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ABSTRACT: 

The mainstay treatment for patients with acute coronary syndrome is an oral route dual 

antiplatelet therapy with a P2Y12-receptor antagonist and Aspirin (ASA).To improve patient 

adherence to such treatments, combination therapies (polypill) are envisioned. 

Physicochemical solid-state studies have been carried out to develop a 

preformulationstrategy of ASA with the P2Y12-receptor antagonistticagrelor (TIC). The 

investigations were carried out using differential scanning calorimetry,liquid chromatography 

– high resolution – multistage mass spectrometry (LC-HR-MSn) and as complementary 

techniques Fourier transform infrared measurements and thermogravimetric analysis. A 

simple eutectic transition at 98 °C with a mole fraction for the eutectic liquid of 0.457 has 

been observed and the mixing of ASA and TIC molecules in each other’s crystal structures 

appears to be limited. No cocrystals of TIC and ASA have been found. The appearance of 

the eutectic liquid was linked with a clear onset of chemical instability of the two 

pharmaceuticals. The decomposition mechanism in the liquid phase involves prior 

decomposition of ASA, whose residues react with well-identified TIC interaction sites. Seven 

interaction products were observed by LC-HR-MSn linked to corresponding degradation 

products. The most important degradation pathway is N-dealkylation. In conclusion, polypills 

of ASA and TIC are a viable approach, but the decomposition of ASA should be avoided by 

eliminating high temperatures and high humidity. 

 

 

 

1. Introduction 
Cardiovascular diseases, and in particular acute coronary syndrome (ACS), remain the most 

serious life-threatening diseases [1].Dual antiplatelet therapy, consisting of aspirin (ASA) and 



a P2Y12-receptor antagonist, is the mainstay treatment for patients with ACS. A complicating 

factor of a dual therapy is the necessity for patients to take multiple drugs, which diminishes 

patient adherence to the treatment. To avoid this kind of problems and to improve on the 

necessary doses of the different pharmaceuticals in a dual treatment, combination therapies 

(polypill) may be a solution. 

However, the combined drug introduces the problem of possible interactions between the 

active ingredients. This may have an influence on their bioavailability, render the formulation 

inactive, or even toxic, as issues with drug-drug or drug-excipient interactions have been 

widely described in the literature [2-6]. Chemical instabilities due to interactions can take the 

form of oxidation, reduction or hydrolysis[2, 3], and drug substances may even covalently 

bind to each other [4]. Physical incompatibility may include a modification of the individual 

solubilities or the formation of a eutectic liquid, which will modify the formulation and also 

accelerate degradation of the pharmaceuticals [5, 6]. It is therefore essential that 

combinations of active pharmaceutical ingredients are studied beforehand. In particular, the 

chemical and physical behaviour of the mixtures is of importance, as they may be the first to 

indicate what will happen to the final mixed drug product. The outcome can then be used in 

the preformulation strategy to stabilize the drug. 

In the present paper, the chemical and physical stability of mixtures of ASA with the P2Y12-

receptor antagonistticagrelor (TIC) will be studied to support the development of a 

combination therapy with these two active ingredients. The dosage quantities of TIC are 

rather well defined at 90 mg per tablet [7]. In the case of ASA, it is well known that high 

doses are associated with higher rates of major bleeding in patients [8]. A large systematic 

review on the efficacy of ASA to avoid blood clots has demonstrated that there are no 

differences in clinical outcome between low or high doses of ASA in the medical treatment 

following surgical stent insertions [8], thus for a combination therapy an effective ASA 

dosage quantity can be kept at a relatively low concentration. A double blind clinical trial 

evaluation of the pharmacokinetics and pharmacodynamics of ticagrelor co-administered 



with 300 mg qd. ofaspirin in healthy volunteers has demonstrated that simultaneous 

administration of TIC and ASA does not affect the medical treatment negatively [9]. 

According to the literature, ASA melts around 138 °C with amelting enthalpy of 185 J g-

1[10,11]. It is also well known that ASA rapidly decomposes in the presence of water, while 

forming acetic acid and salicylic acid [12]. In the case of TIC, a single patent exists 

describing four polymorphs called I, II, III and IV melting at 128, 135, 139 and 150 °C 

respectively [13]. Previously, the chemical behaviour of TIC under several stress conditions 

has been investigated, which resulted in the elucidation of nine main degradation products 

formed through oxidation, S-dealkylation and N-dealkylation mechanisms [14]. Taking into 

account the physical and chemical properties of the pure compounds, mixtures of ASA and 

TIC will be investigated using differential scanning calorimetry (DSC) andliquid 

chromatography – high resolution – multistage mass spectrometry (LC-HR-MSn) and as 

complementary techniques Fourier Transform Infrared measurements (FTIR) and 

thermogravimetric analysis (TGA). 

 

2. Materials and methods  
Materials 

Ticagrelor of a purity greater than 98 % was obtained from Interchim® (Montluçon, 

France). Acetylsalicylic acid (purity: 99.5 %) was purchased from Cooper (Melun, France). 

Analytical grade acetonitrile was provided by Sigma–Aldrich (St Quentin-Fallavier, France). 

Ultrapure water from Q-Pod Milli-Q system (Millipore, Molsheim, France) was used for 

dissolution, dilution, and as a component of the mobile phase.  

 

Solid-state stress testing 



TIC and ASA substances were dried at 80 °C in an oven for 24 hours, then mixed (1:1molar 

ratio) by gentle grinding using a mortar and a pestle for 5 minutes. 50 mg of the two APIs and 

theirmixture were prepared in triplicate, placed in a calibrated hot-air oven at 80 °C, and at 

100 °C and removed after either 1 day or 3 days of exposure.  

In parallel, kinetic studies were performed.Samples of about 10 mg of TIC-ASA mixtures 

were preparedin triplicate and placed in ovensat 25, 40, 60, 70, 80, and 90 °C (±1 °C). The 

samples were removed at 0, 1, 2, 3, 7, 14, 21, and 28 days and analysed by HPLC. 

Concurrently, TIC, ASA and TIC-ASA mixture control samples stored at 25 °Cfor one year 

have been testedfor degradation products. 

 

Analytical Methods 

Differential scanning calorimetry 

DSC experiments were performed using a Q1000 (TA Instruments, USA) heat-flux 

calorimeter. It was calibrated before use with high purity indium (Tfus = 156.60 °C) and tin 

(Tfus = 231.91 °C) standards. Drug mixture samples of approx. 1.5 – 4 mg were scanned in 

sealed aluminum pans at a rate of 10 K min−1, from 30 to 160 °C, in an inert N2 atmosphere 

with a purge flow rate of 50 cm3 min−1. 

For temperature – composition diagrams, binary physical mixtures with TIC–ASA 

concentrations of (mol fraction TIC): 1.00, 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 

0.10, 0.05, and 0.00 were prepared by gentle mixing and grinding of the two compounds 

using a mortar and a pestle for 5 min,then the melting behaviour of the samples were 

assessed by DSC. Subsequently, heating-cooling cycles of selected samples were carried 

out. Additionally, the crucibles were retrieved, opened, dissolved in 1 ml of acetonitrile, 

sonicated for 10 min, and analysed by LC-HR-MSn. 

 



 X-ray powder diffraction  

A Debye-Scherrer optics was used with an INEL powder diffractometer equipped with a 

cylindrical position-sensitive detector (CPS120) containing 4096 channels (0.029° 2θ angular 

step) and monochromatic Cu Kα1 (λ = 1.54061 Å) radiation. Slightly ground specimens were 

introduced in a Lindemann capillary (0.5 mm diameter) rotating perpendicularly to the X-ray 

beam during the experiments to improve the average over the crystallite orientations. 

 

Thermal gravimetric analysis 

TG measurements were carried out using a TA instruments Q500 thermogravimetric 

analyzer (TGA) equipped with a precision thermobalance (0.1 µg). The weighted samples (3-

8 mg) were heated from 25 °C to 600 °C. Heating runs were carried out under nitrogen 

atmosphere at three heating rates: 5, 10 and 20 K min-1. 

 

Fourier Transform Infrared measurements 

FTIR was used to assess the modification of the molecular environment of the APIs induced 

in the physical mixture(0.30 mole fractionTIC). The experiments were performed on a Perkin-

Elmer Spectrum BX FT-IR system based on diffuse reflectance sampling accessories with 

FT-IR Spectrum v2.00 software. The spectra of the APIs, their mixtures and the 

corresponding stressed samples were recorded at room temperature in the wavenumber 

range of 400 – 4000 cm-1 using KBr pellets.  

 

High Pressure Liquid Chromatography 

A Dionex Ultimate 3000 LC system (DIONEX, Les Ulis, France) was used to separate the 

APIs and their degradation/interaction products from the stress samples and the DSC 



crucibles. The system consisted of a quaternary pump, a degasser, a 

thermostatedautosampler with a 200 µL-injection syringe, and a thermostated column 

compartment. A C18 (Phenomenex) (150 mm x 4,6 mm, 4 µm) column set at 25 °C was 

used. The optimized LC parameters include the mobile phase composition (phase A: 

acetonitrile, phase B: water) set in a gradient method (A 20 % v/v from 0 to 5 min; A 20 % to 

60 % v/v from 5 to 7 min; A 6080 % v/v from 15 to 17 min; A 8020 % v/v from 17 to 20 

min and A 20 % v/v till 25 min). The flow-rate was set at 1 mL min-1.  

 

An LC-high-resolution multistage mass spectrometry 

LC-HR-MSn was used to elucidate the structures of the decomposition products following 

DSC and stress tests. It was performed by coupling a Dionex® LC system to an electrospray 

(ESI)-LTQ-OrbitrapVelos Pro system, which comprises a double linear trap and an orbital 

trap (Thermo Fisher Scientific, CA, USA). Analyses were carried out in positive and negative 

ion mode for TIC and ASA respectively, under the following conditions: (a) the source voltage 

was set at 3.4 kV; (b) the temperatures were fixed at 53 °C (source) and 300 °C (capillary); 

(c) S-Lens was set at 60%. Acquisition in full scan mode over the mass range of 50-600 Da 

was performed for the detection of the degradation products. 30-40 % CEL were set for high-

resolution fragmentation studies. The MS data were processed using Xcalibur® software 

(version 2.2 SP 1.48). 

 

3. Results and discussion 
3.1. Physical stability in the solid mixtures of TIC and ASA 

For the pure compounds the following melting data were found: TIC led to a Tonset = 136.2 

±1.9 °C and a ∆Hfus= 81± 5 J g-1 and ASA melts at 138.1 ±2.5 °C with a ∆Hfus at 184.5 ± 13.1 

J g-1. The melting data and the X-Ray pattern (Figure S1) of aspirin sample used were found 

to be consistent with the aspirin form I [10, 11, 15]. The melting point of TIC in combination 



with an X-ray diffraction pattern (Figure S2)for verification indicates that the TIC sample 

contained pure form II according to the information provided in the patent [13]. 

Physical mixtures were prepared by gently grinding different mole fractions of TIC and ASA 

as indicated in the experimental section. The mixtures were subsequently subjected to DSC 

measurements in a closed capsule by heating the samples at a rate of 10 K min-1 from 30 °C 

up to 160 °C. The DSC curves exhibited two endothermic peaks indicative of the occurrence 

of a eutectic and a liquidustransition (see Figure 1a) [16-18]. The onset temperature of the 

eutectic peak, 98°C, and the peak maximum of the liquidus peak were used to plot the 

temperature–composition TIC-ASA phase diagram (Figure 1b). The dependence of the 

eutectic molar enthalpy with the mole fraction of TIC, the Tammann plot, was used to 

estimate the eutectic composition (see Figure 1c) [19, 20]. The ASA rich side of the 

Tammann plot led to the following equation: ∆Heutectic(x) = 62,249·x and the TIC rich side led 

to the equation ∆Heutectic(x) = -52,298·x + 52398. With these two expressions a eutectic mole 

fraction of 0.457 was calculated. Considering the Tammann plot and the T-x phase diagram, 

the TIC-ASA system exhibits a simple eutectic transition at 98 °C with a mole fraction for the 

liquid of 0.457 (Fig. 1b-c). 

A eutectic equilibrium consists of an equilibrium between three phases and can be written 

as

 

 



concentration of one of the components is sufficiently low that it can completely ‘dissolve’ in 

the crystal structure of the other component, thus when only a single solid solution is present 

in the system, the eutectic transition will not be observed, because the single solid phase will 

have a different melting behaviour and the eutectic heat effect will be equal to zero. The 

intersection of the Tammann plot – the eutectic enthalpy effect plotted against the binary 

composition – with the composition axis will therefore provide an indication of the extent of 

the solid solution in terms of concentration. In the present case, the enthalpy effect of the 

eutectic transition appears to extend to the pure compositions as the Tammann plot 

intersects the composition axis at 0 and at 1 mole fraction. Therefore, it can be concluded 

that the extent of the solid solutions, i.e. the mixing of ASA in solid TIC and of TIC in solid 

ASA, is probably limited in this system. Moreover, considering the observed eutectic 

transition, it can be concluded that interactions in the form of binary compounds (or 

cocrystals) seem to be absent in this system. 

 

Figure 1: Ticagrelor – Aspirin solid-state behaviour: a) typical DSC curves; b) temperature-

composition phase diagram with eutectic behaviour (mole fraction of Ticagrelor indicated), 

and c) Tammann’s plot of the eutectic transition. 

 

3.2.  Chemical stability in mixtures with TIC and ASA 

3.2.1. Thermal stress testing 
It can be seen in table 1 that the physical appearance of pure TIC and of pure ASA kept at 

80°C and 100°C does not change. A mixture of ASA and TIC (1:1 molar ratio) retains the 

same appearance for 1 day at 80°C. However, the powder becomes yellowish when left at 

80 °C for three days. In the case of 100°C, the change in colour is observed within one day.  



It is clear from the preceding results that chemical interactions occur in the mixtures of TIC 

and ASA. It should be kept in mind that at 80°C the mixture will be solid, whereas at 100°C 

part of the mixture will have become liquid, as the eutectic temperature has been passed. 

The samples have been investigated by LC-HR-MSn. The fragmentation pattern of TIC was 

obtained in a previous publication [14]. Those results will be used to analyse the interaction 

and degradation products in the present mixture with TIC and ASA. In the LC-HR-MSn 

results, the interaction products (IPs) are defined as those stemming from the entire TIC 

molecule attached to other molecular moieties in particular from ASA. In addition, 

degradation products (DPs) are defined as those with a smaller mass stemming from TIC 

directly or from one of the IPs. Once an IP or a DP has been identified, the elemental 

composition is deduced and the mass error is calculated for verification (see Table 2). 

 

Table 1: Physical appearance of Ticagrelor, Aspirin, and their mixtures (1:1 molar ratio)under 

thermal stress conditions 

 

Table 2: LC – HR – MSn results: Retention time and accurate mass of Ticagrelor – Aspirin 

interactions products and their corresponding N-dealkylation degradation products (see text).  

 

Pure APIs 

LC-HR-MSn did not reveal any degradation product in the case of the pure active 

pharmaceutical ingredients that were kept for one day at 80°C. It has been verified by LC-

HR-MSn that heating samples of pure TIC in the DSC up to 160°C did not lead to any 

degradation products either. These results are consistent with the absence of change in the 

physical aspect of the pure compounds. For ASA, it is known that it rapidly decomposes into 

salicylic acid and acetic acid [12] in the liquid phase.  



 

Degradation kinetics of the mixture 

For each temperature, the remaining TIC-ASAin the mixtures has been plotted as a function 

of time (Figure 2a,Table S1). The decomposition data has been fitted to zero order 

expressions, which gave reasonable fits within the limits of precision of the data. The rate 

constants have been assembled in anArrhenius plot (Figure2b).The activation energy of the 

observed decomposition reaction of 130 ± 12kJ mol-1is similar to the one found by 

Carstensenet al. for the decomposition of ASA in the presence of water(about 128 kJ mol-1) 

even if the reaction rate in the present TIC-ASA mixture is much lower (e.g. in the present 

mixture at 65°C 0.016 mole % j-1 is found, whereas Carstensenet al. reported 7.9j-1) [27].The 

rate-limiting step in the decomposition of the TIC-ASA mixture may therefore depend on the 

decomposition of ASA and the reaction products may subsequently react rapidly with TIC. 

Extrapolating the Arrhenius equation to 25 °C, one obtains about 1% of decomposition per 

year. Tests performed on TIC-ASA samples stored for one year at 25°C do not reveal any 

decomposition products, so the 1% obtained by the Arrhenius equation might be an upper 

limit of the decomposition estimate. How the decomposition of ASA affects TIC will be 

discussed in the next section. 

 

Figure 2: TIC – ASA decomposition kinetics: (a) Concentration in mole % of remaining TIC-

ASA in the stress test samples versus exposure time in days and as a function of 

temperature (°C) (b) Arrhenius plot of the rate constants obtained by fitting zero order 

kinetics. 

 

Interaction products observed in the TIC-ASA mixture 



As indicated in Table 2, seven interaction products have been identified named IP1 to IP7. 

They respectively exhibit masses with 28, 42, 84, 126, 120, 162, and 204 amu higher than 

that of the TIC molecule. It can be deduced that they respectively represent carbon 

monoxide-TIC, acetyl-TIC, diacetyl-TIC, triacetyl-TIC, TIC-salicylate, acetyl-TIC-salicylate 

and diacetyl-TIC-salicylate, as indicated in Table 2.  

Four possible TIC interaction sites can be identified, three alcohol functions and a secondary 

arylamine, as indicated in Figure 3b. A transition in relation to an interaction with the 

secondary arylamine on the TIC molecule is for example characterised by the neutral loss of 

the hydroxyethoxycyclopentane-1,2-diol moiety. An interaction with the primary alcohol is 

characterized by the absence of the neutral loss of ethanal or ethyleneglycol. The presence 

of the two latter transitions would suggest consequently an interaction with the cyclopentane 

alcohols. As a result, for the observed products, several LC-separated isomers can be found 

corresponding to the different interaction combinations on the aforementioned sites (See for 

example the different peaks for IPs2 and IPs3 in Fig. 3a).  

For the product with m/z 565, the number of IPs was superior to that of the interaction sites, 

which suggests the formation of stereo-isomeric products. In fact, in the case that the 

acetylation involves only one of the cyclopentane diols, the formation of a hydrogen bond 

with the free OH may yield a hydrogen bond depending on the position of the carbonyl 

function. This is suggested by the difference in their spectrums,which differ in weight 

indicative of a water molecule. 

 

Figure 3: a) LC-UV chromatogram of Ticagrelor – Aspirin after thermolysis at 80°C for 24h; b) 

Possible interactions sites on the TIC molecule 

 

Proposed pathways for the observed degradation products in TIC-ASA mixtures  



In our previous study, we have demonstrated that TIC gives rise to the degradation product 

m/z 371 by N-dealkylation when it is subjected to 80°C in solution [14]. However, the 

interaction with ASA increased the appearance of this dealkylation productten-fold. In 

addition, seven degradation products DP1 to DP7 were obtained as a result of the N-

dealkylationfrom the interaction products IP1 to IP7. Thus, the arylamineis clearly the main 

interaction and degradation site of TIC in the presence of ASA.  

Besides the formation of acetic acid and salicylic acid, CO2 and/or CO probably from acetic 

acid [28, 29]could be observed to interact with TIC. This is illustrated in figure 4, where TIC is 

presented with an attached carbonyl group and the possible fragmentation pathways. 

From the foregoing, it can be concluded that the presence of ASA may affect the chemical 

stability of TIC in the solid state at elevated temperatures. 

 

Figure 4: Fragmentation pattern of the interaction product IP3 and the related degradation 

product DP3 

 

3.2.2 Degradation around the eutectic temperature 

 

The effect of liquid formation on the degradation process 

It has been shown that the presence of ASA may affect the chemical stability of TIC at 

elevated temperature. Considering that the eutectic temperature is found around 98°C, the 

effect of the formation of a liquid on the chemical stability of TIC in the presence of ASA 

should be evaluated. 

The eutectic mixtures were subjected to a heating-cooling cycle with a heating (cooling) rate 

of 10 °C min-1 up to the Tpeak of the eutectic transition (=100 °C) and in certain cases up to 



the end of the liquidus (=130 °C), after which the samples were cooled. The pans were 

collected and the residues were analysed by LC-HR-MSn in positive mode. As illustrated in 

Fig.5a, immediate cooling after passing the eutectic temperature generated only one 

interaction product with m/z 565.2020, which represents an acetylation product of TIC as has 

been demonstrated above. By passing the liquidus temperature for a mixture of about 0.3 

mole fraction of TIC at around 120°C, the intensity of the former interaction product increases 

significantly along with the appearance of two of its other isomers (Fig.5b). Hence, it is clear 

that the acetylation of TIC plays an important role in its degradation process. Furthermore, 

contrary to the solid state, where the chemical interactions only slowly evolved, the liquid 

state gives almost immediately rise to one of the main degradation products, which next to 

the increased thermal activation energy, can be ascribed to the increase of the molecular 

mobility of the two APIs in the liquid [30]. 

 

Figure 5: Degradation of Ticagrelor – Aspirin system (0.30 mole fraction TIC)in the eutectic 

liquid (a) and just above the liquidus (b) 

 

Additional evidence by FT-IR 

Several measurements by FT-IR were carried out to investigate to what extent FT-IR can be 

used to demonstrate the progress of degradation in TIC-ASA mixtures. It can be shown that 

the pure APIs subjected to 100°C for 7 days do not exhibit substantial changes in their FT-IR 

spectrain comparison with the samples that were kept at room temperature for the same 

duration nor with the spectra of the samples obtained before heating evidenced by the 

excellent superposition of the different spectra (see Figure 6a spectra a, b, f, and g).  

In the FT-IR spectra of the TIC-ASA physical mixture at T0 and 25 °C, the characteristic 

peaks of the two pure drug substances can be recognized with no other new band present 



(Compare Figure 6a spectra c and d with spectra a and g). This confirmsthat the extent of 

the solid solutions is limited as observed by DSC.  

However, the TIC-ASA physical mixture heated for seven days at 100°C revealed a few clear 

changes (Fig 6a spectrum e, Table S2): 

- The absence of the OH stretching band of TIC at 3365 cm-1, and a significant 

decrease of the OH deformation bands (of about 40%) between 1423 and 1550 

cm-1.  

- The lack of the stretching vibration band at 1748 cm-1 assigned to the ester 

carbonyl group of ASA, followed by a significant increase (of about 20%) of the 

band of the carbonyl acid, red-shifted from 1748 to 1700 cm-1, and the 

appearance of a broad shoulder on the right.  

- In the fingerprint region from 1100 to 500 cm-1, huge changes in shape and 

intensity were observed in comparison to the spectra for the mixture at 25 °C. 

These results confirm the chemical interactions between TIC and ASA at elevated 

temperature.It is clear however, that FT-IR is not very sensitive to small chemical changes in 

the samples. 

 

Figure 6: IR spectra of Ticagrelor, Aspirin and and their mixture (0.30 mole fraction TIC) kept 

under different conditions: a) TIC day 0-25°C ; b) TIC day 7-100°C; c) TIC-ASA day 0-25°C ; 

d) TIC-ASA day 7- 25°C; e) TIC-ASA day 7-100°C; f) ASA day 7-100°C; g) ASA day 0-25°C 

(The arrows indicate changes in the spectra after storage at high temperature (see 

discussion text)). 

 

Evaporation and its effect on TIC-ASA mixtures 

 



To further elucidate the degradation process of TIC and ASA, mixtures and the pure 

compounds have been studied by thermal gravimetric analysis. The TG curves of ASA and 

TIC under nitrogen atmosphere are presented in Fig. 7. For ASA, its fusion is directly 

followed by two successive mass losses. The first mass loss is the result of the separation 

between salicylic acid and acetic acid with a possible formation of CO and CO2 as observed 

in our results above.This first loss is most likely accompanied by the formation of previously 

described ASA polymer [31].The second mass lossis obviously the evaporation/pyrolysis of 

this polymer.  

It is clear from the TG curve of pure TIC that it is much more stable than ASA, as its mass 

loss only starts around 300 °C, far above its melting temperature. This resistance to high 

temperature could be explained by the chemical structure of TIC, which consists of a purine 

nucleoside core, which is known to possess a high thermal resistance [32]. Moreover, other 

groups are present which can resist high temperatures relatively easily such as the aryl ring, 

OH,and NH, of which the latter two also form strong intermolecular hydrogen bonds that are 

difficult to break [33]. 

Mixtures of 0.3, 0.4, and 0.8 TIC mole fraction were subjected to the TG measurements. It 

can be seen in Figure 7 that the mass loss patterns of the three mixtures fully fall within the 

two extremes defined by the behaviour of pure TIC and pure ASA. There does not seem to 

be any clear evidence of an interaction between ASA and TIC in the mixtures as the curves 

are to a large extent simply the weighed sum of the curves of the pure compounds. 

Apparently, the acetyl moiety, which in the stress test appeared to play an important role in 

the degradation of TIC, does not have the chance to interact with TIC. This may be rather 

logical when one realises that the boiling point of acetic acid is 118 °C, which implies that the 

molecule and its derivatives will rapidly evaporate in the TG experiment. This is clearly in 

contrast to the previous investigations, where the temperature was consistently held below 

118 °C. In the case of the TG experiment, acetic acid will form around 100°C at the eutectic 



temperature, when a liquid is formed, and subsequently within 2 min the temperature will 

have reached 120°C, when the acetic acid will quickly evaporate from the mixture.   

Hence, it is clear from the preceding results that the separation of ASA into salicylic acid and 

acetic acid is at the core of the degradation of TIC, when mixed. This also supports the 

findings in relation to the reaction rate, which appears to depend mainly on the 

decomposition of ASA. 

 

Figure 7: Thermogravimetric analysis curves for Ticagrelor, Aspirin and several mixtures 

under an inert atmosphere 

 

4. Concluding remarks and pharmaceutical implications of the interactions 

The temperature-composition phase diagram of TIC form II and ASA has been constructed 

and it has been demonstrated through the eutectic phase diagram and theTammann curve 

that physical interactions between the two APIs in the solid state in the form of cocrystals 

seems to beabsent and in the form of solid solutions is probably limited. The solid mixture 

appears to be stable at room temperature at least for a year, but the formation of acetic acid 

originating from ASA should be avoided. It has clearly been shown that this is one of the 

major products that causes the degradation of TIC, when in contact with ASA. LC-HR-MSn 

characterization of the degradation/interaction products (DPs/IPs) revealed the strong 

interaction between the donor and acceptor sites of the two APIs. The main mechanism of 

TIC degradation involved N-dealkylation as demonstrated by the degradation products 

formed from the interaction products between ASA and TIC. 

Although the polypill concept presents many advantages in terms of patient compliance [34], 

inappropriate manufacturing processes or storage conditions may lead to chemical instability 

and compromise the drug. For example,even at room temperature, ASA can undergo 



moisture-catalysed hydrolysis [27] and degradation of TIC-ASA mixtures are expected under 

humid conditions. Moreover, TIC-ASA interactions generate hydrophilic (DPs) and lipophilic 

(IPs) products, which alter the pharmacokinetics and pharmacodynamics of the drug and 

hence reduce the potency [35]. Furthermore, ASA induced degradation of TIC generates 

primary arylaminethrough the N-dealkylation process, which are reported to participatein the 

metabolic activation by cytochrome P450, which may generate mutagenic and carcinogenic 

metabolites [36-38]. 

It has been shown in this paper, that there is a clear interaction between ASA and TIC and 

how to avoid it, information that can be used for the development of a combination therapy 

with ASA and TIC. It is clear that scientific research is indispensable to provide relevant 

information for preformulation strategies and quality risk assessment for the drug life cycle 

[39-41]. 
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Compounds  25 °C 80 °C (D1) 80 °C (D3) 100 °C (D1) 100 °C (D3) Under light (1.5 
W/m2) (D3) 

TIC White 
powder 

White 
powder 

White 
powder 

White 
powder 

White 
powder 

White powder 

ASA White 
powder 

White 
powder 

White 
powder 

White 
powder 

White 
powder 

White powder 

TIC-ASA (w:w) Whitepowder Whitepowder Melted and 
yellownish 

Melted and 
yellownish 

Melted and 
yellownish 

Whitepowder 



Table2 

TIC-ASA interactions products  

 

Correspondent TIC N-dealkylation degradation products  

Interaction 
products  

Retention 
time (min) 

Accurate 
mass 

Exact 
mass 

Error 
(ppm) 

 

Degradationproducts 
Retention 
time (min) 

Accurate 
mass 

Exact 
mass 

Error 
(ppm) 

TIC API 11.05 523.1819 523.1816 0.6 

 

371 8.35 371.1488 371.1502 -3.8 

        

343.1433 343.1429 1.2 

          

 

    325.1332 325.1323 2.8 

Carbonmonoxide-
TIC 13.27 551.1857 551.1883 -4.7 

 

371-CO 8.96 399.1429 399.1445 -4.0 

(IP1) 

 

533.1766 533.1778 -2.3 

 

(DP1) 

 

381.1324 381.134 -4.2 

  

523.1820 523.1816 0.7 

   

371.1492 371.1496 -1.1 

  

505.1707 505.1731 -4.8 

   

371.1372 371.1384 -3.2 

  

399.1433 399.1445 -2.9 

   

357.0973 357.0976 -0.8 

  

391.1167 391.1147 5.1 

   

337.1092 337.1077 4.4 

  

363.1094 363.108 3.9 

   

329.1022 329.1027 -1.5 

        

329.0910 329.0914 -1.2 

        

311.0807 311.0809 -0.6 

          

 

    169.0176 169.0179 -1.8 

Acetyl-TIC 

10.69-12.56-
13.07-13.82-

14.53 565.2016 565.2039 -4.1 

 

371-COCH2 
8.56-8.78-

9.02 413.1587 413.1602 -3.6 

(IP2)   523.1921 523.1934 -2.5 

 

(DP2)   371.1487 371.1502 -3.9 

Diacetyl-TIC 
16.90-17.70-

18.06 607.2116 607.2145 -4.8 

 

371-(COCH2)2 
9.19-9.49-

9.72 455.1689 455.1707 -4.0 

(IP3 

 

565.2023 565.2039 -2.8 

 

(DP3) 

 

413.1595 413.1602 -1.8 

    523.1916 523.1934 -3.4 

 

    371.1494 371.1496 -0.5 

Triacetyl-TIC 21.5-22.08 649.2232 649.2251 -2.9 

 

371-(COCH2)3 9.85-10.88 497.1791 497.1812 -4.2 

(IP4) 

 

607.2126 607.2145 -3.1 

 

(DP4) 

 

455.1696 455.1707 0.0 

  

565.2025 565.2039 -2.5 

   

413.1595 413.1602 -1.7 

  

 

523.1927 523.1934 -1.3 

   

371.1488 371.1502 -3.9 

TIC-Salicylate 19.7-20.44 643.2114 643.2144 -4.7 

 

371-Salicylate 10.51 491.1697 491.1707 -2.0 

(IP5)   523.1924 523.1934 -1.9 

 

(DP5)   371.1488 371.1502 -3.8 

Acetyl-TIC-
Salicylate 

16.46-18.58-
22.63 685.2216 685.2251 -5.1 

 

Acetyl-371-Salicylate 
9.96-11.27-

12.18 533.1790 533.1813 -4.3 

(IP6) 

 

565.2014 565.2039 -4.4 

 

(DP6) 

 

413.1592 413.1602 -2.4 

    523.1921 523.1934 -2.5 

 

    371.1491 371.1502 -3.0 



Diacetyl-TIC-
Salicylate 

20.77-21.16-
21.8 727.2327 727.2356 -4.0 

 

Diacetyl-371-
Salicylate 

10.17-
10.65-
11.30 575.1888 575.1919 -5.4 

(IP7) 

 

685.2243 685.2251 -1.2 

 

(DP7) 

 

533.1798 533.1813 -2.8 

  

607.2134 607.2145 -1.8 

   

491.1706 491.1707 -0.2 

    565.2033 565.2039 -1.0 

 

    413.1591 413.1602 -2.8 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 
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Figure 7 


