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Abstract

Storage devices have been getting more and more diverse during the last decade.
The advent of SSDs made it painfully clear that rotating devices, such as HDDs
or magnetic tapes, were lacking in regards to response time. However, SSDs
currently have a limited number of write cycles and a significantly larger price
per capacity, which has prevented rotational technologies from begin abandoned.
Additionally, Non-Volatile Memories (NVMs) have been lately gaining traction,
offering devices that typically outperform NAND-based SSDs but exhibit a full
new set of idiosyncrasies.

Therefore, in order to appropriately support this diversity, intelligent mech-
anisms will be needed in the near-future to balance the benefits and drawbacks
of each storage technology available to a system. In this paper, we present a first
step towards such a mechanism called HetFS, an extension to the ZFS file system
that is capable of choosing the storage device a file should be kept in according to
preprogrammed filters. We introduce the prototype and show some preliminary
results of the effects obtained when placing specific files into different devices.

1 Introduction

Storage devices have shown a significant evolution in the latest decade. As the
improvements in the latencies of traditional hard disk drives (HDDs) have dimin-
ished due to the mechanical limitations inherent to their design, other technolo-
gies have been emerging to try and take their place. For instance, NAND-based
solid state drive (SSD) technology has been extremely successful in improving
I/O latency and bandwidth, and this has led to SSD devices often being incor-
porated into the storage stack as a caching tier for HDD-based storage systems,
and also to being used as the principal data repositories. This, in turn, has forced
any major applications that were bound by access times (such as databases [3]),
to change in order to adapt to this new technology. Nevertheless, completely
replacing HDDs by more efficient SSDs can be economically prohibitive due the
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larger cost per capacity of the latter. More importantly, however, NAND-based
SSDs have a limited number of write cycles and, in fact, recent researches on
long-term SSD usage in data warehouses have proved that, after intensive usage,
the SSDs degrade so much that response times may equal those of HDDs [5, 6].

In addition to SSDs, Non-Volatile Memory (NVM) technology is currently
being researched as a better alternative. The different NVM technologies being
explored typically exhibit faster I/O latencies than SSDs, which are closer to
those of DRAM rather than to NAND-based devices. As such, current research
efforts are focusing on whether these devices should be used as an extension of
DRAM or included as an additional (persistent) caching layer to the storage
stack [14].

Moreover, despite the recent advancements in SSDs and NVMs, the tech-
nological development of HDDs has not stopped. For instance, hard drives fea-
turing an Helium-filled enclosure were recently introduced to the market since
the gas density allows for more platters and a higher rotational speed of up to
19,000rpms [22]. Shingled Magnetic Recording (SMR) [1] is also starting to find
its way to customers, since it allows for a higher track density and increased
capacity at similar cost.

Thus, in the near future, file systems will need to cope with a myriad of stor-
age devices, each with particular performance and capacity characteristics, and
each suitable to certain types of I/O workload. Current file systems, however,
typically distribute data into available devices by placing them into a hierarchy
according to performance, and using prefetching and multi-tier caching algo-
rithms to reduce I/O latency.

This, however, typically disregards other considerations such as extending
the life of devices such as SSDs through wear leveling, or tailoring a file’s data
distribution according to the usage that applications make of it. For instance,
software engineers typically rely on writing to a file as barrier or as an atomic
operation, a usage which is crucial for the resilience and for synchronization
of applications [4]. This access pattern can represent a significant disadvantage
for SSDs since it will wear the medium faster. Similarly, the OS libraries are
primarily read dominant [19, 2] and could be classified according to how often
they are accessed, placing the rarely-used into an HDD for cold storage and the
more commonly used ones into an SSD for improved performance. Multimedia
files i.e., RIFF format, can be split. The first part with all the information of
the file in a fast medium and the rest that accessed mostly sequentially to a
rotating one. Lastly, intra-file formats could also be exploited by placing each
file section into the storage device more suitable for the expected access patterns.
Therefore, in order to support the diversity in storage media, file systems will
need to provide intelligent algorithms that (1) appropriately quantify and model
the benefits and drawbacks of each available storage device; (2) capture the more
typical patterns that applications use to access data; and (3) use this information
to create a tailored dynamic data distribution that optimizes the usage of the
available hardware.
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In this paper, we present HetFS, an extension to the ZFS file system that
includes a component to capture information about file usage, and a simple
decision making mechanism that uses this information to decide, according to
a user-provided classification, the storage device where a file should be placed.
We introduce the HetFS prototype and show some preliminary results measured
by applying different precomputed file distributions to the kernel’s boot process.
The results offer an insight to the expected ZFS overhead added by the new
mechanisms and showcase the potential benefits of such distributions. Please
note that these modifications are meant as a first step towards a more complex
feedback loop where HetFS will automatically capture file usage information
and will use this information (allowing some degree of tuning from the user) to
produce a data distribution that is optimized w.r.t. a file’s more common access
patterns and the features of the available storage devices.

The remainder of the paper is organized as follows: Section 2 describes the
modifications made to ZFS in order to capture usage information and imple-
ment the user-provided file distributions. Section 3 describes our experiments
regarding boot times with different file distributions. Related work is discussed
in Section 4, and Section 5 concludes with our findings.

2 Heterogeneous File System

This section discusses the modifications done to ZFS in order to support the
HetFS file forwarding mechanism. We chose to implement HetFS as an extension
of ZFS3 because this file system offers facilities to manage both the physical
and the logical layers [16]. While historically file systems have been constructed
on top of a single physical device, ZFS manages physical storage by means of
storage pools (or zpools), which can be created using multiple and heterogeneous
devices such as HDDs, SSDs, NVM or even tapes. A zpool describes the physical
characteristics of the storage devices that compose it (called vdevs), and acts as
an arbitrary data store from which file systems can be created. By leveraging
this feature as an extension of ZFS, HetFS is able to produce a file classification
based on access patterns and later use this information to guide requests to a
specific storage device within a zpool.

2.1 File Classification

File classification is done by modifying the ZFS Posix Layer (ZPL), which is the
ZFS layer responsible for interfacing between the VFS and the underlying ZFS
data management layers. This layer still has enough semantic information about
which file is being accessed by a read() or write() operation, and also offers
enough detail to allow us to track the access to individual data blocks. Thus,
we include a red-black tree in the ZPL where each node contains two separate
linked lists for read and write requests.

3 Given that ZFS is proprietary software, we used a fork of OpenZFS [11] named ZFS
on Linux (ZoL) [24]. For clarity we will keep referring to it as ZFS.
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The information traced is inserted into the red-black tree by a specialized
kernel thread after a request has returned without errors, in order to not in-
terfere much with it. Currently, the data consists of the file name, the offset
of the request, the length, and the type, that are extracted from the request.
We also capture the time when the request arrived, and use this information to
merge small requests into bigger ones if the current captured time is close to the
previously stored one, and also if the offset is contiguous to the previous one.
This approach gives us an insight on how files are accessed from applications,
and also allows us to track if particular part of a file is accessed more which will
help us to assess the access patterns for each individual file in future research.

Currently, the analysis of the collected information is done post-mortem, and
the final decision of the available vdevs should store a particular file is left to the
user. This decisions can be communicated to HetFS by means of a custom procfs
interface with some pre-configured characteristics. In the future the operating
system will conduct an automated analysis of these information to make an
informed decision on which storage medium a file should be placed. If a manual
decision has been made the analysis will not be taken into consideration.

2.2 Device Selection

Files can be typically classified by their access patterns: for instance, multimedia
files are most likely to be accessed sequentially, and documents created from word
processors follow complex internal structures which makes parts of the file more
likely to be accessed with different frequencies and patterns than others. This
means that the former would benefit from a ZFS vdev optimized for sequential
access, whereas the latter would benefit from a ZFS vdev optimized for random
accesses. Other files, like bitmaps, indexes, and even the file system’s metadata
would be better stored in a ZFS vdev that could benefit from byte addressability
(e.g. NVM).

In order to forward I/O requests to the desired vdev, we modify the ZFS
Block Allocation mechanism to use the analyzed information produced by the
file classification mechanism, which is conveyed to HetFS through the aforemen-
tioned procfs interface. Information about the chosen vdev for a file is encoded
into the ZFS equivalent of VFS’ i-nodes, so that it can be propagated to all the
necessary ZFS layers, and is then used to allocate ZFS block pointers into the
appropriate vdev. Since the standard ZFS Block Allocation strategy relies on
dynamic striping to maximize bandwidth, we modify the vdev selection algo-
rithm to simply choose the device encoded into the file. In the future, however,
this selection will also consider other factors like the vdevs performance, their
optimal access mode as well as any limiting features. We also leverage existing
code [23] by the ZFS team to place metadata into SSDs and extend it to several
vdevs.

Note that, currently, a user or system administrator could decide to move
files that need a lower access latency to a SSD for faster I/O bandwidth. If these
files were write-intensive, it would decrease the durability of the SSD but the
file would actually be served faster. These kinds of compromises would need to



HetFS: A Heterogeneous File System for Everyone 5

be decided either by the administrator or automatically by system wide policies.
For example, if durability of an SSD is pursued, moving files that are accessed
scarcely and sequentially to an HDD will give us a better life expectancy. In the
future, HetFS should move files dynamically to appropriate vdevs in response
to changes made by the administrator to pursue certain system-wide optimiza-
tion goals. For instance, HetFS could decide to move files that have not been
accessed for a certain period of time to a network storage system, which could be
represented by another ”device” in the ZFS pool. At default, operating system
will analyze patterns and will be able to choose between storage media. A file
that more than 50% is accessed contiguous will be sent to HDD. If more random
access patterns emerge or even byte accesses the file could be sent to a SSD or
NVRAM respectively. If a system administrator has created a rule about a file,
the automatic decision will not be calculated.

3 Evaluation

This section describes our experiments when testing how several file distributions
differently affect the boot process of the Linux kernel. Our experiment platform
is a bare metal machine running Ubuntu 16.04 with Linux kernel 4.4.0-21. It is
equipped with a processor Intel(R) Core(TM)2 Quad CPU Q9300 @ 2.50GHz
with 4 cores. It also has 8GB RAM in 4 modules of 2GB. For storage we have
a Seagate BarraCuda at 250GB with 7200rpm and 8MB cache connected with
SATA 3.0Gb/s and a Samsung SSD 850 at 250GB with 512MB cache.

3.1 Boot Time

We use HetFS to choose in which media to store different boot files in order to
see how it affects the booting time of our test machine. We decided to use the
boot time because it is a straight forward experiment that heavily involves the
underlying file system. Also boot time is crucial when a new system is deployed.
Having a simple performance experiment helps us measure if our approach to
store files into specific storage media adds a reasonable overhead.

For each experiment, we rebooted the machine 100 times and write the out-
put of systemd-analyze to a file. In Figure 2 there are the boxplots of the median,
best and worst total booting times for each run. First we did the experiment
with the ZoL [24] version 0.6.5.6 (which is the one that can now be found in
the Ubuntu 16.04 repositories), to measure the time of a stable run. Second we
run ZoL with 0.7.3-rc3 and commit ”935550f” since this is the commit before
our code was introduced. This experiment is done in order to see if any major
differences have been introduced between the ZFS versions. The third experi-
ment is run by storing only the files that are read during the boot process in
the SSD (labeled RO in the figure). The fourth experiment, which is labeled
RO+META in the figure, is a set up where all files that are read during boot
time and all ZFS metadata of every file is stored to the SSD. Finally, we add a
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Fig. 1. Mean boot time using different configurations.

ZFS 0.7.3 RO RO+META RW+META

Total size 2MB 1MB 3MB 3.3MB

# of requests 139 28 162 200

Speedup 1x 0.95x 1.11x 1.22x
Table 1. SSD Writes vs. Speedup

fifth experiment where all the files and the metadata are stored in the SSD (la-
beled RW+META). All measurements were done by the systemd-analyze [18]
command version 229. The systemd-analyze command returns the time spent
in the kernel as well as the time spent in initrd before normal system userspace
is reached. A userspace time is also provided which is the time normal system
userspace took to initialize.

Figure 1 depicts our results. First of all, we can observe some differences
between the 2 versions of ZFS which evidence changes between the versions. For
instance, ZFS 0.7 has a 15% performance hit on kernel time but a speed up
on userspace time of 27% when compared to ZFS 0.6. Nevertheless, this results
in a less than 1% degradation to the total boot time. Placing only the read
files in an SSD creates a 2% overhead at kernel time and an 8% overhead to
userspace time, which sets the overhead of HetFS around 4%, but with a better
expected SSD lifetime. In contrast, the results for the fourth run where also the
ZFS metadata is stored in the SSD are significantly different: the kernel time
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Fig. 2. Median, worst and best boot time for each run.

is almost identical to the ZoL 0.7 baseline, but userspace time yields a 43%
speedup. Overall, HetFS obtains a final 10% boost, which demonstrates that
placing the file system’s internal metadata into an SSD can significantly affect
performance (and decrease the expected SSD lifetime as well). The final run,
where all the data is stored in the SSD, obtains an improvement of a 20% with
respect to the plain ZFS, which is to be expected since no data is stored in the
slower HDD. Overall the results show that our approach of acquiring the data
has a low impact at the responding time of the machine.

3.2 Write Requests

As is apparent from the previous section, significant performance gains can be
expected from placing boot files into an SSD. Nevertheless, in order to better
understand how much stress the SSD received, we also measured how many
I/O requests ended up going to this media, along with the total count and size
of the writes operations issued. The results are shown in Table 1. We observe
that, since the boot process is not write-intensive, using the SSD to its full
capability for storing also the ZFS metadata does not represent a significant
load, since only 3MB are requested to be written in the device (RO+META).
Nevertheless, using the SSD to store exclusively read-only data results in only
a 5% drop in performance when compared to a standard ZFS installation, but
with significantly less data written to the SSD (1MB/28 requests vs 2MB/139
requests, respectively). Moreover, the worst scenario for an SSD is, as expected,
to move all the data to it, which increases the total size of the writes to 3.3MB,
but with a 1.22x speedup when compared to standard ZFS.
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4 Related Work

Research on hybrid or heterogeneous file systems is divided between how such
a system will improve the performance of specific application and designs from
scratch. There are numerous examples on specific application optimization, par-
ticularly in databases [3, 7–9, 21, 14]. In contrast, our approach treats all appli-
cations equally unless the user specifies otherwise.

Hybrid file systems from scratch have their fare share of research. Combo [13]
is a Windows-based file system. They achieved file separation because they are
looking for free large contiguous parts for storing a file. This approach lacks the
ability to automatically change medium based on access patterns. Conquest [20]
achieved to mix HDDs and NVMs, but requires special host hardware which ours
does not need. A new form of hybrid file system from scratch called N-hybrid was
proposed in [10]. N-hybrid utilizes an SSD as a write-through cache for recently
used files. Storing a file in a specific medium is possible in N-hybrid but only at
the request level. If a file is requested in big chunks, it will be placed in an HDD.
Our approach curates files not only by access patterns but also by user needs.

Extending the life of SSDs has also been an issue in recent years. Typically,
either an HDD [17] or a NVM-enabled device [15] is used as a caching media
at a higher stack level to protect the SSD from writes. Rather than setting up
a hierarchy of storage devices, we try to achieve less SSD wearing by statically
analyzing the file access patterns, and creating a file distribution that attempts
to optimally forward I/O requests to the available devices, instead of just limiting
the access to SSD.

Similarly to our work, Oracle has published a white paper [12] where they
discuss how to achieve a hybrid storage system within the proprietary ZFS file
system. They describe applications that would benefit from this facility but do
not discuss any results, performance or otherwise. Instead, our approach focuses
in the file system level and how it orchestrates where the files would be stored.
Moreover, our work will engulf all storage media and it will make informed
decisions based on access patterns on where a file should be placed.

5 Conclusions and Future Work

In this paper, we presented an extension to ZFS aimed to allow system adminis-
trators and/or normal users to specify which storage device belonging to a zpool
to use to store specific files (e.g. HDDs, SSDs, NVMs or others). Moreover, this
extension is presented to the user as a file system with a single mount point.
We introduce two separate mechanisms: one for capturing information about
file usage, and another that can use this information to decide the placement of
individual files. An administrator could use these mechanisms to counteract the
drawbacks of one medium with benefits from others, by actively defining which
files should be placed in which device.

The experiments done with HetFS conclude that the overhead introduced
by the mechanisms implemented is low, and different benefits can be achieved
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depending on the metric considered. For example, it is possible to reduce nearly
100% the number of writes going to an SSD, which helps with wear-leveling
but at the same time somewhat impacts performance, or only move certain
number of files to the SSD to have different ratios of performance improvement.
Nevertheless, given that different devices have different behaviors, and different
I/O workloads have different constraints, these decisions should be taken by
automatic mechanisms that can adapt, learn and decide the best placement for
a certain target metric.

Thus, the modification presented is a first step to incorporate more advanced
or automatic techniques that can take this kind of decisions. Our future research
lines are to rely on these mechanisms to automatically detect data access pat-
terns, and define optimization algorithms that are able to use this information to
decide the appropriate vdev for a certain file. This algorithms should accurately
model a device characteristics and combine this information to target predefined
optimization goals (e.g. SSD wear should be reduced by 25% but performance
should not drop below 5%). Moreover, placement of file fragments can also be
helpful for internally complex files. For example, headers of files that are usually
read and written once could be stored in an HDD, whereas the heavily-accessed
parts of a database index would benefit from being in NVM. With HetFS, we
lay the foundation for developing such a system.
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