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Abstract

Inspired by prior results by Stanley [19] and Leroux [16] showing what information can be recovered from
an isomorphism of incidence algebras, we investigate the very same idea applied to decomposition spaces.
We review the work of Stanley and Leroux and provide sufficient background on the homotopy theory of
groupoids to be able to define decomposition spaces, equivalences of them as linear functors and solve the
isomorphism problem for both the groupoid-level coalgebra and for the numerical incidence algebra.
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1. Introduction

The field of combinatorics is full of examples of elegant proofs based on both algebraic and analytic methods.
In the late 20th century, the probabilistic method appeared as well. Theories like generating functions and
the symbolic method provide concise and rigorous solutions to purely combinatorial problems and can be
applied in a systematic manner.

However, it is often said that algebraic proofs do not always provide the combinatorial insight that a
direct proof in terms of bijections would. With the development of category theory in the last decades, there
has appeared a new solution to this problem: combinatorial species and groupoids for instance provide a
way to encode isomorphisms while still being able to do some algebra on them. For instance, we are going
to show how one can perform linear algebra with groupoid coefficients based on the work of Gálvez-Carrillo,
Kock and Tonks in [9]. Later we use these techniques to define the incidence coalgebra at the groupoid
level as in [8], without collapsing isomorphisms and symmetries to rational coefficients.

One of these external sources of combinatorial information is the construction known as the incidence
algebra. It is possible to define a k-algebra that reflects most of the combinatorial structure of some object,
be it a poset, a monoid, a category or, more generally, a decomposition space [8]. Many properties can be
recovered from inversion in this algebra or product formulas. One particularly well-known example is Möbius
inversion. In elementary terms, for two functions f , g : N≥1 → N≥1 such that

g(n) =
∑
d |n

f (d), n ≥ 1,

then

f (n) =
∑
d |n

µ(d)g
(n
d

)
, µ(d) =


1 if d is square-free with an even number of factors
−1 if d is square-free with an odd number of factors
0 otherwise

This can be restated and generalized in terms of the incidence algebra of the divisibility poset: The analog
statement states that the zeta function ζ(n) = 1 is invertible as an element of the incidence algebra of
the divisibility poset and that its inverse is the Möbius function, µ. This generalization step then provides
special cases of this inversion formula for any suitable category [3] or decomposition space [7].

An interesting question to ask is how much information from the combinatorial object is actually reflected
in the incidence algebra. A way to make this statement precise is to study whether an isomorphism of
incidence algebras induces an isomorphism between the objects they were constructed from. The proof then
hopefully provides an explicit bijection between components of the original structure. This kind of question is
generally regarded as Morita theory. Originally as studied by Kiiti Morita, it consisted in characterizing rings
that had equivalent module categories, but nowadays the concept is closer to the general idea of defining an
equivalence relation based on an equivalence of associated structures. His idea has been successfully applied
to multiple areas like ring theory, algebraic geometry and homotopy theory. In our case we consider posets,
Möbius categories or decomposition spaces with isomorphic incidence algebras to be Morita-equivalent.

This particular problem regarding incidence algebras has been studied and solved in a couple of cases.
Stanley proved in [19] that incidence algebras constructed from posets preserve the entire order relation,
and an isomorphism of two incidence algebras induces an isomorphism between the two posets they were
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constructed from. Leroux proves a similar statement for Möbius categories in [16], but the conclusion is
not as strong as one could expect. We extend their work to the theory of Segal spaces and decomposition
spaces and find appropriate conditions to be able to prove a similar result.

This work is organized in four main sections. In the section 2 we introduce the classical definition of
the incidence algebra for posets with results of Stanley and examples. Then we explain the generalization
by Leroux in section 3 and show a simple counter example showing that the result can not be strengthened
much further. After that, we provide basic notions from the homotopy theory of groupoids and some
category-theoretic constructions, including homotopy linear algebra. Finally, we use the tools from section 4
in section 5 to generalize the work of Leroux for the framework of decomposition spaces. There, we discuss
two versions of the isomorphism problem: one at the groupoid level, and one which is closer to the classical
variant in terms of a Q-algebra obtained by computing the cardinality of the one at the groupoid level.

4



2. The incidence algebra associated to a poset

In this section we introduce the most basic setting to work with incidence algebras and the result that we
aim to generalize for decomposition spaces. We are going to provide some basic results and intuition about
incidence algebras in order to have some familiarity with them when working on more general constructions.

First we include the basic definitions and the key result by Stanley [19], where he completely solves the
isomorphism problem for posets. We do not provide some proofs as we are going to prove more general
versions of them in the next sections. In some cases however, it is illustratory to provide a sketch of the
proof, as in the main theorem of this section. Then we prove the (much easier) converse implication and
look some examples.

Recall that a partially ordred set (poset) is said to be locally finite if all its intervals

[x , y ] = {z ∈ P : x ≤ z ≤ y}

are finite.

Then, given a locally finite poset P and a field k , one can construct the free k-vector space on its set
of intervals 〈intP〉k and then define the operation ∆ : 〈intP〉k → 〈intP〉k ⊗ 〈intP〉k given by

∆([x , y ]) =
∑

x≤z≤y
[x , z ]⊗ [z , y ]

= [x , x ]⊗ [x , y ] + [x , y ]⊗ [y , y ] +
∑

x<z<y

[x , z ]⊗ [z , y ].

Together with
ε : 〈intP〉k → k

[x , y ] 7→

{
1 if x = y

0 otherwise,

it defines a coalgebra structure on 〈intP〉k that we call the incidence coalgebra of P . Verifying the coasso-
ciativity is a simple exercise of applying the definition

(id⊗∆)(∆([x , y ])) = (id⊗∆)
( ∑

x≤z≤y
[x , z ]⊗ [z , y ]

)
=
∑

x≤z≤y
[x , z ]⊗

( ∑
z≤w≤y

[z ,w ]⊗ [w , y ]
)

=
∑

x≤z≤w≤y
[x , z ]⊗ [z ,w ]⊗ [w , y ]

= (∆⊗ id)(∆([x , y ]))

Counitality is even simpler:

(id⊗ ε)(∆([x , y ])) = (id⊗ ε)
( ∑

x≤z≤y
[x , z ]⊗ [z , y ]

)
=
∑

x≤z=y

[x , z ]⊗ ε([z , y ])

= [x , y ] = (ε⊗ id)(∆([x , y ])).
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Note that the hypothesis that P is locally finite is important here. Otherwise we could not ensure that the
sum in the definition of ∆ is finite.

Although this coalgebra structure perfectly expresses the intent to study decompositions in P , coalgebras
are nearly not as common as rings or k-algebras, so their treatment may feel a bit unintuitive or "backwards".
For this reason, we switch to algebras instead: there is a standard procedure to define a k-algebra from any
k-coalgebra, the resulting algebra is usually called the convolution algebra.

Given a k-coalgebra (C , ∆, ε), one can obtain its convolution algebra as follows. Consider the dual
vector space A = Homk(C , k) of C and define the convolution product of φ,ψ ∈ A as

(φ ∗ ψ)(x) = (φ⊗ ψ)(∆(x)),

with unit ε ∈ A. Diagramatically, φ ∗ ψ is given by the composition

C C ⊗ C k ⊗ k k.∆ φ⊗ψ ∼=

Moreover, any morphism of coalgebras f : C → C ′ defines a morphism of algebras f ∗ : Homk(C ′, k) →
Homk(C , k) by precomposition with f . Then one can verify that it preserves the multiplication: given
φ′,ψ′ ∈ A′, one has a commutative diagram

C C ⊗ C

C ′ C ′ ⊗ C ′ k ⊗ k k .

∆

f f⊗f

∆ φ′⊗ψ′ ∼=

The proof for unitality is similar but simpler. One can readily see that this operation is a contravariant
functor from the category of k-coalgebras and coalgebra morphisms to the category of k-algebras and
algebra morphisms Coalgop

k → Algk .

Applying this technique to the convolution algebra of a poset we obtain the incidence algebra I (P) of
P . Explicitly, it can be described as maps φ,ψ : intP → k (recall that there is a natural bijection between
set maps intP → k and linear maps 〈intP〉k → k) with multiplication

(φ ∗ ψ)([x , y ]) =
∑

x≤z≤y
φ([x , z ])ψ([z , y ]).

A particularly illustrating subset of these maps is given by the dual basis of intP . For each [x , y ] ∈ intP ,
one has the characteristic function χ[x ,y ] : intP → k which is 1 at [x , y ] and 0 at any other interval. Then,
one can interpret the multiplication of these functions as a multiplication or composition of intervals

(χ[x ,z] ∗ χ[z,y ])([s, t]) =

{
1 if [s, t] = [x , y ]

0 otherwise

= χ[x ,y ]([s, t]).

In the section 3 we will see how this precisely defines a composition in a suitable category, and how it allows
to generalize this theory.
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We also denote the characteristic functions at degenerate intervals as χx = χ[x ,x]. These constitute a
surprisingly important submonoid of I (P), where multiplication simply becomes pointwise multiplication in
k :

(χx ∗ χy )([s, t]) = χx([s, t])χy ([s, t]) =

{
1 if s = t = x = y

0 otherwise

This is, either χx ∗ χy = χx = χy or χx ∗ χy = 0.

The reason why these maps are useful is that they can be identified as the dual bases of the free vector
space spanned by P itself. We consider this vector space, HomSet(P, k), to be another k-algebra with
pointwise multiplication

(φ ∗ ψ)(x) = φ(x)ψ(x), φ,ψ ∈ HomSet(P, k)

and unit the constant map 1. Then it can be readily seen that the map

eP : HomSet(P, k) → I (P)
φ 7→ φ̄,

where φ̄ : intP → k is the extension of φ with 0’s for nondegenerate intervals

φ̄([x , y ]) =

{
φ(x) if x = y

0 otherwise.

This clearly maps characteristic functions χx : P → k to what we purposely denote in the same way, namely
χ[x ,x] : intP → k .

Next, if we define
J(P) = {φ ∈ I (P) : φ([x , x ]) = 0 ∀x ∈ P},

it can be easily proved to be a two-sided ideal of I (P). Then we have a close relationship betwen J(P) and
the collection of characteristic functions χx .

Proposition 2.1. The composition of the extension map eP with the projection I (P) → I (P)
/
J(P) is an

isomorphism of k-algebras.
HomSet(P, k) ∼= I (P)

/
J(P)

Moreover, its inverse is the passage to the quotient of the restriction map to degenerate intervals, rP .

Proof. To see that it is injective, let φ ∈ HomSet(P, k) with eP(φ) ∈ J(P). Then φ(x) = 0 for all x ∈ P ,
so φ = 0. For surjectivity, let [φ] ∈ I (P)

/
J(P) and observe that [φ] = [eP(φ|P)], where we identify P again

with the set of degenerate intervals.

We need to remind some algebraic terminology now. An idempotent element in a ring R (or algebra)
is an element x ∈ R such that x2. Two elements x , y ∈ R are said to be orthogonal if xy = yx = 0 and
x ∈ R is primitive if x = y + z for orthogonal idempotents y and z implies that y = 0 or z = 0. Now one
can easily verify the following proposition:

Lemma 2.2. The set of characteristic functions in HomSet(P, k) is the unique maximal set of primitive
orthogonal idempotents of HomSet(P, k).

7



Morita Equivalence and Decomposition Spaces

Moreover, the key in Stanley’s proof of the isomorphism problem lies in a purely ring-theoretic lemma.

Lemma 2.3 ([19]). Let R be an associative ring. Suppose e, f , e ′, f ′ are idempotents in R such that e ′− e
and f ′−f belong to a two-sided ideal J satisfying

⋂
n≥1 J

n = 0. Then e ·R ·f = 0 if and only if e ′ ·R ·f ′ = 0.

Finally, one can solve the main isomorphism problem by combining all the results we have seen so far.

Theorem 2.4 ([19]). Let P,Q be locally finite posets and Φ : I (P) ∼= I (Q) an isomorphism of algebras.
Then P ∼= Q.

Proof (Sketch). Firstly, observe that x ≤ y ⇐⇒ χx ∗ I (P) ∗ χy 6= 0. With this in mind, the family {χx}
can be partially ordered as χx ≤ χy ⇐⇒ χx ∗ I (P) ∗ χy 6= 0, which gives a poset P ′ that is isomorphic
to P . The next step is to prove that the construction of P ′ does not depend on the order relation in P by
replacing {χx}x by any maximal family of primitive orthogonal idempotents of I (P).

For any other such family of primitive orthogonal idempotents {ψα}α∈A, one can combine Proposition 2.1
and Lemma 2.2 to conclude that there is a bijection τ : P → A such that χx − ψτα ∈ J(P). This is,
ψα|P = χx .

Then, by 2.3 together with the bijection τ , the partial order defined on {ψα}α as

ψα ≤ uβ ⇐⇒ ψα ∗ I (P) ∗ uβ 6= 0

is isomorphic to P ′.

Finally, let Φ : I (P)→ I (Q) be an isomorphism of k-algebras, {χx}x the family of idempotents of I (P),
P ′ the partial order induced by {χx}x and Q ′ the partial order induced on I (Q) by its corresponding family
of idempotents. It is clear that Φ maps {χx}x to {Φ(χx)}x∈P , a maximal family of primitive orthogonal
idempotents in I (Q), which is a partial order isomorphic to Q ′. In fact, the restriction of Φ to P ′ is also an
isomorphism of partial orders:

χx ≤ χy ⇐⇒ χx ∗ I (P) ∗ χy 6= 0

⇐⇒ Φ(χx ∗ I (P) ∗ χy ) = Φ(χx) ∗ I (Q) ∗ Φ(χy ) 6= 0

⇐⇒ Φ(χx) ≤ Φ(χy ).

Therefore, we get P ∼= P ′ ∼= Φ(P ′) ∼= Q ′ ∼= Q.

2.1 Functoriality

We now study the easier converse implication. To do this, we first detect which class of monotone maps
between posets always induce algebra morphisms. These turn out to be the local isomorphisms.

Definition 2.5. Let P and Q be posets. A monotone map f : P → Q is a local isomorphism if f restricts
to an isomorphism [x , y ]→ [f (x), f (y)] for each x , y ∈ P .

Observe that for a local isomorphism f , it is always true that [f (x), f (y)] = f ([x , y ]). The inclusion
⊇ is true in general, and ⊆ is due to the surjectivity of f |[x ,y ] : [x , y ] → [f (x), f (y)]. Another immediate
consequence is the following1:

1Recall that x l y if and only if x < y and there is no z with x < z < y .
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Proposition 2.6. A local isomorphism reflects the covering relation. In particular, it reflects the length of
unrefinable chains.

Proof. Let f : P → Q be a local isomorphism and P and Q locally finite posets. Observe that

x l y ⇐⇒ |[x , y ]| = 2, |[f (x), f (y)]| = 2 ⇐⇒ f (x) l f (y).

Since f provides a bijection [x , y ]→ [f (x), f (y)], we have x l y ⇐⇒ f (x) l f (y).

Example 2.7. The inclusion of an interval [x , y ] ⊆ P is always a local isomorphism. Indeed, if [z ,w ] ⊆ [x , y ],
then the image of the inclusion is [z ,w ] itself.

Notice that the special fact about local isomorphisms is that they preserve the decomposition structure
of an interval. The following proposition exploits this fact in order to prove the functoriality of the incidence
coalgebra (we write LPosl.iso for the category of locally finite posets and local isomorphisms between them).

Lemma 2.8. The rule C : P 7→ 〈intP〉k defines a functor LPosl.iso → Coalgk .

Proof. For a monotone map P → Q, define f̂ : 〈intP〉k → 〈intQ〉k as f̂ ([x , y ]) = [f (x), f (y)], extended
by linearity. It is obvious that this action preserves compositions and identities, so we just need to prove
that that these are coalgebra homomorphisms. Firstly, it preserves the counit ε

ε(f̂ ([x , y ])) = ε([f (x), f (y)]) =

{
1 if f (x) = f (y)

0 if f (x) 6= f (y)

=

{
1 if x = y

0 if x 6= y
(f : [x , y ]

∼=−→ [f (x), f (y)])

and (f̂ ⊗ f̂ )∆ = ∆f̂

(f̂ ⊗ f̂ )(∆([x , y ])) = (f̂ ⊗ f̂ )
(∑
t∈[x ,y ]

[x , t]⊗ [t, y ]
)

=
∑

t∈[x ,y ]

f̂ ([x , t])⊗ f̂ ([t, y ])

=
∑

t∈[x ,y ]

[f (x), f (t)]⊗ [f (t), f (y)]

=
∑

z∈f ([x ,y ])

[f (x), z ]⊗ [z , f (y)] (f : [x , y ]
∼=−→ f ([x , y ]))

=
∑

z∈[f (x),f (y)]

[f (x), z ]⊗ [z , f (y)] (f ([x , y ]) = [f (x), f (y)])

= ∆([f (x), f (y)]) = ∆(f̂ [x , y ]).

Now, we have seen above that the convolution algebra defines a (contravariant) functor. Thus, by
composing we have that the incindence algebra is a functor

9
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LPosop
l .iso Coalgop

k Algk ,Cop HomSet(−,k)

Functoriality then provides an immediate consequence: if P ∼= Q, then I (P) ∼= I (Q). Together with
Theorem 2.4, one obtains that P ∼= Q if and only if I (P) ∼= I (Q).

2.2 Example: subgroup lattices

To conclude this section, we show some examples with subgroup lattices of well-known groups. For G
a group, we write S(G ) for the lattice of subgroups of G ordered by inclusion. In order to simplify the
notation, let grp be the full subcategory of Grp (the category of all groups) with finite groups only.

Let G ,H be two groups and f : G → H a group morphism. Then, f induces a monotonic function,
f (−) : S(G )→ S(H) that maps a subgroup to its image via f . This gives rise to a functor

S : Grp → Pos
G 7→ S(G )
f 7→ f (−)

Proposition 2.9. The functor S restricts to a functor S : grp → LPos from the category of finite groups
to the category of locally finite posets and monotone maps. In fact, the following are equivalent for any
group G :

1. G is finite.

2. S(G ) is locally finite.

3. S(G ) is finite.

Proof. Clearly, (1)⇒(2) and (1)⇒(3). We also have that (2)⇔(3) because S(G ) is equal to the interval
[1,G ]. To check that (3)⇒(1), suppose G infinite and consider two cases:

• If all elements have finite order, {〈x〉}x∈G is an infinite collection of subgroups, so S(G ) must be
infinite.

• If there is an element x ∈ G with infinite order, then {〈xn〉}n≥0 is also an infinite collection of sub-
groups.

Example 2.10. In this example we compute the incidence algebra of the subgroup lattice of the cyclic
group C4 = Z4. Note that C4 has exactly two subgroups: the trivial one and H = 〈2〉 ∼= C2. Therefore, the
set of intervals of the poset P = S(C4) = {0 < H < C4} is

int(S(C4)) = {[0, 0], [0,H], [0,C4], [H,H], [H,C4], [C4,C4]}.

First, we compute an example of a comultiplication in the incidence coalgebra of P :

∆([0,C4]) = [0, 0]⊗ [0,C4] + [0,H]⊗ [H,C4] + [0,C4]⊗ [C4,C4].

10



Next, we have that the incidence algebra of this poset over some field k is Hom(int(P), k), with multiplication
given by

(φ ∗ ψ)([G1,G2]) =
∑

G1↪→G3↪→G2

φ([G1,G3])ψ([G3,G2]).

In addition, notice that I (S(C4)) has finite dimension 6 and its canonical basis consists of

• Characteristic functions at degenerate intervals: χ0,χH ,χC4 .

• Characteristic functions at nondegenerate interavals: χ[0,H], χ[H,C4] and χ0,C4 .

As we have seen, we can understand most of the incidence algebra by looking at these elements.

Example 2.11. We now repeat a similar process with the Klein group V4 = C2 × C2
∼= Z2 × Z2. In this

case we have the following subgroup lattice, P :

V4

〈(0, 1)〉 〈(1, 0)〉 〈(1, 1)〉

0

Similarly to the previous case, the incidence algebra of P is generated by all the intervals of the form [G1,G2],
with G1 ↪→ G2 ↪→ V4. The only difference in this case is that the whole poset interval [0,V4] is not a chain.

Now the basis consists of 5 characteristic functions at degenerate intervals and 6 at nondegenerate ones.
Moreover, we have a new trait that did not appear in the example with C4 as it was a chain:

χ[0,〈(0,1)〉] ∗ χ[〈(0,1)〉,V4] = χ[0,〈(1,0)〉] ∗ χ[〈(1,0)〉,V4] = χ[0,〈(1,1)〉] ∗ χ[〈(1,1)〉,V4] = χ[0,V4]

This is, if two chains have the same endpoints, then their corresponding product of characteristic functions
coincide and equals the interval defined by the two endpoints.

Example 2.12. Next, we look at the incidence algebra of the subgroup lattice of the symmetric group S3.
We know that S3 = 〈(1, 2), (1, 3), (2, 3),σ = (1, 2, 3)〉. Then, we have the following subgroup lattice:

S3

〈σ〉

〈(1, 2)〉 〈(1, 3)〉 〈(2, 3)〉

1

Observe that this lattice is extremely similar to V4’s: instead of 3 intermediate subgroups we have 4.
Then, the same results hold almost verbatim with the only difference being that we now have one more
chain that reaches the top element.
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3. Möbius categories

In this section we are going to generalize these results from the previous section about posets to Möbius
categories as an intermediate step before delving into decomposition spaces. Doing so will expose some
issues that necessarily show up when studying the isomorphism problem for decomposition spaces. Most of
the material in this section is originally due to Content, Lemay and Leroux ([3], [16]).

First, we need to explain what the concepts that we used to define incidence algebras for posets become
in this setting. Let P be a poset and regard it as a category C (so its objects are the elements of P and
there is one arrow x → y if and only if x ≤ y). There is a bijection between intP and Mor C, the set of
morphisms of C:

intP → Mor C
[x , y ] 7→ x

∃!−→ y

Moreover, identities (which are unique at each object in any category) correspond to degenerate intervals
[x , x ]. This already indicates that the incidence algebra of a category should be defined in terms of its set
of morphisms.

Next, we define the analogue of locally finite posets for categories. If a category C is a poset and
f : x → y is the arrow in C corresponding to an interval [x , y ], there is a bijection

(f ) → [x , y ]
(f ′, f ′′) 7→ cod f ′ = dom f ′′,

where
(f ) = {(f ′, f ′′) : f ′f ′′ = f }

is the set of factorizations of f . Therefore, we must require these sets to be finite.

Definition 3.1. A decomposition-finite category is a small category C where (f ) is finite for any f ∈ Mor C.

We can now proceed to define the incidence algebra of a decomposition-finite category.

Definition 3.2. Similarly as for locally finite posets, the incidence algebra over a field k of a decomposition-
finite category C is defined as the set of maps from Mor C to the field k

I (C) = HomSet(Mor C, k)

with multiplication of φ,ψ : Mor C → k given by

(φ ∗ ψ)(f ) =
∑

f =f ′f ′′

φ(f ′) · ψ(f ′′)

and unit

δ(f ) =

{
1 if f = ida for some a ∈ C
0 otherwise

Notice that this definition is essentially what we did for posets, although in this case we skipped the
construction of the coalgebra (the incidence algebra being its linear dual) for brevity. The actual isomorphism
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Morita Equivalence and Decomposition Spaces

is the classical one from the construction of the free vector space, which is a coalgebra isomorphism as well
due to how the convolution algebra is defined:

I (C) = HomSet(Mor C, k) ∼= HomVectk (〈Mor C〉 , k) = 〈Mor C〉∗k

Associativity is a direct consequence of the associativity of composition in C

(φ ∗ (ψ ∗ θ))(f ) =
∑
f =f1f2

φ(f1)(ψ ∗ θ)(f2)

=
∑
f =f1f2

∑
f2=f21f22

φ(f1)ψ(f21)θ(f22)

=
∑

f =f1f2f3

φ(f1)ψ(f2)θ(f3)

= ((φ ∗ ψ) ∗ θ)(f )

and unitality from elementary facts about composition with identities

(δ ∗ φ)(f ) =
∑
f =f1f2

δ(f1)φ(f2) = δ(idcod f )φ(f ) = φ(f ) = φ(f )δ(iddom f ) = (φ ∗ δ)(f ).

As before, for f ∈ Mor C we denote the characteristic function which is 1 at f and 0 otherwise by
χf : Mor C → k . For a subset U of Mor C, we define χU = {χf : f ∈ U}. We will also write any restriction
of χf as χf and deduce its domain from the context. The following example illustrates these operations
and similarities with the case of posets.

Example 3.3. Consider the category

1

0 2

ba

f

where f = ba. Including identities, it consists of 6 arrows, so I (C) ∼= k6 as vector spaces, where the basis
of I (C) is given by the characteristic functions χ0,χ1,χ2,χa,χb,χf : Mor C → k

χg (h) =

{
1 if g = h

0 otherwise.

Then the multiplication is just

χg ∗ χh =

{
χgh if g ◦ h exists
0 otherwise

Observe that this category is just the reinterpretation of the poset {0 < 1 < 2} and that their incidence
algebras coincide2: both have dimension 6 and it is easily verified that the correspondence explained above
between arrows and intervals induces the desired isomorphism by linear extension.

2Here multiplication factors are reversed due to composition syntax. Some authors simply give an alternative definition,
but they are all functionally equivalent in practice.
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Recall that a group (or a ring, field or k-algebra) structure on a set A is topological if A is a topological
space and the operations of A are continous. If k is a topological field, then I (C) naturally becomes a
topological k-algebra with the product topology regarding HomSet(Mor C, k) as the product kMor C . This is
yet another difference from the simpler case with posets, where the main proof did not require any topology
(explicitly).

Our work with the topology of I (C) will be based on convergent nets (sometimes called generalized
sequences). A net in I (C) is a map A → I (C) for A a directed set (i.e. any two elements in A have a
common upper bound). These provide direct generalizations of results about sequences in metric spaces
to topological spaces. A classical reference on nets in topology can be found in Kelley’s General Topology
[11].

Proposition 3.4. For k a topological field, a net (φα) in I (C) converges to φ if and only if (φα(f )) converges
to φ(f ) in k for all f ∈ Mor C. Moreover, I (C) is a topological k-algebra and it is Hausdorff whenever k is.

Proof. We only need to show that scalar multiplication, internal multiplication and addition are continuous,
the rest of the facts follow directly from completely general results explained in [11, Chapter 2]. The
continuity of these operations is proved by exploiting the characterization of limits and the continuity of
the operations in k . The proof for each operation is almost identical, for instance addition is continuous
because

lim
α
φα + lim

β
ψβ = lim

(α,β)
(φα + ψβ) ⇐⇒ lim

α
φα(f ) + lim

β
ψβ(f ) = lim

(α,β)
(φα + ψβ)(f ) ∀f ∈ Mor C.

We will regard I (C) as a Hausdorff topological k-algebra with respect to this topology for the rest of
this section. If k is not inherently a Hausdorff topological field, then we can assume the discrete topology
for k . The following result is a well-known fact about topological rings (see [20, §1.4]), but it is a simple
example of the kind of argument that we are going to use throughout this section.

Proposition 3.5. Let I be a left (right) ideal of a (not necessarily commutative) topological ring R . The
topological closure Ī of I is again a left (right) ideal of R .

Proof. Any r , s ∈ Ī can be rewritten as limits of convergent nets (rα) and (sβ) of I . Then by continuity of
addition and iterating the sum of limits we get that

r + s = lim
α

rα + lim
β

sβ = lim
α

lim
β

(rα + sβ) = lim
(α,β)

(rα + sβ),

hence r + s ∈ Ī because each rα + sβ belongs to I . Similarly, for any t ∈ R ,

t lim
α

rα = lim
α

trα ∈ Ī

again because each trα belongs to I .

Proposition 3.6. Let (λf )f ∈U a collection of scalars in k indexed by U ⊆ Mor C. Consider the set

Pfin(U) = {S ⊆ U : S is finite},
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Morita Equivalence and Decomposition Spaces

which is a lattice when ordered by inclusion and, in particular, a directed set. Then the net (
∑

f ∈S λf χf )S∈Pfin(U)

converges to
φ : Mor C → k

f 7→

{
λf if f ∈ U

0 if f 6∈ U.

This is, φ = lim
S⊆finU

∑
f ∈S

λf χf .

Proof. For any g ∈ Mor C, consider two cases:

• If g 6∈ U, then for any finite subset S of U(∑
f ∈S

λf χf

)
(g) = 0,

so (
∑

f ∈S λf χf )(g)→ 0 in k because it is a constant net.

• If g ∈ U, then for any finite subset S of U greater than (i.e. containing) {g},(∑
f ∈S

λf χf

)
(g) = λgχg (g) = λg .

This implies that the the (cofinal) subnet indexed by Pfin(U) is the constant net λg , so (
∑

f ∈S λf χf )(g)→
λg in k .

This means that (
∑

f ∈S λf χf )S → φ in I (C).

In light of this result, we may express any φ ∈ I (C) as a (possibly infinite) sum

φ =
∑
f ∈U

φ(f )χf ,

where U is either the support of φ or simply Mor C, just like an infinite linear combination or the sum of a
numerical series.

Next we have one of the core definitions of this theory, again due to Leroux et al. in [3] and [16]. The
length of a morphism essentially measures how decomposable an arrow is. For instance, the composition of
three indecomposable arrows has length at least 3.

Definition 3.7. Let C be a category and f a morphism in C. The length of f (if it exists) is

`(f ) = sup{n ∈ N : ∃f1, ... , fn 6= id s.t. f = f1 · · · fn},

We also define

Cn = {f ∈ Mor C : `(f ) = n}, Cn(A,B) = HomC(A,B) ∩ Cn, n ≥ 1.

For the rest of this section, we will often write A for idA.

Based on this concept of length one defines what turns out to be the appropriate class of categories to
work with incidence algebras and Möbius inversion.
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Definition 3.8. A Möbius category is a decomposition-finite category in which `(f ) exists for any morphism
f .

Observe that Möbius categories never contain non-identity idempotents or (left or right) invertible
morphisms. In particular, they are skeletal (i.e. isomorphism classes are trivial). Thus, in a Möbius
category, `(f ) = 0 precisely when f is an identity, so C0 = {idA : A ∈ C} corresponds to the set of objects
of C. It is also easily seen that `(f ) + `(g) ≤ `(fg) for any two morphisms f and g of C. The equality does
not hold in general though, as the example illustrates:

• •
• •

•

b
ca

d e

If cba = ed and all displayed arrows have length 1, then `(ed) = 3 > `(e) + `(d) = 2.

A particularly important theorem introduced in [3, Theorem 1.1] provides an inversion formula for
elements of the incidence algebra, a generalization of Möbius inversion.

Theorem 3.9 (Möbius inversion). A Möbius category is a decomposition-finite category in which any
φ ∈ I (C) is invertible if and only if φ(idA) 6= 0 ∀A ∈ C.

Perhaps even more importantly, the proof of this theorem provides an explicit (recursive) formula for
inversion in the incidence algebra:

φ−1(f ) =

φ(f )−1 if `(f ) = 0

−φ(dom f )−1
∑

f =gh
`(h)>0

φ−1(g)φ(h) if `(f ) > 0.

3.1 Functoriality of the incidence algebra

In this section we are going to take a look at which functors induce algebra morphisms in a similar fashion as
local isomorphisms did for posets. This should allow us to prove the easy part of the isomorphism problem:
do equivalent Möbius categories have isomorphic incidence algebras?

Definition 3.10. We say that a functor F : C → D is a local isomorphism if F × F : (f ) → (F (f )) is a
bijection for each f in C.

Given a local isomorphism functor F : C → D, it induces a linear map F ∗ : I (D) → I (C) defined as
F ∗ : φ 7→ φ ◦ F .

Proposition 3.11. Local isomorphisms are length-preserving.

Proof. Let F : C → D be a local isomorphism and C, D Möbius categories. First, we show that F (f ) = id
implies f = id. Recall that (id, id) ∈ (id) and (id, f ), (f , id) ∈ (f ). Since F is a local isomorphism,
(id, f ) 7→ (id,F (f )) = (id, id) and (f , id) 7→ (F (f ), id) = (id, id) implies that (f , id) = (id, f ), so f = id.

17



Morita Equivalence and Decomposition Spaces

Next, we prove that `(F (f )) = 1 implies `(f ) = 1. Observe that any non-degenerate decomposition
f = f1f2 would be mapped to a non-degenerate decomposition F (f ) = F (f1)F (f2), so `(f ) ≤ 1. By
functoriality `(f ) = 0 would imply `(F (f )) = 0, hence `(f ) = 1.

Now, let f be an arrow of length n ≥ 1 and let f = f1 · · · fn be a decomposition of f into arrows of
length 1. Then F (f ) = F (f1) · · ·F (fn) with each F (fi ) of length 1, so `(F (f )) ≥ `(f ). Finally, we prove
that `(f ) = `(F (f )) by induction on `(F (f )). The base case is already proved by combining all the previous
facts, so assume that `(F (f )) = n > 1 and and that `(g) = `(F (g)) for any g with `(F (g)) < n. Let
F (f ) = h1h2 with `(h1) = 1 and `(h2) = n − 1. Then (h1, h2) ∈ F (f ), so there exists (f1, f2) ∈ (f ) with
(F (f1),F (f2)) = (h1, h2). By induction hypothesis, `(fi ) = `(F (fi )) = `(hi ), hence

`(f ) = `(f1f2) ≥ `(f1) + `(f2) = `(h1) + `(h2) = `(F (f )).

Proposition 3.12. If F : C → D is a local isomorphism between Möbius categories, then F ∗ : I (D)→ I (C)
is a morphism of algebras.

Proof. Firstly, F ∗(δ) = δ by Proposition 3.11:

(δ ◦ F )(f ) = δ(F (f )) =

{
1 if `(F (f )) = 0

0 if `(F (f )) 6= 0

=

{
1 if `(f ) = 0

0 if `(f ) 6= 0

= δ(f ).

Finally, the preservation of the convolution product is proved in an analogous way as for posets.

(F ∗(φ) ∗ F ∗(ψ))(f ) =
∑

f ′f ′′=f

φ(F (f ′))ψ(F (f ′′)

=
∑

h′h′′=F (f )

φ(h′)ψ(h′′)

= (φ ∗ ψ)(F (f )) = F ∗(φ ∗ ψ)(f ).

Observe that the construction of the incidence algebra can be described in terms of the simpler functors
Mor3 and Hom(−, k). If we let Möb denote the category of Möbius categories and local isomorphisms, U :
Algk → Vectk the forgetful functor and I : Möb→ Algop

k is the incidence algebra functor (precomposition
is always functorial and we just proved that it is well-defined)

Möb Set Vectop
k

Algop
k

Mor

I

Hom(−,k)

Uop

3The action of Mor on morphisms simply maps a functor F to the disjoint union all the maps Hom(a, b) → Hom(F (a),F (b))
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In particular, note that Mor maps faithful functors to injective maps (Hom sets are disjoint by definition)
and Hom(−, k) is easily verified to send injective maps to surjections. Therefore a faithful local isomorphism
C → D induces a surjection I (D) � I (C) (so I (C) is isomorphic to a quotient of I (D)) because U is the
identity on morphisms.

If we consider equivalences C → D, these are simply isomorphisms because Möbius categories are
skeletal. Clearly an isomorphism is also a local isomorphism, hence the equivalence C → D induces an
isomorphism of algebras I (D)→ I (C) by functoriality.

3.2 The isomorphism problem

The idea behind this solution to the isomorphism problem is to reflect enough combinatorial information in
the ring structure of I (C), which is necessarily preserved by k-algebra isomorphisms. Using Theorem 3.9 it
is possible encode some of these in algebraic terms. The key fact is the relation between length and the
powers of Jacobson radical.

Definition 3.13. For n ≥ 0, define

Jn(C) = {φ ∈ I (C) : ∀f , `(f ) < n =⇒ φ(f ) = 0}.

We will use the shorthand notation Jn = Jn(C) if C is clear from the context.

One of the characterizations of the Jacobson radical of a ring R that can be found in most noncommu-
tative algebra books is (for incidence algebras we write J(C) = J(I (C)) or even just J as long as it is not
ambiguous)

J(R) = {a ∈ R : ∀b, c ∈ R, 1− bac is invertible}.

A priori, these two appear to be unrelated, but the following proposition shows that they are extremely
similar.

Proposition 3.14. Let C be a Möbius category and Jn(C) the nth power of Jacobson radical of I (C). Then

1. J1 = J [16, Proposition 0.1],

2. Jn = Jn (the topological closure in I (C)) and

3. Jn
/
Jn+1

∼= Hom(Cn, k) as k-vector spaces via the restriction to Cn of maps Mor C → k . Thus,
Hom(C0, k) becomes a k-algebra.

Proof. We have that φ ∈ J(I (C)) if and only if for all η,ψ ∈ I (C) we have that δ − η ∗ φ ∗ ψ is invertible.
By 3.9, this is equivalent to

0 6= (δ − η ∗ φ ∗ ψ)(A) = 1− η(A)φ(A)ψ(A) ∀A ∈ C0

Summing up,
φ ∈ J(I (C)) ⇐⇒ ∀η,ψ,A, η(A)φ(A)ψ(A) 6= 1.

By choosing η, ψ and A appropriately one may always achieve η(A)φ(A)ψ(A) = 1 for some A unless
φ(A) = 0 for all A, so this must be the case.
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Morita Equivalence and Decomposition Spaces

For (2), let φ1 ∗ · · · ∗φn be a generator of Jn such that φi ∈ J = J1 and f ∈ Mor C with `(f ) < n. Then

φ(f ) = (φ1 ∗ · · · ∗ φn)(f ) =
∑

f1···fn=f

φ1(f1) · · ·φn(fn).

Since `(f ) < n, any decomposition f1 · · · fn = f will have some fi ∈ C0, hence φi (fi ) = 0, φ(f ) = 0 and
φ ∈ Jn. To see that Jn is closed, let (φα) be a net of Jn that converges to φ in I (C). Then φα(f ) converges
to φ(f ), but all φα(f ) are 0 whenever `(f ) < n, hence φ(f ) = 0 whenever `(f ) < n so Jn is closed. This
proves that Jn ⊇ Jn.

For the converse inclusion, let φ ∈ Jn, n > 0 and rewrite it as

φ =
∑
f ∈U

φ(f )χf , U = {f : `(f ) ≥ n}

as in Proposition 3.6. Furthermore, if `(f ) ≥ n, then there is a non-degenerate decomposition f = f1 · · · fn
and hence χf = χf1 ∗ · · · ∗ χfn with each χfi ∈ J1. This implies that if `(f ) = n, then χf ∈ Jn. Since each
partial sum

∑
f ∈S φ(f )χf in the limit

lim
S⊆finU

∑
f ∈S

φ(f )χf

belongs to Jn, we conclude that φ ∈ Jn. The case for n = 0 needs special treatment but it is trivial since
J0 = I (C).

Finally, we consider the quotient Jn
/
Jn+1. Define a linear map

Jn → Hom(Cn, k)
φ 7→ φ|Cn ,

which is clearly surjective by definition of Jn and its kernel is precisely Jn+1 (again, by definition of Jn+1).
Therefore Jn

/
Jn+1

∼= Hom(Cn, k).

Corollary 3.15. If C has finitely many morphisms, then Jn(C) = Jn(C).

Proof. Since finite products of discrete spaces are discrete, all subsets of the incidence algebra are closed
hence Jn(C) = Jn(C) = Jn(C).

Note that the composite I (C) → I (C)
/
J(C) → Hom(C0, k) (rC from now on) has a section: it is the

extension of a map C0 → k with zeros outside of C0, which we denote it by eC . This fact is obvious because
restricting a map that has been extended with zeros yields the original map.

Proposition 3.14 has a few important consequences. Firstly, observe that the induced multiplication
on Hom(C0, k) is simply pointwise multiplication and unit the constant map 1, so Hom(C0, k) is just the
algebra given by a direct product of |C0| copies of k . We also have the following technical lemmas which
are derived from this proposition and will prove useful later to recover a bijection between the objects of
two categories from an isomorphim of incidence algebras.

The first one shows how the set of characteristic functions on vertices can be precisely determined by
purely algebraic properties regarding the algebra structure. For this, recall an idempotent of a ring R is an
element e ∈ R with e2 = e, two elements are orthogonal if their product is zero and a primitive idempotent
is one that can not be expressed as the sum of two nonzero orthogonal idempotents.
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Lemma 3.16. There is a unique maximal set of primitive orthogonal idempotents in Hom(C0, k) and it is
χC0 .

Proof. First, we prove that any set of primitive orthogonal idempotents is contained in χC0 . Let φ be a
(nonzero) primitive idempotent in Hom(C0, k) and suppose that φ does not belong to χC0 . The elements
of χC0 can be characterized as maps C0 → k which are 1 at a single element of C0 and 0 everywhere else.
Then, φ must be 1 at least at two identities (a nonzero idempotent in a field can only be 1), let idA be one
of them. Now define

φ1 = χA φ2 = φ− χA.

These two maps are (nonzero) idempotents, orthogonal and add up to φ. This contradicts the assumption
that φ was primitive, hence φ ∈ χC0 .

Finally, we just need to prove that χC0 is a set of primitive orthogonal idempotents.

• They are orthogonal and idempotent

(χA ∗ χB)(idC ) = χA(idC )χB(idC ) =

{
1 if A = B = C ,

0 otherwise.

• To check that they are primitive, suppose χA = φ + ψ for some orthogonal idempotents φ and
ψ. Since φ and ψ are idempotents, the only values they may yield are either 0 or 1 and they
are never 1 simultaneously by orthogonality. Therefore φ = χA and ψ = 0 (or viceversa) because
1 = φ(idA) + ψ(idA) and 0 everywhere else.

Lemma 3.17 ([16, Corollary 1.3]). Let C and D be Möbius categories and Ψ : I (C)→ I (D) be a k-algebra
morphism. Then Ψ(J(C)) ⊆ J(D).

Proof. Suppose that there is φ ∈ J(C) such that Ψ(φ) 6∈ J(D). This is, Ψ(φ)(idA) = λ 6= 0 for some A
and λ. However, δ − 1

λφ is invertible in I (C) (because φ ∈ J(C)) whereas Ψ(δ − 1
λφ) = δ − 1

λΨ(φ) is not
invertible in I (D) (it is zero at idA). Since invertible elements are mapped to invertible elements, this is a
contradiction.

Given any morphism Ψ : I (C) → I (D), we now have two unique morphisms of algebras such that the
diagram

I (C) I (C)
/
J(C) Hom(C0, k)

I (D) I (D)
/
J(D) Hom(D0, k)

Ψ

∼=

Ψ0

∼=

commutes and Ψ0 is an isomorphism if Ψ is. The following proposition shows that Ψ0 provides the bijection
between Ob C and ObD.

Proposition 3.18. Let C and D be Möbius categories and Ψ : I (C)→ I (D) an isomorphism of k-algebras.
Then, using the same notation as above, it induces a bijection of sets τΨ : Ob C → ObD such that there is
a commutative diagram of bijections
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Morita Equivalence and Decomposition Spaces

Hom(C0, k) χC0 Ob C

Hom(D0, k) χD0 ObD

Ψ0
∼= Ψ0|χC0

∼=

∼=
τΨ∼=

∼=

Proof. It is routine to verify that such isomorphisms preserve maximal sets of orthogonal primitive idempo-
tents, so Ψ0(χC0) = χD0 by Lemma 3.16 and we can restrict Ψ0 as follows:

Hom(C0, k) χC0

Hom(D0, k) χD0

Ψ0
∼= Ψ0|χC0

∼=

Finally, τΨ is obtained from Ψ0|χC0
and the correspondence χA ↔ A.

The last step before proving the final theorem is to show that this bijection is the restriction of some
suitable isomorphism I (C) → I (D), which can then be used to obtain coherent bijections between Cn and
Dn.

For any invertible ψ ∈ I (C), let γψ denote the inner automorphism of I (C) given by conjugation with ψ:

γψ(φ) = ψ ∗ φ ∗ ψ−1.

Proposition 3.19 ([16, Proposition 1.4]). Let C and D be Möbius categories and Ψ : I (C) → I (D) an
isomorphism of k-algebras. Then there is an invertible element ψ ∈ I (D) such that the composite

I (C) I (D) I (D)Ψ γψ

extends the bijection Ψ0|χC0
to I (C)

I (C) χC0 χC0

I (D) χD0 χD0

γψΨ∼= (γψΨ)|χC0
∼=

eC

Ψ0|χC0
∼=

eD

and rD(ψ) = 1 (so rDγψ = rC).

Proof. For each D ∈ D, let ψD = (ΨeCΨ−1
0 rD)(χD). In more detail, letting τ = τΨ,

χD χD χτ−1D χτ−1D ψD .
rD Ψ−1

0 eC Ψ

Firstly, note that rD(ψD) = χD because

rDΨeCΨ−1
0 rD = Ψ0rCeCΨ−1

0 rD = rD.
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Next define ψ ∈ I (D) as ψ(f ) = ψcod f (f ). Then rD(ψ) = 1

rD(ψ)(idD) = ψ(idD) = ψD(idD) = rD(ψD)(idD) = χD(idD) = 1

and ψ is invertible as its action on identities is determined by rD(ψ) = 1, which is nonzero at all identites.

Moreover

(χD ∗ ψ)(f ) =

{
ψD(f ) if cod f = D

0 if cod f 6= D

and

(ψ ∗ ψD)(f ) =
∑

f =f ′f ′′

ψcod f ′(f
′)ψD(f ′′)

= (ψcod f ∗ ψD)(f )

= Ψ(χτ−1 cod f ∗ χτ−1D)(f )

=

{
ψD(f ) if cod f = D

0 if cod f 6= D,

for any f ∈ MorD, so χD = ψ ∗ ψD ∗ ψ−1. At this point, substituting the definition of ψD states that
(γψΨeC)(χC ) = (eDΨ0)(χC ).

For C a small category, any set of morphisms of C describes a (multi)digraph with vertices the objects
of C and edges the set of morphisms with source and target their domain and codomain respectively. In
particular, we consider the length n graph (C, Cn) of a Möbius category: the graph with vertices objects of
C and edges arrows of length n. Then an isomorphism of incidence algebras (as topological algebras) yields
an isomorphism of length n graphs.

Theorem 3.20 ([16, Theorem 2.2]). Let C and D be Möbius categories with countable Cn and Dn-sets4

for some n ≥ 1 and I (C) ∼= I (D) as topological k-algebras. Then (C, Cn) ∼= (D,Dn) as graphs.

Proof. Since inner automorphisms are continuous, by Proposition 3.19 we can assume that there is an
isomorphism Ψ : I (C) → I (D) of topological algebras restricting to a bijection Ψ|χC0

: χC0 → χD0 . This
provides a bijection of vertices, namely τ .

We must show that it induces a bijection Cn(A,B) ∼= Dn(τA, τB) for each A,B ∈ C. Together with
Propostion 3.14 and Lemma 3.17, the fact that Ψ is a continous closed isomorphism gives

Ψ(Jn(C)) = Ψ(Jn(C)) = Ψ(Jn(C)) = Jn(D) = Jn(D),

so Ψ restricts to an isomorphism of vector spaces

χA ∗ Jn(C) ∗ χB
∼=−→ Ψ(χA ∗ Jn(D) ∗ χB) = χτA ∗ Jn(D) ∗ χτB

that induces
χA ∗ Jn(C) ∗ χB

χA ∗ Jn+1(C) ∗ χB

∼=−→ χτA ∗ Jn(C) ∗ χτB
χτA ∗ Jn+1(C) ∗ χτB

.

4This is, Cn(A,B) is countable for any A,B ∈ C and similarly for D.
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As in Prop 3.14, one can see that extension and restriction to Cn(A,B) and Dn(τA, τB) respectively become
linear isomorphisms in the quotient

Hom(Cn(A,B), k) −→ χA ∗ Jn(C) ∗ χB

χA ∗ Jn+1(C) ∗ χB
,

χτA ∗ Jn(D) ∗ χτB
χτA ∗ Jn+1(D) ∗ χτB

−→ Hom(Dn(τA, τB), k),

hence we have
Hom(Cn(A,B), k)

∼=−→ Hom(Dn(τA, τB), k).

If Cn(A,B) orDn(τA, τB) is finite then both are vector spaces of equal finite dimension d , hence |Cn(A,B)| =
d = |Dn(A,B)|. Otherwise the hypothesis of countability implies that

|Cn(A,B)| = ℵ0 = |Dn(τA, τB)|.

3.3 Continuity and finiteness conditions

Observe that Theorem 3.20 requires the isomorphism of incidence algebras to be a homeomorphism as
well. In this section we prove sufficient conditions under which an isomorphism of incidence algebras (as
k-algebras) is continuous.

One of these conditions is that the category should be finitely generated. This is, it should have (locally)
a finite number of indecomposable arrows and infinite chains of composable arrows are forbidden.

Definition 3.21. A category C is finitely generated if the sets

1. C1(A,B)

2. [A,B] = {C ∈ C : Hom(A,C ) 6= ∅, Hom(C ,B) 6= ∅}

are finite for all A,B ∈ C.

These conditions imply seemingly stronger finiteness consequences and further relate Jn with Jn. We
need the following lemma to prove that finite generation is sufficient for an isomorphism to be continuous.

Lemma 3.22 ([16, Proposition 2.5]). Let C be a finitely generated Möbius category. Then each set Cn(A,B)
is finite and χB ∗ Jn ∗ χA = χB ∗ Jn ∗ χA for n ≥ 1.

Proof. Given n ≥ 1 and A,B ∈ C, choose a decomposition for each arrow in Cn(A,B) into an arrow of
length 1 and an arrow of length n − 1. This clearly defines an injective map

Cn(A,B) −→
∐

C∈[A,B]

C1(C ,B)× Cn−1(A,C ) (1)

To prove that Cn(A,B) is finite, proceed by induction. The base case is C1(A,B), which is known to be
finite by hypothesis. For the induction step suppose that all Cn−1(A,B) are finite for all A,B . Then

|Cn(A,B)| ≤
∣∣ ∐
C∈[A,B]

C1(C ,B)× Cn−1(A,C )
∣∣ =

∑
C∈[A,B]

|C1(C ,B)| · |Cn−1(A,C )| <∞
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by the finiteness of [A,B] and injectivity of (1).

We prove the second part by induction as well. For n = 1 we already have J1 = J, so χB ∗ J1 ∗ χA =
χB ∗ J ∗ χA. Next suppose that χB ∗ Jn−1 ∗ χA = χB ∗ Jn−1 ∗ χA for all A,B ∈ C. The map (1) defines
two maps, one that chooses the length 1 arrow (x) and another one that chooses the length n− 1 one (y).

x : Cn(A,B) −→
∐

C∈[A,B] C1(C ,B)

y : Cn(A,B) −→
∐

C∈[A,B] Cn−1(A,C ).

This is, for f ∈ Cn(A,B) there exists C ∈ [A,B] such that f = x(f )y(f ) with x(f ) : C → B of length 1
and y(f ) : A→ C of length n − 1. Define

SC = {x(f ) : f ∈ Cn(A,B), x(f ) ∈ C1(C ,B)}, C ∈ [A,B]

and
Vg = {h ∈ Cn−1(A,C ) : x(gh) = g , y(gh) = h} g ∈ SC , C ∈ [A,B].

Let φ ∈ χB ∗ Jn ∗ χA, we must show that φ ∈ χB ∗ Jn ∗ χA. For each C ∈ [A,B] and g ∈ SC , define

ψg (h) =

{
φ(gh) if h ∈ Vg

0 if h 6∈ Vg .

Observe that ψg (h) ∈ Jn−1: if `(h) < n − 1, then h 6∈ Cn−1 ⊇ Vg , so ψg (h) = 0. It is also true that
ψg = χC ∗ ψg ∗ χA as it is already zero for maps with domain and codomain different from A and C
respectively. Therefore

ψg ∈ χC ∗ Jn−1 ∗ χA = χC ∗ Jn−1 ∗ χA,

so ψg = χC ∗ ψ′g ∗ χA for some ψ′g ∈ Jn−1 by the induction hypothesis. Now, φ can be rewritten in terms
of the ψg as

φ =
∑

C∈[A,B]

∑
g∈SC

χg ∗ ψg

because, when evaluating at some f , all summands vanish except for the one corresponding to x(f ) and
then ψg is evaluated at y(f ). Therefore

φ =
∑

C∈[A,B]

∑
g∈SC

χg ∗ ψg

=
∑

C∈[A,B]

∑
g∈SC

χg ∗ χC ∗ ψ′g ∗ χA

=
∑

C∈[A,B]

∑
g∈SC

χg ∗ ψ′g ∗ χA

= χB ∗
( ∑
C∈[A,B]

∑
g∈SC

χg ∗ ψ′g
)
∗ χA

where each χg ∗ ψ′g ∈ Jn, so φ ∈ χB ∗ Jn ∗ χA.

Finally, the converse inclusion is true in general: Jn ⊆ Jn = Jn.

Corollary 3.23. If a finitely generated Möbius category has a finite set of objects, then Cn is finite and
Jn = Jn for all n ≥ 1.
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We prove a slightly more general version of the above statement: instead of an isomorphism, we simply
require either a finite number of objects or a morphism of k-algebras that restricts to a bijection of objects.

Theorem 3.24 ([16, Theorem 2.6]). Let C and D be Möbius categories, C finitely generated, and Ψ :
I (C) → I (D) a morphism of k-algebras. If C has a finite set of objects or Ψ restricts to a bijection
χC0 → χD0 , then it is continuous.

Proof. Let (φα)α∈A be a net in I (C) with limα φα = 0, This is, for all f ∈ Mor C there exists αf such that
φα(f ) = 0 for any α ≥ αf . We need to prove that limα Ψ(φα) = 0.

There are two cases to consider:

1. C has a finite number of objects. Consider the sets

Un =
n−1⋃
k=1

Ck = {g ∈ Mor C : `(g) < n}, n ≥ 1.

Since they are finite, one can obtain an upper bound αn of {αg : g ∈ Un} by directedness of A for
each n. Now φα(g) = 0 for any α ≥ αn and g ∈ Un, so φα ∈ Jn(C) for α ≥ αn. Applying Ψ,

Ψ(φα) ∈ Ψ(Jn(C)) = Ψ(Jn(C)) = Ψ(J(C))n ⊆ Jn(D) ⊆ Jn(D), α ≥ αn, n ≥ 1.

For any f ∈ MorD, choose n = `(f ) + 1. Then Ψ(φα)(f ) = 0 for any α ≥ αn, so limα Ψ(φα) = 0.

2. Ψ restricts to a bijection of χC0 → χD0 . Similarly as before, define

Un(A,B) =
n−1⋃
k=1

Ck(A,B) = {g ∈ Hom(A,B) : `(g) < n}, A,B ∈ C, n ≥ 1.

They are all finite as well, so choose an upper bound αn(A,B) of each {αg : g ∈ Un(A,B)}. Then
φα(g) = 0 for any α ≥ αn(A,B) and g ∈ Un(A,B), hence χB ∗φα ∗χA ∈ χB ∗ Jn(C) ∗χA. Applying
Ψ again,

χτB ∗Ψ(φα) ∗ χτA ∈ χτB ∗Ψ(Jn(C)) ∗ χτA
= χτB ∗Ψ(Jn(C)) ∗ χτA
= χτB ∗Ψ(J(C))n ∗ χτA
⊆ χτB ∗ J(D)n ∗ χτA
⊆ χτB ∗ Jn(D) ∗ χτA, α ≥ αn(A,B), A,B ∈ C, n ≥ 1.

Finally, for f : D → E in MorD, choose n = `(f ) + 1. Then

Ψ(φα)(f ) = (χE ∗Ψ(φα) ∗ χD)(f ) = 0

for any α ≥ αn(τ−1D, τ−1E ). This is, limα Ψ(φα) = 0.

To sum up, we combine this last theorem with 3.20 to obtain the main result in this section, a similar
result to Theorem 2.4 for finitely generated Möbius categories without any references to the topology of
I (C).
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Theorem 3.25 ([16, Corollary 2.7]). Let C and D be finitely generated Möbius categories with isomorphic
incidence algebras. Then (C, Cn) and (D,Dn) are isomorphic as graphs for all n ≥ 1.

Proof. By Proposition 3.19, we can assume that the isomorphism I (C)→ I (D) restricts to an isomorphism
χC0 → χD0 . Then Theorem 3.24 applied to both Ψ and Ψ−1 proves that they are continuous, hence I (C)
and I (D) are homeomorphically isomorphic. Finally, Theorem 3.20 provides the isomorphism (C, Cn) ∼=
(D,Dn).

The natural question to ask is whether this result can be improved to an isomorphism. The answer is
that it is not possible in general, as the following example shows.

Example 3.26 ([16, Example 1.6]). Consider the two categories C and D generated by the graphs

0 1 2
d

e

a

b

c
0 1 2

u

v

x

y

z

and relations {
ad = ae

bd = cd

{
xu = xv

xu = yu

respectively. To prove that they are not isomorphic, suppose that there is an isomorphism C → D. This
functor must preserve the shape of the category while maintaining coherency with the relations. Such an
isomorphism is then entirely defined by two bijections {d , e} → {u, v} and {a, b, c} → {x , y , z}. If d 7→ v ,
then bd 7→ F (b)v and bd = cd 7→ F (c)v . Since v is an epimorphism in D, F (b) = F (c), a contradiction
because F is bijective. Conversely, if d 7→ u, there are two new cases to consider. If a 7→ x , then ad 7→ xu
and bd 7→ yu = xu, so F would not be injective. Otherwise ad 7→ F (a)u and ae 7→ F (a)v , implying that
F is ill-defined.

Now, the isomorphism between their incidence algebras is given by

χa 7→ χx χd 7→ χu

χb 7→ χy + χz χe 7→ χv

χc 7→ χz + χx

and χn 7→ χn for n = 0, 1, 2. The rest are determined forcing it to be an algebra morphism:

χbd 7→ χyu + χzu χcd 7→ χzu + χxu = χzu + χyu

χae 7→ χxv χad 7→ χxu = χxv

χbe 7→ χyv + χzv

χce 7→ χzv + χxv

This shows that relations are preserved and the basis is mapped to linearly independent vectors. Since both
algebras have the same dimension as vector spaces (both categories have the same number of arrows), then
it is an isomorphism.
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This example is far from contrived, and the point is that the isomorphism of algebras may map the
standard basis of characteristic functions to a completely different one thus losing combinatorial information.
As we have seen in the previous theorems, the preservation of the product forces any isomorphisms to preserve
the number of arrows between any two objects.
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4. Homotopy theory of groupoids

The passage from Möbius categories to decomposition spaces requires some background on groupoids and
homotopy theory. Since the theory is mostly developed around ∞-groupoids (Lurie [17] being one of the
main sources), most bibliography is in that setting as well. Thankfully, propositions can often be specialized
directly and, although their proofs tend to remain correct, they can be reworked using simpler tools and
reasoning for 1-groupoids.

The downside to restricting ourselves to 1-groupoids is that we must keep track in each case whether
we are dealing with 1-categories, 2-categories, bicategories, and so on. We are also going to provide a
brief introduction to 2-category theory and enriched category theory in order to be able to deal with some
concepts that appear here.

4.1 Preliminary (2-)category-theoretic notions

Before continuing with homotopy theory, we should recall a few notions from basic category theory and
2-category theory. Some good references for this material are the well-known [14] by S. MacLane and [1]
by S. Awodey for 1-category theory and [13] by S. Lack or [15] by T. Leinster for the 2-categorical notions.
This section is not (nor does it pretend to be) a complete, detailed explainaton of 2-category theory, but it
serves as a quick overview of some concepts that we are going to be using throughout the rest of this work.

Firstly, there are two classes of compositions of natural transformations. Given two natural transforma-
tions σ : f → g and τ : g → h, their vertical composition is a natural transformation F → H and it is
defined componentwise: (τ ◦ σ)a = τa ◦ σa.

A B

f

g

h

σ

τ

The lesser known composition operation is horizontal composition. For functors f , g : A → B and
f ′, g ′ : B → C given two natural transformations σ : f → g and τ : f ′ → g ′ one can define f ′σ : f ′f → f ′g
as (f ′σ)a = f ′(σa) and τ f : f ′f → g ′f as (τ f )a = τf (a). Combining both gives what is written τ ·σ : f ′f →
g ′f ′ (or simply τσ) and it is defined as g ′σ ◦ τ f = τ f ◦ f ′σ.

A B C

f

g

f ′

g ′

σ τ

In order to manipulate these compositions, we are implicitly going ot make use of what is called the
interchange law. For functors f , g , h : A→ B and f ′, g ′, h′ : B → C and natural transformations f σ−→ g

τ−→
h, f ′ σ

′
−→ g ′

τ ′−→, we have
τ ′τ ◦ σ′σ = (τ ′ ◦ σ′) · (τ ◦ σ).
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Another useful construction is the comma category. Roughly, it is a category whose objects are arrows
and arrows are commutative squares. As we get into 2-category theory (specially with groupoids), it will
become useful as it can be understood as lifting the ambient dimension by turning arrows into objects and
commutative squares into morphisms.

Definition 4.1. Given functors f : B → C and g : D → C , the comma category is the category
(f ↓ g) whose objects are triples (b, d ,φ), where b ∈ B , d ∈ D and φ : f (b) → g(d). A morphism
(b, d ,φ)→ (b′, d ′,φ′) is a pair of arrows β : b → b′ and δ : d → d ′ in B and D respectively such that the
diagram

f (b) f (b′)

g(d) g(d ′)

φ

f (β)

φ′

g(δ)

Later on, especially in section 4.3, we are also going to talk about monoidal categories. A monoidal
category is simply a category together with a monoid-like structure. Precisely, it includes an object i ∈ C
and a bifunctor ⊗ : C × C → C and natural isomorphisms

i ⊗ a ∼= a ∼= a⊗ i (a⊗ b)⊗ c ∼= a⊗ (b ⊗ c)

subject to some coherence conditions (see [15]). A typical example is Set together with its terminal object
1 and the cartesian product. In addition, a monoidal category is said to be symmetric if there is a specified
natural isomorphism a⊗ b ∼= b ⊗ a.

Now we move on to 2-categories. The first example of 2-category that one encounters is usually Cat,
the category of small categories: it has small categories as objects, and between two categories C ,D one has
the functor category Fun(C ,D) whose objects are functors C → D and morphisms natural transformations
between them.

Definition 4.2. A (strict) 2-category is a category whose Hom sets are categories and composition is
functorial. For a 2-category C and C ,D ∈ C, the objects of HomC(C ,D) are called 1-cells and its morphisms
are 2-cells. If composition is only unital and associative up to (specified) natural isomorphisms satisfying
some coherence conditions (see [15]), it is said to be a bicategory or weak 2-category instead.

Note that this definition already provides us with enough tools to define equivalences as a generalization
of isomorphisms: given two objects C ,D ∈ C in a 2-category, they are said to be equivalent if there exist
1-cells f : C → D and g : D → C and invertible 2-cells id → fg and id → gf . If C = Cat then this
becomes the definition of an equivalence of categories.

A particularly relevant 2-category for our study is the category Grpd of small groupoids. Recall that a
groupoid is a category in which all arrows are invertible. It is clearly a full subcategory of Cat, and we say
that a 2-category is Grpd-enriched if all its Hom-categories are groupoids. In that case, we denote these
Hom-categories as MapE (x , y) and call them mapping spaces or mapping groupoids. In the case of Grpd,
its mapping spaces have objects functors and morphisms natural transformations between them.

The next step after defining 2-categories is to define its appropriate notion of morphism. In this case there
are two perfectly valid (more, actually) such notions: just like 2-categories and bicategories, 2-functors are a
stricter notion than pseudofunctors, but both have their uses. In our case however, we just need 2-functors.
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Definition 4.3. A (strict) 2-functor F : C → D between 2-categories C and D is a rule that assigns an
object F (C ) ∈ D to each object C ∈ C. Moreover, for each C ,C ′ ∈ C one has a functor

FC ,C ′ : HomC(C ,C ′)→ HomD(F (C ),F (C ′))

such that F (idC ) = idF (C) and F (f ) ◦ F (g) = F (fg). If these two equalities are not strict but rather
(specified) natural isomorphisms satisfying some addititional coherence properties (regarding unitality and
associativity of composition, see [15]), one says that it is a pseudofunctor or weak 2-functor instead.

Note that pseudofunctors can be defined between any two bicategories, but 2-functors are more appro-
priate between 2-categories than between bicategories. Moreover, bifunctors also arise naturally in regular
category theory. For instance, limits and colimits in Cat are only defined up to isomorphism and so is their
action on functors. These situations are usually handled in a cleaner manner by using pseudofunctors. Next,
we define 2-natural transformations.

Definition 4.4. Given (possibly weak) 2-functors between (possibly weak) 2-categories F ,G : C → D, a 2-
natural transformation σ is a 1-cell σC : F (C )→ G (C ) for each C ∈ C together with natural isomorphisms
(σf )f for every C ,C ′ ∈ C

F (C ) G (C )

F (C ′) G (C ′)

σC

F (f ) G(f )

σC ′

σf
∼=

which are compatible with other coherence isomorphisms for the pseudofunctors (see [15]). If all the σf are
identities, then it is a strict 2-natural transformation.

In this case we also have morphisms between natural transformations and they are called modifications.

Definition 4.5. A modification m : σ → τ between two pseudonatural transformations σ, τ : F → G , of
functors F ,G : C → D is a collection of 2-cells mA : σC → τC indexed by C ∈ C that commute with the
2-cell components of σ and τ .

As for plain 1-categories, we can consider the 2-category of 2-functors Fun(C,D) or DC between any two
2-categories. Its objects are 2-functors, 1-cells are 2-natural transformations and 2-cells are modifications.
In addition, one also has PsFun(C,D), the 2-category of pseudofunctors, pseudonatural transformations and
modifications. If C and D are just 1-categories, then both coincide and can be regarded as 2-categories by
considering their Hom-sets as discrete categories (i.e. categories whose only morphisms are just identities)
and then they all match the regular 1-functor category Fun(C,D).

Now that we have all the concepts set up, we review what is an equivalence C ' D of 2-categories. It
consists of two 2-functors F : C → D and G : D → C together with 2-natural equivalences σ : Id→ FG and
τ : GF → Id. This is, there exist modifications m : id→ σ ◦ τ and m′ : τ ◦ σ → id which are isomorphisms.
In simpler terms, it can be seen that a 2-functor F : C → D is part of an equivalence if and only if it is
essentially surjective on objects (i.e. any object in the codomain is equivalent to some object in the image)
and FC ,C ′ is an equivalence on each Hom-category HomC(C ,C ′). By replacing strict items with their weak
variants one obtains the definition of a biequivalence, i.e. an equivalence of bicategories.
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A commonly mentioned remark usually attributed to S. Lack is that every naturally occurring bicategory
is equivalent to a 2-category. One particular example that we are going to meet in this work is the bicategory
of spans in Grpd, which is going to be equivalent to the category of groupoid slices and linear functors defined
later. Other important coherence theorems include MacLane’s coherence theorem for monoidal categories
(roughly, it is safe to consider that the natural isomorphisms in the definition of a monoidal category are
identities) and standard procedures that given any pseudofunctor C → Cat produce an equivalent 2-functor
C → Cat (and similarly for Grpd, see [12] for the general statement).

Finally, observe that the strategy followed in the definition of these 2-categorical notions can be carried
over to define n-categories, n-functors, and so on. Most concepts from regular category theory translate
well in this theory (like adjoints or limits), so we use them freely. In this work we are only going to go
up to 3-categories, at very specific places. For us it suffices to know that a 2-bicategory is the same as
a bicategory, but lifting all concepts one level: the required isomorphisms become equivalences, and Hom-
categories become 2-categories. Then an equivalence of 3-categories (or 2-bicategories) is an essentially
surjective assignment of objects and compatible equivalences of Hom-2-categories.

4.2 Groupoids and homotopy theory

From now on and unless stated explicitly, we restrict ourselves to small groupoids. We will also denote
groupoids by capital letters and groupoid maps (functors) by lowercase letters. The basic definition for this
section is that of an homotopy of groupoids. As we will see throughout this section, natural transformations
are surprisingly similar to homotopies between continuous maps.

Definition 4.6. For two groupoid maps f , g : X → Y , a homotopy between f and g is a natural trans-
formation α : f → g (which is necessarily an isomorphism). We say that f is homotopic to g (denoted
f ' g) if there exists a homotopy f → g . Two groupoids are homotopy equivalent if they are equivalent as
categories.

Let us recall the topological analogues of these concepts. A path x → x ′ between two points x , x ′ of
a topological space X is a continuous function σ : [0, 1] → X such that σ(0) = x and σ(1) = x ′. On the
other hand, a path x → x ′ in a groupoid is just an (invertible) arrow in X or, equivalently, an object of the
arrow category X 2 (the category of functors 2→ X , where 2 is the category with two objects and one arrow
between them). Similarly, we can think of natural transformations between f , g : X → Y as objects of
the functor category (Y X )2, which correspond by adjunction to functors X × 2→ Y , just like homotopies
between continuous functions are represented by continuous functions X × [0, 1] → Y . In addition, note
that the notion of mapping space is also borrowed from topology.

These facts are of course not a coincidence. There is a canonical model structure on Grpd that shows
that most homotopy theory can be developed in Grpd (again, usually∞Grpd) just like for regular topological
spaces. Therefore, it is going to be convenient to imagine a groupoid as the fundamental group(oid) of
some topological space. The following definitions adhere to this philosophy.

Definition 4.7. Let X be a groupoid.

1. It is connected if it is nonempty and HomX (x , y) 6= ∅ for all x , y ∈ X .

2. A component of X is a full subgroupoid of X with set of objects an isomorphism class of X . For
x ∈ X , we write [x ] or X[x] for the component of X containing x . The set of components of X will
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be denoted by π0X .

3. For x ∈ X , we define π1(X , x) = AutX (x) = HomX (x , x).

4. A groupoid is discrete if it is homotopy equivalent to a set (i.e. a category without non-identity
morphisms). If it is also connected, then it is called contractible.

We haven’t introduced any new concepts yet, this definition simply translates even more topological
definitions to groupoids. For instance, observe that a connected groupoid is a groupoid which is path-
connected in the sense that any two points can be connected by some path. A contractible groupoid is just
a groupoid which is homotopy equivalent to the groupoid 1 with one object and one (identity) arrow. Then
a discrete groupoid is a groupoid whose connected components are contractible, like a totally disconnected
topological space.

Definition 4.8. A groupoid X is locally finite if π1(X , x) is finite for all x ∈ X and (homotopy) finite if
π0X is also finite. We write grpd for the full subcategory of Grpd whose objects are finite groupoids.

By moving from sets to groupoids, we have to adopt 2-categorical versions of classical concepts like
pullbacks and fibres. These account for 2-cells (homotopies in our case) in their universal properties and
generally replace arrow equalities with isomorphisms.

Definition 4.9. Given two maps G
f−→ B

g←− E , their homotopy pullback is a groupoid P , two maps
p : P → G and q : P → E and a homotopy α : fp → gq satisfying:

1. For any other homotopy commutative diagram β : fp′ → gq′ there exists a map u : P → P ′ and
homotopies γ : pu → p′, δ : qu → q′ that factor β through α · u : fpu → gqu:

P ′

P E

G B

q′

p′

u

p

q

g

f

α

γ

δ

Explicitly,
β = gδ ◦ αu ◦ f γ−1.

2. For any other map v : P ′ → P and homotopies γ′ : pv → p′ and δ′ : qv → q′ satisfying the previous
condition, there exists a unique homotopy θ : v → u such that γ′ = γ ◦ pθ and δ′ = δ ◦ qθ.

Here, P , p and q are determined up to homotopy. These squares are said to be homotopy cartesian or
homotopy pullbacks. Moreover, the map p is called is the homotopy pullback of g along f and written
p = f ∗(g).

Recall that pullbacks in Set are given by the fibre product

G ×B E = {(x , y) ∈ G × E : f (x) = g(y)}.

When dealing with groupoids, we switch to the homotopical version of this concept, the homotopy fibre
product.
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Definition 4.10. The homotopy fibre product of maps f : G → B and g : E → B is the comma category
(f ↓ g) (which is a groupoid in our case, see [14, §II.6]) and will be denoted by G ×B E .

Explicitly, the objects of G ×B E consist of triples (x , y ,φ) where φ : f (x) → g(y) for x ∈ G , y ∈ E .
An arrow (x , y ,φ)→ (x ′, y ′,φ′) is a pair of arrows γ : x → x ′ and ε : y → y ′ in G and E respectively such
that the square

f (x) f (x ′)

g(y) g(y ′)

f (γ)

φ φ′

g(ε)

commutes in B .

For each such product, define two projections

p : G ×B E → G
(x , y ,φ) 7→ x

(γ, ε) 7→ γ

q : G ×B E → E
(x , y ,φ) 7→ y

(γ, ε) 7→ ε.

Then the square

G ×B E E

G B

p

q

g

f

is easily seen to be commutative up to homotopy via α : fp → gq, where α(x ,y ,φ) = φ : f (x)→ g(y). This
is, in fact, the homotopy pullback of E → G ← B .

Lemma 4.11. The homotopy fibre product together with the two projections described above is a homotopy
pullback.

Proof (Sketch). Given A and the maps A→ G and A→ E ,

A

G ×B E E

G B

q′

p′

u

p

q

g

f

α

β

define
u : A → G ×B E

a 7→ (p′(a), q′(a),βa)
(α : a→ a′) 7→ (p′(α), q′(α))

and δ = id, γ = id. All the required properties are then easily verified.
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Example 4.12. For any groupoids G and H, the homotopy fibre product G ×1 H is G × H. The diagram
is the regular one from the cartesian product:

G × H G

H 1

y

Even if apparently trivial, the next lemma provides both a simple example and useful criteria to prove
that a given square is a homotopy pullback.

Lemma 4.13. If the vertical maps in a homotopy commutative square

A A′

B B ′

a

f f ′

b

α

are equivalences, then it is a homotopy pullback square. In particular, homotopy pullbacks of equivalences
along any maps is are equivalences.

Proof. We proceed by definition. Since f and f ′ are equivalences, we may assume that both are part of
adjoint equivalences. Then, there exist g and g ′ together with homotopies η : id→ gf and ε : fg → id for
f and η′, ε′ for f ′ that we can assume to be the units and counits of the adjunctions f a g and f ′ a g ′.
Firstly, define the homotopy ᾱ = g ′bε ◦ g ′αg ◦ η′ag : ag → g ′b.

Let B
p←− C

q−→ A′ be another span equipped with an homotopy β : bp → f ′q. Then consider the map
gp : C → A together with the homotopies

γ = εp : fgp → p

and
δ = η′

−1
q ◦ g ′β ◦ ᾱp : agp → q.

Using that ε′f ◦ f η′ = id and the definition of ᾱ, one can readily show that β = f ′δ ◦ gpα ◦ bγ−1.
Moreover, for any other u : C → A with corresponding homotopies γ′ : fu → p and δ′ : au → q, define
θ = gγ′ ◦ ηu : u → gp.

C

A A′

B B ′

A A′

q

p

gp

u

f

a

f ′

g

b

f ′

a

α
γ′

δ′

ᾱ
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Clearly, θ and γ′ determine each other under the condition that γ′ = γ ◦ f θ (f is faithful), so θ is unique in
this sense. Finally, δ′ = δ ◦ aθ is proved again by substituting δ and applying the corresponding triangular
identity.

The prism lemma is the main source of pullback squares. The proof is completely analogous to the one
for the classical pullback pasting lemma of strict pullbacks ([1, Lemma 5.10], [1, Corollary 5.11]), the only
difference being that one needs to ensure that homotopies are coherent with each other.

Lemma 4.14 (Prism lemma, [17, Lemma 4.4.2.1]). Given a homotopy commutative diagram

E E ′

G G ′

H H ′

y

where the bottom face (GG ′HH ′) is a homotopy pullback, the top face (EE ′GG ′) is a homotopy pullback
if and only if the back one (EE ′HH ′) is.

Particularizing this lemma to (strictly) commutative triangular faces yields the homotopical version of
the pullback pasting lemma, a name that we will use to refer to Lemma 4.14 especially when its triangular
faces are strictly commutative. This allows us to show an example of a quite general square that can be
easily shown to be homotopy pullback thanks to this lemma.

Corollary 4.15. The following diagram is a homotopy pullback for any G , G ′, H and f : G → G ′:

G × H G ′ × H

G G ′

f×id

pG
yy

pG ′

f

Here pG : G × H → G and pG ′ : G ′ × H → G ′ are the canonical projections.

Proof. Observe that both the outer square and the right hand square are simply cartesian product pullback
squares, hence homotopy pullbacks:

G × H G ′ × H H

G G ′ 1

f×id

pG
y

pH

pG ′
y

f

The prism lemma ensures that the left hand square is a homotopy pullback.

Now, the main selling point of homotopy pullbacks is that they are homotopy invariant. This is, one
can replace any object in the original diagram with an homotopy equivalent one and still obtain the same
pullback.
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Proposition 4.16 (Functoriality and invariance of the pullback). Given a map of diagrams

G ×B E E

G B

G ′ ×B′ E
′ E ′

G ′ B ′

u

y

y

there exists a unique map (up to homotopy) u : G ×B E → G ′ ×B′ E
′ such that the cube is commutative.

If all vertical arrows are equivalences, then so is u and all faces become pullbacks.

Proof. The diagram shows two maps G ×B E → E ′ and G ×B E → G ′ commuting with the bottom face,
so by the universal property of G ′ ×B′ E

′ there exists u : G ×B E → G ′ ×B′ E
′ making the whole diagram

commute.

Whenever the rest of the vertical arrows are equivalences, we have that all previously existing faces of
the cube ar pullbacks by Lemma 4.13. Then the pullback pasting lemma applied to the top and front faces
ensures that the internal diagonal is a homotopy pullback. Hence the back face is a homotopy pullback
because we have a prism with faces the internal diagonal, bottom and back faces. Now recall that that
the homotopy pullback of an equivalence along any map is again an equivalence, hence u is an equivalence
because it is the pullback of E → E ′ along G ′ ×B′ E

′ → E ′. Finally, the left face is a homotopy pullback
because both of its vertical arrows are equivalences.

Once we have defined homotopy pullbacks, fibres are naturally the next definition. Recall that in Set, a
fibre is just the preimage of an element b ∈ B by some map A→ B , which can be expressed as a pullback
of the map along the map 1→ B that chooses b.

Definition 4.17. Given a map of groupoids p : E → B , the homotopy fibre of p over b ∈ B is the homotopy
pullback of p along the name map

pbq : 1 → B
∗ 7→ b.

Denoting hfib(p, b) = 1×B E , we have the homotopy cartesian square

hfib(p, b) E

1 B

y
p

pbq

If the choice of p is not ambiguous, we also write Eb for hfib(f , b). In particular, the homotopy fibre
hfib(pbq, b) is called the loop groupoid, ΩbB .

Let us take a look at ΩbB . Its objects are (∗, ∗,φ : b → b) for each φ ∈ AutB(b), and its morphisms
can only be identities (id∗, id∗) or the empty set. Thus, ΩbB is discrete and its set of objects is effectively
AutB(b). Put simply, ΩbB is the set of automorphisms at b.
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Similarly, the homotopy fibre of a map p : E → B at b ∈ B has objects (∗, e, φ : p(e) → b) that we
identify with (e,φ) as writing the object ∗ ∈ 1 is redundant. A morphism (e,φ)→ (e ′,φ′) in the homotopy
fibre is a pair (id∗, ε : e → e ′) such that φ = φ′ε. For the same reason as before, we do not account for id∗
and consider ε : e → e ′ only. It is going to be convenient to think of morphisms as commutative triangles
like

p(e) p(e ′)

b

φ

p(ε)

φ′

where we account for ε before applying p.

To further clarify the difference between homotopy fibres and regular set-theoretic preimages, remember
that the preimage of pbq : 1→ B at b is simply 1, whereas its homotopy fibre at b is ΩbB . More generally,
if E is discrete then the homotopy fibre is discrete and its objects are all pairs (e,φ) with φ : p(e)→ b. In
particular cases however, some similarities become clear.
Remark 4.18. If p : E → B is a map of groupoids and B is discrete (e.g. a set), then hfib(p, b) is easily seen
to be homotopy equivalent to what is called the essential preimage of p at b. This is, the full subgroupoid
of E that is mapped to the connected component of b.

Then, it makes sense to consider the notation for connected components as a particular case of the
homotopy fibre construction

B[b] 1

B π0B

y
p[b]q

and even extend it to denote essential preimage of a map E → B

E[b] B[b] 1

E B π0B

y y
p[b]q

It is important to note that all of these constructions are functorial. It is readily verified that both
constructing a name map p−q : B → B1 and the formation of the comma category (− ↓ −) : (BG )op ×
BE → Grpd are functorial, so the functoriality of the fibre then follows from the fact that every groupoid
is isomorphic to its opposite via the assignment f op 7→ f −1.

One more definition that needs adjustment for homotopy theory is that of slice categories. Usually, a
slice category C/I is the category whose objects are arrows X → I of C and arrows are commuting triangles
(see [14] or [1] for instance).

X Y

I
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It is just a particular case of a comma category [14, §II] as one has C/I = (IdC ↓ pIq), where IdC : C → C is
the identity functor and pIq : 1→ C is the name map.

Again, the homotopical version replaces equality of arrows with homotopies.

Definition 4.19. For a Grpd-enriched category C, the homotopy slice category C/I (C over I ∈ C) is

the (again Grpd-enriched) category whose objects are morphisms X → I in C and a morphism (X
f−→

I ) → (X ′
f ′−→ I ) is a morphism g : X → X ′ together with an isomorphism α : f → f ′g in the groupoid

MapC(X , I ).

A 2-cell between two morphisms (g ,α), (g ′,α′) : f → g in C/I is a homotopy β : g → g ′ which is
coherent with α and α′. We use the shorthand notation Map/I (f , g) for the mapping space between two
objects f , g ∈ C/I whenever C (usually Grpd) can be deduced from the context.

Observe that an equivalence f ' g in Grpd/I with f : X → I and f ′ : X ′ → I is a homotopy
equivalence g : X → X ′ together with a homotopy f → f ′g . In particular, if X = X ′ and the maps
X → X ′, X ′ → X are identities, the 2-cells f → f ′id and f ′ → f id are nothing but a homotopy f → f ′

and its inverse. Therefore, equivalences in Grpd/I generalize homotopies to equivalences between maps of
homotopy equivalent domains.

From now on and for brevity, we will refer to the homotopy variants we have defined like commutative
diagrams up to homotopy, homotopy pullbacks, homotopy slices, homotopy fibres and so on without the
homotopy qualifier.

4.3 Homotopy linear algebra

Recall that some basic operations on finite sets (products and disjoint unions) hold strong similarities with
the natural numbers. Then one can start developing this algebra as in the symbolic method, where it is used
to describe complex objects from simpler ones in order to obtain the generating function of the complex
object rather easily.

This idea can also be applied to Grpd with products and coproducts as well, but we are more interested
their homotopical versions. While products remain the same, homotopy colimits or homotopy sums generalize
coproducts in a way that behaves correctly with homotopy fibres and the whole homotopy setting in general.
Then we will be able to perform some linear algebra on groupoid maps (regarding them as generalized vectors
with groupoid coordinates).

We are especially interested in this framework because later on it will become an important tool as an
intermediate step to both define the incidence algebra of a decomposition space and to prove some key
results. This section is primarily based on [9], where it is developed in full generality for ∞-groupoids.

The first new concept is that of the Grothendieck construction. Given a family of groupoids indexed by
a groupoid, to take its homotopy homotopy colimit roughly consists in taking the disjoint union of all of
them and then adding morphisms based on the indexing (see [10, §A.1.1.7, §B1.3.1]).

Definition 4.20. The homotopy colimit or homotopy sum of a functor F : B → Grpd is the groupoid
∫
F
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(usually denoted
∫ b∈B

F (b)) with objects

Ob

∫
F =

∐
b∈B

ObF (b) = {(b, e) : b ∈ B, e ∈ F (b)}

and morphisms

Hom∫
F ((b, e), (b′, e ′)) =

∐
β:b→b′

HomF (b′)(F (β)(e), e ′)

= {(β, ε) : β : b → b′, ε : F (β)(e)→ e ′}.

The identities of
∫
F are simply (idb, ide) and the composition of (β′, ε′) and (β, ε) where ε : F (β)(e)→ e ′

and ε′ : F (β′)(e ′)→ e ′′ is (β′ ◦ β, ε′ ◦ F (β′)(ε)).

F (β′β)(e) = F (β′)(F (β)(e))
F (β′)(ε)−−−−−→ F (β′)(e ′)

ε′−→ e ′′

This groupoid is naturally equipped with a projection∫
F → B

(b, e) 7→ b
(β, ε) 7→ β

This projection is the Grothendieck construction of F .

A particularly important example is the case in which B is discrete. Then it is readily seen that∫ b∈B
F (b) =

∐
b∈B

F (b)

and the projection is the obvious one induced by the coproduct
∐

b∈B F (b) → B . Thus, we may think of
the Grothendieck construction as a homotopy generalization of the coproduct where symmetries between
indices are taken into account.

Just like coproducts, this construction is functorial as a mapping GrpdB → Grpd/B and can be iterated.
Explicitly, given a functor I × J → Grpd, we have equivalences∫ i∈I∫ j∈J

F (i , j) '
∫ j∈J∫ i∈I

F (i , j) '
∫ (i ,j)∈I×J

F (i , j).

that commute with their projections to I × J. Functoriality then gives that homotopy sums are invariant
under homotopy equivalences. This is, given an equivalence F ' G , one has an equivalence

∫
F '

∫
G

which again induces an equivalence in Grpd/B for the respective Grothendieck constructions.

We already mentioned that homotopy sums behave well in conjunction with homotopy fibres. For sets
there is a duality between maps p : S → I (as objects in Set/I ) and collections of sets {Si}i∈I (functors
I → Set). Roughly, the duality is given by the assignments

SetI → Set/I
{Si}i 7→ p =

∐
i∈I (Si → {i})

Set/I → SetI

p 7→ {Si = p−1(i)}i∈I
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For instance, given a map p : S → N, one would obtain Sn = p−1(n) and then p is recovered as

p−1(0)

{0}

+

p−1(1)

{1}

+ · · · =

(p−1(0)q p−1(1)q · · · )

N

∼=
S

N

p

where each map p−1(i)→ N is the restriction of p to p−1(i), i.e., the constant map i .

This duality allows us to think of maps S → I as indexed collections of sets, where sets play the role of
scalars. Then a map S → 2 becomes a 2-dimensional “vector” with Set coefficients because it can be seen
as a pair of sets.

The following theorem shows that homotopy fibres and the Grothendieck construction are naturally
inverses of each other, just like preimages and disjoint unions of sets. It can be proved in full generality
from results in [17, §2.2.1] or in the special case of 1-categories and 1-groupoids as in [10, §B1.2].

Theorem 4.21 (Fundamental equivalence). The assignments

hfib : Grpd/B → GrpdB

p : E → B 7→ hfib(p,−)

∫
: GrpdB → Grpd/B

F 7→
∫
F → B

constitute an equivalence of the 2-categories. Moreover, the diagrams

Grpd/B GrpdB

Grpd/B′ GrpdB′

hfib

f ∗ (−◦f )

hfib

GrpdB Grpd/B

GrpdB′ Grpd/B′

∫
(−◦f ) f ∗∫

commute (up to 2-equivalence) for any f : B ′ → B . More precisely, hfib and
∫

are 3-natural in B .

Given that homotopy sums can be iterated, it is now easy to define homotopy sums of both collections
of functors and collections of maps.

Definition 4.22. The homotopy sum of F : I → GrpdB is calculated componentwise(∫
F
)

(b) :=

∫ i∈I
F(i)(b)

The fundamental equivalence now provides a definition for the homotopy sum of an indexed family of
Grpd/B . Since any map g ∈ Grpd/B is the Grothendieck construction hfib(g ,−)

g '
∫ b∈B

hfib(g , b)

B

,

we define the homotopy sum of an indexed family of maps F : I → Grpd/B as the usual projection∫ i∈I
gi :=

∫ b∈B∫ i∈I
hfib(gi , b)

B

∈ Grpd/B ,

where gi denotes F (i).
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If gi : Ei → B , observe that in the definition of
∫ i

gi we have∫ b∈B∫ i∈I
hfib(gi , b) '

∫ i∈I∫ b∈B
hfib(gi , b) '

∫ i∈I
Ei ,

so we can consider that
∫ i

gi :
∫ i

Ei → B . It is also easy to verify that hfib(
∫ i
gi , b) '

∫ i
hfib(gi , b), so

fibres of homotopy sums of maps can be calculated easily. Recall that we have hfib(
∫ i
gi , i) ' Ei too, given

directly by the fundamental equivalence. Moreover, homotopy sums of families indexed over some I × J can
also be iterated: ∫ (i ,j)∈I×J

gij '
∫ i∈I∫ j∈J

gij .

We now elaborate on a common strategy to compute homotopy sums. Given a family gi of maps
Ei → B , consider the map g :

∫ (i ,b)
hfib(gi , b) → I × B . Then the following squares are cartesian and g

and the family gi determine each other up to homotopy: g determines the gi ’s by pullback along piq× id
and the gi determine g via the Grothendieck construction.

Ei 1× B 1

E I × B I

gi

y
piq×id

y
piq

g

This means that we can compute
∫ i

gi by finding an appropriate g : E → I ×B which fits in these pullback
diagrams and then composing with the projection I × B → B .

Definition 4.23. Given S ∈ Grpd and g ∈ Grpd/B with g : E → B , we define the scalar multiplication
S ⊗ g ∈ Grpd/B as

S × E 1× B B,
tS×g ∼=

where tS : S → 1 is the unique map S → 1.

It is routine to verify that homotopy sums commute with constant factors. Explicitly∫ i∈I
f × gi ' f ×

∫ i∈I
gi

and, in particular, ∫ i∈I
S ⊗ gi ' S ⊗

∫ i∈I
gi .

For illustrative purposes, let us now examine a linear combination where objects of Grpd/B are vectors
and scalars are groupoids (objects of Grpd)∫ i∈I

Si ⊗ gi ∈ Grpd/B .
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Here the Si are an indexed collection of groupoids I → Grpd and the gi are also indexed by the groupoid I
as I → Grpd/B . Thus, this homotopy sum is the sum of the family Si ⊗ gi : Si × Ei → B , where Ei is the
domain of gi .

As before, we can obtain two maps f : S → I and g : E → I × B via the Grothendieck construction
that determine the families Si and gi up to equivalence:

f '
∫ i∈I

Si

I

g '
∫ (i ,b)∈I×B

hfib(gi , b)

I × B

We can now form the fibre product S ×I E of the maps f and p1g where p1 : I × B → I is the obvious
projection. Moreover, the projections of the fibres Si → S and Ei → E induce a map Si × Ei → S ×I E .
Then we have a homotopy commutative diagram

Si 1

Si × Ei Ei

S I

S ×I E E

y
piq

q

q

where the dotted maps are just the compositions through Si and 1 respectively. By previous observations,
the back, top, bottom and right faces are pullbacks. Applying the pullback pasting lemma with the top
and back faces ensures that the internal diagonal square is also a pullback. By the prism lemma, since the
bottom face is a pullback, then the front face is also a pullback.

Thus the family Si ⊗ gi is the pullback along piq× id of the map S ×I E → E → I × B ,

Si × Ei 1× Ei
∼= Ei B ∼= 1× B 1

S ×I E E I × B I

tSi×id

y
gi

y
piq×id

y
piq

q g

so ∫ i∈I
Si ⊗ gi '

S ×I E

E

B

q

p2g

or, more explicitly, the homotopy sum of the family Si ⊗ gi : Si × Ei → B is equivalent to

∫ i
Si ×I

∫ i
Ei

∫ i
Ei B.

q
∫ i gi
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This shows both a reinterpretation of the fibre product as a scalar product of two vectors (when B = 1)
and simplified way to verify some linear combinations. A particularly important case of this construction is
the following lemma, where we recover the previous idea of recovering the set map p : S → N as the sum
of maps p−1(i)→ {i}.

Lemma 4.24. Any f ∈ Grpd/B , f : E → B can be expressed as

f '
∫ e∈E

pf (e)q '
∫ b∈B

hfib(f , b)⊗ pbq.

Proof. Notice that all squares in the following diagram are pullbacks:

1 B ∼= 1× B 1

E E × B E

pf (e)q

peq
y

peq×id
y

peq

(id,f )

Then the bottom left arrow (id, f ) composed with p2 : E × B → B , is equivalent to the given homotopy
sum.

The second equivalence is proved similarly:

Eb 1 B ∼= 1× B 1

E B B × B B,

y
pbq

pbq
y

id×pbq
y

pbq

f (id,id)

This lemma ensures that any map E → B can be expressed as the linear combination
∫ b

Eb⊗pbq. Thus,
we can now think of name maps pbq as a basis of Grpd/B (or, at least, a system of generators). This will
prove especially useful later to derive explicit formulas for linear functors between slices Grpd/B → Grpd/B′ .

Let f : B → B ′ be a map of groupoids. Then f induces two functors: f! is just postcomposition with f
and f ∗ takes the pullback of a map along f .

f! : Grpd/B → Grpd/B′
g : X → B 7→ fg : X → B ′

f ∗ : Grpd/B′ → Grpd/B
g : X → B ′ 7→ f ∗(g) : X ×B′ B → B

These two functors are (homotopy) adjoint for any f .

Proposition 4.25. For any map f : B → B ′, there is a natural equivalence of the mapping groupoids

Map/B′(f!(g), g ′) ' Map/B(g , f ∗(g ′)).

Proof. Let g : A→ B and g ′ : C → B ′. Then we have a homotopy cartesian square
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A

B ×B′ C C

B B ′

g

p

f ∗(g ′)
y

g ′

f

A map f!(g)→ g ′ is a map A→ C such that the new outer square commutes, hence there exists a unique
map (up to homotopy) h : A → B ×B′ C together with a homotopy f ∗(g ′)h → g , constituting a map
g → f ∗(g ′). A morphism between two maps f!(g) → g ′ then becomes the unique homotopy between the
corresponding two equivalent maps A→ B ×B′ C by the statement of the universal property about 2-cells.

Given a map g → f ∗(g ′), we obtain a map A → C by composing with p. That provides a map
f!(g) → g ′. This assignment is clearly functorial and it is straightforward to verify that it is the homotopy
inverse of the firstly defined map again by the uniqueness requirements of the 2-cells provided by the universal
property.

Recall that the prism lemma provides a homotopical version of the regular pullback pasting lemma:

• •

H E

G B

y

q

p
y

g

f

One of its consequences is that the composition of the left arrows is homotopic to the pullback of the long
right hand arrow along the bottom one by uniqueness of the pullback. The Beck-Chevalley lemma is a more
precise statement of this fact in terms of an equivalence of pullback and postcomposition (lowershriek)
functors: f ∗g! ' p!q

∗.

Lemma 4.26 (Beck-Chevalley, [5]). For any pullback square

H E

G B

p

q

y
g

f

there is a natural equivalence

Grpd/H Grpd/E

Grpd/G Grpd/B

q!

p∗

f!

g∗
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Definition 4.27. A linear functor is a 2-functor F : Grpd/I → Grpd/J which is equivalent to p! ◦ q∗ for
some span I

q←− A
p−→ J:

Grpd/I
q∗−→ Grpd/A

p!−→ Grpd/J .

It is easy to verify that identities are linear and that composition of linear functors is again linear: for
two spans I s←− A

t−→ J and J
s′←− A′

t′−→ K , consider the pullback

A×J A
′

A A′

I J K

p

qy

s
t

s′
t′

Then the Beck-Chevally lemma ensures that

(t ′)!(s
′)∗t!s

∗ ' (t ′)!q!p
∗s∗ ' (t ′q)!(sp)∗,

so there is a category of homotopy slices of Grpd and linear functors. Although some results remain valid
for arbitrary base objects, we restrict them to locally finite groupoids for simplicity.

Definition 4.28. We denote the category of homotopy slices of Grpd and linear functors by LIN. It is a
symmetric monoidal 3-category with identity object Grpd/1

∼= Grpd and tensor product

Grpd/I ⊗ Grpd/J = Grpd/I×J .

The Hom-2-category between two slices is the full sub-2-category of the 2-functor 2-category Fun(Grpd/I ,
Grpd/J) with objects linear functors only. We denote it by LIN(Grpd/I , Grpd/J).

Remark 4.29. In the setting of ∞-groupoids, linear functors defined in terms of (homotopy) colimit-
preserving functors [9]5. Since regular groupoids are a particular case of∞-groupoids, we now have another
characterization of linear functors.

Given that the composition of spans is only defined up to homotopy, it is natural to expect LIN to be a
strictification of a category of spans. This is indeed the case even in a more general setting for polynomial
diagrams and polynomial functors. It is explained in greater detail by Gambino and Kock in [4]. We specialize

one of the key results to linear functors: we say that a map of spans from I
s←− A

t−→ J to I
s′←− A′

t′−→ J is a
homotopy commutative diagram

A

I J

A′

s t

f

s′ t′

Explicitly, the data consists of a map f : A→ A′ together with two homotopies s → s ′f and t → t ′f .

Then the construction of a linear functor from a span becomes functorial: if εf : f!f
∗ → id denotes

the counit of the adjunction from Proposition 4.25, the aforementioned map of spans induces a natural
transformation

5What we denote as LIN is expressed as LIN in [9].
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Grpd/I Grpd/A Grpd/J

Grpd/A′ Grpd/A′

s∗

(s′)∗

t!

t!f ∗

(t′)!
εf

' '

Using these definitions we can now make the connection between spans and linear functors significantly
more precise.

Proposition 4.30 ([4, Theorem 2.17]). If Span(I , J) denotes the category of spans of groupoids from I to
J then the construction of a linear functor out of a span gives an equivalence of 2-categories

Span(I , J) ' LIN(Grpd/I , Grpd/J).

Moreover, together with the assignment I 7→ Grpd/I , it becomes an equivalence of the 2-bicategory Span
of (locally finite) groupoids and spans between them and LIN (which is a 2-bicategory in particular).

Now, given that each linear functor is induced by a unique span, we may freely call such a span the
underlying span of the linear functor.

Since a span I ← A→ J is essentially a map g : A→ I ×J, we can then look at this map as a collection
of maps gi : Ai → J as before or as a collection of scalars Aij (the fibres of g) which coincide with the fibres
(Ai )j of gi :

(Ai )j 1× 1

Ai 1× J 1

A I × J I

y
id×pjq

gi

y
piq×id

p1

y
piq

g p1

In addition, we have already proved that an element of Grpd/I can be expressed as a linear combination
of its fibres with basis elements, so we can compute the action of the linear functor F : Grpd/I → Grpd/J
induced by g :

F
(∫ i∈I

Ei ⊗ piq
)
'
∫ i∈I

Ei ⊗
∫ j∈J

(Ai )j ⊗ pjq

'
∫ j∈J (∫ i∈I

Aij × Ei

)
⊗ pjq.

This is extremely similar to the formula for matrix multiplication by a vector with coordinates Ei . With a
similar procedure, one can also verify that composition of linear functors corresponds to matrix multiplication:
for A = (Aij) and B = (Bjk) two linear functors, the coefficients of the composition B ◦ A are

(B ◦ A)ik '
∫ j∈J

Bjk × Aij .
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Then it is not surprising that linear functors preserve linear combinations, since a linear combination∫ i
Si⊗gi with gi : Ai → J is simply the application of the linear functor A = ((Ai )j) to the vector

∫ i
Si⊗piq.

In fact, we have the following proposition:

Proposition 4.31 ([9, 2.10]). The functor

Grpd/I×J → LIN(Grpd/I , Grpd/J)

(A→ I × J) 7→ (I ← A→ J)

is an equivalence of 2-categories.

This means that LIN has internal hom functors. Furthermore, both addition and multiplication by
scalars work componentwise almost by definition (in many aspects, Mn×m(k) is isomorphic to km×n as
LIN(Grpd/I , Grpd/J) is equivalent to Grpd/I×J).

A similar result from linear algebra is that map is linear (i.e. it preserves linear combinations) if and
only if it admits a matrix representation. One implication is already set (we have just seeen that spans
correspond to matrices), we now prove the converse.

Proposition 4.32. Let F : Grpd/I → Grpd/J be a homotopy sum-preserving functor. Then it is linear.

Proof. Firstly, note that any functor preserving homotopy sums necessarily preserves linear combinations, as
any groupoid is the homotopy sum of the fibres (Lemma 4.24) of its identity map. Then define Ai to be the
domain of F (piq) ∈ Grpd/J for each i ∈ I and define g =

∫ i∈I
F (piq) : A → I × J via the Grothendieck

construction of F (piq):

Ai J 1

A I × J I

F (piq)

y
piq×id
y

piq

g p1

We claim that the linear functor with underlying span g : A→ I × J is equivalent to F . Since F preserves
linear combinations, it suffices to prove it for the name maps piq. By the above diagram,

(p2g)!((p1g)∗(piq)) ' (p2 ◦ (piq× id))!(F (piq)) ' F (piq).

The check for its action on morphisms is the same expression.

Now, we consider the dual space of a slice.

Corollary 4.33. By the previous proposition and the fundamental equivalence, the assignment

LIN(Grpd/I , Grpd/1) → Grpd/I → GrpdI

(I ← A→ 1) 7→ (A→ I ) 7→ hfib(I → A,−)

is an equivalence.
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Although Grpd/I and GrpdI are always equivalent (unlike dual spaces in regular linear algebra), we will
see that GrpdI is the most natural choice for the dual space of Grpd/I . First, we can easily obtain the
“dual basis” of pbq ∈ Grpd/B by computing its fibres. Recall that hfib(pbq, b′) is the discrete groupoid
HomB(b, b′), so the dual of pbq is hb = Hom(b,−). Again, just like for vector spaces, we have the obvious
pairing

〈−,−〉 : Grpd/I × GrpdI → Grpd ∼= Grpd/1

(piq, hj) 7→ Hom(j , i) ∼=

{
ΩiB if i ∼= j ,

∅ if i 6∼= j

that arises from application of hj regarded as an object of LIN(Grpd/I , Grpd/1).

4.4 Finite dimensional homotopy linear algebra

In this section we show how all the linear algebra in Grpd translates into classical linear algebra over a field
(we limit ourselves to Q) when some finiteness conditions are met. If homotopy linear algebra becomes
unmanageable at some point, this technique allows to seamlessly translate most concepts to the classical
setting. More importantly, this is the key step to recover the classical incidence algebra of decomposition
spaces from the intermediate step in homotopy theory.

Definition 4.34. The cardinality of a finite groupoid X is

|X | =
∑

[x]∈π0X

1

|π1(X , x)|
∈ Q.

Observe that for the particular case of connected groupoids we have that

|X | =
1

|π1(X , x)|
, for any x ∈ X .

For discrete groupoids

|X | =
∑

x∈π0X

1

|π1(X , x)|
=
∑

x∈π0X

1 = |ObX |,

and, conversely, |X | = 1
|ΩxX | for any connected groupoid X and x ∈ X . It is also important to notice

that cardinality is invariant under homotopy equivalences (since both automorphism groups and connected
components are).

Especially when taking the cardinality of a homotopy sum it will be convenient to use the following
notation. For any function f : π0X → V with X a finite groupoid and V a Q-vector space, we denote∫ x∈X

f (x) =
∑

[x]∈π0X

1

|ΩxX |
f ([x ]) ∈ V .

Recall that any category is equivalent to its skeleton. For groupoids, one has that every groupoid is
equivalent to a disjoint union of its automorphism groups (one for each connected component). This is the
idea behind the proof of the analogue of 4.24.

49



Morita Equivalence and Decomposition Spaces

Lemma 4.35 ([9, Lemma 3.5]). For any map E → B , one has that

|E | =

∫ b∈B
|Eb| ∈ Q.

whenever both sides exists.

It is important to note that this ensures that cardinality commutes with homotopy sums by the funda-
mental equivalence: ∣∣∣∫ b∈B

Eb

∣∣∣ =

∫ b′ ∣∣∣ hfib
( ∫ b∈B

Eb, b′
)∣∣∣ =

∫ b′∈B
|Eb′ |

The first equality is from Lemma 4.35 and then the fundamental equivalence provides hfib(
∫ b

Eb, b′) ' Eb′ .

In order to translate more concepts from the previous section, we are going to need some finiteness
conditions. One of them is that sums in matrix multiplications should be finite.

Definition 4.36. A map of groupoids is (homotopy) finite if all its homotopy fibres are finite. In particular,
if all its fibres are empty or contractible, then it is a homotopy monomorphism.

Proposition 4.37. Pullbacks of homotopy monomorphisms are homotopy monomorphisms and pullbacks
of homotopy finite maps are again homotopy finite.

Proof. Let p : E → B , f : C → B . The naturality of the fibre functor (by the fundamental equivalence)
ensures that hfib(f ∗(p),−) ' hfib(p,−) ◦ f , so f ∗(p) is homotopy finite (or a homotopy monomorphism)
if p is.

Definition 4.38. A span I
r←− A→ J is finite if r is. A linear functor is finite if the underlying span is.

The following proposition is an immediate consequence of Proposition 4.37:

Proposition 4.39 ([9, Proposition 4.3]). Any finite linear functor Grpd/I → Grpd/J arising from a span
I ← A→ J with locally finite I and J restricts to a linear functor grpd/I → grpd/J .

Then we have the finite groupoid counterpart of LIN and linear functors, lin
−→

. We also include an ad

hoc definition of its dual lin
←−

for convenience, the full construction is explained in detail in [9, §6].

Definition 4.40. The category of slices grpd/I with I locally finite and finite linear functors between them
will be denoted by lin

−→
. Dually, we define lin

←−
as lin
−→

op with objects replaced by functor categories via the

fundamental equivalence. We also call morphisms F : grpdI → grpdJ in lin
←−

linear and F ∗ = F op :

grpd/J → grpd/I is its dual.

We will next define a vector space from its homotopy analogue, a homotopy slice. Again, we require
locally finite bases and finite domains.

Definition 4.41. For a slice grpd/I (with I locally finite), consider the free Q-vector space Qπ0I generated
by δi := [i ] for each [i ] ∈ π0I and denote ‖Grpd/I‖ = Qπ0I . Then for any linear functor F defined by a
finite span I ← A→ J there is a linear map

‖F‖ : Qπ0I → Qπ0J

δi 7→
∫ j∈J |Aij | δj =

∑
[j]∈π0J

|Aij |
|ΩjJ|δj
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Since the composition of linear functors is just matrix multiplication and cardinality preserves homotopy
sums (see Lemma 4.35) and products, this defines a global cardinality functor

‖−‖ : lin
−→
→ VectQ.

The global cardinality functor is monoidal: it maps grpd/1 to Q and we also have that the cardinality
of grpd/I ⊗ grpd/J is

‖grpd/I×J‖ = Qπ0(I×J)
∼= Qπ0I×π0J

∼= Qπ0I ⊗Q Qπ0J .

Definition 4.42. The local cardinality of an object (f : E → I ) ∈ grpd/I is the row matrix of the linear

functor 1← E
f−→ I . Explicitly,

|f | =

∫ i∈I
|E1i | δi =

∑
[i ]∈π0I

|E1i |
|Ωi I |

δi .

If we take f = piq : 1 → I , then |f | is precisely δi , the global cardinality of the linear functor piq!

induced by 1 ← 1 → I . One may also consider multiplying the matrix obtained by taking the cardinality
of each fibre Aij of the underlying span I ← A → J of a linear functor F : grpd/I → grpd/J times the
local cardinality of an object p ∈ grpd/I . With minor algebraic manipulation, it follows from the definition
that |F (p)| = (|Aij |) · |p|. By a similar argument it is easily seen that (|Aij |) · |p| = ‖F‖(|p|) as well, so
|F (p)| = ‖F‖(|p|).

Since we have just seen that both concepts of cardinality are highly compatible, we are going to use the
same name (cardinality) and notation (|−|) in both cases.

Finally, we provide analogues of all these definitions for the corresponding dual spaces.

Definition 4.43. The cardinality of a linear functor F : grpdI → grpdJ is the linear dual of the cardinality
of the dual linear functor F ∗ : grpd/J → grpd/I :

|F | = |F ∗|∗ : Qπ0I → Qπ0J ,

where |grpdI | = Qπ0I = HomVectQ(Qπ0I ,Q) = Q∗π0I
. The linear duals of the basis elements δi will be

denoted by δi .

Similarly, the cardinality of a functor g ∈ grpdI is defined to be the cardinality of the corresponding
linear functor grpd/I → grpd/1 according to 4.33.

From the definition we can easily deduce that

|hi |(δj) =
∑

[∗]∈π01

|1j1|
|Ω∗1|

=

{
|Ωi I | if i ∼= j

0 if i 6∼= j .
=⇒ |hi | = |Ωi I | δi

and, more importantly, cardinality commutes with the pairing grpd/I × grpdI → grpd/1 and its linear
counterpart Qπ0I ⊗Qπ0I → Q.

〈|piq|, |hj |〉 = 〈δi , |Ωj I |δj〉 = |Ωj I |δj(δi ) = |〈piq, hj〉|.
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5. Decomposition spaces

In this section we are finally going to work with general decomposition spaces. Since they are just simplicial
groupoids satisfying some additional conditions, we need to provide a few basic definitions and results about
simplicial objects (simplicial sets and simplicial groupoids specially) before proceeding to decomposition
spaces.

Simplicial sets are extremely similar to simplicial complexes and the same intuition about segments,
triangles and tetrahedrons applies most of the time. The passage to simplicial groupoids does not add as
much conceptual complexity as one would expect, most of the time it simply requires replacing equalities
with isomorphisms and restating some conditions in terms of pullbacks.

Definition 5.1. The simplex category ∆ is the category with objects finite nonempty ordinals

[n] = {0 < 1 < · · · < n}

and morphisms monotone maps.

Injective monotone maps ∂ i : [n−1]→ [n] with image [n]\{i} are called coface maps and the surjective
ones σi : [n + 1]→ [n] with σ(i) = σ(i + 1) are codegeneracy maps.

Any identities satisfied by coface and codegeneracy maps are called cosimplicial identities.

It is important to notice that any monotone map [m] → [n] can be expressed as a composition of
cofaces and codegeneracies (see [18, Chapter I] for more details). Thus, ∆ is generated by coface maps
and codegeneracy maps modulo cosimplicial identities.

Definition 5.2. A morphism f : [n] → [m] in ∆ is free if it is distance-preserving. This is, f (k) + 1 =
f (k + 1). A generic map is an endpoint-preserving morphism g : [n]→ [m] in ∆: g(0) = 0 and g(n) = m.

One can check that free maps are precisely those that are generated by outer coface maps ∂⊥ = ∂0,
∂> = ∂n and generic maps are generated by codegeneracies and inner cofaces ∂ i , 0 < i < n.

The fact that all morphisms in ∆ are generated by cofaces and codegeneracies provides a more straight-
forward way to prove that a sequence of objects (where the object Xn is the image of [n]) and morphisms
(the images of cofaces and codegeneracies) defines a simplicial object. Although we choose to define them
in terms of ∆, in practice we are going to use the explicit combinatorial characterization given below.

Definition 5.3. A simplicial object in a category C is a functor X : ∆op → C. The object X ([n]) will
be denoted Xn and the morphisms X (∂ i ) = di : Xn → Xn−1 and X (σi ) = si : Xn → Xn+1 are face and
degeneracy maps respectively for each n and i . The images of the cosimplicial identities are the simplicial
identities.

Explicitly, a simplicial object can be given as a sequence of objects Xn, n ≥ 0, a collection of face maps
di : Xn → Xn−1 and a collection of degeneracy maps si : Xn → Xn+1 satisfying the simplicial identities

di si = di+1si = id, didj = dj−1di , sjsi = si sj−1, dj+1si = sidj , di sj = sj−1di ,

for any n ≥ 0 and 0 ≤ i < j ≤ n.
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Observe that these identities reflect the intuition from simplicial complexes: consider the case where
C = Set. If we call the elements of X0 vertices, the elements of X1 edges and, in general, the elements of
Xn n-simplices (with 2-simplicies being triangles), we observe that the degeneracy s0 : X0 → X1 corresponds
to regarding a vertex as a (degenerate) edge, while d0 : X1 → X0 (also written d⊥) removes the first vertex
and returns the remaining one. In general, we say that inner face maps di : Xn → Xn−1 with 0 < i < n
return the inner faces for n > 2 or the the long edge for n = 2. Conversely, the edges obtained by repeatedly
applying the outer face maps d⊥ and d> are generally called principal edges.

Moreover, notice that these identities show that any composition of inner face maps Xn → · · · → X1

is equal, so we write dn−1
1 for this unique generic map even though each d1 denotes a different morphism

d1 : Xk → Xk−1. We also say that dn−1
1 gives the long edge.

Next we define maps between simplicial objects. Again, we provide two equivalent definitions: an explicit,
combinatorial one in terms of each object Xn and maps Xn → Xn−1 and Xn−1 → Xn or in terms of functors
∆op → C.

Definition 5.4. A simplicial map F : X → Y of simplicial objects is a natural transformation X → Y . A
simplicial map of simplicial groupoids is cartesian with respect to a map g : [m]→ [n] in ∆ if the (strictly)
commutative square

Xn Yn

Xm Ym

X (g)

Fn

y
Y (g)

Fm

is homotopy cartesian.

Alternatively, a simplicial map F : X → Y is a sequence of maps Fn : Xn → Yn that commute with all
faces and all degeneracies:

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

F0 F1

di0

F2

di1 di2

di0 di1 di2

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

F0

si0

F1

si1

F2

si2

si0 si1 si2

Finally, we explain two important constructions that show how simplicial sets generalize categories. Recall
that functors between posets (regarded as categories) are exactly monotone maps, so we can consider ∆
to be a (full) subcategory of Cat. This provides a straightforward definition for the category of simplicial
objects in a given category C: the functor category6 Fun(∆op, C). We can then give a one-line definition of
the nerve of a category.

Definition 5.5. The (strict) nerve of a small category C is the simplicial set

NC = HomCat(−, C) : ∆op → Set.

6Note that this refers to functors in the classical sense, even if C is a 2-category like Grpd.
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A closer look at this definition reveals that an n-simplex of NC is just a sequence

a0 → a1 → · · · → an

of n composable arrows of C. Then d0 removes the first arrow, dn removes the last arrow and di with
0 < i < n composes the arrows ai−1 → ai → ai+1. An especially important face map is d1 : X2 → X1,
which is exactly the composition operation of C. On the other hand, a degeneracy si simply replaces an
object ai with the identity ai → ai . In particular, observe that (NC)1 = Mor C and (NC)0 is the set of
objects of C.

This is, in fact, how a category can be regarded as an ∞-category. It is well-known in the literature
that this functor N : Cat→ Fun(∆op, Cat) is full and faithful, thus embedding Cat into ∞Cat ↪→ sSet =
Fun(∆op, Set). Since we are mostly working with groupoids, there is a related definition that includes
isomorphisms between equivalent simplices, the fat nerve.

Definition 5.6. The fat nerve of a small category C is the simplicial groupoid

NC = Fun(−, C)iso : ∆op → Grpd.

where Ob(NC)n = (NC)n and morphisms are natural isomorphisms.

The fat nerve is similar to the strict one, but it also includes isomorphisms of n-simplices, i.e., commu-
tative diagrams

a0 a1 · · · an

b0 b1 · · · bn

∼= ∼= ∼=

In this case, (NC)1 = (C2)iso is the arrow groupoid (the maximal subgrupoid of the arrow category) and
(NC)0 = C iso is the maximal subgroupoid of C.

Although it is not possible to define composition in an arbitrary simplicial groupoid, the fat nerve
preserves additional structure from the category that allows us to compose two n-simplices to obtain an
(n + 1)-simplex. This property is what defines Segal spaces.

Definition 5.7. A simplicial groupoid X : ∆op → Grpd is a Segal space if all squares

Xn+1 Xn

Xn Xn−1

d>

d⊥

d>

d⊥

are homotopy pullbacks.

A particularly important case of these homotopy pullbacks is when n = 1, which states that X2 '
X1 ×X0 X1 and, by induction, Xn ' X1 ×X0 · · · ×X0 X1. This is, a simplex in Xn is the “composition” of n
simplices of X1. Given a, b ∈ X1 with d⊥a ∼= d>b, we write a · b for any 2-simplex σ with faces d⊥σ ∼= b
and d>σ ∼= a.
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The fat nerve of a category provides a particularly important class of examples of Segal spaces. Objects
of the fibre product (NC)n ×(NC)n−1

(NC)n are pairs of n-simplices σ1,σ2 together with isomorphisms
d⊥σ1 → d>σ2

σ1 : a0 a1 · · · an

σ2 : b1 · · · bn bn+1

∼= ∼=

that can be contracted to an n + 1 simplex

a0 → a1
∼= b1 → · · · → bn → bn+1.

In this case, given a, b ∈ (NC)1 the condition d⊥a ∼= d>b above expresses composability up to isomorphism
and a · b ∼= (• a−→ • ∼= • b−→ •).

All the definitions of incidence (co)algebras that we have given only use decompositions of elements
rather than composition. But, as we have already seen, the Segal condition expresses composability of
the objects in X1 to recover objects in X2. Decomposition spaces generalize Segal spaces by requiring
decomposition only, and these are exactly all that is required in order to define the incidence coalgebra on
X1.

Definition 5.8. A simplicial groupoid X : ∆op → Grpd is a decomposition space if it maps any pushout
square

[n] [m]

[q] [p]

f

g g ′

f ′ p

with free f , f ′ and generic g , g ′ to a homotopy pullback

Xp Xq

Xm Xn.

y

This condition ensures we always have the pullbacks

Xn+1 Xn+2 Xn+3

Xn Xn+1 Xn+2

d⊥

sk+1

y
d⊥ d⊥

dk+2

x

sk dk+1

Xn+1 Xn+2 Xn+3

Xn Xn+1 Xn+2

d>

sk

y
d> d>

dk+1

x

sk dk+1

for any n ≥ 0 and 0 ≤ k ≤ n. In fact, it is enough to verify a few of these to prove that a simplicial
groupoid is a decomposition space. The proof of the following proposition can be found in [6].
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Proposition 5.9 ([6, Proposition 3.3]). A simplicial groupoid X : ∆op → Grpd is a decomposition space
if and only if the squares

X1 X2

X0 X1

d⊥

s1

y
d⊥

s0

X1 X2

X0 X1

d>

s0

y
d>

s0

are homotopy pullbacks and for each n ≥ 2 there is some i , 0 < i < n such that the squares

Xn+1 Xn

Xn Xn−1

d⊥

di+1

y
d⊥

di

Xn+1 Xn

Xn Xn−1

d>

di

y
d>

di

are also homotopy pullbacks.

Using this characterization, one can easily show that decomposition spaces really generalize Segal spaces.

Corollary 5.10 ([6, Proposition 3.5]). Any Segal space is a decomposition space.

Proof. First, we show that the left square in

Xn+1 Xn Xn−1

Xn Xn−1 Xn−2

dn

d⊥

d>

d⊥

y
d⊥

dn−1 d>

is a pullback for n ≥ 2. The right hand one is a pullback because because it is precisely the Segal condition.
Moreover, the horizontal composites are dnd> = d>d> and dn−1d> = d>d> by the simplicial identities, so
the outer square is just the pasting of two Segal squares

Xn+1 Xn Xn−1

Xn Xn−1 Xn−2,

d>

d⊥

y
d>

d⊥

y
d⊥

d> d>

hence a pullback as well. This completes the first part of the proof.

Next, we need to show that the left square in

X1 X2 X1

X0 X1 X0

s1

d⊥

d>

d⊥

y
d⊥

s0 d>
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is also a pullback. Again, the right hand square is the Segal condition, hence a pullback, and the horizontal
composites are identities, so the outer square is a pullback. This proves that the left square is a pullback.

The proof for vertical d⊥ arrows is analogous.

Before continuing, it is going to be illustrative to show an example of a decomposition space which is
not Segal. In particular it does not arise as the nerve of a category.

Example 5.11 ([8, Example 1.1.5]). Consider any full groupoid G of the (large) groupoid of finite graphs
and graph isomorphisms between them. We allow these to have multiple edges and loops. Take X0 = 1
and X1 = G . For n ≥ 2, we define Xn to be the groupoid with objects of graphs in G together with
an ordered partition (V1, · · · ,Vn) of its vertex set into n subsets. Isomorphisms of Xn are partition-index-
preserving graph isomorphisms (i.e. such that they map vertices in the i-th component of the partition to
the i-component of the partition of the target graph).

This structure can be equipped with face and degeneracy maps defined as

• Outer face maps d⊥ and d> delete the first (resp. last) set of the partition and return the corresponding
subgraph with the specified set of edges removed.

• The inner face map di performs the union of the i-th partition set and the (i + 1)-th.

• The degeneracy map si inserts an empty partition set at the ith position.

These operations clearly satisfy the simplicial identities, and the pullback condition from the decompo-
sition space axioms

X2 X3

X1 X2

d0

d2 x
d0

d1

states that a three-part partition (G ,V1,V2,V3) can be recovered from (G ,V1,V2∪V3) and (G \V1,V2,V3).

The reason why this decomposition space is not a Segal groupoid is that it is not possible to uniquely
reconstruct a graph G from two disjoint subgraphs G1,G2 (with V (G ) = V (G1) ∪ V (G2)) as all the
information about edges in G bewteen G1 and G2 is lost.
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5.1 The incidence (co)algebra of a decomposition space

Using tools from homotopy linear algebra, we can define the incidence coalgebra of a decomposition space
X . Recall that a coalgebra (in the classical sense) is a k-vector space V equipped with two linear maps

ε : V → k and ∆ : V → V ⊗ V

satisfying some coassociative and counital laws. Equivalently, it is a comonoid object in the monoidal
category of k-vector spaces with the tensor product. In the homotopical setting we have replaced vector
spaces by slices and linear maps by linear functors, so the incidence coalgebra of X is going to be some slice
Grpd/B together with corresponding linear functors

ε : Grpd/B → Grpd/1 and ∆ : Grpd/B → Grpd/B ⊗ Grpd/B .

The requirements in the definition of decomposition space then become precisely what is needed to prove
that these maps are coassociative and counital (up to equivalence).

Let B = X1 (recall that for the fat nerve of a category, (NC)1 is the groupoid of all arrows). Consider
the linear functors ε and ∆ induced by the spans

X1 X1 1
s0 and X1 X2 X1 × X1

d1 (d2,d0)

respectively. This structure is the incidence coalgebra of X .

Theorem 5.12 ([6, §7]). For a decomposition space X , the slice Grpd/X1
is a strong monoid object in the

symmetric monoidal category LIN together with the linear functors ε and ∆ described above.

Proof. We just prove coassociativity, counitality is analogous and simpler. We need to show that the square

Grpd/X1
Grpd/X1×X1

Grpd/X1×X1
Grpd/X1×X1×X1

∆

∆

∆⊗id

id⊗∆

commutes up to equivalence. To see this, we expand it with the corresponding spans, which can be then
be connected via X3

X1 X2 X1 × X1

X2 X3 X2 × X1

X1 × X1 X1 × X2 X1 × X1 × X1

d1 (d2, d0)

d1

(d2, d0)

d1

(d2d2, d0)

d2

(d3, d0d0)

q

x

d1×id

(d2, d0)×id

id×d1 id×(d2, d0)

The top right square is a pullback because the outer square in the diagram
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X2 X1 × X1 X1

X3 X2 × X1 X2

(d2, d0) p1

(d3, d0d0)

d1 d1×id

p1

q
d1

is (X is a decomposition space), and the rightmost one is a pullback in general. The argument for the
bottom left square is symmetric.

By the Beck-Chevalley lemma, we now have that (d1 × id)∗ ◦ (d2, d0)! ' (d3, d0d0)! ◦ d∗1 , so

(∆⊗ id) ◦∆ ' ((d2, d0)× id)! ◦ (d1 × id)∗ ◦ (d2, d0)! ◦ d∗1
' ((d2, d0)× id)! ◦ (d3, d0d0)! ◦ d∗1 ◦ d∗1
' ((d2d3, d0d3, d0d0)× id)! ◦ (d1d1)∗

This is, (∆⊗ id) ◦∆ is the linear functor induced by the diagonal span X1 ← X3 → X1×X1×X1. Similarly
one proves that ∆ ◦ (id⊗∆) is also determined by this span, so (∆⊗ id) ◦∆ ' ∆ ◦ (id⊗∆).

Recall that names pxq : 1 → X1 play the role of basis elements in Grpd/X1
, so these should provide a

simpler description of ∆ and ε analogous to the one for locally finite posets and Möbius categories, where

∆([x , y ]) =
∑

z∈[x ,y ]

[x , z ]⊗ [z , y ] and ∆(f ) =
∑
f =gh

g ⊗ h

respectively. By Lemma 4.24 we have

∆(pxq) '
∫ (a,b)∈X1×X1

((X2)x)a,b ⊗ p(a, b)q

'
∫ (a,b)∈X1×X1

(X2)x ,a,b ⊗ paq⊗ pbq,

where (X2)x ,a,b = hfib((d1, d2, d0), (x , a, b)). In particular, if X is the strict nerve of a small category, the
fibre is either a singleton or empty

(X2)x ,a,b '

{
{(x , a, b)} if x = a · b
∅ if x 6= a · b

and the comultiplication is the projection∐
x=a·b

1→ X1 × X1 = Mor C ×Mor C

which, written in a more suggestive notation, is

∆(pxq) '
∑
x=a·b

paq⊗ pbq.

More generally, if X is the fat nerve of a category (or any Segal space), one can easily verify (see [8])
that

(X2)x ,a,b '

{
Ωd1aX0 × ΩxX1 if x ∼= a · b,

∅ if x 6∼= a · b,
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so

∆(pxq) ' ΩxX1 ⊗
∫ (a,b)∈X1×X1

f∼=a·b
Ωd1aX0 ⊗ paq⊗ pbq

The computation is even simpler for ε. Given pxq ∈ Grpd/X1
, we have

ε(pxq) = (X0)x ⊗ p1q : (X0)x → 1,

with (X0)x = hfib(s0, x). In particular, observe that

(X0)x =

{
1 if x is an identity
∅ otherwise

when X = NC.

Naturally, the next step is to define the incidence algebra in terms of the coalgebra. As before, we simply
consider the linear dual. In this case, it is the category

LIN(Grpd/X1
, Grpd/1).

The convolution product F ∗ G of two linear functors F ,G : Grpd/X1
→ Grpd/1 is the composite

Grpd/X1

∆−→ Grpd/X1
⊗ Grpd/X1

F⊗G−−−→ Grpd/1 ⊗ Grpd/1

∼=−→ Grpd/1,

and the unit just ε : Grpd/X1
→ Grpd/1. Associativity and unitality follow directly from coassociativity and

counitality. Rewritten in terms of the equivalence 4.33, the convolution product is simply

(F ∗ G )(x) '
∫ (a,b)∈X1

(X2)x ,a,b × F (a)× G (b),

and the unit becomes δ(x) ' (X0)x . Since GrpdX1 is clearly more convenient to work in than LIN(Grpd/X1
, Grpd/1),

we are going to consider GrpdX1 as the incidence algebra of X .

Finally, we define the characteristic functions χa : X1 → Grpd for a ∈ X1. The definition is identical to
the one for Möbius categories:

χa : X1 → Grpd

x 7→

{
1 if x ∼= a

∅ otherwise

Expressed as a linear functor, it is the one induced by the span

X1
paq←−− 1→ 1,

so its coefficients are ΩaX1 at indices isomorphic to a and 0 elsewhere.

Interestingly, one can recover the zeta functor ζ as ζ(x) '
∫ a∈X1 χa and, in some cases (namely complete

decomposition spaces, more on them in section 5.4), δ(x) '
∫ v∈X0 χs0v as well.
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5.2 CULF functors and equivalences of decomposition spaces

As always, the next step after defining a new structure or concept is usually giving the appropriate notion
of homomorphism between two of them. In our case these are a particular kind of simplicial maps just like
decomposition spaces are a particular kind of simplicial groupoids. Later we are going to see why this is the
appropriate notion.

Definition 5.13. A simplicial map between two simplicial groupoids F : X → Y is conservative if the
square

Xn Xn+1

Yn Yn+1

si

Fn

y
Fn

si

is a homotopy pullback for all 0 ≤ i ≤ n. Similarly, we say that it has Unique Liftings of Factorizations
(ULF) if the square

Xn+1 Xn+2

Yn+1 Yn+2

Fn+1 Fn+2

di+1

x

di+1

is a homotopy pullback for 0 ≤ i ≤ n. A functor which is both conservative and ULF is called CULF.

Note that this definition does not mention decomposition spaces, it is defined in terms of any simplicial
groupoid. The improvement brought by decomposition spaces is that it becomes much easier to check
whether a map is CULF:

Proposition 5.14 ([6, Proposition 4.2]). If X is a decomposition space, any ULF functor F : X → Y is
conservative.

Proposition 5.15 ([6, Lemma 4.3]). A simplicial map F : X → Y between decomposition spaces is CULF
if and only if it is cartesian on the generic map ∂1 : [1]→ [2]:

X1 X2

Y1 Y2

F1

d1

F2

x

d1

Notice that a CULF functor is a generalization of what we called a local isomorphism in sections 2 and 3.
For the nerve of a category, the set (f ) is simply the fibre of the composition map c : C(B,C )×C(A,B)→
C(A,C ), and a local isomorphism is a functor that induces an isomorphism (f )→ (F (f )). For a CULF map
F : X → Y and x ∈ X1 we have the following diagram by the pullback pasting lemma 4.14:
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1 (X2)x

X1 X2

Y1 Y2

pxq
x

F1

d1

F2

x

d1

This is, the fibres (X2)x and (Y2)F1(x) coincide. For the particular case of the strict nerve of a category this
is precisely a bijection (x)→ (F1(x)) which is induced by the fact that the square c ◦ (F1 × F1) = F1 ◦ c is
a pullback in Set:

X2 = {(x1, x2) ∈ X1 × X1 : dom x1 = cod x2}
∼= {(x , (y1, y2)) ∈ X1 × Y2 : F (x) = y1y2}

Now, the reason why this is the appropriate notion of homomorphism is that CULF functors always induce
coalgebra homomorphisms, making the incidence coalgebra construction functorial.

Proposition 5.16 ([6, Lemma 8.2]). If F : X → Y is a CULF functor, then F1! : GrpdX1
→ GrpdY1

preserves ε and ∆.

Proof. Since we have two homotopy pullback squares

X1 X2

Y1 Y2

F1

d1

F2

x

d1

and
X1 X0

Y1 Y0

F1

s0

F0

x

s0

we can apply the Beck-Chevalley lemma (4.26) and obtain

∆ ◦ F1! ' (d2, d0)! ◦ d∗1 ◦ F1!

' (d2, d0)! ◦ F2! ◦ d∗1
' (F1 × F1)! ◦ (d2, d0)! ◦ d∗1
' (F1 × F1)! ◦∆

and

ε ◦ F1! ' 1! ◦ s∗0 ◦ F1!

' 1! ◦ F0! ◦ s∗0
' 1! ◦ s∗0
' ε,

where 1! : Grpd/I → Grpd/1 denotes postcomposition with the terminal map.

In this work we care about isomorphisms particularly. Since we are in a 2-categorical context, the
appropriate notion of sameness is that of equivalence of 2-categories. Given that a simplicial groupoid is
a functor ∆op → Grpd, an equivalence of two of these must be a strict 2-natural transformation which
in turn is again an equivalence on each component. Recall that by Lemma 4.13 any commutative square
whose vertical maps are equivalences is automatically a homotopy pullback square, so any simplicial map
which is an equivalence at each n must be CULF. Moreover, by the (2-)functoriality of the lowershriek
f 7→ f! this assignment maps any equivalences F1G1 ' Id and G1F1 ' Id to equivalences F1!G1! ' Id and
G1!F1! ' Id. Thus, we have the immediate result that equivalent decomposition spaces yield equivalent
incidence coalgebras.
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Theorem 5.17. If F : X → Y is an homotopy equivalence at each degree, then it is CULF and F1! :
Grpd/X1

→ Grpd/Y1
is an equivalence of 2-categories that preserves ε and ∆.

In particular, an equivalence of categories C → D induces levelwise equivalences NC → ND and
NC → ND, so Grpd/(NC)1

' Grpd/(ND)1
and Grpd/(NC)1

' Grpd/(ND)1
. Since the nerve functor is full

and faithful, this implication actually holds in both directions. An immediate consequence of this fact is
that solving the isomorphism problem for decomposition spaces particularizes easily for Möbius categories.

5.3 Cardinality of the incidence (co)algebra

As we announced previously, the incidence coalgebra on Grpd/X1
induces a coalgebra structure on Qπ0X1

by taking cardinalities as in 4.4. This section explains how this is done in detail and how it relates to the
incidence algebra of a poset or a Möbius category.

In order to be able to compute cardinalities, we first need to ensure some finiteness conditions. The
following definition is directly motivated by the requirements of Proposition 4.39 applied to ∆ and ε.

Definition 5.18. A decomposition space X is locally finite if X1 is a locally finite groupoid and s0 : X0 → X1

and d1 : X2 → X1 are finite maps.

Thus, for a locally finite decomposition space X we can restrict ∆ and ε to finite groupoids

∆ : grpd/X1
→ grpd/X1

⊗ grpd/X1
ε : grpd/X1

→ grpd/1.

From the formulas above, one can recover the classical indicence coalgebra by taking cardinalities. The
comultiplication becomes

|∆| : Qπ0X1 → Qπ0X1 ⊗Qπ0X1

δx 7→
∫ a,b∈X1

|(X2)x ,a,b|δa ⊗ δb =
∑

[a],[b]∈π0X1

cxa,bδa ⊗ δb,

where the section coefficients cxa,b denote |(X2)x ,a,b|
|ΩaX1||ΩbX1| . The counit is simply

|ε| : Qπ0X1 → Q
δx 7→ |(X0)x |.

As one would expect, when X is te strict nerve of a Möbius category |∆| and |ε| are the operations
defined in section 3

f 7→
∑
f =a·b

a⊗ b and f 7→

{
1 if f ∈ C0

0 otherwise.

For the special case in which X a Segal space one can prove [8, Proposition 1.2.6] that

cxa,b =


|Ωs0d0aX1||ΩxX1|
|ΩaX1||ΩbX1|

if x ∼= a · b

0 if x 6∼= a · b.
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There is not much to say about |ε| other than the fact that the result for NC remains true if we simply
require s0 to be a (homotopy) monomorphism. This fact will become more relevant later when studying
complete decomposition spaces.

As a final remark, note that the linear duals of |∆| and |ε| correspond to the cardinality of the structure
maps (∗ and δ) of the incidence algebra. We denote this numerical incidence algebra by I (X ).

We complete this section with the explicit calculation of the numerical incidence algebra that perfectly
illustrates the isomorphism problem for (Segal) decomposition spaces.

Example 5.19. Consider the fat nerve X of the hanger category

1

0 2

j

ba

f

where f = ba, a = ja, b = bj and jj = id1.

It has π0X0 = {[0], [1], [2]} and an additional loop at [1] given by j , AutX0(1) = {id1, j}. The groupoid
X1 of edges has connected components {[id0], [id1], [id2], [a], [b], [f ]} and the only components with loops
are [id1], [a] and [b], all three of them with exactly two automorphisms: one is the identity and the other
one is a combination of identities and j . For instance, the automorphisms at a ∈ X1 are

0 1

0 1

a

a

0 1

0 1

a

j

a

The groupoid X2 is similar to X1: any connected components involving j can be replaced with one
involving 1 instead, and any such component has two automorphisms: the identity and a diagram with some
vertical j .

With this information and some manual work (which can be easily automated for these small scenarios)
one can easily obtain the coefficients for the comultiplication

∆(δi ) = δi ⊗ δi i = 0, 1, 2

∆(δa) = δ0 ⊗ δa + δa ⊗ δ1

∆(δb) = δ1 ⊗ δb + δb ⊗ δ2

∆(δf ) = δ0 ⊗ δf + δf ⊗ δ2 +
1

2
δa ⊗ δb

The fractional coefficient has appeared due to the loops introduced by j . If we let σ ∈ X2 denote the
2-simplex 0

a−→ 1
b−→ 2, then one can easily verify that

• |AutX1(a)| = |AutX1(b)| = 2

• The fibre (X2)f ,a,b is a discrete groupoid with two connected components. These are represented by
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the identity map (d1σ, d2σ, d0σ)→ (f , a, b) and 0 2

0 2

d1σ

f

,

0 1

0 2

d2σ

a

,

0 1

0 2

d0σ

j

b

 : (d1σ, d2σ, d0σ)→ (f , a, b)

The hanger category is clearly not equivalent to the category of the poset [2] = {0 < 1 < 2} shown in
Example 3.3. In fact, it is not even a Möbius category because `(id1) = ∞ as one can always decompose
id1 = jj . Nevertheless, if we define Ψ : I (X ) → I ([2]) by mapping δa 7→ 2δ0≤1 and every other δx to its
corresponding counterpart in I ([2]), is it readily seen to be an isomorphism of coalgebras:

(Ψ⊗Ψ)(∆(δf )) = Ψ(δ0)⊗Ψ(δf ) + Ψ(δf )⊗Ψ(δ2) +
1

2
Ψ(δa)⊗Ψ(δb)

= δ0≤0 ⊗ δ0≤2 + δ0≤2 ⊗ δ2≤2 +
1

2
2δ0≤1 ⊗ δ1≤2

= ∆(δ0≤2)

= ∆(Ψ(δf )).

5.4 Completeness and Möbius decomposition spaces

Before dealing with the isomorphism problem, we need more information about the comultiplication. For
Möbius categories we had some useful formulas like χf ∗χg = χfg or χcod f ∗χf = χf . These are not obvious
in this case, and it turns out that some additional hypotheses are required in order to obtain similar results.
Most of the content in this section is based on [7], although most proofs have been reworked according to
our simpler setting.

To do this, we need to translate a few concepts like length conditions from Möbius categories. First,
let us fix some notation. For a simplicial groupoid X , let ~Xn denote the full subgroupoid of Xn of simplices
with nondegenerate principal edges (this is, dk−1

> dn−k
⊥ σ 6∼= s0v for any 1 ≤ k ≤ n and v ∈ X0) and ~X0 = X0

by convention. In addition, for each n ≥ 1, let Φn be the linear functor given by the span

X1
~Xn 1

dn−1
1

and Φ0 = ε for n = 0:
X1

s0←− X0 → 1.

Unless stated otherwise, we will regard Φn as an element of GrpdX1 under the equivalence in 4.33. This is,
Φn(x) ' hfib(dn−1

1 |~Xn
, x).

The role of these functors is to measure the amount of decompositions of a simplex x ∈ X1 into
n nondegenerate simplices. In the rest of this section we are going to restrict ourselves to a class of
decomposition spaces that is particularly well-behaved for vertices and degeneracies.

Definition 5.20. A decomposition space is complete if s0 is a monomorphism.
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The point of this definition becomes much clearer when combined with the following general fact about
homotopy monomorphisms.

Proposition 5.21. A map of groupoids f : E → B is a homotopy monomorphism if and only if it is full
and faithful.

Proof. To prove that it is a bijection on morphisms, let β : f (e) → f (e ′) be an isomorphism in B . Then
regard it as an object of the fibre Ef (e′). Since the fibre is contractible, there exists a unique isomorphism
between β and idf (e′) : f (e ′)→ f (e ′)

f (e) f (e ′)

f (e ′)

f (ε)

β

This is, there is a unique ε : e → e ′ with f (ε) = β. The converse can be easily deduced from observations
in section 4: if f is full then the fibre is connected, and if f is faithful the fibre is discrete. Combining both
gives that the fibre is empty or contractible.

The first consequence of completeness is that the inclusion X0 + ~X1 → X1 is in fact an equivalence. For
this reason, we identify X0 with a full subgroupoid of X1 when dealing with complete spaces (for instance
we write v ∈ X1 for any v ∈ X0). This result allows us to extend it to Xn because in a decomposition
space all degeneracies are pullbacks of s0 along compositions of outer face maps (from the definition and
the pullback pasting lemma), so the obtain the following immediate result by recalling Proposition 4.37.

Proposition 5.22 ([7, Lemma 2.3]). All degeneracies in a complete decomposition space are monomor-
phisms.

This implies that Xn is the disjoint union of the full subgroupoids of Xn where a fixed combination of
degenerate and nondegenerate principal edges appears.

Xn '
n∑

k=0

(
n

k

)
~Xk

For instance,
X2 ' ~X2 + s0(~X1) + s1(~X1) + s0s0(X0)

Using this decomposition into disjoint subgroupoids we can recover a familiar expression for the comul-
tiplication of the incidence coalgebra:

∆(pxq) '
∫ (a,v)∈~X1×X0

(X2)xav ⊗ paq⊗ pvq+

∫ (v ,b)∈X0×~X1

(X2)xvb ⊗ pvq⊗ pbq (2)

+

∫ (a,b)∈~X1×~X1

(X2)xab ⊗ paq⊗ pbq+

∫ (v ,w)∈X0×X0

(X2)xvw ⊗ pvq⊗ pwq (3)

The first two terms correspond to the trivial decompositions f = idf = f id for Möbius categories, the third
term is about nontrivial ones and lastly the case when f = id. When taking cardinalities, these summands
become even simpler by turning homotopy sums into regular (weighted) sums.
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Proposition 5.23. Given x , a ∈ X1 and v ∈ X0, we have

(X2)xav '

{
ΩxX1 × Ωd0xX1 if a ∼= x and v ∼= d0x

0 otherwise

and similarly for (X2)xva.

Proof. Considering that in the diagram

(X2)xav 1

X1 X1 × X1 × X0 X0

X2 X1 × X1 × X1 X1

p(x ,a,v)q

(diag, d0)

s1

y
id×s0

y
s0

(d1,d2,d0)

the bottom left square is a pullback (since the outer rectangle is cartesian by the decomposition space
axioms), it suffices to prove the upper square. Clearly, (X1)xav = 0 if x 6∼= a or d0x 6∼= v . For the other case
assume without loss of generality that x = a and d0x = v and consider the canonical map

u ΩxX1 × Ωd0xX0 → (X1)x ,x ,d0x

(φ1,φ2) 7→ ((x , x , d0x), (id,φ1,φ2) : (x , x , d0x)→ (x , x , d0x))

We show that it is essentially surjective. For any other object (ψ1,ψ2,ψ3) : (y , y , d0y)→ (x , x , d0x) of the
fibre, there is an object (id,ψ2ψ

−1
1 ,ψ3ψ

−1
1 ) = u(ψ2ψ

−1
1 ,ψ3ψ

−1
1 ) in the image which is isomorphic to it via

ψ−1
1 : x → y .

Finally, it is faithful because the domain is discrete. It is full because any isomorphism ϕ : (id,φ1,φ2)→
(id,φ′1,φ′2) must be the identity by inspecting the first component: id = idϕ.

(x , x , d0x) (x , x , d0x)

(x , x , d0x)

(diagϕ,d0ϕ)=(ϕ,ϕ,d0ϕ)

(id,φ1,φ2) (id,φ′1,φ′2)

Then we get ΩxX1 × Ωd0xX0 ' (X1)x ,x ,d0x . Note that Ωd0xX0
∼= Ωd0xX1 because s0 is full and faithful (a

homotopy monomorphism).

This implies that the first summands of the comultiplication of δx , x ∈ ~X1, become7∫ (a,v)∈~X1×X0

|(X2)xav |δa ⊗ δv =
|(X2)x ,x ,d0x |
|ΩxX1||Ωd0xX1|

δx ⊗ δd0x = δx ⊗ δd0x∫ (v ,b)∈X0×~X1

|(X2)xvb|δv ⊗ δb =
|(X2)x ,d2x ,x |
|ΩxX1||Ωd2xX1|

δd2x ⊗ δx = δd2x ⊗ δx

7Here |Ωd0xX0| = |Ωd0xX1| because s0 is a monomorphism.
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Next, we obtain a few more properties by describing ~Xn in terms of the pullback

~Xn Xn

~X n
1 X n

1

(dk−1
⊥ dn−k

> )k
y

(dk−1
⊥ dn−k

> )k

It is routine to verify that the canonical map ~Xn → ~X n
1 ×X n

1
Xn mapping σ 7→ (σ, (dk−1

⊥ dn−k
> σ)k , id) is

essentially surjective, full and faithful, hence the diagram is a pullback square.

This observation can be used to prove that, given a 2-simplex whose principal edges correspond to the
long edges of some n- and m-simplices, its principal edges can be replaced with the corresponding n- and
m-simplices obtaining a (n +m)-simplex. Clearly, the result still holds for an n-simplex with principal edges
corresponding to mi -simplices, but the proof is analogous and the notation is much simpler in the binary
case.

Proposition 5.24 ([7, Lemma 3.5]). There is a pullback square

~Xn+m Xn+m X2

~Xn × ~Xm Xn × Xm X1 × X1

(dm
>,dn
⊥)

y

dm−1
2 dn−1

1

(dm
>,dn
⊥)

y
(d>,d⊥)

dn−1
1 ×dm−1

1

Proof. In the diagram

~Xn+m Xn+m X1+m X2

~Xn × ~Xm Xn × Xm X1 × Xm X1 × X1

~X n+m
1 X n+m

1

y y

y

the bottom square is a product of pullback squares and the outer left rectangle is also cartesian, so the top
left square is. The two rightmost squares are pullbacks by repeated application the decomposition space
axioms.

The length of a simplex is then a straightforward definition in terms of Φn and ~Xn.

Definition 5.25. The length of a 1-simplex x ∈ X1 is

`(x) = sup{n ≥ 0 : Φn(x) 6= ∅}.

and `(x) = ∞ if Φn(x) 6= ∅ for all n ≥ 0. For σ ∈ Xn, the length of σ is defined as the length of its long
edge.
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Note that Φn(x) 6= ∅ is equivalent to the existence of an n-simplex with nondegenerate principal edges
whose long edge is x . Moreover, observe that ` is invariant under isomorphism by the functoriality of Φn

and defines a functor Xn → N (regarding N as a discrete groupoid) that we can use to partition Xn into
disjoint groupoids by length

Xn,k 1

Xn N

y
pkq

`

where Xn =
∑

k Xn,k and Xn,k is the full subgroupoid of Xn whose simplices have length k . We now define
what is going to be the analog definition of Möbius category for decomposition spaces.

Definition 5.26. A complete decomposition space is of locally finite length if all simplices of X1 have finite
length.

Definition 5.27. A complete decomposition space is Möbius if it is both locally finite and of locally finite
length.

These hypotheses already allow us to prove some basic (and intuitive) results that were more or less
obvious for Möbius categories. Firstly, recall that `(f ) + `(g) ≤ `(fg).

Proposition 5.28 ([7, §6.20]). If X is of locally finite length and σ ∈ Xn, then `(σ) ≥
∑n

k=1 `(d
k−1
⊥ dn−k

> σ).

Proof. Letmk = `(dk−1
⊥ dn−k

> σ) be the length of the kth principal edge, we need to prove that Φm1+...+mn(d1σ) 6=
∅. Let σk ∈ ~Xmk

with dmk−1
1 σk ∼= dk−1

⊥ dn−k
> σ. Then we have a simplex σ̄ ∈ ~Xm1+···+mn with long edge

dn−1
1 σ by Proposition 5.24.

A key fact about Möbius categories is that morphisms were not invertible. More generally, the composi-
tion of any two non-identity morphisms never yielded an identity. This one is going to take several to prove,
the first one being that at least one of them must not be an identity.

Proposition 5.29 ([7, Corollary 6.9]). If X is any decomposition space, a simplex σ ∈ Xn is degenerate if
and only if d⊥σ or d>σ is.

Proof. First, assume that d>σ = skτ . Then the pullback condition

Xn−1 Xn

Xn−2 Xn−1

sk

d>

y
d>

sk

ensures that σ = sk σ̄ for some σ̄ ∈ Xn−1. The case d⊥σ = skτ is analogous. Conversely, if τ = skσ, then
d0skσ = sk−1d0σ.

Corollary 5.30. In a decomposition space, an n-simplex is degenerate if and only if some of its principal
edges are.
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Proof. Iterate Proposition 5.29.

Another intuitive fact is that vertices have length zero. Again, the proof is not as simple as one would
expect but the fact still holds.

Proposition 5.31 ([7, Lemma 6.6]). If X is of locally finite length and x ∈ X1, `(x) = 0 if and only if
x ∼= s0v for some v ∈ X0.

Proof. One implication is trivial: if `(x) = 0 then Φ1(x) = 0 and x 6∈ ~X1, so x ∈ X0.

We prove the converse by contradiction. Let v ∈ X0 and assume that `(s0v) = n > 0. Then, there
exists σ ∈ ~Xn with long edge s0v . By repeated application of the decomposition space axioms, we have the
following pullback diagrams (note that d>dn−1

2 = dn
>):

Xn+n X1+n Xn

X2 X1

Xn X1

dn−1
1

dn
>

y
d⊥

dn−1
2

y
dn−1

1

d⊥

d>

dn−1
1

Now consider s0s0v ∈ X2 and σ ∈ ~Xn. Clearly, d⊥s0s0v = s0v = dn−1
1 σ, hence there exists vσ ∈ Xn+1 with

dn−1
2 (vσ) ∼= s0s0v and d⊥(vσ) ∼= σ. Next, observe that dn

⊥(vσ) ∼= s0v = dn−1
1 σ, so there exists σσ ∈ Xn+n

with dn
>(σσ) ∼= σ and dn

⊥(σσ) = d⊥d
n−1
1 (σσ) ∼= σ. Since σ has all principal edges nondegenerate, so does

σσ, hence σσ ∈ ~Xn+n with d2n−1
1 (σσ) = d1(s0s0v) = s0v contradicting `(s0v) = n < n + n.

We can finally prove the statement about the lack of isomorphisms in our analogy with Möbius categories.
Note that the hypotheses reflect the fact that all arrows in a Möbius category must have finite length, which
is the key of the proof in that particular case.

Proposition 5.32 ([7, Corollary 6.10]). If X is of locally finite length, an n-simplex σ ∈ Xn has a degenerate
long edge if and only if all its principal edges are degenerate or, equivalently, σ ∼= sn0 v .

Proof. If the long edge is degenerate, then `(σ) = 0 by definition and Proposition 5.31. By Proposition 5.28,

0 = `(σ) = `(dn−1
1 σ) ≥

∑
k

`(dk−1
⊥ dn−k

> σ).

Therefore `(dk−1
⊥ dn−k

> σ) = 0 and each principal edge is degenerate.

We prove the second part by induction on n. The base case n = 1 is trivial, so suppose that it holds any
(n− 1)-simplex. Given that all the principal edges of σ ∈ Xn are degenerate, d>σ is completely degenerate
by the induction hypothesis, so let v ∈ X0 such that sn−1

0 v ∼= d>σ. Since the square
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X1 Xn

X0 Xn−1

sn−1
0

d>

y
d>

sn−1
0

is a pullback, there exists x ∈ X1 such that σ ∼= sn−1
0 x and v ∼= d>x . However, the last principal edge of σ,

dn−1
⊥ σ ∼= dn−1

⊥ sn−1
0 x = x is also degenerate, so x ∼= s0w for some w . We conclude that σ ∼= sn0w . Finally,

the fact that the long edge is degenerate is a direct consequence of simplicial identities.

Combining all these results, we can finally obtain a simple formula for the numerical comultiplication.
After taking cardinalities in (2) and applying our previous observations, we obtain the familiar expressions

|∆|(δv ) =
(X2)vvv

|ΩvX1||ΩvX1|
δv ⊗ δv = δv ⊗ δv

for v ∈ X0 and

|∆|(δx) = δx ⊗ δd⊥x + δd>x ⊗ δx +

∫ (a,b)∈~X1×~X1

|(X2)xab|δa ⊗ δb

= δx ⊗ δd⊥x + δd>x ⊗ δx +
∑

[a]∈π0X1

0<`(a)<n

∑
[b]∈π0X1

0<`(b)<n

cxabδa ⊗ δb

for x ∈ ~X1, `(x) = n > 0. This alone is enough to prove the inversion formula in the incidence algebra as
in Theorem 3.9.

Finally, observe that by definition in a Möbius decomposition space the sequence Φ1(x), Φ2(x), ... is
eventually 0 and each Φn(x) is finite. Then it follows that the map∑

n≥1

dn−1
1 :

∐
n≥1

~Xn → X1

is finite. For the strict nerve of a small category C, this means that for any arrow in C there is a finite
amount of decompositions into indecomposable arrows.

5.5 The isomorphism problem for decomposition spaces

The intermediate step at slice coalgebras in the passage from decomposition spaces to numerical incidence
algebras gives us an opportunity to approach the isomorphism problem differently. Recall that the entire
process for a Möbius category C can be described in multiple steps:

C 7→ NC 7→ C (NC) 7→ I (NC)

First, one generates the (fat) nerve of C. It is well known that this operation is full and faithful, so we can
safely say that the nerves of non-isomorphic categories are never going to be isomorphic nor equivalent.

On the other hand, we still know nothing about how much information does the slice coalgebra preserve.
By analogy with vector spaces, one could think of it as the vector space spanned by the 1-simplices of the
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decomposition space together with an operation to provide all possible decompositions of a simplex. It is
no longer clear whether this suffices to reconstruct the entire decomposition space or not, so we will first
study this new version of the isomorphism problem.

Next, we have the analogue of the classical notion with the passage to the incidence algebra. For
instance, two different decomposition spaces could have isomorphic numerical incidence algebras (as we saw
in the counterexamples in section 3) but different slice coalgebras. Now it is clearer that taking cardinalities
loses important chunks of information: firstly, all the group structure and the topology of a groupoid is
compressed as a rational number and, secondly, the vector space is spanned by the connected components,
again lacking any knowledge about automorphism groups.

5.5.1 Equivalent slice coalgebras

Since the context of this section is entirely contained at the groupoid level, we need to work with linear
functors and spans. To do so, we are going to make heavy use of the equivalence between LIN and Span,
especially of the one regarding the hom-2-categories Span(I , J).

Lemma 5.33. Let s : I → J be an equivalence. If s−1 denotes its homotopy inverse, then s∗ ' (s−1)! as
linear functors.

Proof. Consider the following morphism (homotopy commutative diagram) between the underlying spans
of s∗ and (s−1)! respectively

I

J I

J

s

s'

s−1

Since the middle morphism s is an equivalence, it induces an equivalence s∗ ' (s−1)! by Proposition 4.30.

Proposition 5.34. Let Ψ : Grpd/I → Grpd/J be an equivalence induced by a span I
s←− A

t−→ J. Then s

and t are equivalences. Moreover Ψ ' ts−1, where s−1 denotes the homotopy inverse of s.

Proof. Let Ψ′ : Grpd/J → Grpd/I be the inverse of Ψ, i.e., Ψ′Ψ ' Id and ΨΨ′ ' Id. Note that by being
part of an equivalence with a linear functor (Ψ), Ψ′ must preserve homotopy sums:

Ψ′
(∫ k∈K

gk

)
' Ψ′

(∫ k∈K
Ψ(Ψ′(gk))

)
' Ψ′

(
Ψ
(∫ k∈K

Ψ′(gk)
))
'
∫ k∈K

Ψ′(gk),

so by Proposition 4.32 Ψ′ is linear. If I s′←− A′
t′−→ J is the span that defines Ψ′, then the composite Ψ′Ψ is

given by I
sp←− A×J A

′ t′q−−→ J, where

I A A×J A
′

J A′

I

s

t

p

q
x

s′
t′
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Since this composition is equivalent to the identity, by Proposition 4.30 their corresponding spans are
equivalent, so there exists an equivalence f : A×J A

′ → I and a (homotopy) commutative diagram

A×J A
′

I I

I

f'
sp t′q

This is, sp ' t ′q ' t, so they are equivalences. This implies that s and t ′ are essentially surjective and
the symmetric argument proves the same for s ′ and t. Moreover, one can easily verify (using the pullback
pasting lemma, 4.14) that pullbacks of essentially surjective maps are essentially surjective, so p and q are
essentially surjective as well. Now, s is also full because sp is an equivalence and p is essentially surjective,
hence the fibre Ai is always nonempty and connected. Repeating the same argument for s ′ and applying
the pullback pasting lemma again we obtain that Ω∗Ai (where ∗ is any object in the unique connected
component of Ai ) is connected because s ′ is full, hence Ai ' 1.

1 Ω∗Ai

1 Ai 1

I A A×J A
′

J A′

p∗q
x

piq
x x

s

t

p

q
x

s′

Since all the fibres of s are nonempty and contractible, it is an equivalence. The same argument applies
for s ′, so it is an equivalence as well. Let s−1 and (s ′)−1 be their homotopy inverses. Then we have that
Ψ ' (ts−1)! and Ψ′ ' (t ′(s ′)−1)! by Lemma 5.33. Now, their composition is equivalent to the identity, so
we have two more commutative diagrams

I

I I

I

t′(s′)−1ts−1 J

J J

J

ts−1t′(s′)−1

that ensure that ts−1 and t ′(s ′)−1 are homotopy inverses of each other. Both ts−1 and s−1 are homotopy
equivalences, so t must be an homotopy equivalence as well.

What Proposition 5.34 is essentially stating is that any equivalence given by linear functors can not
be too far from a permutation matrix. The idea behind this proposition is that groupoid coefficients can
never be negative and usually there are no inverses for the cartesian product, so the usual matrix inversion
formulas all fail for non-permutation matrices.

In light of this result it is reasonable to expect an equivalence of coalgebras to induce an equivalence of
decomposition spaces. More precisely, we have the following theorem, to whose proof we dedicate the rest
of this subsection.
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Theorem 5.35. Let X and Y be decomposition spaces and Ψ : Grpd/X1
→ Grpd/Y1

an equivalence in
LIN commuting (up to equivalence) with the corresponding ε and ∆:

Grpd/X1

Grpd/Y1
Grpd/1

ε
Ψ

ε

Grpd/X1
Grpd/X1

⊗ Grpd/X1

Grpd/Y1
Grpd/Y1

⊗ Grpd/Y1

∆

Ψ Ψ⊗Ψ

∆

Then, regarding X and Y as pseudofunctors ∆op → Grpd, there exists an equivalence X → Y in the
2-category PsFun(∆op, Grpd). Moreover, this map is CULF and the induced functor Grpd/X1

→ Grpd/Y1

is precisely Ψ.

Given two decomposition spaces X and Y , suppose that Ψ : Grpd/X1
→ Grpd/Y1

is an equivalence of
coalgebras. By Proposition 5.34 we have that Ψ ' Ψ1! for some equivalence Ψ1 : X1 → Y1. Moreover,
since it is an equivalence of coalgebras we have εY ' εX ◦ Ψ1! and (Ψ1 ⊗ Ψ1)! ◦∆X ' ∆Y ◦ Ψ1!. From
the first equivalence we obtain

εY ' 1!s
∗
0 ' 1!s

∗
0 Ψ1! ' 1!(Ψ−1

1 s0)

Again, by Proposition 4.30 we recover an equivalence of spans

X0

X1 1

Y0

s0
Ψ0'

Ψ−1
1 s0

that becomes the square

X0 X1

Y0 Y1,

s0

'Ψ0

y
Ψ1'

s0

which is a pullback by 4.13.

On the other hand, the condition (Ψ1 ⊗Ψ1)! ◦∆X ' ∆Y ◦Ψ1! gives

(Ψ1 ⊗Ψ1)!(d>, d⊥)!d
∗
1 ' (Ψ1 ⊗Ψ1)! ◦∆X ' ∆Y ◦Ψ1! ' (d>, d⊥)!(Ψ−1

1 d1)∗.

Applying Proposition 4.30 once again

X2

X1 X1 × X1

Y1 Y1 × Y1

Y2

d1
(d>,d⊥)

Ψ2

' Ψ1⊗Ψ1

Ψ−1
1

d1 (d>,d⊥)
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hence

X2 X1

Y2 Y1

d1

'Ψ2

y
Ψ1'

d1

and
X2 X1 × X1

Y2 Y1 × Y1

(d>,d⊥)

'Ψ2

y
Ψ1⊗Ψ1'

(d>,d⊥)

by a similar argument as before.

Now we prove the existence of Ψn inductively for n ≥ 3. Suppose that there are equivalences Ψk :
Xk → Yk for each k , 2 ≤ k ≤ n + 1 such that the squares

Xk Xk−1

Yk Yk−1

di

'Ψk

y
Ψk−1'

di

and
Xk Xk−1 × Xk−1

Yk Yk−1 × Yk−1

(d>,d⊥)

'Ψk

y
Ψ1⊗Ψ1'

(d>,d⊥)

are cartesian for any i , 1 ≤ i < k . For n + 2 and 1 ≤ i ≤ n, we have the commutative cubes (missing one
edge) by the induction hypothesis

Xn+1 Xn+2

Xn Xn+1

Yn+1 Yn+2

Yn Yn+1

d>

'Ψn+1

x

di

d>

x

'Ψn

di

Ψn+1'x

d>

di

d>

x

di

Xn+1 Xn+2

Xn Xn+1

Yn+1 Yn+2

Yn Yn+1

d⊥

'Ψn+1

x

di+1

d⊥

x

'Ψn

di

Ψn+1'x

d⊥

di+1

d⊥

x

di

In both cases there exist unique (up to homotopy) dashed maps which are equivalences and turn all faces
into pullbacks by Proposition 4.16. Now, we must prove that all dashed arrows (for each cube and for each
i) are equivalent. Firstly note that varying i in a fixed cube does not change its corresponding dashed arrow
because it is the pullback on the right face. Finally, the dashed arrow in the cube is equivalent to the one
on the right because both are equivalent to d∗2 (Ψn+1).

There are two points left to prove: that Ψ1 commutes with outer face maps and Ψ0 and that each Ψn

commutes with degeneracies and Ψn+1. The first point will follow directly from the proof of the second,
and we proceed by induction to prove it. We already proved the base case (n = 0) from the preservation of
the counit: Ψ1s0 ' s0Ψ0. Now, for n + 1 we have the following diagram for any i , 0 ≤ i ≤ n + 1:
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Xn+1 Xn+2 Xn+1

Xn Xn+1

Yn+1 Yn+2 Yn+1

Yn Yn+1

d>

si

id

y d>

Ψn+2'

di

x
y

Ψn+1'

'Ψn

si

y Ψn+1'

d>

si

y
d>

di

si

By a completely analogous argument as for face maps, we obtain a new map Xn+1 → Yn+1 turning both
new faces in the cube into pullbacks. Now, since the composites of the horizontal arrows in the background
diagram are the identity, we obtain that the dashed arrow is simply id∗(Ψn+1) ' Ψn+1. Finally, letting
n = 0 we recover the pullback

X0 X1

Y0 Y1

'Ψ0

d>

Ψ1'
x

d>

from the left face of the cube. Repeating the same argument for the diagram

Xn+1 Xn+2 Xn+1

Xn Xn+1

Yn+1 Yn+2 Yn+1

Yn Yn+1

d⊥

si+1

y d⊥

Ψn+2'

di

x
y

Ψn+1'

'Ψn

si+1

y Ψn+1'

d⊥

si

y
d⊥

di

si

provides the corresponding square Ψ0d⊥ ' d⊥Ψ1 and all remaining degeneracies.

Observe that due to the homotopical nature of the subject we could not recover a strict natural trans-
formation X → Y (what we defined as a simplicial map), but a pseudonatural one. Essentially, the only
difference is that naturality squares are commutative up to homotopy rather than strictly commutative.

This result is surprisingly strong, however. Recall that the particular case of Möbius categories was
already general enough to be unable to provide an explicit isomorphism of categories. The difference in
our case is that coefficients in linear combinations remain meaningful and that we preserve much more
information by being able to still inspect fibres rather than simplifying them to coefficients cxab.
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5.5.2 Isomorphic numerical incidence algebras

In this section we finally work on the isomorphism problem for the numerical incidence algebra of a decom-
position space. Most of the treatment will be possible thanks to the work from section 5.4, so we assume
that X is a Möbius decomposition space throughout this section.

Since the treatment and the terminology of algebras is more common than coalgebras and we already
worked with the incidence algebra in the section 3, we are going to focus on the incidence algebra rather
than the coalgebra. This should not pose any additional difficulty since the passage to the convolution
algebra is as simple as

∆(x) = a⊗ b  χx = χa ∗ χb

For simplicity we will often abuse notation by writing x instead of [x ] mostly when applying elements of
the incidence algebra to them: φ([x ]) = φ(x). We will also consider that any sum in Q indexed over a
groupoid, like ∑

x∈X1

cxabφ(a)ψ(b),

ranges over connected components rather the entire collection of objects. In all cases the expression in the
sum is going to be independent of the chosen representative of the isomorphism class. Using this notation,
the formula we obtained for the comultiplication in Möbius decomposition spaces in 5.4 becomes

∆(x) = δd>x ⊗ δx + δx ⊗ δd⊥x +
∑

a,b∈X1

cxabδa ⊗ δb

hence
(φ ∗ ψ)(x) = φ(d>x)ψ(x) + φ(x)ψ(d⊥x) +

∑
a,b∈X1

cxabφ(a)ψ(b)

for φ,ψ in the incidence algebra.

We begin by noting a few more immediate consequences of section 5.4 by translating them from the
coalgebra language.

Corollary 5.36. For any v ∈ X0 and φ,ψ ∈ I (X ), (φ ∗ ψ)(v) = φ(v)ψ(v).

Corollary 5.37. For any v ∈ X0 and φ ∈ I (X ),

(φ ∗ χv )(x) =

{
φ(x) if d⊥x ∼= v

0 otherwise.
(χv ∗ φ)(x) =

{
φ(x) if d>x ∼= v

0 otherwise.

The proof of the following proposition is now a straightforward adaptation from the proof of Theorem 3.9
in [3, Theorem 1.1]. In particular this provides us with a simple formula for Möbius inversion.

Proposition 5.38. An element φ ∈ I (X ) is invertible if and only if φ(v) 6= 0 for all v ∈ X0.

Proof. First, assume that φ is invertible. Then, there exists φ−1 such that

1 = δ(v) = (φ ∗ φ−1)(v) = φ(v)φ−1(v),

for any v ∈ X0, so φ(v) 6= 0.
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Conversely, define φ−1 recursively as

φ−1(x) =

{
φ(x)−1 if `(x) = 0,

−φ(d>x)−1
(
φ(x)φ−1(d⊥x) +

∑
a,b∈~X1

cxabφ(a)φ−1(b)
)

if `(x) > 0.

Note that it is well-defined because cxab 6= 0 only for a and b with length < `(x). It is then clearly the
inverse of φ by definition. At vertices we have (φ ∗ φ−1)(v) = φ(v)φ−1(v) = 1 = (φ−1 ∗ φ)(v), while at
nondegenerate edges we have

(φ ∗ φ−1)(x) = φ(x)φ−1(d⊥x) + φ(d>x)φ−1(x) +
∑

a,b∈~X1

cxabφ(a)φ−1(b) = 0

for x ∈ ~X1.

Corollary 5.39 (Möbius inversion). The |ζ| function is invertible and its inverse is the Möbius function.

The general scheme of this section is to imitate Leroux’s proof for Möbius categories, but we are going
to find some difficulties due to the lack of composition. This will force us to assume some additional
hypotheses that a Möbius decomposition space may not satisfy. Since many proofs are extremely similar to
their counterparts in section 3, we omit some of them or skip any arguments that remain valid in order to
avoid too much redundancy.

First of all, as in the proof by Leroux, we relate the powers of the Jacobson radical with the ideals Jn,
which classify simplices by length.

Definition 5.40. For X a Möbius decomposition space, define

Jn = {φ ∈ I (X ) : ∀x ∈ X1, `(x) < n =⇒ φ(x) = 0}

Most of the proof of Proposition 3.14 now holds verbatim thanks to Corollary 5.36 and Proposition 5.38.

Proposition 5.41. In any Möbius decomposition space X , J0 = I (X ) and J1 = J, where J the Jacobson
ideal of I (X ). Moreover,

Jn
/
Jn+1

∼= Qπ0X1,n

as vector spaces. In particular, Qπ0X0 ∼= I (X )
/
J(X ) as algebras with pointwise multiplication.

Similarly, lemmas 3.16 and 3.17 can be generalized simply by replacing identities and objects with
vertices.

Lemma 5.42. χπ0X0 is the unique maximal family of primitive orthogonal idempotents in Qπ0X0 .

Lemma 5.43. If Ψ : I (X )→ I (Y ) is a morphism of algebras, then Ψ(J) ⊆ J.

Then, we obtain the same consequence as in section 3. Observe that this fact does not make use of any
additional structure of the incidence algebra other than lemmas 5.42 and 5.43, so no changes are needed
either.

Corollary 5.44. Any morphism of algebras Ψ : I (X ) → I (Y ) induces an algebra morphism Ψ0 : Qπ0X0 →
Qπ0Y0 and a map of sets τΨ : π0X0 → π0Y0.
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I (X ) I (X )
/
J(X ) Qπ0X0 χπ0X0 π0X0

I (Y ) I (Y )
/
J(Y ) Qπ0Y0 χπ0Y0 π0Y0

Ψ

∼=

Ψ0

∼=

τΨ

∼=
∼=

Moreover, if Ψ is an isomorphism, so are Ψ0 and τΨ.

Using the same notation as before, let eX : Qπ0X0 → I (X ) denote the extension of a map π0X0 → Q
to a map π0X1 → Q by returning 0 outside of π0X0. Clearly, it is still a section of the restriction map
rX : I (X )→ Q, so Proposition 3.19 also generalizes correctly. We include the modified proof because some
minor changes are required, but there are no major obstacles.

Proposition 5.45. Given an isomorphism of algebras Ψ : I (X ) → I (Y ), there exists ψ ∈ I (Y ) such that
rY (ψ) = 1 and γψΨ extends Ψ0

I (X ) χπ0X0 χπ0X0

I (Y ) χπ0Y0 χπ0Y0

γψΨ∼= (γψΨ0)|χπ0X0
∼= Ψ0|χπ0X0

∼=

eX

eY

Proof. Using the same notation as in the proof of 3.19, let ψv = (ΨeXΨ−1
0 rY )(χv ) for any v ∈ π0Y0. Then

recall that we have

χv χv χτ−1v χτ−1v ψv ,
rY Ψ−1

0 eX Ψ

so rY (ψv ) = χv remains true. Similarly, define ψ ∈ I (Y ) as ψ(x) = ψd⊥x(x) (note that d⊥ corresponds to
the codomain for nerves) and rY (ψ) = 1 ∈ Qπ0X0 as well (so ψ is invertible). Now the main change is that
factors have been reordered due to how composition is written for categories: we have

(ψ ∗ χv )(x) = ψ(x)χv (d⊥x) = ψd⊥x(x)χv (d⊥x) =

{
ψv (x) if d⊥x ∼= v

0 otherwise

and

(ψv ∗ ψ)(x) =
∑

a,b∈X1

cxabψv (a)ψ(b) =
∑

a,b∈X1

cxabψv (a)ψd⊥b(b) =
∑

a,b∈X1

cxabψv (a)ψd⊥x(b)

= (ψv ∗ ψd⊥x)(x) = Ψ(χτ−1v ∗ χτ−1d⊥x)(x)

=

{
ψv (x) if d⊥x ∼= v

0 otherwise.

Therefore ψ ∗ χv = ψv ∗ ψ and χv = ψ−1 ∗ ψv ∗ ψ. This means that the inner automorphism is given
by conjugation with ψ−1, which still satisfies the required properties (this is easily verified by the inversion
formula).
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So far, everything related to vertices holds almost untouched. Difficulties start to appear once one
studies the rest of X1, though. Firstly, there is a crucial fact that does not translate correctly and it is
crucial in the proof for Möbius categories: the product formula of two characteristic functions.

Proposition 5.46. Let X be a decomposition space, a, b, c ∈ X1 and φ ∈ LIN(Grpd/X1
, Grpd/1). Then

(χa ∗ φ)(c) =

∫ b∈X1

(X2)c[a]b × φ(b)

and, in particular,
(χa ∗ χb)(c) = (X2)c[a][b].

Proof. Observe that, in general, we have the cartesian square

Eb 1

E[b] B[b]

E B

y

y

for any map E → B and b ∈ B . This implies that E[b] '
∫ b′∈B[b] Eb by the fundamental equivalence and

hence

(χa ∗ φ)(c) '
∫ a′,b∈X1

(X2)ca′b × χa(a′)× φ(b)

'
∫ a′∈(X1)[a]

∫ b∈X1

(X2)ca′b × φ(b)

'
∫ b∈X1 (∫ a′∈(X1)[a]

(X2)ca′b

)
× φ(b)

'
∫ b∈X1

(X2)c[a]b × φ(b).

Applying the same argument again yields result for the special case φ = χb.

Corollary 5.47. For X a Möbius decomposition space a, b, c ∈ X1 and φ ∈ I (X ) we have

(χa ∗ φ)(c) =
∑

[b]∈π0X1

cc[a]bφ(b) and (χa ∗ χb)(c) = cc[a][b]

where

cc[a]b =
|(X2)c[a]b|
|ΩbX1|

and cc[a][b] = |(X2)c[a][b]|.

Observe that (X2)c[a][b] is simply the fibre of the restriction d1 : (X2)[a][b] → X1 at c , so it is zero if
and only if there is no 2-simplex with principal edges isomorphic to a and b respectively and long arrow
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isomorphic to c . There is nothing in the decomposition space axioms ensuring that [a] and [b] determine c
even up to isomorphism, and this is indeed not the case for many cases.

Interestingly enough, the multiplication of characteristic functions defines a multivalued composition if
we do not take coefficients into account. In order to be able to adapt the rest of the proof we need this
operation to have a single output, i.e. χa ∗ χb = λχc or χa ∗ χb = 0. One solution is to require X to be
a Segal space, but we really only need uniqueness, not existence. Observe that this requirement is exactly
the opposite of what happens in Example 5.11, where one could compose any two graphs in order to obtain
a 2-simplex. The simplest case is G1 = G2 = •. Then there are infinitely many (or exactly 2 if we do not
allow multiple edges) graphs with two vertices whose partitions restrict to G1 and G2.

Definition 5.48. We say that a decomposition space X has unique compositions if any two n-simplices
with isomorphic principal edges have isomorphic long edges.

Firstly, this condition ensures that (X2)[a][b] is connected, so indeed χa ∗χb = cc[a][b]χc for some c ∈ X1

whenever the product is not zero. It also gives us that if cdab is also nonzero for some other d ∈ X1 then
c ∼= d , hence (X2)cab ' (X2)dab and (X2)c[a][b] ' (X2)d [a][b], so ccab = cdab and cc[a][b] = cd[a][b] as well.

There is either exactly one c (up to isomorphism) with ccab 6= 0 or none, hence we omit the superscript
altogether. As for Segal spaces, we write this operation as c ∼= a ·b. This partial composition is is associative
due to the coassociativity of the comultiplication, so we are free to write x ∼= abc = (ab)c = a(bc) and
c[a][b][c] = c[a][b]c[ab][c] = ca[bc]c[b][c]. We also adopt the convention that c[a] = 1 meaning that χa = c[a]χa.

Many of these spaces can be obtained from existing Möbius Segal spaces by deleting simplices of length
≥ n for some fixed n > 0. In this case X2 → X1 ×X0 X1 is no longer an equivalence as the composition of
an edge of length n − 1 with an edge of length 1 would yield an edge of length ≥ n that does not exist.
We now see a few examples of decomposition spaces which are not Segal but do have unique compositions.
Both of the following examples are inspired by [2].

Example 5.49 (Partial monoids). A partial monoid is a set M together with a distinguished element 1 ∈ M
and a partial operation · : M ×M → M such that 1 · m1 = m1 = m1 · 1 and, whenever they are defined,
m1 · (m2 · m3) = (m1 · m2) · m3, for any m1,m2,m3 ∈ M. Then the fat nerve of a partial monoid has
X0 = {•} and invertible elements in M as isomorphisms. For n > 0, Xn is the groupoid with objects strings
of n elements whose product exists in M and isomorphisms as in the fat nerve of a category. For instance,
if m1m2 = m2m1 then

• •

• •

m1

1 1
m1

and
• •

• •

m1

m2 m2

m1

are two isomorphisms (m1,m2)→ (m2,m1) in X2.

Face and degeneracy maps work exactly as in the fat nerve. The lack of some products shows that
it can never be a Segal space unless the operation is total. To see that it is a decomposition space with
unique compositions, we simply resort to Proposition 5.9. The first two diagrams follow from unitality
(1 · m = m = m · 1), while the second pair is just stating that the operation is associative. Finally, it has
unique compositions because the existence of a 2-simplex (m1,m2) with long edge m3 means that m1m2

exists and it is isomorphic to m3 in X1.
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Example 5.50 (Restricted genus cobordisms). Given a fixed genus g ≥ 0, consider all 2-dimensional
cobordisms with genus no greater than g . Then we may consider the simplicial set with X0 the set of
1-dimensional closed manifolds,

· · ·

which are simply disjoint unions of circles. Then Xn for n ≥ 0 is the set of chains (Σ1, ... , Σn) of composable
2-dimensional cobordisms between elements of X0 whose composition has genus no larger than g . The
following is a 3-simplex of genus 0:

Σ1 Σ2 Σ3

Again, face and degeneracy maps are similar to the ones in the nerve, where outer faces remove the first or
the last cobordism and inner faces compose adjacent cobordisms. Degeneracies insert identity cobordisms
at the appropriate index. As other examples, this is clearly a decomposition space (the fact that it is a
simplicial set rather than a groupoid makes the verification even simpler) and has unique compositions (two
composable cobordisms produce a unique cobordism). It is not a Segal space however, as two cobordisms
of genus ≤ g may be composed as a cobordism of genus > g . For instance, one could compose two
cobordisms of genus 0 to obtain a cobordism of genus 1.

Σ1 Σ2 Σ3.

Notice that this decomposition space corresponds to the idea that we expressed above: consider the
category of all 2-dimensional cobordisms with objects disjoint unions of circumferences and morphisms
cobordisms between them. Then the length of a simplex in the nerve of this category is described by its
genus, so requiring genus ≤ g is tantamount to removing all simplices with genus > g .

Before continuing with the translation, we need to make a remark about the topology of Qπ0X1 . As
with the incidence algebra of Möbius categories, we consider the discrete topology on Q and the product
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topology on Qπ0X1 . Then all the desirable properties of the topology in HomSet(Mor C, k) that we proved
in section 3 are easily verified to be true for Qπ0X1 as well, including the formula

φ =
∑
x∈X1

φ(x)χx .

We can now prove one of the key results in this section.

Proposition 5.51. If X is a Möbius decomposition space with unique compositions, then Jn = Jn.

Proof. The proof about the closedness of Jn is identical to the one in Proposition 3.14. For the first inclusion
we proceed similarly: let φ1 ∗ · · · ∗ φn be a generator of Jn with φi ∈ J = J1 and x ∈ X1 with `(x) < n.
Then

φ(x) =
∑

a1···an∼=x

c[a1]···[an]φ1(a1) · · ·φn(an).

Since n > `(f ) ≥ `(a1) + · · · + `(an), one of the ai ’s (for each decomposition) must be a vertex, hence
φ(x) = 0. This completes the proof that Jn ⊇ Jn.

Conversely, let φ ∈ Jn, n > 0 and observe that

φ =
∑

[x]∈U

φ(x)χx , U = {[x ] ∈ π0X1 : `(x) ≥ n}

because φ(x) = 0 for any x ∈ X1 with `(x) < n. Moreover, for any x ∈ X1 of length at least n there exists
a decomposition x ∼= a1 · · · an with nondegenerate ai ’s, so we have that χx = c[a1]···[an]χa1 ∗ · · · ∗ χan with
χai ∈ J1. This shows that χx ∈ Jn, so the previous sum belongs to Jn. Finally, if n = 0 we simply have
J0 = I (X ) = I (X ) = J0.

Observe that we are gradually shifting from fibres to connected components or full subgroupoids. This
is mostly due to the nature of the problem, since the first step taken in the construction of the numerical
incidence coalgebra is to simplify X1 as π0X1. The following definitions are just another step in that direction
while mimicking more definitions from the context of Möbius categories.

Definition 5.52. For X a decomposition space and u, v ∈ X0, define [u, v ] to be the full subgroupoid of
X0 of vertices w such that there exists some 2-simplex σ ∈ X2 satisfying

d>d>σ ∼= u d>d⊥σ ∼= w d⊥d⊥σ ∼= v .

Definition 5.53. For X a complete decomposition space, n, k ∈ N and u, v ∈ X0, we define

Xn,k X1,k 1

Xn X1 N

dn−1
1

y y
pkq

dn−1
1 `

Xn(u, v) X1(u, v) 1

Xn X1 π0X0 × π0X0

dn−1
1

y y
p(u,v)q

dn−1
1 (d>,d⊥)

This is, Xn,k is the full subgroupoid of Xn of simplices of length k and Xn(u, v) is the one of simplices whose
first and last vertex are u and v respectively. We also combine both to denote the subgroupoid of length-k
n-simplices from u to v :
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Xn,k(u, v) 1

Xn N× X0 × X0

y
p(k,u,v)q

(`,d>,d⊥)

As we did for categories, we can also consider length-n graphs in a decomposition space. The set
of vertices is just π0X0 and the set of edges between u and v is π0X1,n(u, v). Then we prove that any
isomorphism of incidence algebras (as topological algebras) produces an isomorphism on length-n graphs.
The proof remains a slight variation of Theorem 3.20.

Theorem 5.54. Let X ,Y be Möbius decomposition spaces with unique compositions and Ψ : I (X )→ I (Y )
an isomorphism of algebras which is an homeomorphism. If X1,n(u, v) has countably many connected
components for all u, v ∈ X0, then X and Y have isomorphic length-n graphs.

Proof. We can assume that Ψ restricts to a bijection on vertices by Proposition 5.45, let τ : π0X0 → π0Y0

the bijection. Since Ψ is both an isomorphism of algebras and an homeomorphism, we also have

Ψ(Jn(X )) = Ψ(Jn(X )) = Ψ(J(X ))n = Jn(Y ) = Jn(Y ).

by Proposition 5.51. By the construction of τ in Corollary 5.44 we know that Ψ(χw ) = χτw for any w ∈ X0,
so Ψ restricts to an isomorphism of vector spaces

χu ∗ Jn(X ) ∗ χv → χτu ∗ Jn(Y ) ∗ χτv

for each n. In particular, it induces an isomorphism of vector spaces

χu ∗ Jn(X ) ∗ χv

χu ∗ Jn+1(X ) ∗ χv

∼=−→ χτu ∗ Jn(Y ) ∗ χτv
χτu ∗ Jn+1(Y ) ∗ χτv

.

It is easy to verify that

HomSet(π0Xn(u, v),Q) ∼=
χu ∗ Jn(X ) ∗ χv

χu ∗ Jn+1(X ) ∗ χv

as vector spaces by combining Corollary 5.37 and the argument of Proposition 5.41. Therefore we have an
isomorphism

HomSet(π0Xn(u, v),Q)
∼=−→ HomSet(π0Yn(τu, τv),Q).

If both vector spaces have finite dimension, then the fact that their dimension is |π0Xn(u, v)| provides a
bijection π0Xn(u, v) ↔ π0Yn(τu, τv). Otherwise both have countably infinitely many elements and the
same argument applies. Combining each of these bijections with τ on vertices provides the isomorphism of
graphs.

This result clearly generalizes Theorem 3.20, so we must require the isomorphism to be continous.
Next we prove that similar finiteness conditions to the ones in section 3 to ensure that any isomorphism is
continuous. The following are straightforward generalizations of Lemma 3.22 and Theorem 3.24.

Definition 5.55. A complete decomposition space X is said to be finitely generated if π0[u, v ] and
π0X1,1(u, v) are finite for all u, v ∈ X0.

Lemma 5.56. Let X be a finitely generated Möbius decomposition space with unique compositions. Then
π0X1,n(u, v) is finite and χu ∗ Jn(X ) ∗ χv = χu ∗ Jn(X ) ∗ χv for any u, v ∈ X0 and n ≥ 1.
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Proof. Fix u, v ∈ X0 and n ≥ 1. For each [x ] ∈ π0X1,n(u, v) choose a decomposition x ∼= ab with `(a) = 1
and `(b) = n − 1. This choice defines a function

z : π0X1,n(u, v)→
∐

[w ]∈π0[u,v ]

π0X1,1(u,w)× π0X1,n−1(w , v)

which is injective because X has unique compositions. As for sum indices, we abuse notation by writing
z(x) as if z were a map between their respective sets of objects. Then the finiteness of π0X1,n(u, v) can
be proved by induction. The base case is already given by hypothesis, and the inductive step is exactly the
same as in Proposition 3.22

|π0X1,n(u, v)| ≤
∑

[w ]∈π0[u,v ]

|π0X1,1(u,w)| · |π0X1,n−1(w , v)| <∞.

We prove the second part by induction as well. The base case is already given by J1 = J (Proposition 5.41),
so assume that χu ∗ Jn−1 ∗ χv = χu ∗ Jn−1 ∗ χv for any u, v ∈ X0 for the inductive step. Fix u, v ∈ X0

again and consider a map like z above for the new u, v and its components

z1 : π0X1,n(u, v)→
∐

[w ]∈π0[u,v ]

π0X1,1(u,w)

z2 : π0X1,n(u, v)→
∐

[w ]∈π0[u,v ]

π0X1,n−1(w , v).

We also need to define

Sw = {[z1(x)] : x ∈ X1,n(u, v), d⊥z1(x) ∼= w}, w ∈ [u, v ]

Va = {[z2(x)] : x ∈ X1,n(u, v), z1(x) ∼= a}, [a] ∈ Sw .

Now φ ∈ χu ∗ Jn ∗ χv , let

ψa(b) =

{
φ(ab)
c[a]b

if [b] ∈ Va

0 otherwise,
[a] ∈ Sw , w ∈ [u, v ]

which are well-defined because [b] ∈ Va ensures that ab ∈ X1 exists (in fact, z(ab) ∼= (a, b)). Then we
have ( ∑

w∈[u,v ]

∑
[a]∈Sw

χa ∗ ψa

)
(x) =

∑
w∈[u,v ]

∑
[a]∈Sw

(χa ∗ ψa)(x)

=
∑

w∈[u,v ]

∑
[a]∈Sw

∑
y∼=ab

c[a]bψa(b)

=
∑

w∈[u,v ]

∑
[a]∈Sw

∑
x∼=ab

z(y)∼=(a,b)

φ(ab)

=
∑

w∼=d>z1(x)

∑
a∼=z1(x)

φ(x)

= φ(x).
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Note that each ψa = χw ∗ ψa ∗ χv belongs to χw ∗ Jn−1 ∗ χv (as it is either 0 or the evaluation of φ), so
by the induction hypothesis there is ψ′a ∈ Jn−1 such that χw ∗ ψa ∗ χv = χw ∗ ψ′a ∗ χv . Using this fact we
can rewrite φ as

φ =
∑

w∈[u,v ]

∑
[a]∈Va

χa ∗ ψa

=
∑

w∈[u,v ]

∑
[a]∈Va

χa ∗ χw ∗ ψa ∗ χv

=
∑

w∈[u,v ]

∑
[a]∈Va

χa ∗ χw ∗ ψ′a ∗ χv

= χu ∗
( ∑

w∈[u,v ]

∑
a∈Va

χa ∗ ψ′a
)
∗ χv ∈ χu ∗ Jn ∗ χv ,

thus completing the proof of χu ∗ Jn ∗ χv ⊆ χu ∗ Jn ∗ χv . The converse inclusion is true in general by
Proposition 5.51.

Theorem 5.57. Let X and Y be Möbius decomposition spaces with unique compositions. If X is finitely
generated and Ψ : I (X ) → I (Y ) is an algebra morphism that restricts to a bijection τ : χX0 → χX0 , then
Ψ is continuous.

Proof. As in the proof of Theorem 3.24, let (φα)α∈A be a net in I (X ) with limα φα = 0. For each x ∈ X1

we then have αx ∈ A such that φα(x) = 0 for any α ≥ αx . Define the sets

Un(u, v) =
n−1∐
k=1

π0X1,k(u, v), u, v ∈ X0, n ≥ 1

which are finite by Lemma 5.56. Therefore by directedness there exists an upper bound αn(u, v) for each
{αx : [x ] ∈ Un(u, v)}. By definition of the αx this means that any α ≥ αn(u, v) satisfies φα(x) = 0 for
any [x ] ∈ Un(u, v). In other words, χu ∗ φα ∗ χv ∈ χu ∗ Jn(X ) ∗ χv and applying Ψ we obtain

χτu ∗Ψ(φα) ∗ χτv ∈ χτu ∗Ψ(Jn(X )) ∗ χτv
= χτu ∗Ψ(Jn(X )) ∗ χτv
= χτu ∗Ψ(Jn(X )) ∗ χτv
⊆ χτu ∗ Jn(Y ) ∗ χτv
⊆ χτu ∗ Jn(Y ) ∗ χτv .

Summing up, for any n ≥ 1, τu, τv ∈ Y0 and y ∈ Y1(τu, τv) there exists αn(τu, τv) such that for any
α ≥ αn(τu, τv) one has Ψ(φα)(y) = (χτu ∗ Ψ(φα) ∗ χτv )(y) = 0. This simply states that Ψ(φα)(y)
converges to 0 for any y , so limα Ψ(φα) = 0.

Then, we obtain the final result: given any isomorphism of (finitely generated) Möbius decomposition
spaces with unique compositions, we have an isomorphism of length-n graphs.

Theorem 5.58. Let X and Y be finitely generated Möbius decomposition spaces with unique compositions.
If I (X ) ∼= I (Y ) as algebras, then X and Y have isomorphic length-n graphs for any n ≥ 0.
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Proof. We may assume that the isomorphism I (X ) → I (Y ) is continuous by Proposition 5.45 and Theo-
rem 5.57. The isomorphism of graphs is then given by Theorem 5.54.

This result is much stronger than simply a bijection π0X1 → π0Y1, even one that preserves vertices.
Recall that an isomorphism of graphs is simply a commutative diagram

π0X0 × π0X0 π0X1,n

π0Y0 × π0Y0 π0Y1,n

∼= ∼=

(d>,d⊥)

(d>,d⊥)

Since π0X1 =
∐

n≥0 π0X1,n, we also have

π0X0 × π0X0 π0X1

π0Y0 × π0Y0 π0Y1

∼=

(d>,d⊥)

∼=

(d>,d⊥)

Moreover, since vertices can be characterized as simplices with length 0, we have yet another commutative
diagram

π0X0 π0X1,0 π0X1

π0Y0 π0Y1,0 π0Y1

∼=

s0

∼=
∼= ∼=

∼=
s0

Together, these two commutative diagrams state that, for finitely generated Möbius decomposition spaces
with unique compositions, an isomorphism of algebras induces an isomorphism between the simplicial sets
{π0Xn}n=0,1 and {π0Yn}n=0,1 having only degenerate simplices at n ≥ 2. Compare this conclusion with
Example 5.19: there is a clear length-preserving correspondence between the connected components of their
vertices and edges.

In addition, note that it is hardly possible to recover any information about X2. Firstly because decom-
position space axioms are not so strong as to reconstruct enough of X2 from X0 and X1,n, and secondly (in
the case in which X is Segal) because π0 need not to preserve pullbacks and there is no way to escape π0X
once we restrict ourselves to the numerical incidence algebra.

88



6. References

[1] S. Awodey. Category Theory. Oxford Logic Guides. Ebsco Publishing, 2006.

[2] Julia Bergner, Angélica M. Osorno, Viktoriya Ozornova, Martina Rovelli, and Claudia I. Scheimbauer.
2-segal sets and the waldhausen construction. 09 2016.

[3] Mireille Content, François Lemay, and Pierre Leroux. Catégories de Möbius et fonctorialités: un cadre
général pour l’inversion de Möbius. Journal of Combinatorial Theory, Series A, 28(2):169 – 190, 1980.

[4] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 154, pages 153–192. Cambridge Univ
Press, 2013.

[5] David Gepner and Joachim Kock. Polynomial functors over infinity categories. Unpublished.

[6] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Decomposition spaces, incidence algebras
and Möbius inversion I: basic theory. arXiv preprint arXiv:1512.07573, 2015.

[7] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Decomposition spaces, incidence algebras
and Möbius inversion II: completeness, length filtration, and finiteness. arXiv preprint arXiv:1512.07577,
2015.

[8] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Decomposition spaces in combinatorics.
arXiv preprint arXiv:1612.09225, 2016.

[9] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Homotopy linear algebra. arXiv preprint
arXiv:1602.05082, to appear in to Proc Royal Soc Edinburgh, 2016.

[10] P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Number v. 2 in Oxford Logic
Guides. Clarendon Press, 2002.

[11] J.L. Kelley. General Topology. Graduate Texts in Mathematics. Springer New York, 1975.

[12] Stephen Lack. Codescent objects and coherence. Journal of Pure and Applied Algebra, 175(1):223 –
241, 2002. Special Volume celebrating the 70th birthday of Professor Max Kelly.

[13] Stephen Lack. A 2-categories companion. 152, 02 2007.

[14] S.M. Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer New
York, 1998.

[15] T. Leinster. Basic Bicategories. ArXiv Mathematics e-prints, October 1998.

[16] Pierre Leroux. The isomorphism problem for incidence algebras of Möbius categories. Illinois J. Math.,
26(1):52–61, 03 1982.

[17] J. Lurie. Higher Topos Theory. Academic Search Complete. Princeton University Press, 2009.

[18] J.P. May. Simplicial Objects in Algebraic Topology. Chicago Lectures in Mathematics. University of
Chicago Press, 1992.

89



Morita Equivalence and Decomposition Spaces

[19] Richard P. Stanley. Structure of incidence algebras and their automorphism groups. Bull. Amer. Math.
Soc., 76(6):1236–1239, 11 1970.

[20] S. Warner. Topological Rings. North-Holland Mathematics Studies. Elsevier Science, 1993.

90


	Introduction
	The incidence algebra associated to a poset
	Functoriality
	Example: subgroup lattices

	Möbius categories
	Functoriality of the incidence algebra
	The isomorphism problem
	Continuity and finiteness conditions

	Homotopy theory of groupoids
	Preliminary (2-)category-theoretic notions
	Groupoids and homotopy theory
	Homotopy linear algebra
	Finite dimensional homotopy linear algebra

	Decomposition spaces
	The incidence (co)algebra of a decomposition space
	CULF functors and equivalences of decomposition spaces
	Cardinality of the incidence (co)algebra
	Completeness and Möbius decomposition spaces
	The isomorphism problem for decomposition spaces
	Equivalent slice coalgebras
	Isomorphic numerical incidence algebras


	References

