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Although composite endpoints (CE) are common in clinical trials, the impact of the relationship between the
components of a binary CE on the sample size requirement (SSR) has not been addressed. We performed a
computational study considering 2 treatments and a CE with 2 components: the relevant endpoint (RE) and
the additional endpoint (AE). We assessed the strength of the components’ interrelation by the degree of relative
overlap between them, which was stratified into 5 groups. Within each stratum, SSR was computed for multiple
scenarios by varying the events proportion and the effect of the therapy. A lower SSR using CE was defined as
the best scenario for using the CE. In 25 of 66 scenarios the degree of relative overlap determined the benefit of
using CE instead of the RE. Adding an AE with greater effect than the RE leads to lower SSR using the CE regard-
less of the AE proportion and the relative overlap. The influence of overlapping decreases when the effect on RE
increases. Adding an AE with lower effect than the RE constitutes the most uncertain situation. In summary, the
interrelationship between CE components, assessed by the relative overlap, can help to define the SSR in spe-
cific situations and it should be considered for SSR computation.

association measures; binary endpoints; composite endpoint; correlated endpoints; outcome assessment;
sample size

Abbreviations: AE, additional endpoint; AMI, acute myocardial infarction; CE, composite endpoint; RCT, randomized clinical trial;
RE, relevant endpoint; RR, relative risk; SR, Sample Ratio; SSR, sample size requirement.

Use of a composite endpoint (CE) is a common strategy
to reduce sample size in randomized clinical trials (RCT)
(1–5). In addition to other potential benefits (6–8), combin-
ing 2 or more endpoints in a single CE might increase the
number of events, thus reducing sample size requirements
(SSRs). This strategy has been widely employed in cardio-
vascular clinical trials. For instance, the endpoint acute
myocardial infarction (AMI) is usually combined with the
endpoint “mortality.” It is biologically plausible that reduc-
ing AMI could also lead to mortality reductions, and both
are important outcomes for patients. The fact that both com-
ponents are important for clinicians and patients provides a
rationale for using CEs (4, 5, 9–12). Although the effect of a
new treatment on the CE clearly depends on the effect on
each component, the impact of the relationship between
components on the statistical power and sample size is not

usually considered. Thus, the increased probability of mor-
tality in patients with AMI, which determines the correlation
between both components, could be an important issue in
sample size computation. In other words, the presence of a
strong or a weak relationship between components of a CE
may modify sample size computation in a RCT.

The benefits, risks, and influence on sample size compu-
tation of using CEs have been broadly studied (1, 2, 6, 7, 9,
13, 14). However, to our knowledge, the impact of the
strength of the relationship between CE components on
such computation has not been addressed in depth (3, 4,
15–18). In this sense, it is well known that the degree of
relationship between CE components can affect both type I
and type II errors when computing the sample size of the
CE. However, a numerical approach to quantifying their
impact on the power of the CE has not, to our knowledge,
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been explored. Although in the setting of 2 or more coprim-
ary binary endpoints, the correlation between endpoints and
impact on power and sample size has been explored (16, 17,
19, 20), this is not the case regarding CE components. In the
setting of survival analysis, Gómez and Lagakos (21) have
developed a method to quantify the efficiency of adding an
endpoint to an outcome expected to capture the main effect
of the treatment. Their method is valid for time-to-event pri-
mary endpoints and is based on the asymptotic relative effi-
ciency between 2 log-rank tests. The method is built from
the marginal laws of the times to each of these 2 outcomes
and uses Spearman’s rank correlation between these 2 times.
Other papers discuss the relationship between asymptotic
relative efficiency and needed sample sizes (22) and provide
recommendations in cardiovascular studies (23).

We propose a method to quantify the strength of the rela-
tionship between components of a binary CE. It is based on
the quantification of the overlap between them (i.e., the
probability of both events happening together) and their rel-
ative contribution to the probability of the CE. We explore,
based on this method, the impact of the strength of the inter-
relation between the components on the SSR using the CE,
which, ultimately, can be useful when choosing between a
binary CE and one of its components.

METHODS

Definitions and assumptions

For simplicity we consider an RCT with only 2 treatment
arms. We define a relevant endpoint (RE) as the outcome
that is expected to drive the main effect of the treatment. For
example, if the treatment is expected to reduce the rate of
AMI, then AMI is the RE. The additional endpoint (AE) is
the outcome that the researcher considers combining with
the RE in a CE to reduce the SSR. For instance, mortality
and AMI could be combined in a CE attempting to decrease
sample size. The statistical test is based on the difference in
events proportion between groups. Sample size estimates
are computed, assuming a normal distribution, for the CE
and the RE. If using the CE requires a smaller sample than
the single RE then researchers could prefer to use the CE
(22) instead of the RE alone.

Let ( )X X,ij ij1 2 be the vector of responses where Xij1 and
Xij2 denote the responses of the RE and the AE endpoints

respectively for the jth subject in the ith treatment group
(i = 1, 2). We assume that the responses are independently
distributed as a bivariate Bernoulli distribution with

( ) = πE Xijk ik and ( ) = π ( − π )V X 1ijk ik ik , where k only takes
the values 1 or 2. Define the response of the CE by ⁎Xij ; note
that it is equal to 1 whenever X or Xij ij1 2 are equal 1, and it is
0 otherwise. ⁎Xij is a Bernouilli random variable with
expectation:

( ) = ( = ) = (( = ) ∪ ( = ))
= ( = ) + ( = ) − (( = )

∩ ( = )) = π + π − π
( )

⁎ ⁎E X X X X

X X X

X

Prob 1 Prob 1 1

Prob 1 Prob 1 Prob 1

1 ,

1

ij ij ij ij

ij ij ij

ij i i i

1 2

1 2 1

2 1 2 12

where πi12 corresponds to the probability of both outcomes
(RE and AE) happening together. Note that with these 6
parameters (π π π π π π )= = = = = =, , , , ,i i i i i i1,1 1,2 1,12 2,1 2,2 2,12 , the
sample size for RE and CE can be computed. Usually
π π,i i1 2 are known, but this is not the case for πi12.

The overall possible scenarios concerning the probability
of the intersection of both outcomes in an RCT can be repre-
sented as in Figure 1.

Figure 1A depicts a scenario without overlapping
between endpoints (i.e., no patient who had AMI died).
Figure 1B, Figure 1C, and Figure 1D represent weak, mod-
erate, and strong overlap, respectively. Figure 1E represents
the maximum possible overlap (i.e., all patients who died
had had AMI). Each scenario has different impact on the
computation of the sample size.

We define relative overlap as the conditional probability
of experiencing the 2 outcomes given that the patient has
experienced one of them, which is evaluated as the ratio
between the probability of the intersection and the probabil-
ity of the CE as computed in equation (1). This statistic is
well known in ecology and genetics as Jaccard’s index of
similarity (24–26). It is used to estimate the similarity of
sample sets. Using our notation, the relative overlap in
group i (for an arbitrary subject j from treatment group i):

= ( = = | + ≥ ) =
π

π + π − π
( )

RO X X X XProb 1 1

2

i i i i i
i

i i i
1 2 1 2

12

1 2 12

Note that equation (2) corresponds to ( ∩ ) ÷P A B ( ∪ )P A B
when A and B stand, respectively, for the events [ = ]X 1ij1

A) B) C) D) E)

Figure 1. Example of possible scenarios concerning the probability of the intersection of both outcomes in a randomized clinical trial. Each
square represents 1% probability. The white square represent the probability of death (π = 0. 20i1 ), and gray square represents the probability of
acute myocardial infarction (π = 0. 40i1 ) for the ith treatment. The πi12 in each scenario are: 0.00 (A), 0.05 (B), 0.10 (C), 0.15 (D), and 0.20 (E), and
the probability of the composite endpoint in each scenario was assessed as in equation (1), at 0.60, 0.55, 0.50, 0.45, and 0.40, respectively.
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and [ = ]X 1ij2 . Following basic relationships between the
probability of the union of two events and the probability
of their intersection it follows that the relative overlap
in group i, ROi, is bounded by { π + π − } ≤max 0, 1i i1 2{ }≤ π

π
π
π

RO min , .i
i

i

i

i

1

2

2

1

The πi12 value ranges from 0, in the case of 2 disjoint sets
(Figure 1A), to the value of the less prevalent endpoint prob-
ability, in the case of completely overlapping sets
(Figure 1E); then:

{ π + π − } ≤ π ≤ {π π } ( )max 0; 1 min , . 3j j i i i1 2 12 1 2

From equations (1) and (3), the range of possible values
of ( )⁎E Xij is given by

[{ {π π } ≤ ( = ) ≤ {π + π }}]
( )

⁎Xmax , Prob 1 min ,1 .

4
i i ij i i1 2 1 2

And from equations (1) to (4), the range of values of ROi
is bounded by:

{ π + π − }
π
π

π
π

( )max 0, 1 , min , . 5i i
i

i

i

i
1 2

1

2

2

1

⎡
⎣⎢

⎧⎨⎩
⎫⎬⎭

⎤
⎦⎥

We additionally assume that the magnitude of the rela-
tionship between endpoints is the same in treatment (i = 1)
and control groups (i = 2); the conditional probability of
having the AE as well as having had the RE (and vice versa)
is not affected by the treatment. Note that this does not
imply π = π1,12 2,12. For example, consider that the propor-
tion of the RE and the AE in the control group (i = 2) are
0.20 and 0.40 respectively. From equation (3) it easily fol-
lows that the range of values of π2,12 can fall from 0 to 0.2.
Assuming that the effect of the treatment is quantified by the
relative risk (RR) and is equal to 0.9 for the RE and 0.5 for
the AE, the proportion for the treatment group (i = 1) will
be 0.18 and 0.20 for the RE and the AE, respectively. Again,
from equation (3), π1,12 can take values from 0 to 0.18. Con-
sidering, for instance, the maximum possible overlap
(Figure 1E), then π = ≠ π =0.20 0.182,12 1,12 .

Sample size and statistical power calculation

The analysis aimed at quantifying to what extent using
a binary CE instead of a single RE can decrease the SSR for
a given significance level and for a given power to detect a
given proportion difference, considering different overlap-
ping scenarios.

SSRs using the RE or using the CE are calculated to
detect differences in the proportion of events between both
groups, considering a type I error of 0.05 (note that other
hypothesis tests such as superiority could be used). We
address 2 different, not equivalent, hypothesis tests, depend-
ing on whether we base our primary endpoint on RE or CE.
Specifically:

π = π
π ≠ π

π = π
π ≠ π

⁎

⁎
H

H

H

H

:

:

:

:
RE RE

RE RE

CE CE

CE CE

0 2, 1,

1 2, 1,

0 2, 1,

1 2, 1, .

⎧⎨⎩
⎧⎨⎩

Sample size is calculated using the normal approximation
to the binomial test. It can be computed for both the RE and
CE as it is presented in equation (6) (27, 28), where π repre-
sents the probability of the RE or the probability of the CE
as calculated in equation (1), π =i 1 the probability in one
group, and π =i 2 the probability in the other group (estimated
assuming certain effect). The α and β are the type I and II
errors respectively:

≥
π ( −π ) + π ( −π ) + π ( −π )

π − π

π =
π + π

( )

α β = = = =

= =

= =

n
Z Z2 1 1 1

,

2
.

6

i i i i

i i

i i

/2 1 1 1 1 2 2

1 2

2

1
1 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A CE will be preferred if the number of subjects required
(n*) to detect an effect using the CE is lower than using the
single RE (22) (n). We define the sample ratio (SR) as the
ratio between sample sizes: (SR = )⁎n n/ . Thus the CE will
be preferred in all situations where SR > 1.

Finally, given a fixed number of patients, the statistical
power (pw) using the CE and the RE can be calculated as
follows:

= − β = ≤
(π − π ) − π ( − π )
π ( − π ) + π ( − π )

( )

= = α

= = = =
P X

n Z
pw 1

2 1

1 1
,

7

i i

i i i i

1 2 /2 1 1

1 1 2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where X is a standardized normal distribution.

Numerical examples

We simulated several scenarios (Table 1) assuming differ-
ent values of the event proportion for both the RE and the

Table 1. Prevalence and Range of Effects Simulated for the
Relevant and Additional Endpoints in Different Scenarios

P(RE)a RR(RE) P(AE) RR(AE)

0.10 0.70 to 0.90 0.10 0.70 to 1.00

0.10 0.70 to 0.90 0.20 0.70 to 1.00

0.20 0.70 to 0.90 0.10 0.70 to 1.00

0.20 0.70 to 0.90 0.20 0.70 to 1.00

0.03 0.70 to 0.90 0.10 0.70 to 1.00

0.03 0.70 to 0.90 0.01 0.70 to 1.00

Abbreviations: P(AE), proportion of additional endpoint; P(RE),
proportion of relevant endpoint; RR(AE), relative risk of additional
endpoint; RR(RE), relative risk of relevant endpoint.

aThe results of the scenarios with P(RE) = 0.10 are presented in
Web Table 1, for P(RE) = 0.20 in Web Table 2, and for P(RE) = 0.03
in Web Table 3.
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AE, the effect of therapy on each endpoint, and the degree
of overlapping:

Scenario 1: RE with a fixed proportion π == 0.10i 1,1 and
increasing treatment effect (RR1 from 0.9 to 0.7). An
AE with 2 proportions π == 0.10i 1,2 and π == 0.20i 1,2
was added, without effect of the therapy on the AE
( =RR 1.02 ).

Scenario 2: RE with a fixed proportion π == 0.10i 1,1 and
fixed and low treatment effect ( =RR 0.91 ). An AE with
2 proportions π == 0.10i 1,2 and π == 0.20i 1,2 was added.
Progressively higher therapy effect on AE (RR2= 0.9 to
0.7).

Scenario 3: RE with a fixed proportion π == 0.10i 1,1 and
fixed and moderate treatment effect ( =RR 0.81 ). An AE
with 2 proportions π == 0.10i 1,2 and π == 0.20i 1,2 was
added. Progressively higher treatment effect on AE
(RR2 = 0.9 to 0.7).

Scenario 4: RE with a fixed proportion π == 0.10i 1,1 and
fixed and high treatment effect ( =RR 0.71 ). An AE
with 2 proportions π == 0.1i 1,2 and π == 0.2i 1,2 was
added. Progressively higher treatment effect (RR2 = 0.9
to 0.7) on AE.

Then, for each scenario, 5 situations of overlapping were
considered, from absence (Figure 1A) to maximum overlap-
ping (Figure 1E). The whole range of possible values of rel-
ative overlap in each scenario was divided into 5 strata. The
Web Material (available at http://aje.oxfordjournals.org/)
includes all the scenarios showed in Table 1.

For each scenario we calculated sample sizes of the RE
and the CE, the SR, and the RR on the CE. The SRs gener-
ated in each scenario were plotted to highlight the situations
in which the use of CE is more “efficient” than the use of a
single RE in terms of sample size. Additionally, we com-
pared the power of using a single RE with that using the CE
across different sample sizes and considered different situa-
tions regarding the effect of the treatment and the degree of
overlapping.

Calculations for the 4 scenarios were replicated, increas-
ing the proportion of the RE to 0.20 (see Web Table 1),
decreasing the proportion of the RE to 0.03 (see Web
Table 2), and for 2 different scenarios of the proportion of
the AE (0.01 and 0.1). The scenarios have been chosen con-
sidering a general framework of credible clinical situations
in research. Other scenarios could be easily reproduced
using the formulas (1–7).

RESULTS

Web Table 3 shows the sample size calculated for the RE
and the CE, the SR, and the RR of the CE across all scenar-
ios considered. In scenario 1 (S1.1 – S1.4), adding an AE
without effect (RR = 1) results in a higher SSR, with all SRs
being lower than 1; thus the CE requires a higher sample
size than the RE. In addition, the higher the overlap, the
lower the effect on the CE and the greater the additional
sample size required. In general, an increase in the propor-
tion of the AE leads to either an increase in SSRs when the
overlap is very low or low or a reduction when overlap is

moderate or high. Then adding components without effect
always results in an increase of the sample size, even in the
most favorable situation when the components are disjoint.

In scenario 2 (S2.1 – S2.6), adding an AE with effect
results in a lower SSR except for maximum overlap, when
for sample size computation a single RE has equivalent
effects. Again, the higher the overlap, the lower the SR.
However, the impact of overlapping is greater when the pro-
portion of the AE is low (i.e., 0.1). The most favorable situa-
tion corresponds to the absence of overlapping, which
results in an exponential increase of SRs as long as the RR
on the AE increases. In all cases, increasing the AE propor-
tion implies a lower SSR with the CE. The impact of the
increase in AE proportion is greater as the effect on the AE
increases and the overlap grows.

In scenario 3 (S3.1–S3.6) the effect of the RE was incre-
mented with respect to scenario 2 (RR = 0.9 for scenario 3
against RR = 0.8 in scenario 2) while maintaining all the
other parameters. The comparison of these 2 scenarios sug-
gests that a greater effect on the RE implies lower SSRs,
lower SRs, and less marked changes in SRs when increasing
the overlap. However, it is to be noted that, when the effect
on the AE is lower than the effect on the RE (in both cases
the probabilities of events are restricted to π == 0.10i c,2 and
π == 0.20i c,2 ), overlap can determine a lower (SRs > 1; over-
lap very low or low) or higher (SRs < 1; overlap moderate
to very high) SSR when using the CE. This leads to a higher
number of instances—9 instances in scenario 3 and 3 in sce-
nario 2—in which the use of the CE implies the same or
greater SSRs than the use of the isolated RE. Thus, the rela-
tive overlapping net impact on efficiency may be greater
when RR = 0.9 (scenario 3) than when RR = 0.8 (scenario
2). Also, the impact of the increase of the proportion in AE
is greater as the effect on the AE and the overlap increases.
In scenario 4, when RR = 0.7 (S4.1–S4.6), the effect on the
RE is greater than in scenario 3 and scenario 2 (RR = 0.7 vs.
0.8 vs. 0.9), and the other conditions are equal.

Similarly, compared with scenario 2 and scenario 3, sce-
nario 4 leads to a lower SSRs, lower SRs, and less marked
changes in SRs when increasing overlap. The number of in-
stances in which the use of the CE implies the same or
greater SSRs than the use of the isolated RE is greater than
in scenario 3 and scenario 2 (15 vs. 9 vs. 3).Therefore, the
net impact of overlapping on efficiency may be greater as
the effect on the RE increases (scenarios 1 through 4).

In general, in all situations a greater overlap implies high-
er SSR of the CE (all other conditions being equal). How-
ever, the qualitative impact of overlapping is higher when
the effect on the AE is lower than the effect on the RE. This
can be observed in scenario 3 and scenario 4. In these situa-
tions, adding an AE with lower effect than the RE may
result in a lower or higher SSR depending on the relative
overlap. Globally in 11 out of 22 scenarios explored, the rel-
ative overlap magnitude could be determinant for CE use.

In general, the relative benefit expected of adding an AE
to an RE, assessed by the SRs, decreases when the propor-
tion of the RE increases (Web Table 2). The exception is
when both the proportion and the effect on the AE are
greater and the effect on the RE is greater. In cases of low
proportion of the RE (Web Table 3), the main impact of the
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Figure 2. Sample ratio trends in scenarios 2–4. A) P(AE) = 0.10, P(RE) = 0.10, and RR(RE) = 0.90. B) P(AE) = 0.20, P(RE) = 0.10, and RR
(RE) = 0.90. C) P(AE) = 0.10, P(RE) = 0.10, and RR(RE) = 0.80. D) P(AE) = 0.20, P(RE) = 0.10, and RR(RE) = 0.80. E) P(AE) = 0.10,
P(RE) = 0.10, and RR(RE) = 0.70. F) P(AE) = 0.20, P(RE) = 0.10, and RR(RE) = 0.70. Note that the possible range of relative overlap values
(x-axis) depends on the proportions of both the AE and the RE (i.e., lower bound: { π + π − }0; 1i i1 2 ; upper bound: {π π π π }min / , /i i i i1 2 2 1 ). Dashed
black lines denote equal sample size requirement (SSR) using the RE and the composite endpoint (CE); above the dashed black line implies
lower SSR using the CE, and below the dashed black line implies higher SSR using the CE. P(AE), proportion of additional endpoint; P(RE), pro-
portion of relevant endpoint; RR(AE), relative risk of additional endpoint; RR(RE), relative risk of relevant endpoint.
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CE SSR rests on both the proportion and the effect on the
AE. In 25 of the total of 66 scenarios explored, the degree
of relative overlap could determine the benefit for SSR of
using a CE.

Figure 2 summarizes the behavior of the SR across the
spectrum of overlapping in scenarios 2–4 (scenario 1 was
included because all SRs were lower than 1 in all situations).
In general, the greater the effect on the RE, the lower the
benefit of adding an AE, and the smaller the influence of
overlapping. By contrast, the impact of overlapping on SSR
is greater with lower proportions of the AE. In general, the
more the added AE is prevalent, the greater the benefit of
the CE on SSR (only in cases with a SR > 1). It must be
noted that, as shown above (in Definitions and Assump-
tions), the possible range of relative overlap values depends
on the proportion of both the AE and the RE.

Figures 3 and 4 show the power function, for both the
RE (solid line) and the CE (different dotted lines), given
different sample size intervals and considering different
scenarios concerning the effect on endpoints and the degree
of overlapping. As expected, the greater the effect on the
AE, the greater the statistical power of the CE, especially
when the overlap is small. In some scenarios the statistical
power is clearly greater using the CE regardless of the
overlap (Figure 4B, 4D, and 4F), whereas in other scenar-
ios it is more efficient to use a single RE (Figures 3E and
4E). However there are situations in which the overlap is
determinant to the selection of the single RE or the CE
(Figures 3C and 4C).

DISCUSSION

We have addressed the issue of the statistical “efficiency”
in sample size and statistical power terms using a binary CE
in a conceptual and visual manner. We have employed the
SR between the RE and the binary CE that results from add-
ing an AE to evaluate to what extent the proportion of
events, the effect on endpoints, and especially the overlap
between them determines the SSR using a CE. Examination
of different scenarios can be summarized as follows
(Table 2):

A. Should the effect on the AE be superior to the effect on the
RE, the use of CE will always be convenient to decrease
sample size regardless of the event’s proportion and the rel-
ative overlap. Even when adding a low-prevalence AE
with similar effect to that on the RE, the CE will be a better
solution than the RE. Influence of overlapping will
decrease as long as the effect on RE increases.

B. The greater the degree of overlapping, the lower the
potential benefit of the CE to reduce sample size. How-
ever, the benefit of combining endpoints with small
overlap is variable, depending on other parameters, such
as the treatment effect on each endpoint and the event
proportion. Occasionally the degree of overlapping will
be sufficient to recommend the use of CE.

C. Adding an AE with lower effect than that on the RE
constitutes the most uncertain situation. It could result
in either a greater or lower SSR when using the CE,

depending on the degree of overlap (i.e., the more, the
lower), the effect on the AE (i.e., the greater, the higher),
and the proportion of the AE. In general, increased AE
proportion will decrease the SSR using the CE.

The potential benefits of using CE in clinical trials have
been widely assessed (1–8). It is well recognized that,
among other benefits, CEs can be useful to decrease sample
size. Moreover, many authors agree that this could be the
main reason for using CEs. However, it is less recognized
that, besides other problems, the use of CEs may lead to a
statistical power reduction (21, 22). This is obvious when
the treatment effect on the AE is in the opposite direction
from the effect on the RE. Now we have described other sce-
narios in which endpoint combination could also lead to
increased SSRs even when components have the same
direction. Moreover, we have shown situations where, even
with substantial treatment effect on the AE, the use of CE
could imply a higher SSR to detect the true treatment differ-
ences. This is closely related to the degree of overlapping
between components.

We have introduced “overlap between endpoints” as a
conceptual approach to visualizing how relationships
between correlated components of a binary CE may influ-
ence statistical power for the CE. However, is to be noted
that overlap between components is neither equivalent to
correlation nor the intersection probability. Correlation
between endpoints is more related to the conditional proba-
bility of having the AE after having had the RE and vice ver-
sa, which is in relationship with the overlap but not
equivalent. In this case, we used the relative overlap as an
approach to quantify to what extent the relationship between
components of the CE can affect the power. This ratio is
also known as Jaccard’s statistic in ecology and genetics
(24, 25), where it is used to assess the similarity between
different samples or communities. In the context of CE, we
believe that the concept of relative overlap can be more intu-
itive for clinicians than the concept of correlation and the
concept of the intersection probability.

Elements that have an impact on the statistical efficiency
of the CE have been well described within time-to-event
analysis. Along with the probabilities of observing the event
components and the magnitude of treatment effect on each
component via the hazard ratio, Spearman’s rank correlation
between the times-to-each-component is needed (23).
Describing the relationship between the overlap of compo-
nents of a binary CE and the correlation between them in the
context of the time-to-event analysis is beyond the scope of
this manuscript and should be addressed in future work.

Schriger et al. (18) have identified that the relationship
between endpoints is not usually reported in publications
of RCTs. Moreover, sample computations of RCTs do not
usually include this parameter. Given its implications for
CE construction, an anticipated estimation of the plausible
relationship between components would be useful to
increase the precision of sample size estimates. As a future
line of outcomes research, it would be desirable to quantify
the relationship between outcomes in specific populations
from real RCT results. For example, knowing the propor-
tion of stroke in patients who had an AMI could be of
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Figure 3. Power curves considering different sample sizes in several scenarios for a P(RE) = 0.10 and a P(AE) = 0.10. A) RR(RE) = 0.90 and
RR(AE) = 0.90. B) RR(RE) = 0.90 and RR(AE) = 0.70. C) RR(RE) = 0.80 and RR(AE) = 0.90. D) RR(RE) = 0.80 and RR(AE) = 0.70. E) RR
(RE) = 0.70 and RR(AE) = 0.90. F) RR(RE) = 0.70 and RR(AE) = 0.70. Solid black line with closed circles denotes the statistical power curves for
the single RE. Dashed lines denote the statistical power curves for the composite endpoint for different relative overlap. Black horizontal lines
denote the threshold for a statistical power of 0.80. P(AE), proportion of additional endpoint; P(RE), proportion of relevant endpoint; RR(AE), rela-
tive risk of additional endpoint; RR(RE), relative risk of relevant endpoint.
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Figure 4. Power curves considering different sample sizes in several scenarios for a P(RE) = 0.10 and a P(AE) = 0.20. A) RR(RE) = 0.90 and
RR(AE) = 0.90. B) RR(RE) = 0.90 and RR(AE) = 0.70. C) RR(RE) = 0.80 and RR(AE) = 0.90. D) RR(RE) = 0.80 and RR(AE) = 0.70. E) RR
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the single RE. Dashed lines denote the statistical power curves for the composite endpoint for different relative overlap. Black horizontal lines
denote the threshold for a statistical power of 0.80. P(AE), proportion of additional endpoint; P(RE), proportion of relevant endpoint; RR(AE), rela-
tive risk of additional endpoint; RR(RE), relative risk of relevant endpoint.
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interest for sample size computations using a CE including
these 2 outcomes.

We have limited our exploration to binary CEs with only
2 components. Quantifying the associations between 3 or
more components of a CE and the resulting impact on the
SSRs should be addressed in future studies. However,
although computationally much more challenging, the
essential concepts described here would be valid. In any
case, their extension to more complex CEs will be necessary
to simulate real-life examples.

We have focused exclusively on the study of the SSR
using CEs. CEs may have other additional benefits that
could be apparent even if the CE is not efficient. For exam-
ple, the study of the net benefit of a therapy by a CE includ-
ing efficacy and safety endpoints could be completely
“inefficient,” because the CE may include components with
treatment effects in opposite directions. Thus a treatment
could reduce the rate of AMI, increasing at the same time
the rate of severe hemorrhage events. In this case, computa-
tion of sample size based on the net benefit of the therapy
(i.e., the rate of the CE AMI or severe hemorrhage) could be
inefficient in both sample size and statistical power terms.
However, sometimes this approach will be pragmatically
essential to depict the net usefulness of a treatment. Even in
these extreme cases, the study of the overlap between end-
points will be useful to estimate the SSR.
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