voltage responses with sustainable oscillations, see
Fig. 4. However, we can notice that the final values of the
node injected currents i4, and i6 reach the desired values,
see Fig. 5.
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Fig. 4. Case B: Time responses of the node voltages, vk(t)
(solid blue), and the desired reference vd1 = v1+v2+v3,
and vd2 = v4 + v5 + v6 (dash red).
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Fig. 5. Case B: Time responses of the node injected
currents, ik(t) (solid blue), and the desired references
id4 and id6 (dash red)

4.3 Case C: Gradient method with the difference of
potentials ψ.

The proposed change of coordinates in Section 3.3 is
applied to improve the results of previous case with (48).
From the incidence matrix B, we have

B
T

1
=















1 0 −1 0 0
1 0 0 −1 0
0 1 −1 0 0
1 −1 0 0 0
0 1 0 0 0
0 1 0 0 −1















and B
T

0
=















0
0
0
0
−1
0















. (49)

where the selected node is N6. Consequently, by condition
(31), the matrix D yields D = (1 0 0 0 0 0).

With the same parameters and initial condition values
used in Case B, the proposed change of coordinates renders
the node voltage responses with asymptotic trajectories,
see Fig. 6. Moreover, the node voltage constraints, vd1(t) =
v1 + v2 + v3 and vd2(t) = v4 + v5 + v6 are satisfied, see
the comparison between Case B and C in Fig. 7. In the
meantime, the final values of the node injected currents i4,
and i6 reach the desired values, see Fig. 8.
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Fig. 6. Case C: Time responses of the node voltages, vk(t).
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Fig. 7. Cases B and C: Time responses of the node voltage
constraints, vd1(t) = v1 + v2 + v3 and vd2(t) = v4 +
v5 + v6 (solid blue) and the desired reference values
vd = (2, 5) (dash red).
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Fig. 8. Case C: Time responses of the node injected
currents, ik(t) (solid blue), and the desired references
id4 and id6 (dash red)

5. CONCLUSIONS

The OPF problem for a DC network has been written
using the port-Hamiltonian formalism. The main feature of
this description is the ability of interconnecting dynamics
preserving the stability properties.

In this paper has been show that the gradient method
applied to the OPF problem for minimizing losses in DC
networks is stable under a certain condition on the used
matrices. Additionally, the paper provides a change of
coordinates that modifies the problem statement to avoid
stability problems when such condition fails. The change
of coordinates results in writing the problem in terms of
the electric potential difference with respect to one node.

Future works include: i) to interconnect the OPF to a
DC network with dynamics using the port-Hamiltonian
description and, ii) to extend the study to a more realistic
problems that involve inequality constraints and nonlin-
earities such as power limits.
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