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Abstract 

The present project is about the design, simulation and an experimentational test of a digital system in 
a single chip able to emulate the behavior of spiking neural networks, which is possible thanks to the 

use of mathematical models that emulate the behavior of these networks in the brain. A modular 
system has been proposed in order to provide the necessary flexibility and scalability for the simulation 

of different neural networks. At the same time the most flexible, simple and efficient option has been 
chosen in order to have a good performance without losing or reducing the necessary accuracy and 

exactitude for the emulation of the neural networks. The solution has been implemented by making 
use of different combinational blocks and totally synchronous flip-flops from a 100 MHz clock signal, 

besides, the description of the system was performed by using the high-level hardware description 
language VHDL. Finally, a neural network for pattern recognition has been implemented on a 
programmable logical device FPGA in order to demonstrate the correct operation of the digital system. 
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Resum 

El present projecte tracta en el disseny, simulació i test experimental d’un sistema digital en un sol xip 
capaç d’emular el comportament de xarxes neuronals d’impulsos, el qual és possible gràcies al ús de 

models matemàtics que emulen el comportament d’aquestes xarxes en el cervell. S’ha plantejat un 
sistema modular per tal de dotar-lo de la flexibilitat i escalabilitat necessària per a la realització de 

diferents xarxes neuronals. Alhora s’ha buscat la opció més simple i alhora eficient per tal de disposar 
d’un bon rendiment d’aquesta sense perdre o disminuir la precisió i exactitud necessària per a la 

emulació de les xarxes neuronals. La solució ha estat implementada fent ús de diferents blocs 
combinacionals i biestables totalment síncrons a partir d’un senyal de rellotge de 100 MHz, a més, la 

descripció del sistema s’ha realitzat mitjançant el llenguatge de descripció hardware d’alt nivell (VHDL). 
Finalment, per demostrar el correcte funcionament del sistema digital s’ha realitzat una xarxa neuronal 
per al reconeixement de patrons, la qual s’ha implementat sobre un dispositiu lògic programable FPGA.  
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Resumen 

El presente proyecto trata el diseño, simulación y test experimental de un sistema digital en un solo 
chip capaz de emular el comportamiento de redes neuronales de impulsos, el cual es posible gracias al 

uso de modelos matemáticos que emulan el comportamiento de estas redes en el cerebro. Se ha 
planteado un sistema modular para dotarlo de la flexibilidad y escalabilidad necesaria para la 

realización de diferentes redes neuronales. A la vez se ha buscado la opción más simple y a la vez 
eficiente para disponer de un buen rendimiento de esta sin perder o disminuir la precisión y exactitud 

necesaria para la emulación de las redes neuronales. La solución ha sido implementada haciendo uso 
de diferentes bloques combinacionales y biestables totalmente síncronos a partir de una señal de reloj 

de 100 MHz, además, la descripción del sistema se ha realizado mediante el lenguaje de descripción 
hardware de alto nivel (VHDL). Finalmente, para demostrar el correcto funcionamiento del sistema 
digital se ha realizado una red neuronal para el reconocimiento de patrones, la cual se ha 

implementado sobre un dispositivo lógico programable FPGA.  
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1. Introduction 

One of the current challenges for the scientific community is to understand how the brain works and 
being able to reproduce it elsewhere, whether biologically or electronically, with the same properties. 

This is an ongoing research which is evolving, but unlike the search for a time-travel device or faster-
than-light travel, there is a solid evidence that such quest is possible since we are the perfect example 

of an intelligent system [1].  

Motivated by biological discoveries, many scientists take an interest on a modern approach of artificial 

intelligence. Therefore, they are able to replicate the behavior of the brain it may be possible to achieve 
a system which can become aware and react to the world that it is surrounded by. 

Combining experimental studies of the biological nervous systems, from either animals or humans, 
several mathematical models have been developed, on which researchers try to produce a model that 

is sufficiently accurate and has a computational efficiency. Nevertheless, because of the available 
computational capabilities of the current electronic devices, it is already possible to simulate those 

neural systems to even fifty thousand times faster than their biological counterparts [2]. 

The digital system presented in this project is based on the fundamental characteristics of a biological 
neural network, in order to perform several functions associated with the brain like reasoning, speech 

recognition, movement or visual processing. Thus, the focus of this project is to proportionate a 
modular, flexible and scalable digital system, which is able to simulate the behavior of an artificial 

neural network for different uses. 

1.1. Project scope 

This project consists about the design and physical implementation of a digital system that is able to 
emulate the behavioral characteristics of biological neural networks in order to perform several 

functions associated with the brain; like reasoning, speech recognition, movement or visual processing. 
To achieve it, three fundamental main modules have to be designed in order to obtain a fully functional 

neural network. 

Firstly, a module that provides the simulation of the properties, characteristics and behavior of a single 

neuron using an accurate, but at the same time computationally efficient mathematical model which 
can be adapted for its further implementation into the digital system. 

Secondly, a communication or transmission system that is able to manage all the information flow of 

the neural network between an undetermined number of neurons. 
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Additionally, a training algorithm is designed to provide a functionality to the neural network, such as; 
like speech, movement recognition or visual processing as stated above. 

Finally, the interconnection between them with the correct configuration will allow the simulation of 
a neural network with the given functionality. Therefore, the final digital system of this project has to 

be a modular, flexible and scalable platform, to cover all of the possibilities that involve the simulation 
of a neural network. 

1.2. Objectives 

Next, the main goals set from the very beginning of the project are written below, they are the essential 

requirements for the design and implementation of the digital system: 

• Collecting information about the functionality of a neural network and its different models. 

• Studying different models of neural networks and their most important characteristics. 

• Choosing the most flexible and efficient neural network model to implement. 

• Designing the digital system for neural network simulation. 

• Making the description of the digital system through the high-level language VHDL.  

• Verifying of the correct operation of the design through functional simulations of the digital 
system for neural network simulation. 

• Implementation of the digital system in a programmable logic device (FPGA) and 
corroboration of its functionality. 

1.3. Biological background 

The aim of this section is to provide enough biological background, in order to understand the 
functionality of the design presented in this project. Therefore, the behavior of a neuron is described 

in detail, as well as the operational and transmission characteristics of the information flow between 
the neurons of a biological neural network. 

1.3.1. Neural Networks 

The brain is a very complex network with millions and millions of interconnected neurons which 

cooperate to efficiently process input signals in order to decide the required output action. 
Approximately every neuron sends its output signals to over 10.000 other neurons, thus complicates 

the flow of information. To put it mildly, we do not even understand the brain as well as we think. In 
fact, we do not totally understand the behavior of a single neuron [3].  
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Nevertheless, there is a rough concept of how neurons operate: neurons send out short pulses of 
electrical energy as signals, though only if they have received enough energy from pulses of other 

neurons. This simple mechanism has been translated to different mathematical models, so that it 
becomes possible to perform computer simulations of neurons. 

1.3.1.1. Neurons 

The specialized cells of the nervous system are the neurons, they are the structural and functional unit 

of the nervous system. Their main characteristic is the electrical excitability of their plasmatic 
membrane, along with their specialization in the reception of the stimuli and conduction of the nerve 

impulses between them [4]. 

The structure of the neurons can be diverse, but they have a common pattern, which can be 

distinguished into three main parts: 

• The cell body or soma: the wider area, which forms the nucleus of the neuron and where there 
are all the organs that drive the cellular activity by the neuron. 

• Dendrites: these are the extensions of the cell body which allow the connection with other 
neurons, as well as being responsible for receiving nerve impulses. 

• Axon: a long and unique extension per neuron, which has the function of sending nerve 
impulses generated by the body cell to the next neuron. 

 

Figure 1.1. Schematic drawing of a neuron [4]. 
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1.3.1.2. Neural transmission 

In a neural network, the information is transmitted by nerve impulses that cause polarity changes in 

the membranes of the cells and propagate through the neurons as if they were small electrical 
currents, ranging from dendrites and passing through the neural body until the axon. To make this 

communication between the neurons possible, they establish connections called synapses. 

Initially, inside the neuron there are proteins and ions with negative charge. This difference in ion 

concentration produces a potential difference between the outside and inside of the membrane of the 
neuron. In fact, the usual value is about -70 mV [5]. 

Moreover, when a nerve impulse reaches a neuron which is at its resting state the membrane 
depolarizes, achieving the variation of the potential difference that presents the neuron. In the event 

that the depolarization causes enough variation in the membrane potential, it is said that the neuron 
has reached the action potential and thus generates a nerve impulse, always with the same intensity, 

which is transmitted to the next neuron. 

It has to be noted, that the transmission of nerve impulses follows the law of all or nothing. This means 
that if the membrane depolarization does not reach a minimum potential, called the threshold 

potential, the impulse is not transmitted. 

 

Figure 1.2. Evolution of the membrane potential of a neuron [5]. 
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In addition, the post-synaptic impulses can be either positive or negative called, excitatory or 
inhibitory, respectively. One neuron receives about ten thousand potential synapses. Therefore, the 

sum of these potentials determines the value of polarization of the membrane of a neuron. 

In short, as shown in Figure 1.2, if a neuron receives inhibitory potential, the polarization increases, 

however, if it receives an excitatory potential, the polarization of the membrane decreases. Only if the 
stimulus is sufficiently large, so that the depolarization reaches the threshold of excitation, the neuron 

sends a spike that is transmitted to the neural network. Then, the neuron enters into a short moment 
of rest, called the refractory period, in which it cannot send another spike again. Finally, the neuron 

will return to its initial state of rest if it does not receive more stimulus that perturbate its membrane 
potential charge. 
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2. Artificial Neural Networks 

An artificial neural network (ANN) is a mathematical model that is based on the functionality of 
biological neural networks and thus, it can be defined as an emulation of biological neural systems. It 

is designed to produce and replicate the intelligent behavior, ANN’s are at the vanguard of 
computational systems. Unlike the classical Artificial Intelligence approach, it intends to develop 

systems to directly simulate rational or logical reasoning, artificial neural networks aims lie at the 
reproduction of the underlying processing mechanisms that give a system its intelligence. 

In order to take the full advantage of the artificial neural networks it is needed to interconnect the 
individual neural networks or its fundamental units, the neurons, in a topology that contributes to an 

easier, faster and more efficient problem solving. In the past, researchers have developed a series of 
“standardized” topographies of artificial neural networks that are suited for solving different types of 

problems. Therefore, after choosing the type of functionality that the neural networks need to offer, 
it is required to decide the appropriate topology and fine-tune it. 

 

Figure 2.1. Example of a simple artificial neural network [6]. 

In addition, before using the neural network it is an indispensable condition to perform training to 

teach it problem solving. There are three major learning paradigms: supervised learning, unsupervised 
learning and reinforced learning. Even though these learning paradigms have their differences in their 

training methods they all have one thing in common: they train the neural network so it gives the 
desired output response in line with a series of input signals. 

Some of the advantages of the artificial neural networks are [5]: 

• It can be used to solve linear as well as non-linear programming tasks. 
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• If a component of an ANN fails, the net continues to operate (based on its highly parallel 
nature). 

• A neural network learns and does not have to be re-programmed. 

• An ANN can be used to solve classification, movement recognition or visual processing related 
problems. 

On the other hand, the main cons of the artificial neural networks are: 

• Most ANN’s require a training phase to operate or function. 

• As an ANN’s architecture differs from microprocessors, they have to be simulated. 

• Large ANN’s require powerful hardware to run and accomplish reasonable execution times. 

To sum up, artificial neural networks have been in use for some time now and their main application 

is in the field of robotics. They can be used to plan and direct the way of an autonomous vehicle, 
recognize obstacles or perform a classification of images. Essentially, artificial neural networks are 

capable of learning and generalizing from examples and experience to obtain solutions, and as its 
biological predecessor they are considered an adaptive system. 

2.1. Threshold Logic Unit 

The fundamental unit of an artificial neural network is the neuron. The first computational model for 

neural networks was based on mathematics and algorithms, which was the Threshold Logic Unit [7], 
developed by Warren McCulloch and Walter Pitts in 1943. 

𝜑𝜑(𝑣𝑣) = �1, 𝑣𝑣 ≥ 0
0, 𝑣𝑣 < 0 (Eq. 2.1) 

As shown in equation 2.1, the output of a neuron takes on the value of 1 if the total internal activity 
level of that neuron is nonnegative and otherwise 0. This statement describes the all-or-nothing 

property of the McCulloch-Pitts model. 

 

Figure 2.2. Threshold activation function [7]. 
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Additionally, the Threshold Logic Unit model of a neuron is simple yet has substantial computing 
potential and a precise mathematical definition. Nevertheless, it is so simple that the weight and 

threshold values are fixed.  

2.2. Multilayer Perceptron 

The simplest form of an artificial neural network used for the classification of patterns, which are 
linearly separable, is the perceptron. The single-layer perceptron consists of a single McCulloch-Pitts 

neuron with adjustable synaptic weights and threshold. Such network is only able to perform pattern 
classification with only two classes [9]. 

 

Figure 2.3. Single-layer perceptron [9]. 

In order to perform more complex functions, several single-layer perceptron can be combined to 
obtain a neural network of multilayer perceptron as shown in figure 2.4. 

 

Figure 2.4. Multilayer perceptron [9] 
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When the perceptrons were invented, many researchers speculated that the intelligent systems could 
be developed out of perceptrons. Nevertheless, as the ongoing research was evolving it turned out 

that it was impossible to develop a convenient learning algorithm. As an example, the exclusive-or 
(XOR) operation could not be solved. Only when McCulloch-Pitts neurons were replaced by neural 

models with a differentiable activation function, a back-propagation learning algorithm was invented. 

2.3. Spiking Neural Networks 

The first ideas and models of artificial neural networks are over fifty years old, hence they are already 
becoming an old technique within the computer science field. The first generation of artificial neural 

networks consisted of McCulloch-Pitts threshold neurons, as explained above. Rather than using a step 
or threshold function to compute its output signals, the second generation uses a continuous activation 
function, making them acceptable for analogue input and output. The last and third generation is what 

we call the spiking neural networks [10]. 

The spiking neural networks are the third generation of neural networks which raise the level of 

biological realism by the use of individual spikes. Just like real neurons do, this functional characteristic 
allows the codification of spatial-temporal information in communication and computation. Therefore, 

instead of using rate coding this type of neural networks use mechanisms where neurons receive and 
do send out individual pulses, called pulse coding, allowing the codification of information as frequency 

and amplitude of sound. 

 

Figure 2.5. Spike-trains [10]. 
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The neuronal signal of a spiking neural network consists of short electrical pulses called spikes. These 
pulses, called action potentials or spikes, have an amplitude of about 100 mV and a duration of 1-2 ms. 

As shown in Figure 2.5 individual neurons send out sequences of spikes, or spike-trains, which alter 
dramatically in frequency over a short period of time. Thus, neurons have to use spatial and temporal 

information of incoming spike patterns to encode their message to other neurons. 

In short, since all neuron spikes of a spiking neural networks look alike, the form of the action potential 

does not carry any information. Therefore, it is the number and timing of these spikes which actually 
matter. 
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3. Preliminary study of alternatives 

This chapter presents a few hardware implementations of artificial neural networks on FPGAs. A 
general analysis of these implementations has been performed in order to point out their benefits and 

drawbacks of their computational structures. 

3.1. Bluehive 

Bluehive is a field-programable custom computing machine for extreme-scale real-time neural 
network simulation, which is capable of emulating 64k neurons along with 64M synapses per FPGA, 

aimed to be used for scientific simulations with high demanding communication requirements [11]. 

 

Figure 3.1. Processing engine of a node in Bluehive [11]. 

The design places the focus on the communication mechanism and it uses the Izhikevich neural model 
for neural networks simulations. The core SNN emulation is done by the processing engine that 

includes the following functional components: 

• Equation Processor: calculates the equation of the Izhikevich neural model to performs the 
neuron computation. 

• Fan-out Engine: takes the neuron firing events, looks up the destination nodes to be notified 
and the delay to be implemented and farms it out. 

• Delay-Unit: performs the first part of the fan-in phase. Messages are placed into one of the 
sixteen 1ms bins, thereby delaying them until the right 1ms simulation time step. 

• Accumulator: performs the second part of the fan-in phase, accumulation weights to produce 
an I-value for each neuron. 
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• Router: routes firing events destined for other processing nodes.  

• Spike auditor: records spike events to output as the simulation results. 

• Spike injector: allows external spike events to be injected into the simulated network. This is 
used to provide an initial stimulus. It could also be used to interface to external systems. 

3.2. One million neuron single-FPGA neuromorphic system 

The one million neuron single-FPGA neuromorphic system is an architecture that gives the approach 
for building a one million neuron system on a single FPGA. It is capable of implementing several 

neurons like the simple integrate and fire or the Izhikevich models, with the objective to use the system 
for multimodal scene analysis [12]. 

 

Figure 3.2. Neuron block diagram of the implementation [12] 

This implementation uses the Address Event Representation (AER) communication system to handle 
the transmission of spikes between the neurons of the simulated neural network while the mapping 

of the network and the synaptic weights are stored in an external memory and fetched every cycle. 

Figure 3.2 shows the neuron block diagram that uses a state cache to save the state of the several 

neurons that can be simulated in the same physical engine. Therefore, this block uses time multiplexing 
to simulate several neurons. 

Finally, this design is capable of emulating up to 1 million of neurons, yet there are some drawbacks to 
it as it needs a large state cache and there is a significant time consumption due to the time 

multiplexing, as explained above. 
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3.3. SNAVA 

Designed to be a flexible spiking neural network emulator, SNAVA (Spiking Neural-network 

Architecture for Versatile Applications) is a Harvard hardware architecture capable to simulate any 
spiking neural network model in which the transmission of information between the neurons take 

place through spikes [13]. 

Therefore, the architecture has been designed with the aim to ensure that it can be reprogrammed to 

simulate different spiking neural networks models in an efficient way, giving a high level of flexibility 
and scalability. 

 

Figure 3.3. Block diagram of the SNAVA architecture [13]. 

SNAVA consists in a scalable array of SIMD (Single Instruction Multiple Data) processing elements that 
assure a complete parallel execution of operations which is highly effective for the simulation of SNN 

since they are parallel by nature. 

Furthermore, this architecture uses two communications protocols to provide the flow of information 

required for a SNN simulation. First the Address-Event Representation (AER) communication system, 
and second the Ethernet protocol. Moreover, this architecture enables the interconnection of several 

FPGAs to perform a SNN emulation. 
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4. Spiking neural networks 

The next chapter seeks to make a brief description and analysis of the different possibilities that exist 
for the implementation of a spiking neural network. It has the aim of designing a flexible, modular, 

scalable and efficient system without losing the precision and accuracy needed for the simulation of a 
neural network in order to achieve its subsequent implementation. Consequently, this chapter 

introduces different neural models, as well as a communication system for transmitting data between 
different neurons and, finally, a training method for spiking neural networks. 

4.1. Neural models 

The neural models are a mathematical approach of the behavior and the properties inspired by 
biological neural networks, which provide the capacity to reproduce their functionality in the field of 

computer simulations. 

There are many different models for a spiking neural network. However, the type of model to use will 

depend on the needs that are required for the artificial neural network to simulate, as well as the 
available resources for such purpose. In other words, the challenge lies in finding a model that is 

sufficiently accurate and computationally efficient. 

Further below, several neural models were analyzed to validate their suitability in the design of the 

proposed spiking neural network, always looking for the compromise between the model complexity 
and the cost of the implementation. 

4.1.1. Integrate-and-Fire model 

The Integrate-and-Fire model [14], proposed in 1907 by the French neuroscientist Louis Lapicque, is 

recognized as one of the simplest neural models to establish itself as a canonical model to make way 
for a large number of variants. 

In this model, a neuron is represented in time with the following equation: 

𝐼𝐼(𝑡𝑡) = 𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑑𝑑

 
(Eq. 4.1) 

Where 𝐼𝐼(𝑡𝑡) is the current injected to the neuron, 𝐶𝐶𝑚𝑚 is the neuron membrane capacitance and 𝑉𝑉𝑚𝑚(𝑡𝑡) 
is the neuron membrane potential. Therefore, when a current is introduced to the input, the voltage 
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of the membrane increases with time until it reaches a constant threshold 𝑉𝑉𝑡𝑡ℎ, point in which the 
neuron generates a spike and the membrane voltage is reset to its initial value. 

Moreover, you can get a more accurate model entering a refractory period 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 that limits the 

frequency of firing of the neuron, preventing the generation of spikes during this period. In such a 

scenario, the function of the firing frequency with a constant input current is: 

𝑓𝑓(𝐼𝐼) =
𝐼𝐼

𝐶𝐶𝑚𝑚𝑉𝑉𝑡𝑡ℎ + 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼
 

(Eq. 4.2) 

Ultimately, due to the lack of time memory this model has the disadvantage that, at any time, if you 

get a signal below the threshold, the voltage of the membrane will suffer an increase but it will not 
return to its initial value until it fires again. Consequently, the spike frequency of this model is constant. 

Thus, this particular characteristic does not correspond within the observed behavior of neurons in a 
real biological neural network. 

4.1.2. Hodgkin-Huxley model 

The Hodgkin-Huxley model [15] was described by physiologists and biophysicists Alan Hodgkin and 

Andrew Huxley in 1952 to explain the ionic mechanisms underlying the initiation and propagation of 
action potentials in the axon of a giant squid. It is a complex mathematical model but really accurate 

that describes how the potentials in neurons are initiated and transmitted. Thanks to this work they 
received the Nobel prize in physiology and medicine in 1963. 

This model is easily explained by Figure 4.1. Firstly, the semipermeable membrane of the neuron 
separates the inside of the extracellular fluid and acts as a capacitor. 

 

Figure 4.1. Schematic diagram of the Hodgkin-Huxley model [15]. 
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If an input current 𝐼𝐼(𝑡𝑡) is injected into the neuron, it can charge the capacitor or provide a leakage 
current through the different channels of the membrane of the neuron. Due to the transport of ions 

across the cell membrane, the ion concentration in the neuron is different than the one in the 
extracellular fluid. Therefore, the conservation of electric charge in the membrane implies that the 

applied current 𝐼𝐼(𝑡𝑡) can be divided into a capacitive current  𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐, which charges capacitor 𝐶𝐶 and a 

current 𝐼𝐼𝑘𝑘 that is injected from presynaptic neurons. 

𝐼𝐼(𝑡𝑡) = 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + �𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑘𝑘

 (Eq. 4.3) 

Thus, the sum extends over all the ions. In the Standard model of Hodgkin-Huxley there are only three 

types of channels: 

• Sodium channel with index Na. 

• Potassium channel with index K. 

• Unspecified leakage channel with resistance R. 

From the definition of the Capacity, 𝐶𝐶 = 𝑄𝑄
𝑢𝑢

, where 𝑄𝑄 is a charge and 𝑢𝑢 is the voltage across the 

capacitor. Since the current of the capacitor is 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝐶𝐶 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, then: 

𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�𝐼𝐼𝑘𝑘(𝑡𝑡) + 𝐼𝐼(𝑡𝑡)
𝑘𝑘

 
(Eq. 4.4) 

Therefore, in biological terms, 𝑢𝑢 is the voltage across the membrane and ∑ 𝐼𝐼𝑘𝑘(𝑡𝑡)𝑘𝑘  is the sum of the 
ionic currents that pass through the membrane of the neuron. In short, Hodgkin-Huxley formulated 
the three components with the following equation: 

�𝐼𝐼𝑘𝑘(𝑡𝑡) = 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚3ℎ(𝑢𝑢 − 𝐸𝐸𝑁𝑁𝑁𝑁) + 𝑔𝑔𝐾𝐾𝑛𝑛4(𝑢𝑢 − 𝐸𝐸𝐾𝐾) + 𝑔𝑔𝐿𝐿(𝑢𝑢 − 𝐸𝐸𝐿𝐿)
𝑘𝑘

 (Eq. 4.5) 

Where 𝐸𝐸𝑁𝑁𝑁𝑁, 𝐸𝐸𝐾𝐾 and 𝐸𝐸𝐿𝐿 are the reversal potentials and 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚3ℎ, 𝑔𝑔𝐾𝐾𝑛𝑛4 i 𝑔𝑔𝐿𝐿 are the conductance 
resistances. 

4.1.3. Izhikevich model 

The Izhikevich model [16] was designed with the intention to develop large-scale models of brain 

impulses by neural networks. Therefore, to achieve this, you need a model for a single neuron that is 
computationally simple, but capable of producing pulse patterns exhibited by biological neurons. 
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Under these premises, Eugene M. Izhikevich in 2003 presented a simple neuron model for spiking 
neural networks, which is as biologically plausible like the Hodgkin-Huxley model, and at the same time 

as computationally efficient as the Integrate-and-Fire model. 

The author has reduced the accurate biophysiological models of Hodgkin-Huxley neurons into a two-

dimensional system of differential equations: 

 𝑣𝑣′ = 0,04𝑣𝑣2 + 5𝑣𝑣 + 140− 𝑢𝑢 + 𝐼𝐼 (Eq. 4.6) 

𝑢𝑢′ = 𝑎𝑎(𝑏𝑏𝑏𝑏 − 𝑢𝑢) (Eq. 4.7) 

If 

𝑣𝑣 ≥ 30 𝑚𝑚𝑚𝑚, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �𝑣𝑣 ← 𝑐𝑐        
𝑢𝑢 ← 𝑢𝑢 + 𝑑𝑑 (Eq. 4.8) 

Where 𝑣𝑣 and 𝑢𝑢 are dimensionless variables, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are dimensionless parameters, and ′ =
𝑑𝑑
𝑑𝑑𝑑𝑑

, where 𝑡𝑡 is the time. In biological terms, the variable 𝑣𝑣 represents the membrane potential of the 

neuron and 𝑢𝑢 represents a membrane recovery variable, which simulates the activation of K+ ionic 
currents and inactivation of Na+ ionic currents, and it provides negative feedback to the membrane 

potential of the neuron, 𝑣𝑣. 

Regarding the behavior of the neuron, the positive synaptic currents 𝐼𝐼 from other neurons increase the 

value of the membrane potential. In the case that these currents are not sufficient to make the neuron 
generate an impulse or spike, the voltage of the membrane its reset to its initial value. Alternatively, if 
the neuron generates a spike (+30 mV) due to sum of their input current, the membrane voltage 𝑣𝑣 and 

the recovery variable 𝑢𝑢 are reset according to equation 4.8. 

The resting membrane voltage in this model is between -70 and -60 mV depending on the value of the 

parameter 𝑏𝑏. In addition, just like real neurons, the model does not have a fixed threshold, hence 
depending on the history of the membrane potential before the generation of a spike the potential 

threshold can be as low as -55 mV or as high as -40 mV. 

The following considerations have to be taken into account for the use of the parameters exhibited in 

this model: 

• The parameter 𝑎𝑎 describes the time scale recovery of the variable 𝑢𝑢. Small values result in a 

slow recovery. A typical value is 𝑎𝑎 = 0,02. 

• The parameter 𝑏𝑏 describes the sensitivity of the recovery variable 𝑢𝑢 to the subthreshold 
fluctuations of the membrane potential 𝑣𝑣. A typical value is 𝑏𝑏 = 0,2. 
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• The parameter 𝑐𝑐 describes the after-spikes reset value of the membrane potential 𝑣𝑣. A typical 
value is 𝑐𝑐 = −65 𝑚𝑚𝑚𝑚. 

• The parameter 𝑑𝑑 describes the after-spike reset of the recovery variable 𝑢𝑢. A typical value is 
𝑑𝑑 = 8. 

 

Figure 4.2. Different types of neurons based on the parameters a, b, c and d [16]. 

Conclusively, as shown in Figure 4.2, setting different parameters values result in different patterns of 
intrinsic activation, which allows the behavior emulation of diverse real biological neurons. 

4.2. Neuronal connectivity 

The digital systems implemented for neural networks emulation are still far from an equal efficiency in 
neural computation or neural coding like the real biological neural networks. Computers use a million 

times more energy for an operation than a real brain. Video cameras use a thousand times more 
bandwidth per bit of information than retinas do [17]. Due to these and other shortcomings, today we 

still cannot replace the damaged parts of the nervous system. 
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Due to this, it is not surprising that a small but growing community of engineers are trying to build 
systems that meet the efficiency and effectiveness of their biological references, in order to match the 

efficiency of the performance and computational communication by nature. 

One of these problems arises when trying to establish the communications between neurons of an 

emulated neural network. In fact, the neural systems need to connect millions of neurons and thus 
establish a connection-efficient chip implementation, which creates a major challenge. Therefore, this 

section will discuss the AER system (Address-Event Representation) which aims to reduce some of 
these shortcomings and has been implemented in the emulated neural network of this project. 

4.2.1. AER System 

Mahowald and Sivilotti proposed a system of event representation to be able to transmit pulses of a 

number of neurons on a chip to the appropriate location in an array of neurons in a second chip. 

 

Figure 4.3. Schematic of the AER system [18]. 

In the schematic shown in Figure 4.3 an encoder assigns a unique address for each neuron that 
generates a spike. Then, a bus transmits these addresses to a decoder that selects the appropriate 

location of the spike. 

This communication system is quite efficient to avoid the bottlenecks that occur when the information 

needs to be exchanged in a massively interconnected system, like the neural networks impulses or 
spikes. 

Nevertheless, a number of issues should be considered in order to achieve an efficient implementation 
of the AER system. One of them is the case in which two or more events occur at the same time, then 

the system needs to decide in which order they are transmitted through the bus, since it can only 
transmit one address per time unit. 
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4.3. Learning of neural networks 

To understand how the mammalian cerebral cortex performs its calculations, it is necessary to 

understand mainly two aspects. First, we must have a good understanding of the neuronal processing 
units, the neurons; and secondly, we must gain a better understanding of how the mechanisms of 

these neurons combine to build functional systems. 

This section talks about the STDP (Spike-Timing-Dependent Plasticity) as a method for building artificial 
neural networks to perform complex computational operations or solving pattern recognition tasks. 

4.3.1. Spike-Timing-Dependent Plasticity 

The STDP (Spike-Timing-Dependent Plasticity) [19] is a biological process responsible for altering the 
connections, or synapses, of all the neurons in a spiking neural network. To do so, it strengthens or 

weakens the connectivity between the neurons based on the degree of synchronization of their spikes. 
This degree of connectivity is commonly known as the weight of the link or synapse. 

This rule is a method of unsupervised learning, the concept of which is to strengthen synapsis that 

contribute to the generation of an output spike, while those that do not contribute, i.e. those that 
generate spikes after the output spike, are weakened. 

Considering a presynaptic neuron 𝑖𝑖 and a postsynaptic neuron 𝑗𝑗, the function that characterizes the 
modification of the synaptic weight is as follows: 

∆𝑤𝑤𝑗𝑗 = ��𝑊𝑊(𝑡𝑡𝑗𝑗𝑙𝑙 − 𝑡𝑡𝑖𝑖𝑘𝑘)
𝑁𝑁

𝑙𝑙=1

𝑁𝑁

𝑘𝑘=1

 
(Eq. 4.9) 

Along with the function, which defines the degree of increase or decrease of the synaptic weight based 

on the timing of the impulses between the pre- and postsynaptic neurons expressed as: 

𝑊𝑊(𝑥𝑥) = �
𝐴𝐴+ 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑥𝑥
𝜏𝜏+
�  𝑖𝑖𝑖𝑖 𝑥𝑥 > 0  

𝐴𝐴− 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑥𝑥
𝜏𝜏−
�  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

(Eq. 4.10) 

In equations 4.9 and 4.10, 𝑡𝑡𝑗𝑗𝑙𝑙  represents the activation time 𝑙𝑙𝑡𝑡ℎ of the neuron 𝑗𝑗; similarly, 𝑡𝑡𝑖𝑖𝑘𝑘 represents 

the activation time 𝑘𝑘𝑡𝑡ℎ of the neuron 𝑖𝑖; 𝐴𝐴+ and 𝐴𝐴− are the constants that define the extent of the 
change in the synaptic weight (at 𝑡𝑡 = 0+ and 𝑡𝑡 = 0− respectively); and, 𝜏𝜏+ and 𝜏𝜏− are the constants 

of the exponential decrease in the change of the synaptic weight. 
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Figure 4.4. Graphical representation of the STDP learning rule [20]. 

Figure 4.4 represents equation 4.10 of relative weight changes based on the time between the pre-

spikes and post-spikes of the synapsis between two neurons. Therefore, it shows the reduction of the 
synaptic weight when a presynaptic neuron fires after a postsynaptic neuron; and on the contrary, an 
increase of the synaptic weight from a presynaptic neuron to a postsynaptic neuron if a presynaptic 

neuron fires before the postsynaptic neuron. 
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5. Design and implementation of a SNN 

The simulations of neural networks, due to their intrinsic characteristic of being formed by thousands 
of interconnected neurons, require high computing power which in turn requires high computational 

power that can exceed the computing power of a generic microprocessor. 

Thanks to the technological development, today we have sufficient tools to provide customized 

hardware systems with the ability to obtain a high computing power by reducing the energy 
consumption and needed resources. The fact of designing and implementing a microprocessor which 

is designed to perform a particular task allows us to optimize and maximize its performance with 
respect to a generic microprocessor. 

 

Figure 5.1. Nexys 4 Artix-7 FPGA [21] 

One of the tools that allow the development and implementation of microprocessors or digital systems 
are the FPGA (Field-Programmable Gate Array). A FPGA is a semiconductor device based on a matrix 

of configurable logic blocks connected via programmable interconnections. The aim of this chapter is 
to explain the design and architecture of the different modules that form the spiking neural network 
and their interconnection to achieve its implementation in a FPGA. 

In order to provide the maximum flexibility and scalability possible for the emulation of SNNs a modular 
system has been proposed. In the following sections, it is explained the design and architecture of a 

neuron, the AER communication system and the STDP learning method which interconnected allow 
the emulation of a SNN. Finally, in the next chapter, a SNN for pattern recognition is proposed as a 

proof-of-concept application. 
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5.1. Izhikevich neuron 

To simplify the computing power necessary to reproduce the neuron model of Izhikevich and optimize 

the resources used in the FPGA, a series of adaptions have been made, similar to the fixed-point 
implementation of the model proposed in [22]. 

Due to the transition of the neuron model equations from the real numbers to the digital domain, all 
the properties of binary numbers have been studied in order to avoid performing complex 
multiplications and divisions that could complicate the implementation and exceed the resources 

available in a FPGA for the emulation of large-scale neural networks. 

5.1.1. Model adaptation 

Initially, the numbers of the equations for the digital system are represented with a signed vector of 

13 bits, therefore with one bit for the sign of the number. In order to start working with the equations, 
the parameters corresponding to the variables 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 have been set to their recommended 
values in order to obtain a regular spiking neuron model proposed by Izhikevich. Therefore, the 

following equations have been obtained:  

𝑣𝑣′ = 0,04𝑣𝑣2 + 5𝑣𝑣 + 140 − 𝑢𝑢 + 𝐼𝐼 (Eq. 5.1) 

𝑢𝑢′ = 0,02(0,2𝑣𝑣 − 𝑢𝑢) (Eq. 5.2) 

If 

𝑣𝑣 ≥ 30 𝑚𝑚𝑚𝑚, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �𝑣𝑣 ← −65 𝑚𝑚𝑚𝑚
𝑢𝑢 ← 𝑢𝑢 + 8      

(Eq. 5.3) 

Secondly, it has been decided to work with a binary representation of integers. Hence, due to the lack 

of decimal numbers in a binary vector representation a multiplication per ten has been performed. 
Thus, the membrane potential, 𝑣𝑣, along with the recovery voltage, 𝑢𝑢, are multiplied by ten, obtaining 
the following model: 

𝑣𝑣′ =
1

250
𝑣𝑣2 + 5𝑣𝑣 + 1400 − 𝑢𝑢 + 𝐼𝐼 

(Eq. 5.4) 

𝑢𝑢′ =
1

50
(
1
5
𝑣𝑣 − 𝑢𝑢) 

(Eq. 5.5) 

If 
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𝑣𝑣 ≥ 300, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �𝑣𝑣 ← −650       
𝑢𝑢 ← 𝑢𝑢 + 80      

(Eq. 5.6) 

On the other hand, a way to save resources in the FPGA implementation is doing a power of two 

multiplications or divisions. Therefore, if you calculate a power of two multiplication in a binary 
number, you only need to shift left the binary vector as many positions as power of two multiplications 

need to be made. On the contrary, if you calculate a power of two division a shift right operation in the 
binary vector is enough to obtain the result. 

In short, the coefficients of the equations have been adjusted to achieve multiplications and divisions 
by power of two in order to optimize the design. Firstly, for the equation 5.4 the number 250 has been 

replaced by 256, since 256 = 28. Secondly, for equation 5.5 the divisors 50 and 5 have been replaced 

by 64 and 4 respectively, since 64 = 26 and 4 = 22. In addition, the multiplication 5𝑣𝑣 and 𝑣𝑣 term of 
the equation 5.4 have been replaced to implement a sum of six terms of the membrane potential. 

Since the sum of the six terms can be expressed as a sum of a 2𝑣𝑣 and 4𝑣𝑣, this two power of two 
multiplications have been implemented as shift left operations. Therefore, the following equations for 

the adapted model have been obtained: 

𝑣𝑣[𝑛𝑛 + 1] = 2𝑣𝑣[𝑛𝑛] +
1

28
𝑣𝑣2[𝑛𝑛] + 22𝑣𝑣[𝑛𝑛] + 1400 − 𝑢𝑢[𝑛𝑛] + 𝐼𝐼[𝑛𝑛] 

(Eq. 5.7) 

𝑢𝑢[𝑛𝑛 + 1] = 𝑢𝑢[𝑛𝑛] +
1

26
(

1
22
𝑣𝑣[𝑛𝑛]− 𝑢𝑢[𝑛𝑛]) 

(Eq. 5.8) 

If 

𝑣𝑣[𝑛𝑛 + 1] ≥ 300, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �𝑣𝑣
[𝑛𝑛 + 1] ← −650                     
𝑢𝑢[𝑛𝑛 + 1] ← 𝑢𝑢[𝑛𝑛 + 1] + 80      

(Eq. 5.9) 

5.1.2. Design and architecture 

As explained above, a modular, flexible and scalable digital system has been proposed in order to 

include all the different possibilities that can exist in the emulation of a spiking neural network, while 
trying to maintain its simplicity. 

The designed module for the neuron implementation has seven entries, including the clock signal, and 
one output. Furthermore, the neuron has a small Random Access Memory (RAM), where it stores the 

different weights of the synaptic connections with other neurons. 
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Looking at Figure 5.2 and going in order, firstly, there is the clock signal (CLK), which is responsible for 
coordinating the different actions of the neuron; secondly, and activation signal (EN) which serves to 

activate the functioning of the neuron; thirdly, there are the signals write enable (WE), address (Addr) 
and synaptic weight (Weight) that are used to write to the internal RAM of the neuron; fourthly, there 

is the input of the AER bus (AER_Bus) where the neuron reads which neuron of the neural network 
generated a spike; finally, there is a binary output signal (Spike_out) which indicates whether the 

neuron generated a spike.  

 

Figure 5.2. Digital bloc of a neuron. 

Lowering a level in the implementation of the neuron, shown in Figure 5.3, there are the different 
sequential and combinational digital blocks that operate the actions of the neuron. These are: an 

internal RAM, a sequential block for the weight synaptic input, two registers for the membrane 
potential and voltage recovery, and two combinational blocks corresponding to the implementation of 

the differential equations presented above. 

 

Figure 5.3. Block diagram of the neuron. 
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The internal RAM of the neuron is a matrix that forms a column of synaptic weights. As shown in Table 
5.4, each position in the column corresponds to the weight of a synaptic connection with a neuron, so 

the first column corresponds to the synaptic weight of the connection with the zero neuron of the 
neural network.  

NEURON SYNAPTIC WEIGHT 
0 70 
1 -40 
2 0 
3 120 
4 -15 

Table 5.1. RAM of the neuron. 

Therefore, if the value of the synaptic weight is zero, it means that there is no link between these two 
neurons. In addition, the used model allows the use of excitatory and inhibitory synaptic weights, i.e. 

positive and negative respectively. Also, as mentioned above, it is possible to modify the synaptic 
weights of the connections with write enable (WE), address (Addr) and synaptic weight (Weight) 

signals. Moreover it is possible to initialize the RAM of a neuron with a .mif text file. 

Sequentially the functionality process of the neuron is as follows: firstly, it reads the AER 

communication bus for the neuron that it fired. Then, the RAM is responsible for reading the synaptic 
weight associated with the number written on the AER bus and it sends it to the Input Align sequential 

bloc. This blog will dispatch the synaptic weight to the combinational block of the potential membrane 
equation, also it is responsible for adding the synaptic weights in the case that several neurons fired at 

the same time. For this purpose, as it will be explained in the next section, the AER bus stops the activity 
of the neuron deactivating the EN signal, since it cannot transmit more than one spike at once and 

writes one of the addresses of the neurons that fired in each clock cycle. 

Also, the Input Align block limits the negative value that a synaptic weight can have to -140 mV because 

for values under -140 mV the neuron ends up generating a spike when, biologically, the neuron should 
not excite for inhibitory synaptic weights. To verify that this anomaly was not a consequence of the 
adapted model for this implementation, several simulations were performed with the original model 

and it reproduced the exact same behavior with high negative synaptic weights. 

Finally, the combination blocks corresponding to the model equations perform their operations with 

the registers “v” store and “u” store where the signals v_n, v_n1 and u_n and u_n1 are stored 
respectively. 

The digital implementation of the adapted equations can be seen in detail in Figure 5.5. The top of the 
diagram corresponds to the equation 5.7 where; firstly, the signal v1 is generated by the square of v_n 
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signal and a binary shift right operation of eight positions; secondly, v2 signal is generated by the sum 
of a binary shift left operation to v_n of one and two positions respectively; thirdly, the equation is 

followed by performing the sum of other factors including the synaptic weight; finally, using a 
comparator the design determines whether the value of the membrane voltages exceeds the threshold 

indicated in equation 5.9. If so, the spike signal is activated indicating the firing of the neuron. In 
addition, if the neuron exceeds the threshold value the membrane potential is reset to the c value, 

otherwise it continues to operate with signal v3 until the next clock cycle in which the “v” store register 
will replace the v_n signal for the v_n1 signal. 

 

Figure 5.4. Digital implementation of the adapted neuronal equations. 

Following with Figure 5.4, the bottom of the diagram corresponds to equation 5.8 where; primarily, 

the signal u1 is generated by performing a two binary shift right operation of the membrane voltage 
v_n; leading on from this, the signal u3 is obtained by signal u1 minus u_n and a six binary shift right 

operation. Finally, the signals u4 and u5 are driven to a multiplexer with a channel selection based on 
whether the neuron fired or not (Spike signal) to set the recovery value of the membrane u_n1 as 

equation 5.9 indicates. 

Additionally, Figure 5.5 shows the comparison between the resources utilization of the adapted (left) 

and non-adapted (right) neuron models corresponding to equations 5.4-5.6 and 5.7-5.9 respectively. 
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Figure 5.5. Resource utilization comparison of a single Izhikevich neuron between the adapted (left) and non-

adapted (right) digital model. 

As it can be observed, for the implementation of a single neuron into a Nexys4 Artix-7 FPGA the non-

adapted model uses about 6 times more look-up tables than the adapted model. Therefore, this 
difference will greatly increase when building a neural network of ten, one hundred or more neurons. 

Finally, by doing some rough estimations it could be said that the used FPGA could implement almost 
500 neurons of the adapted model. Whereas, only 80 neurons of the non-adapted model, which 

equates to a difference which cannot be ignored. 

5.1.3. Simulations 

Here are various simulations of the implemented model made with Vivado in order to show the 
different behaviors exhibited by the neuron against different scenarios. 

 
Figure 5.6. Timeline of inputs, outputs and membrane potential of the neuron to an input step of 12 mV. 

In Figure 5.6 the response of the neuron to an input step of 12 mV is shown. Firstly, in the 50 ns a 
synaptic weight of 12 mV with neuron 1 is written in the internal RAM, keeping the WE signal activated. 

A few clock cycles later the address of the neuron 1 is written in the AER bus, simulating the constant 
firing of this neuron and therefore, generating an input step of 12 mV for the simulated neuron. Finally, 
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what can be seen is how the neuron starts generating neuronal impulses to the output signal 
Spike_out. 

 
Figure 5.7. Timeline of inputs, outputs and membrane potential of the neuron to an input step of 30 mV. 

Secondly, in Figure 5.7 the neuron exhibits a similar behavior as in Figure 5.6 as a response to an input 
step of 30 mV and therefore generating a higher frequency of spikes. 

 
Figure 5.8. Timeline of inputs, outputs and membrane potential of the neuron to an input step of -10 mV. 

Finally, the neuron shows the response to an input step of -10 mV in Figure 5.8, thus since it is an 
inhibitory input the neuron does not generate any spikes. In essence, the implemented neuron shows 

the behavior exhibited by the original model proposed by Izhikevich, as shown in Figure 4.2 of the 
previous chapter. 
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5.2. AER System 

Due to the design of the neuron, this is capable of reading the information written on the AER (Address-

Event Representation) bus and through its own RAM, it will apply itself to the corresponding synaptic 
weight of the link between itself and the firing neuron. 

Consequently, unlike the system proposed in the previous chapter, consisting of an encoder and 
decoder, the design of the AER system of this project must consist of an encoder that reading the spikes 
of all neurons of the SNN is capable of translating them to their corresponding neural address, to finally 

write in the AER communication bus, the neuron that fired. 

Moreover, this design has addressed the problem of processing two or more events at the same time 

due to the inability to transmit more than one address through the AER communication bus, adding a 
condition of priority to the encoder. 

5.2.1. Design and architecture 

The AER system block diagram is shown in Figure 5.9, where at the top there is the block of the AER 

system that has two inputs and two outputs corresponding to the clock signal (CLK), spikes vector 
(Spikes), and an activation signal for the neurons (EN_Neuron) and the AER communication bus (AER) 

respectively. 

The main signal is the spikes vector (Spikes) that is a vector which contains as many bits as neurons 

form the neural network. Therefore, in the case of a neural network of five neurons the spikes vector 
is as: “00000”. Where with a “1” it indicates the firing of a neuron, thus if neuron zero and three 

generate a spike at the same time, the AER system will have to process the following vector: “01001”. 
As a result, the number 3 will be written at the output of the AER bus and at the next clock cycle the 

number 0 will be written in order to avoid collapsing the bus by writing two address at once. 
Additionally, due to the delay caused by the transmission of an impulse for each clock cycle, the AER 

system has a EN_Neuron signal used to stop all neurons connected to the neural network, so they have 
time to read the synaptic weight associated with each neuron that has fired and to compute their sum. 

Going down one level in the implementation, as shown in Figure 5.9, the AER system is composed of 
four components, a type of buffer or memory called FIFO (First in, first out), a multiplexer, a priority 
encoder and a comparator. This AER system has two types of operation depending on whether there 

is one or more of a neural spike at the same time. 
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Continuing with the previous spikes vector, “01001”, the AER system works as follows. First, the buffer 
called FIFO drives the vector to the multiplexer, on which if there have not been any spikes the signal 

FIFO_En will be activated and it will transmit the vector directly to the priority encoder. 

 

Figure 5.9. AER system block diagram. 

One clock cycle later, the priority encoder works with the vector “01001” starting to read every bit 
from left to right and therefore, detecting a “1” in position four of the vector which corresponds to the 

third neuron. Finally, it writes the address 3 to the AER bus and generates a second signal, ENC_Spikes, 
which is the same vector but with the spike of the neuron 3 being reset: “00001”.  

Then this vector is written to the comparator to determine if it is equal to a zero vector, i.e. a vector 
with all bits to zero. If not, the signal FIFO_en along with EN_Neuron are disabled, stopping all the 

neurons. Also, the multiplexer sends to the priority encoder the vector ENC_Spikes, “00001”, so it can 
continue to work with the rest of the other spikes. Meanwhile the FIFO performs an operation similar 
to the one shown in Figure 5.10. It is stopping the output of data and starting the storage of the 

different input spikes vectors that can arrive while the priority encoder is working with vector “01001”. 

Once the priority encoder finished to write all the spikes to the AER communication bus, the 

comparator will reset the FIFO_En signal and the FIFO will start transmitting all the vectors that it saved 
in its memory. 
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Figure 5.10. Representation of FIFO functionality [23]. 

Note that, in principle, FIFO memory should not keep any spikes vector while the priority encoder is 
working since all the neurons of the neural network are stopped with EN_Neuron signal. However, this 

system is useful just in case external impulses arrive during this period, such as the spikes of the first 
layer of the neural network. 

5.2.2. Simulations 

A simulation of the AER system made with VIVADO is shown in Figure 5.11 in order to show the 

different behaviors exhibited this communication bus in front of the spikes generated by a neural 
network. 

 

Figure 5.11. Timeline of the AER system behavior. 

Firstly, as it can be seen in Figure 5.11 when the AER bus does not detect any spikes it writes all of their 
bits to “1”, so in this particular case, it shows the number 31, i.e. the AER bus can show up to 31 

addresses from 0 to 30, including 0. 

Secondly, at 10 ns a spike is generated by neuron number zero, therefore, according to the 

functionality described above, the AER bus writes the 0 address in the next clock cycle in its output. 

Finally, at time 40 ns several spikes are generated by neurons number 4, 3, 1 and 0. Thus, the priority 

encoder starts working and the EN_Neuron signal is deactivated to stop the activity of all the neurons 
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so it can write, in every clock cycle, the address of the firing neurons. Besides, during the transmission 
of these spikes neurons number 1 and 2 fire. Then, FIFO stores the corresponding spikes vector and 

the addresses of these two neurons are written once the priority encoder finishes the spikes 
transmission of neurons 4, 3, 1 and 0, implementing the functionality as shown in Figure 5.10 of the 

previous section. 

5.3. Spike-Timing-Dependent Plasticity 

Recent efforts in artificial intelligence studies suggest that the software can be trained and taught to 

obtain a behavior that goes beyond the reproduction of a fixed sequence of events. Learning is a 
distinction that separates the intelligent systems from the unintelligent. Thus, researchers are directing 

considerable effort in developing learning skills for neuronal networks and other synthetic systems.  

Therefore, this chapter proceeds to explain the design and implementation of the Spike-Timing-

Dependent (STDP) learning rule, that modifies the synaptic weights of the connections between 
neurons depending on the synchrony of their firing. That is, the synapses that contribute to the 

generation of an output spike of the neural network should be enhanced, while those not contributing 
to the generation of a spikes in the output must be weakened. 

5.3.1. Design and architecture 

The digital block shown in figure 5.12 has been designed for the implementation of the STDP learning 

rule based on the digital logic approach from [24]. This block has six inputs, including the clock signal, 
along with three outputs corresponding to the write enable (WE), address (Addr) and synaptic weight 

(Weight) signals of the internal RAM of the neuron.  

 

Figure 5.12. Digital block of the STDP module. 

The training system described in the previous chapter is responsible of modifying the weights of all the 
connections of the neural network. Due to the complexity of creating a module to handle all the 
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synaptic weights of the neural network the following solution has been proposed: create a training 
module that is in charge of the connections of a single neuron. Therefore, having a learning module for 

each neuron of the neural network that is responsible of all the links coming to that neuron, and thus 
to maintain and update the RAM of it. 

Observing the Figure 5.12 and going in order, primarily, there is a clock signal (CLK) which is responsible 
for coordinating the different actions of the learning module; following this, an activation signal (EN) 

which serves to activate the learning; next, an activation signal (EN_Addr) that is responsible for 
changing the connection in which the STDP rules is applied; thus, two signals Pre_Spikes and Post_Spike 
that are the responsible of reading the firings of the previous neurons and the spike of the neuron 

where the STDP module is connected respectively; and finally, at the output there are the write enable 
(WE), address (Addr) and synaptic weight (Weight) signals that allow to write in the RAM of the neuron. 

In addition, there is a reset signal (RST) that along with the enable signal (EN) allow to reset all the 
synaptic weights of the neuron’s RAM. 

 

Figure 5.13. Block diagram of the STDP module. 

As shown in Figure 5.13, there are several interconnected combinational and sequential blocks for the 
STDP module to function. These are: a counter address (Addr cnt) to select on which synaptic link the 

STDP rule is applied, an increment or decrement link selector (I/D Sel.) that actives the corresponding 
signal whether the pre-spike happens before or after the post-spike of the connection, a synaptic 

weight counter (Weight cnt) that is responsible for storing and modifying the synaptic weight of all the 
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connections of the neuron, and finally a set of combinational blocks that allow the digital logic 
implementation of equations 4.9 and 4.10 from the STDP learning rule. 

Sequentially the operational process of the learning module is as follows: initially, the pre-spikes and 
post-spike signals are being read while the address counter is in charge of selecting the connection to 

apply the STDP rule with the Syn_Addr signal, which at the same time serves as a selector channel for 
the multiplexer, indicates to the weight counter the link to modify and proportionate the address of 

the neuron’s RAM. 

After, in the event of a spike from the previous neurons of the neuron in which the STDP module is 
connected, the I/D Sel block activates the corresponding output signal to indicate whether the weight 

counter needs to increase or decrease the connection’s value of the synaptic weight. Also, the spike is 
propagated through the shift register and activating the pre_gate signal. Then, if the neuron of the 

training module fires, its spike is propagated by the corresponding shift register activating the 
post_gate signal. The activation of these two logic gates along with the increased signal provided by 

the I/D Sel block generates an increment pulse for the synaptic weight counter. Therefore, depending 
on the duration of this pulse counter it will increase more or less the weight of the synaptic connection. 

Moreover, it will activate the write enable signal (WE) to allow the update of the neuron’s RAM. 

 

Figure 5.14. Timeline of the implemented STDP learning rule [24]. 

In short, as shown in Figure 5.14, depending on the increasing or decreasing pulse duration the value 
of the synaptic weight will increase or decrease respectively. That is, if the neuron fires after its 
preceding neurons generated a spike, the almost synchronous activation of the logic gates pre_gate 

and post_gate will create a long pulse length for the synaptic weight counter, which increases the 
weight of the connection for each clock cycle. 

Finally, this design allows the regulation of the STDP function by modifying the length of the registers 
corresponding to the neuron’s spikes. Therefore, creating a more or less sensible STDP learning rule to 

the synchrony of the neural impulses. 
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5.3.2. Simulations 

In this section, there are the various simulations of the implemented module made with Vivado in 

order to show the different behaviors exhibited by the learning module. In the timeline simulations, 
there are the inputs and outputs of the STDP module along with the pre_gate, post_gate, incr and decr 

internal signals for a better understanding of the inner workings of the design. 

 

Figure 5.15. Timeline of inputs and outputs of the STDP learning module (Case 1). 

First, for the preparation of the timelines a neuron connected to a previous layer of three neurons has 
been simulated. Therefore, the Pre_Spikes signal is a vector of three binary numbers corresponding to 

the three synaptic connections and the Post_Spike signal is a single bit that corresponds to the firing of 
the neuron that is connected to the STDP learning module. 

Looking at figure 5.15, around the 20 ns, there is a spike from the first synaptic connection, moments 
later, the neuron generates a spike that is read through the Post_Spike signal. Because of this, the 

internal signals pre_gate and post_gate activate respectively and when these two come together in 
time, the signal incr generates a pulse of one clock cycle that is sent to the weight counter. Finally, the 

value of the synaptic weight, which at the start was 0, is updated to the neuron’s RAM with a value of 
1 by the write enable (WE), address (Addr) and synaptic weight (Weight) signals. 

Continuing with Figure 5.16, the same functionality is exhibited with the difference that the time 
between the two spikes is lower, therefore the value of the synaptic weight is increased to a greater 

extent, i.e. from 0 to 4. 
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Figure 5.16. Timeline of inputs and outputs of the STDP learning module (Case 2). 

Moreover, Figure 5.17 shows the case in which a neuron of the input layer fires after the neuron where 

the STDP module is connected fired. Hence, due to the I/D Sel block and the digital combinational logic 
explained above, a decrement pulse is generated, indicating to the synaptic weight counter the decline 
in the value of the link connectivity from 0 to -2. 

 

Figure 5.17. Timeline of inputs and outputs of the STDP learning module (Case 3). 
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Finally, the functionality of the learning module for this small neural network is shown in Figure 5.18. 
As it can be observed, approximately every 200 ns the neuron receives the same trend of spikes from 

the neurons which is connected to. Thus, the learning module has the ability to alter one synaptic 
connection for each time that it receives the spikes. 

Firstly, the first synapsis that corresponds to the first bit of the Pre_Spikes vector is updated with a 
value of 4. Secondly, the EN_Addr signal is activated so the learning module operates for the second 

synapsis, since there is no spike from it the value is not modified. Finally, the EN_Addr signal is triggered 
again to apply the STDP learning in the third synapsis, and the weight value is updated to 2 due to the 
time difference between the two spikes. 

 

Figure 5.18. Timeline of inputs and outputs of the STDP learning module (Case 4). 

Ultimately, the goal of this module is to sequentially update all the synapses to which the neuron is 
connected to in order to implement the STDP learning rule. This way, the number of resources needed 

to implement this system is greatly reduced in comparison to a module that took care of all the 
synapses of the neural network at once. 

5.4. SNN Emulation 

As explained in the introduction to this chapter, to give the neural network the highest possible 
flexibility and scalability a modular system of three main entities or digitals modules has been 

proposed. These are: first, the neuron; second, the AER communication bus; and thirdly, the STDP 
learning system. 

Once explained in the previous sections the internal functionality of each digital block, this section aims 
to explain how to perform an SNN emulation by interconnecting each one of the proposed digital 

modules. Meaning, how to connect and replicate these main digital modules in order to obtain a neural 
network of two, ten or thousands of neurons if the available resources allow it. 
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5.4.1. Design and architecture 

To start with, a neural network made up of several layers is shown in figure 5.19. Firstly, an input layer 

which receives all external stimuli, second, a variable number of hidden layers that are responsible for 
performing the operations of the neural network, and then thirdly, an output layer in which the neural 

network broadcasts its stimuli or responses to the outside. 

 

Figure 5.19. Architecture of a neural network [25]. 

To make it simple, Figure 5.20 shows a neural network of two neurons. However, this architecture 
allows the implementation of as many neurons as needed. 

To begin with, what can be seen is that the AER system is responsible for establishing the 
communication between all the neurons, i.e. read the spikes to translate them into the appropriate 
address and transmit them to the AER bus. All neurons are connected to the EN_Neuron signal which 

allow to stop the activity of the neurons, since as explained before, the AER bus can only transmit one 
address per clock cycle. Moreover, the neurons of the input layer are merely external stimuli, so the 

introduction of such into the neural network is done by treating the spikes vector. 

Additionally, each neuron is formed by its digital module and a STDP learning module. The 

interconnection between these two is established with the write enable (WE), address (Addr) and 
synaptic weight (Weight) signals that allow to write in the neuron’s RAM. 
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Figure 5.20. Interconnection of the different blocks for the emulation of SNN of two or more neurons. 

Utimately, the STDP modules the EN and EN_Addr signals along with the Pre_Spikes signal need to be 

treated with specific digital blocs. These blocks were not included in the diagram of the Figure 5.20, 
because they depend either from the layer architecture or the functionality of the neural network to 
emulate. Therefore, it is not possible to provide a standard solution for the many neural networks that 

this design can implement. However, in the next chapter a SNN for pattern recognition is proposed 
where the various blocks that allow the configuration of the STDP modules are explained. 
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6. Pattern recognition with a SNN 

Below is simple spiking neural network that is presented as an example to demonstrate the 
functionality of the design of the previous chapter. 

More specifically, it is a SNN with the functionality to recognize patterns and generate a response based 
on these types of networks, which are mainly used for image processing, for example to identify the 

letters of the alphabet or the numbers displayed in an image, recognize the movement of an object in 
a sequence of images or to detect cars in each lane of a motorway. 

This chapter explains in detail the design of this SNN for pattern recognition beginning with the model 
of the network used, the patterns to recognize and the training method [20]. Finally, several 

simulations are carried and the final design is implemented into a FPGA to verify its functionality. 

6.1. Neural network model 

The neural network developed in this project as an example for pattern recognition tasks is presented 

in Figure 6.1. This network is dedicated to recognizing patterns in images of 5x7 pixels, i.e. 35 pixels. 

 

Figure 6.1. Representation of the neural network developed for the recognition of six patterns. 
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It is composed of three layers, the first two, the input layer and output layer, are the ones that form 
the functional neural network. In addition, there is an extra layer, called training layer, which 

functionality will be explained later. 

Briefly, the neural network is composed of: 

- 35 input neurons corresponding to each pixel of the image. 
- 6 output neurons in the output layer corresponding to each pattern. (first neuron 

corresponding to the first pattern, second neuron to the second pattern…) 
- 6 training neurons for each training pattern. 

Concisely, the functionality of the neural network is to recognize up to six different patterns depending 

on the emission of nerve impulses from the corresponding output neuron based on the stimuli of a 35 
pixels’ image through the input layer. 

6.2. Pattern recognition 

The pattern recognition task consists in differentiate up to six numbers from the digits presented in 

Figure 6.2. As seen in the picture, each number is represented by a 5x7 pixel image, therefore, can be 
used to stimulate the input layer of the neural network. Furthermore, because each pixel has a binary 

representation, black or white, these constitute the existence or absence of nerve stimulation of the 
input neurons. 

 

Figure 6.2. Input patterns for the neural network stimulation [26]. 

In short, how to encode the digit corresponding to the zero digit in order to introduce it into the first 
input layer of the neural network is as follows. Firstly, the first row of five pixels corresponds to the 

zero to fourth neurons which its vector of spikes is: “01110”. Secondly, the second row corresponds to 
the fifth to ninth neurons which its vector of spikes is: “10001”. Finally, following this process a vector 

with a length of 35 bits is obtained and can be used to stimuli all the neurons of the input layer.  
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Figure 6.3. Input patterns with noise for the neural network stimulation. 

In addition, some noise has been added to the digits presented in Figure 6.2 in order to prove the 

functionality of the neural network. Therefore, the neural networks should still be able to recognize 
the corresponding numbers using the digits from Figure 6.3 as stimuli after its training. 

6.3. Training method 

The training method [20] is based on the STDP learning rule, which as explained above, modifies the 
weights of the synaptic connections depending on the synchrony of firing of the neurons. That is, the 

synapses that contribute to the generation of an output spike of the neural network should be 
enhanced, while those not contribution to the generation of an output spikes must be weakened. 

Leveraging the features of the STDP rule, a training layer has been implemented into the neural 
network that allows to train for each output neuron which pattern must recognize. Meaning, to what 

digit of Figure 6.2 the neurons needs to generate spikes and remain at rest for others digits. 

Initially, the first layer of the neural network needs to be stimulated with a certain frequency. This 

period of time should be enough for all the neurons to return to their initial state of rest to achieve a 
reliable and robust training. 

Leading on from this, all the synapses of the neural network between the input and output layer must 

be initialized to zero. Thus, for any stimulus in the neurons of the input layer, the output neurons 
cannot generate any spikes and must stay in their resting state. 

Lastly, the STDP training module of each output neuron is connected to his counterpart training 
neuron.  Hence, the training module reads the spikes of the output neuron layer along with the firings 

from the training neurons. 

Only when these three conditions are met the training phase can begin. Firstly, the pattern to train 

needs to be introduced into the network and moments later the training neuron corresponding to the 
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output neuron, which is wanted for the recognition of the pattern, has to be fired manually. Due to the 
firing of the training neuron with the spikes of the input neurons, the STDP training module will 

potentiate the connections from the active input neurons to the output neuron.  

Alternatively, the other training neurons have to be fired manually moments before the stimuli to the 

input layer is introduced. Thus, the firing of these training neurons with the spikes of the input neurons 
promotes a decrease in the connectivity of the synapses that connect the input neurons with the 

output neurons corresponding to these training neurons. 

Figure 6.4 shows the modification of the synaptic weights based on the firing of neurons. Therefore, in 
the case when the training pattern fires neurons 1 and 2 altogether with the training neuron 35, the 

connectivity of the synapses between neurons 1 and 2 and the output neuron 41 is increased (red). On 
the contrary, the connectivity of the synapses between neurons 1 and 2 and the rest of the output 

neurons is decreased. Moreover, the synaptic weights from the neurons 0 and 34 are not modified 
because they do not take part in the learning pattern input. 

 

Figure 6.4. Modification of the synaptic weights based on the STDP learning rule. 

Therefore, as long as the input layer is being stimulated along with the training neurons, the 
connections that contribute to the firing of the corresponding output neuron are potentiated. The 

synapsis that could generate undesired spiking are decreased and those that do not intervene in the 
stimulation of the input layer are not modified. 

Finally, an important variable to take into account for the proper learning of the neural network in the 
application of this method is the time period in which the STDP is applied. For excessively long time 
periods all the output neurons can end up firing for any pattern, while for short periods some or all the 
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output neurons can end up at rest for any pattern. The exact time period depends on the number of 
input neurons and the training patterns themselves, therefore the challenge lies in finding the 

appropriate period of time in order to achieve that each neuron fires for its trained pattern. 

6.4. FPGA implementation 

The implementation of the neural network for pattern recognition has been made on a FPGA model 
Nexys 4 Artix-7. This is a development platform ready for the implementation of digital circuits for 
industrial applications, plus it incorporates USB, ethernet and other ports to accommodate designs 

ranging from introductory combinational circuits to powerful embedded microprocessors. 

This section explains in detail the implementation of the neural network for pattern recognition, and 

how the different elements of input and output communication of the board have been used for the 
introduction of different stimuli to the neural network and view its response. 

6.4.1. Inputs and outputs 

In the implementation of the neural network for pattern recognition, it requires sixteen switches, three 

buttons and six logic outputs, which have been used from the FPGA. 

 

Figure 6.5. Nexys 4 development board [21]. 

The first ten switches (SW0 to SW9) allow to select the stimulus for the input layer of the neural 
network, i.e. any of the ten digits shown in figure 6.2. Moreover, the six remaining switches (SW10 to 

SW15) allow to select the training neuron to which the introduced pattern wants to be trained. 
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A button is then sending a reset signal for the whole design and a second button to send a training 
pulse of about 200 input stimuli for the neural network. Also, by pulsing the reset and training buttons 

together allows to reset all the synaptic weights to zero. Moreover, a third button is used for selecting 
the digits with noise presented in Figure 6.3 as stimuli for the neural network. 

Finally, six analog outputs that allow the reading of the spikes generated by the output neurons of the 
neural network with an oscilloscope. 

6.4.2. Design and architecture 

Regarding the implementation of the design, in Figure 6.6 all the necessary elements to introduce 

stimuli to the neural network with a certain frequency, for the treatment of training neurons and the 
signals for the correct configuration of the STDP module are shown. 

Firstly, the entire structure is governed by a counter that, as mentioned above, provides a period of 
150 clock cycles to introduce the stimuli to the neural network. This period is sufficient for all the output 

neurons to return at their resting state. 

 

Figure 6.6. Block diagram for the treatment of the input stimuli and training of the neural network. 

Secondly, to select the input stimuli two multiplexers have been implemented which generate a 35-bit 
vector at its output. Together with a third multiplexer controlled by the SEL button, it is possible to 

select between the normal digits and the digits with noise. In addition, the six bits from the training 
neurons are concatenated to this vector to indicate which neurons have to fire with the selected image. 
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Next, the Input Neurons block is responsible for transmitting to the AER system the 35-bit vector 
corresponding to the pixels of the image when the value of the counter is zero. Moreover, the Train 

Neurons block transmits to the AER system the 6-bit vector of the training neurons in the corresponding 
time instants in order to strengthen or weaken the synapses of the network. 

Thirdly, the STDP Enable block translate a keystroke of the BTN button from the FPGA board to perform 
a training pulse for approximately 200 input stimuli. In addition, the STDP Addr block is responsible for 

changing the address of the STDP modules for each output neuron. 

To summarize, while Figure 6.7 represents a block diagram necessary for the treatment of the input 
and training stimuli, the implementation of the neural network where the six layer output neurons 

(from 41 to 46) are emulated is shown in figure 6.6. Also, the CLK, RST, EN_Neuron, Spikes, EN_STDP 
and EN_Addr signals that are interconnected between the two diagrams can be seen. 

 

Figure 6.7. Block diagram of the neural network. 

6.4.3. Simulations 

Next are the different simulations of the neural network for pattern recognition implementation made 
with Vivado in order to demonstrate its functionality. 

Figure 6.8 illustrates a complete simulation of the functionality of the SNN. Firstly, patterns from digits 
0 to 5 have been taught to neurons 41 to 46 respectively. Therefore, as it can be seen through the 

pulses of the EN_STDP signal, six learning phases are conducted, one for each output neuron of the 
SNN. 
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Figure 6.8. Complete simulation of the SNN for pattern recognition digits 0 to 5. 

Therefore, in the first phase of the training where the image of digit 0 is selected along with the training 

neuron that corresponds to the output neuron 41, it can be seen that the output neuron does not fire, 
but as long as the training advances in time, the synapses that contribute to its firing are modified and 
the output neuron 41 ends up learning to generate spikes for the selected pattern. 

Then, in the third phase of the training the image of digit 2 and the training neuron of the output 
neuron 43 is selected. In this case when the third phase is just starting the output neuron 41 is firing, 

however, as the training phase advances stops firing and it is only the output neuron 43 that generates 
spikes for the selected pattern. 

In the following phases of the training the process is the same, until the training is complete in about 
9 ms. Then, the correct pattern recognition of the neural network is tested and for one millisecond the 

images from digits 0 to 5 are introduced and the corresponding output neurons fire only for their 
respective trained digit. 

 

Figure 6.9. Modification of the synaptic weights of the SNN. 
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The modification of the synaptic weights of the SNN are shown in Figure 6.9. As it can be observed this 
are only modified when the EN_STDP pulse is triggered, which means they are only modified during 

the different training phases. Also, as explained before when triggering the reset signal along with the 
training button all the synaptic weights values are reset to zero, getting the SNN ready to start another 

training. 

Other behaviors described in the previous sections on the input stimulus and training neurons can be 

seen by looking at Figure 6.10, which is the same simulation performed on 6.8 and 6.9. Firstly, the 
position of the marker corresponds to the introduction of stimuli corresponding to the image of the 0 
digit, from bit 0 to 34 in the Spikes vector. A few clock cycles later the training neuron 35 fires in order 

to train the output neuron 41. On the contrary, the rest of the training neurons fire before the stimulus 
of the neural network in order to weaken the corresponding synapses. After some more input stimuli, 

neuron 41 ends up learning and firing in its own as shown in Figure 6.11. 

 

Figure 6.10. Firing of input, training and output neurons of the SNN. 

 

Figure 6.11. Firing of input, training and output neurons of the SNN. 
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Digits from 0 to 5 are not the only patterns that the SNN can be trained to recognize. In Figure 6.12 the 
output neurons 41 to 46 have been trained with the patterns of digits 4 to 9 respectively, as it can be 

seen with the values of the Image vector (“0000000001” corresponds to number 0, “0000000010” to 
number 1, until “1000000000” for number 9). 

 

Figure 6.12. Complete simulation of the SNN for pattern recognition digits 4 to 9. 

Moreover, the influence of the training phase time can be observed in Figures 6.13 and 6.14. Following 

on from the same learning for pattern recognition of digits 4 to 9, in Figure 6.13 not all the output 
neurons end up generating spikes due to an insufficient training time. However, in Figure 6.14 due to 

an excessive training time the output neuron corresponding to the digit 8 fires when a digit 6 and 9 are 
introduced as stimuli to the SNN. 
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Figure 6.13. Complete simulation of the SNN for pattern recognition digits 4 to 9 (insufficient training time). 

 

 

Figure 6.14. Complete simulation of the SNN for pattern recognition digits 4 to 9 (excessive training time). 
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Moreover, the influence of the training phase time can be observed in Figures 6.13 and 6.14. Following 
on from the same learning for pattern recognition of digits 4 to 9, in Figure 6.13 not all the output 

neurons end up generating spikes due to an insufficient training time. However, in Figure 6.14 due to 
an excessive training time the output neuron corresponding to the digit 8 fires when a digit 6 and 9 are 

introduced as stimuli to the SNN. 

Additionally, Figure 6.14 and Figure 6.15 represent a complete simulation of the SNN for pattern 

recognition of digits 0 to 5 and digits 4 to 9 respectively, as shown before. Nevertheless, in these 
simulations the difference resides in the stimuli used after the training phases have concluded. Instead 
of using the same digits for the whole simulation, after the training phase the digits with noise from 

Figure 6.3 are introduced into the SNN thanks to the activation of the signal SEL. Regardless of the 
difference in several pixels due to the noise of the images, since the main shape of the digits remains 

unchanged the neural network is capable of recognizing the correct numbers. Therefore, it proves the 
functionality of recognizing similar patterns. 

 

Figure 6.15. Complete simulation of the SNN for pattern recognition digits 0 to 5. 

Having said that, in Figure 6.15, the neuron corresponding to digit 8 fires for either digits 8 and 9 with 

noise, which is something to expect since the main shape of this two numbers are quite similar and 
therefore the SNN recognizes them as the same. 
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Figure 6.16. Complete simulation of the SNN for pattern recognition digits 4 to 9. 

Finally, the simulations which were performed enabled a corroboration of what has previously been 

said. For long training time periods a less restrictive training is performed which, in excess, can trigger 
the firing of all output neurons for any given pattern. On the contrary, for short training time periods a 

more restrictive training is performed which cannot be enough to trigger the firing of the output 
neurons. 

Succinctly, although the SNN has been able to learn different patterns (digits 0 to 5 and 4 to 9) with the 
same training time, it is not required to be similar for other pattern combinations because, at the end, 

each pattern combination has its appropriate training time period in order to trigger the firing of the 
corresponding output neuron. 

6.4.4. Experimental results 

The results of the physical implementation of the design into the FPGA are presented in this section. 

As said before the FPGA used to verify the functionality of the digital system is a Nexys 4 Artix-7 model 
at 100 MHz. 

Initially, in order to read the spikes from all the output neurons from the FPGA analog outputs two 
oscilloscopes has been used. Firstly, the AD Instruments DS2202A with a 200 MHz bandwidth that 

allowed to view the form of a single spike. Secondly, the RIGOL DS1102D, a digital oscilloscope of 100 



  Eduard-Guillem Merino Mallorquí 

58   

MHz bandwidth with a logic analyzer channel that can read up to 16 signals, which has been used to 
read the spikes of the six output neurons of the neural network at the same time. 

Observing the 6.17 picture, taken with the DS2202A oscilloscope, there are three spikes of an output 
neuron of the SNN with a frequency of about 625 KHz. This is the time period between the input of the 

pattern, so the SNN has time to generate a response to the introduced pattern and all neurons have 
enough time to return to their initial state of rest. 

 

Figure 6.17. Spikes from output neuron 0. 

Next, the SNN has being trained for the pattern recognition of digits 0 to 5, as did before with the 

simulations. The results are shown in figure 6.18, with six captures made with the DS1102D digital 
oscilloscope, one for each input pattern. Therefore, first image corresponds to the stimuli of the SNN 

with digit 0, second image with digit 1, until sixth image with digit 5. As it can be observed, the SNN 
exhibits the expected behavior recognizing the input pattern by generating spikes with the 

corresponding output neuron. 
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Figure 6.18. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 0 to 5 

respectively (Digit 0 as input pattern for the first image, digit 1 for second image...). 

Moreover, in Figure 6.19 the SNN has being trained for the pattern recognition of digits 4 to 9, as did 
before with the simulations. Therefore, first image corresponds to the stimuli of the SNN with digit 4, 

second image with digit 5, until sixth image with digit 9. As it can be observed, the SNN exhibits the 
expected behavior recognizing the input pattern by generating spikes with the corresponding output 

neuron. Nevertheless, for input pattern of digit 9 the output neuron corresponding to digit 8 
recognition also generates spikes. This shows one of the fundamental properties of the SNN, which are 

the recognition of similar patterns. Since the shape of digit 9 is close to the shape of digit 8 the SNN 
mistakes the 9th digit shape as digit 8. 
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Figure 6.19. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 4 to 9 

respectively (Digit 4 as input pattern for the first image, digit 5 for second image...). 

As explained above, the challenge resides on finding the appropriate training time period in order to 
trigger the firing of the corresponding output neuron. Therefore, to improve the training in the digit 4 
to 9 recognition the train time period needs to be adjusted or output neuron 5 could send inhibition 

pulses to the output neuron 8 in order to prevent its firing. 

In order to test out the property of the SNN to recognize similar patterns, the inputs of digits 6 to 9 has 

been introduced to the SNN presented in Figure 6.18 and the inputs of digits 0 to 3 into the SNN 
presented in Figure 6.19. 
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The response of the SNN of Figure 6.18 has been negative to the inputs of digits 6, 7 and 9 except for 
digit 8. Therefore, when introducing the stimuli to the SNN corresponding to digit 8 the output neuron 

0 and 3 start to generate spikes as shown in Figure 6.20. This behavior is expected since digit 8 shape 
is similar to digit 0 and 3 shapes. 

 

Figure 6.20. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 0 to 5 

respectively (Digit 8 as input pattern). 

On the other hand, the response of the SNN of figure 6.19 has been null to the inputs of digits 1 and 2, 

but for inputs of digits 0 and 3 the output neuron corresponding to digit 8 detection starts firing. 
Therefore, exhibiting the same behavior explained above but just the other way around as shown in 

Figure 6.21. 

 

Figure 6.21. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 4 to 9 

respectively (Digit 0 as input pattern for the first image and digit 3 for the second image). 
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Finally, as done in the simulation section, the digits with noise of Figure 6.3 have been introduced to 
the SNN in order to test its functionality of recognizing similar patterns. Meaning that the training has 

been performed with the regular digits, while the final test has been done with the digits with noise. 
Firstly, for the SNN trained for the recognition of digits 0 to 5 and secondly, for the SNN trained for the 

recognition of digits 4 to 9. The final results are shown in Figures 6.22 and 6.23 respectively, and as it 
can be observed the SNN is able to recognize the corresponding digit regardless of the noise in its 

image. 

 

Figure 6.22. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 0 to 5 

with noise respectively (Digit 0 as input pattern for the first image, digit 1 for second image...). 
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Figure 6.23. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 4 to 9 

with noise respectively (Digit 0 as input pattern for the first image, digit 1 for second image...). 

As done before, the inputs of digits 6 to 9 with noise has been introduced to the SNN presented in 
Figure 6.21 and the inputs of digits 0 to 3 with noise into the SNN presented in Figure 6.22.  

As it can be observed in Figure 6.23 when introducing an 8 with noise, the neuron corresponding to 
digit 0 fires while the neuron corresponding to digit 3 stays at rest unlike the behavior shown at Figure 

6.20. 
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Figure 6.24. Spikes from output neurons 0 to 5 of the neural network for the pattern recognition of digits 0 to 5 

respectively (Digit 8 with noise as input pattern). 

On the other hand, the response of the SNN of figure 6.23 has been null to the all inputs of digits 0 to 

3 with noise unlike the behavior shown at Figure 6.21 where the neuron corresponding to digit 8 would 
fire when introducing a 0 or 3 as stimuli to the SNN. 
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Conclusions 

The realization of this project has consisted in the achievement of the main goals set from the very 
beginning. There was a clear initial idea, an artificial neural network, yet the amount of possibilities to 

approach this endeavor presented a difficult task in order to decide how it could be done, and this has 
been an ongoing process during the design of the digital system. 

Firstly, by starting to collect different information regarding artificial neural networks and the different 
types of those, the SNNs (Spiking neural networks) came out to the surface as one of the most realistic 

and modern approach to artificial neural networks.  

The next step was to decide which model of SNN to use that was suitable for a digital implementation, 

meaning that it was computationally simple but capable of producing pulse patterns exhibited by 
biological neurons. The Izhikevich neuron model was found, which was developed in 2003 with this 
particular aim. 

The design of the digital system started by the implementation of a single Izhikevich neuron, but since 
the provided equations were using all kind of operations like divisions, multiplications and decimals 

number they needed to be adapted for a proper digital implementation. One of the first approaches 
to such an adaptation was a fixed-point model implementation presented by A. Cassidy and A. G. 

Andreou at [21], yet the use of custom libraries for the use of fixed-point representation numbers 
presented a difficulty for the design. Therefore, a custom adaptation of the neuron model was made, 

inspired on the work by A. Cassidy and A. G. Andreou, in which all the divisions and multiplications 
were implemented as static shift operations, greatly reducing the amount of needed resources for the 

digital implementation of the neuron. Finally, by doing numerous rough estimations, the used FPGA 
could emulate almost 500 neurons of the adapted model. Meanwhile only 80 neurons of the non-

adapted model, which correlated into an unignorable difference. 

Once the first neuron was implemented, the next aim was to instantiate as many neurons as possible 

and connect them in order to develop a neural network. By performing a research on several digital 
implementations of SNNs, it was found that one of the most used system for the communication of 
this type of networks is the AER (Address-Event Representation) system. Since a template or digital 

design of this system was not found but its functionality was clear, a custom approach to this digital 
system was designed. Therefore, all the spikes of the neurons could be read and translated to the 

corresponding addresses. 

Furthermore, the magnitude of the digital design was growing and every neuron needed to store all of 

their synapsis weights. Thus, a RAM was implemented to the neuron model so the neuron could be 
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able to read which synaptic weight should be applied to itself depending on the neuron that spiked. 
Also, it was given the capacity to initialize all the values of this RAM through a text file in order to 

establish the connections between neurons and create different neural networks. 

At this point, the digital system was capable of emulating any SNN and simple combinations were 

proposed, yet they would not present any functionality. First, a SNN was searched in order to obtain 
the connections and synaptic weights so it could be implemented in the digital system and prove its 

correct functionality, yet none was found. Therefore, several learning methods were studied in order 
to be able to train any given neural network and implement some short of functionality. The most used 
training method for SNNs is the STDP (Spike-Timing-Dependent Plasticity) and since a SNN with the 

given synaptic weights was not found it was proceed to the digital implementation of this learning rule, 
which ended up being one of the inflection points of the project. Finally, the STDP was implemented 

thanks to the low complexity combinational digital logic approach presented in [23]. 

At the end, a custom SNN was presented for pattern recognition tasks thanks to the simple training 

method provided in [19]. And was successfully implemented into a FPGA, giving the ability to the user 
to decide which patterns to learn and train to the neural network for their recognition. 

Since the digital system designed in this project aims to be a default template for the emulation of any 
SNN, three fundamental and independent modules were implemented in order to provide a flexible, 

simple, efficient and scalable solution. As explained above, these are: first, the neuron; second, the AER 
communication bus; and thirdly, the STDP learning system. Therefore, connecting and replicating these 

main digital modules the emulation of a neural network of two, ten or thousands of neurons is possible 
if the available resources allow it. 

Moreover, a user’s manual is provided in the annexes of this project in order to explain the different 
variables of importance for each module in order to modify the custom SNN presented as an example 
for pattern recognition tasks or for the emulation of any SNN. 

Finally, one of the issues faced during the development of the project was the inability to communicate 
the FPGA with a computer. Therefore, the pattern recognition tasks were limited to images of 35 pixels 

which were implemented by hand into a multiplexer as stimuli of the SNN. One possible future work 
would be to develop a FPGA communication system with a computer in order to be able to work with 

much larger images and modify the given SNN to prove its flexibility and scalability. In addition, another 
future work would be to develop a top entity which could allow the user to define the number of layers 

and neurons per layer and implement the specified SNN with the correct interconnection of the three 
given modules in this project. 
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Definitely, in this project a digital system for SNN emulation has been implemented from and a custom 
SNN for pattern recognition tasks has been designed in order to successfully validate the functionality 

of the system, which allowed to acquire a lot of knowledge about the artificial neural networks and 
proved difficult during some stages but very rewarding with the final outcome of it. 
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Cost estimation 

This annex is about the cost estimation to carry out the totality of this final project, which takes into 
account the money spent on the devices, licenses and hours of work required to design, implement 

and verify the results of the developed digital system in the laboratory.  

Firstly, the used devices for the successful realization of the digital system are: a personal computer to 

design, synthesize and simulate the design along with the creation of the different schematics and 
block diagrams presented in this report, a Nexys4 DDR Artix-7 FPGA trainer board where the design is 

implemented to demonstrate the functionality of the digital system, a RIGOL DS1022CD digital 
oscilloscope that allows to capture the spikes of the spiking neural network and an AD Instruments 

DS2202A analog oscilloscope to show the shape of a single spike. 

 

 Total price (€) Useful life (yr.) Time used (yr.) Eqv. price (€) 
Computer 800,00 4 0.5 100,00 
Nexys4 DDR Artix-7 294,65 4 0.5 36,83 
RIGOL DS1022CD 715,00 6 0.5 59,58 
AD INSTR. DS2202A 595,00 6 0.5 49,58 
Total 1.809,65 - - 245,99 

Table 1. Equivalent price of used devices. 

Secondly, the cost of the licenses of the different software used to develop this project are; the Vivado 
WebPack for students license to design, synthesize, simulate and implement the digital system into the 

FPGA board, the Microsoft Office package to create the different schematics and block diagrams along 
with the report of this project, and a Windows 10 license for the computer. 

 

 Price per year (€/yr.) Time used (yr.) Eqv. price (€) 
Vivado WebPack 0,00 0.5 0,00 
Microsoft Office 29,89 0.5 14,95 
Windows 10 44,00 0.5 22,00 
Total 73,89 - 36,95 

Table 2. Equivalent price of software licenses. 

Furthermore, there is the cost of the working hours to develop the digital system of this project. Since 

this is the work of an engineering student, a price of approximately 8€ per hour has been established 
as a recommendation in the educational cooperation agreement between the UPC and the companies 

that offer academic practices for engineering students. 
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 Work (hours) Price per hour (€) Total price (€) 
Engineering student 600 8 4800,00 

Table 3. Total price of the engineering student. 

Ultimately, the total price to carry out the totality of this final project is obtained by computing the sum 

of all the calculated prices above starting with the used devices, software licenses and ending with the 
cost of an engineering student’s work hours. 

 

 Price (€) 
Devices 245,99 
Software licenses 36,95 
Engineering student 4800,00 
Total 5082,94 

Table 4. Total price of the project. 
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Annexes 

A1. User’s Manual 

1. Introduction 

This document is intended to be used by any individual interested in developing the emulation of a 
spiking neural network (SNN) by using the digital system presented in this project. For such an aim, a 
software suite for synthesis and analysis of VHDL designs is needed, for this project Vivado Design Suite 

has been used with the free WebPack license. 

2. Overview 

The digital system is formed by several VHDL files for different purposes: 

• Design Sources: Top.vhd, AER_Bus.vhd, IZH_Neuron.vhd, RAM_09.vhd, STDP.vhd. 

• Constraints: Nexys4_Master.xdc. 

• Simulation Sources: Testbench - Top.vhd, Testbench - IZH_Neuron.vhd, Testbench - 
AER_Bus.vhd, Testbench - STDP.vhd. 

First of all, the design sources, which include the AER system, an Izhikevich neuron with its RAM and 
the STDP training module that can be used as default templates for developing any type of SNN. In 

addition, a Top entity is provided in which an example of a SNN for pattern recognition is designed. 

Second, a constraint file that together with all the provided design sources gives the ability to 

implement the SNN for pattern recognition into a Nexys 4 Artix-7 FPGA. 

Finally, four test bench, one to simulate the example of a SNN for pattern recognition and three to 

simulate each one of the modules proposed as default templates (AER, IZH_Neuron and STDP) for any 
type of SNN emulation. 

3. Design sources 

This section’s aim is to provide the general instructions for the use of the different design sources of 
the design for the emulation of any SNN. 
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1.1. Top entity 

The Top entity of the design is provided through the Top.vhd file. It is the responsible for implementing 

a type of SNN for pattern recognition making use of the rest of the design sources. For a custom SNN 
refer to last section to learn how to use the IZH_Neuron, AER and STDP entities as default templates 

for your design. 

The structure of the files is shown in the following picture from the Vivado’s project manager: 

 

Figure 1. Design Sources’ files structure. 

The generic variables are at the top of the file and they can be easily modified in order to adjust the 

SNN before the synthesis and implementation of the design. These are the following: 

 

GENERIC Description Default value 
image_num Number of images or patterns. (If 9 then 10 images since “9 

downto 0”). Multiplexer needs to be updated if image_num 
changed. 

9 

rest_time Number of clock cycles between the input stimuli for the SNN 
(Should be enough for all the neurons of the SNN to return 
to their default state). 

149 

train_time Number of input stimuli for a training phase. 200 
train_spike Number of clock cycles after the input stimuli to generate 

the spike for the selected training neuron. 
10 

untrain_spike Number of clock cycles before the input stimuli to generate 
the spike for the unselected training neurons. 

5 

pre_reg STDP pre-spike or increment register width. 15 
post_reg STDP post-spike or decrement register width. 5 
width Number of bits plus one for equation variables of 

IZH_Neuron. 
12 

neuron_adr Number of bits plus one for neuron addresses (If 5 then up 
to 64 neuron addresses since 2^6=64). 

5 

weights Number of bits plus one for synaptic weights (signed 
vector). 

10 

input_neuron_num Number of input and training neurons minus one. 40 
training_neuron_num Number of training neurons. 6 
neuron_num Total number of neurons. 46 

Table 2. Top’s entity generics. 
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1.2. Izhikevich neuron 

The Izhikevich neuron module of the design is provided through the IZH_Neuron.vhd and RAM_09.vhd 

files. It is the responsible for implementing a neuron of the Izhikevich model.  

The structure of the files is shown in the following picture from the Vivado’s project manager: 

 

Figure 2. Izhikevich neuron’s files structure. 

The generic variables are at the top of the file and they can be easily modified in order to adjust the 

neuron before the synthesis and implementation of the design. These are the following: 

 

GENERIC Description Default value 
number Address number assigned to the neuron. 0 
width Number of bits plus one for equation variables of 

IZH_Neuron. 
12 

neuron_adr Number of bits plus one for neuron addresses (If 5 
then up to 64 neuron addresses since 2^6=64). 

5 

weights Number of bits plus one for synaptic weights (signed 
vector). 

10 

Table 2. Izhikevich neurons’ generics. 

In addition, a .mif file can be provided in order to initialize the synaptic weights values of the neuron’s 

RAM. These files can be easily created with a text editor or notepad always making sure the number 
of bits is correct. In Figure 3 an 11-bit signed vector is provided for each address of the RAM, which 

corresponds to the default value of the weights generic. 

 

Figure 3. Path for the initialization file of the RAM for each neuron. 

Furthermore, the path of the file for the initialization of the synaptic weight values of the neurons’ 
RAM needs to be defined in the RAM_09.vhd file in order to synthesize the design. This can be found 

at line 46 as shown in the following picture of the code: 



  Eduard-Guillem Merino Mallorquí 

78   

 

Figure 4. Path for the initialization file of the RAM for each neuron. 

Failing to define the path and create the corresponding .mif files will cause an error when synthesizing 

the design. However, if such initialization is not needed it can be removed from the code by replacing 
this line for: signal RAM : ram_type := (others => '0');. 

1.3. AER system 

The AER communication system of the design is provided through the AER_Bus.vhd file. It is the 

responsible for implementing the AER communication system.  

The generic variables are at the top of the file and they can be easily modified in order to adjust the 

neuron before the synthesis and implementation of the design. These are the following: 

 

GENERIC Description Default value 
neuron_adr Number of bits plus one for neuron addresses (If 5 

then up to 64 neuron addresses since 2^6=64). 
5 

neuron_num Total number of neurons. 46 

Table 3. AER system’s generics. 

1.4. STDP (Spike-Timing-Dependent Plasticity) 

The STDP module of the design is provided through the STDP.vhd file. It is the responsible for 

implementing the STDP learning rule.  

The generic variables are at the top of the file and they can be easily modified in order to adjust the 

neuron before the synthesis and implementation of the design. These are the following: 

 

GENERIC Description Default value 
pre_reg STDP pre-spike or increment register width. 15 
post_reg STDP post-spike or decrement register width. 5 
neuron_adr Number of bits plus one for neuron addresses (If 5 

then up to 64 neuron addresses since 2^6=64). 
5 

weights Number of bits plus one for synaptic weights (signed 
vector). 

10 

input_neuron_num Number of input and training neurons minus one. 40 
training_neuron_num Number of training neurons. 6 

Table 4.  STDP’s generics. 
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4. Constraints 

The constraint provided for this digital system is meant for a Nexys 4 Artix-7 FPGA and the emulated 

SNN for pattern recognition using the Top.vhd entity. For the master file constraint of your FPGA refer 
to your device’s manufacturer. 

This file links the ports of the Top.vhd entity with the different FPGA I/O ports. Nevertheless, since this 
design has been implemented with Vivado certain timing requirements had to accomplished. The 
following input and output delays have been set for a proper implementation of the design: 

 

Figure 5. Input and output delays. 

5. Simulation sources 

Four test benches, one to simulate the example of a SNN for pattern recognition and three to simulate 
each one of the modules proposed as default templates (AER, IZH_Neuron and STDP) for any type of 

SNN emulation. The generic variables of each are the same as the ones described in the design sources 
section. 

6. Custom SNN emulation 

Figure 6 shows the interconnection of the three fundamental design sources: IZH_Neuron, AER and 
STDP for a custom SNN emulation of two neurons. However, this architecture allows the 

implementation of as many neurons as needed. 

Firstly, one AER system is implemented in order to establish the communication between all the 

neurons, i.e. read the spikes to translate them into the appropriate address and transmit them to the 
AER bus. In addition, all neurons are connected to the EN_Neuron signal which allow to stop the activity 

of the neurons since the AER bus can only transmit one address per clock cycle. 

Secondly, each neuron is formed by its digital module and a STDP learning module. The interconnection 

between these two is established with the write enable (WE), address (Addr) and synaptic weight 
(Weight) signals that allow to write in the neuron’s RAM. 
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Figure 6. Interconnection of the different blocks for the emulation of SNN of two or more neurons. 

Finally, from the STDP modules the EN and EN_Addr signals along with the Pre_Spikes signal need to 

be treated with specific digital blocs in order to work for the custom SNN design. 
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A2. Computer files 

1. Design Sources 

1.1. Top entity 
 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    10:59:16 02/26/2017  
-- Module Name:    Top - Behavioral 
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_unsigned.all; 
use ieee.numeric_std.all; 
 
entity Top is 
    Generic ( image_num : integer := 9;             -- number of images 
              rest_time : integer := 149;           -- rest time for a 
neuron to return to their default state 
              train_time : integer := 200;          -- 
train_time*rest_time 
              train_spike : integer := 10;          -- time after the 
stimuli to generate a spike 
              untrain_spike : integer := 5;         -- time before the 
input stimuli to generate a spike 
              pre_reg : integer := 15;              -- STDP Pre-Spike 
register width 
              post_reg : integer := 5;              -- STDP Post-Spike 
register width 
              width : integer := 12;                -- IZH_Neuron eq 
variables width 
              neuron_adr : integer := 5;            -- Up to 64 
neuron_adr 
              weights : integer := 10;              -- 255 downto -256 
              input_neuron_num : integer := 40;     -- Number of virtual 
and training neurons +1 
              training_neuron_num : integer := 6;   -- Number of training 
neurons 
              neuron_num : integer := 46);          -- Number of neurons 
+1 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           BTN : in STD_LOGIC; 
      SEL : in STD_LOGIC; 
           Image : in STD_LOGIC_VECTOR(image_num downto 0); 
           Neuron : in STD_LOGIC_VECTOR(neuron_num-input_neuron_num-1 
downto 0); 
           Spikes_out : out STD_LOGIC_VECTOR(neuron_num-input_neuron_num-
1 downto 0)); 
end Top; 
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architecture Behavioral of Top is 
 
    COMPONENT AER_Bus 
    GENERIC(  
       neuron_adr : in integer; 
       neuron_num : in integer); 
    PORT( 
       CLK : in STD_LOGIC; 
       Spikes : in STD_LOGIC_VECTOR(neuron_num downto 0); 
       EN_Neuron : out STD_LOGIC; 
       AER : out STD_LOGIC_VECTOR(neuron_adr downto 0)); 
    end COMPONENT; 
 
    COMPONENT IZH_Neuron 
    GENERIC(  
       number : in integer; 
       width : in integer; 
       neuron_adr : in integer; 
       weights : in integer); 
    PORT( 
       CLK : in std_logic; 
       RST : in std_logic; 
       EN  : in std_logic; 
       WE  : in std_logic; 
       Addr : in std_logic_vector(neuron_adr downto 0); 
       Weight : in std_logic_vector(weights downto 0); 
       AER_Bus : in std_logic_vector(neuron_adr downto 0); 
       Spike_out : out std_logic); 
    end COMPONENT; 
     
    COMPONENT STDP 
    GENERIC(  
       neuron_adr : in integer; 
       weights : in integer; 
       input_neuron_num : in integer; 
       training_neuron_num : in integer; 
       pre_reg : in integer; 
       post_reg : in integer); 
    PORT( 
       CLK : in STD_LOGIC; 
       RST : in STD_LOGIC; 
       EN : in STD_LOGIC; 
       EN_Addr : in STD_LOGIC; 
       Pre_Spikes : in STD_LOGIC_VECTOR(input_neuron_num-
training_neuron_num downto 0); 
       Post_Spike : in STD_LOGIC; 
       WE : out STD_LOGIC; 
       Addr : out STD_LOGIC_VECTOR(neuron_adr downto 0); 
       Weight : out STD_LOGIC_VECTOR (weights downto 0)); 
    end COMPONENT; 
     
    signal RST_Signal : std_logic; 
    signal Image_Signal : std_logic_vector(image_num downto 0); 
    signal Neuron_Signal : std_logic_vector(neuron_num-input_neuron_num-1 
downto 0); 
    signal Spikes_Signal : std_logic_vector(neuron_num-input_neuron_num-1 
downto 0) := (others => '0'); 
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    signal Counter : unsigned(7 downto 0) := (others => '0'); 
     
    signal Pixels,Digit,Digit_Noise : std_logic_vector(input_neuron_num-
training_neuron_num downto 0); 
    signal Spikes_in : std_logic_vector(input_neuron_num downto 0);       
    signal Spikes : std_logic_vector(neuron_num downto 0) := (others => 
'0'); 
    signal AER : std_logic_vector(neuron_adr downto 0); 
    signal EN_Neuron : std_logic; 
     
    type TYPES is (NP,P0,P1); 
    signal STATE0,STATE1: TYPES; 
     
    signal BTN_Rebound : unsigned(19 downto 0); 
    signal BTN_Signal : std_logic; 
    signal EN_Pulse : std_logic; 
    signal Pulse : unsigned(16 downto 0) := (others => '0'); 
     
    signal EN_STDP : std_logic; 
    signal EN_Train : std_logic; 
    signal EN_Addr : std_logic; 
    signal WE : std_logic_vector(neuron_num downto input_neuron_num+1); 
    signal Pre_Spikes : std_logic_vector(input_neuron_num-
training_neuron_num downto 0); 
    type addr_type is array (input_neuron_num+1 to neuron_num) of 
std_logic_vector(neuron_adr downto 0); 
    signal Addr : addr_type := (others => (others => '0')); 
    type weight_type is array (input_neuron_num+1 to neuron_num) of 
std_logic_vector(weights downto 0); 
    signal Weight : weight_type := (others => (others => '0')); 
     
begin 
 
-- RST Signal 
 
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if RST='1' then 
                RST_Signal<='1'; 
            else 
                RST_Signal<='0'; 
            end if;            
        end if; 
    end process; 
 
-- Counter 
 
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if (EN_Neuron='1') then 
                if Counter=rest_time then 
                    Counter<=(others => '0'); 
                else 
                    Counter <= Counter + 1; 
                end if; 
            end if; 
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         end if; 
    end process;  
 
-- Input neurons 
     
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            Image_Signal <= Image; 
            Neuron_Signal <= Neuron;           
        end if; 
    end process; 
     
    Digit  <=   "01110100011000110001100011000101110" when 
Image_Signal(0)='1' else 
                "00100011000010000100001000010001110" when 
Image_Signal(1)='1' else 
                "01110100010000100010001000100011111" when 
Image_Signal(2)='1' else 
                "01110100010000100110000011000101110" when 
Image_Signal(3)='1' else 
                "00010001100101010010111110001000010" when 
Image_Signal(4)='1' else 
                "11111100001111000001000011000101110" when 
Image_Signal(5)='1' else 
                "00110010001000011110100011000101110" when 
Image_Signal(6)='1' else 
                "11111000010001000100010000100001000" when 
Image_Signal(7)='1' else 
                "01110100011000101110100011000101110" when 
Image_Signal(8)='1' else 
                "01110100011000101111000010001001100" when 
Image_Signal(9)='1' else 
                (others => '0'); 
                 
    Digit_Noise <= "11111100011000110001100011000111111" when 
Image_Signal(0)='1' else 
                "00100011000010000100001000010000100" when 
Image_Signal(1)='1' else 
                "01110000010000100010001000100001111" when 
Image_Signal(2)='1' else 
                "01110000010000100110000010000101110" when 
Image_Signal(3)='1' else 
                "00010100101001010010111110001000010" when 
Image_Signal(4)='1' else 
                "11110100001111000001000010000101110" when 
Image_Signal(5)='1' else 
                "00110010001000001110100001000101110" when 
Image_Signal(6)='1' else 
                "11111000010001000000010000100001000" when 
Image_Signal(7)='1' else 
                "01110100011000111111100011000101110" when 
Image_Signal(8)='1' else 
                "01110100011000101110000010001000100" when 
Image_Signal(9)='1' else 
                (others => '0'); 
                 
    Pixels <= Digit_Noise when SEL='1' else Digit; 
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    Spikes_in(input_neuron_num downto 0) <= Neuron_Signal & Pixels; 
                 
    Input_Neurons : for I in 0 to input_neuron_num-training_neuron_num 
generate 
        process(clk) 
        begin 
            if (CLK='1' and CLK'event) then 
                if Counter=rest_time then 
                    Spikes(I)<=Spikes_in(I); 
                else 
                    Spikes(I)<='0'; 
                end if; 
             end if; 
        end process; 
    end generate Input_Neurons; 
       
-- STDP Change synaptic addr 
 
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if Counter=rest_time-1 then 
                EN_Addr<='1'; 
            else 
                EN_Addr<='0'; 
            end if; 
         end if; 
    end process;  
     
-- Training Neurons 
 
    Training_Neurons : for I in input_neuron_num-training_neuron_num+1 to 
input_neuron_num generate 
        process(clk) 
        begin 
            if (CLK='1' and CLK'event) then 
                if(EN_STDP='1') then             
                    if(Spikes_in(I)='1' and Counter=train_spike) then 
                        Spikes(I)<='1'; 
                    elsif(Spikes_in(I)='0' and Counter=rest_time-
untrain_spike) then 
                        Spikes(I)<='1'; 
                    else 
                        Spikes(I)<='0'; 
                    end if;                               
                else 
                   Spikes(I)<='0'; 
                end if;                    
             end if; 
        end process;  
    end generate Training_Neurons;   
     
-- Output Spikes 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
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            Spikes_Signal<=Spikes(neuron_num downto input_neuron_num+1); 
            Spikes_out<=Spikes_Signal; 
        end if; 
    end process; 
     
-- State Machine to detect the pushbuttons 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            case STATE0 is 
                when NP => 
                    if BTN='1' then 
                        STATE0 <= P0; BTN_Signal <= '0'; 
                    else 
                        STATE0 <= NP; BTN_Signal <= '0'; 
                    end if; 
                when P0 => 
                    STATE0 <= P1; BTN_Signal <= '1'; 
                when P1 => 
                    if BTN='1' then 
                        STATE0 <= P1; BTN_Signal <= '0'; 
                    elsif BTN_Rebound=2000 then 
                        STATE0 <= NP; BTN_Signal <= '0'; 
                    end if; 
                end case; 
        end if; 
    end process; 
     
    process(CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            if (BTN_Signal='1') then 
                BTN_Rebound <= (others=>'0'); 
            else 
                if BTN_Rebound=2000 then 
                    BTN_Rebound <= (others=>'0'); 
                else 
                    BTN_Rebound <= BTN_Rebound + 1; 
                end if; 
            end if; 
        end if; 
    end process; 
     
-- Enable signal for the STDP Module 
     
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            case STATE1 is 
                when NP => 
                    if BTN_Signal='1' then 
                        STATE1 <= P0;  
                        En_Pulse <= '1'; 
                        EN_STDP <= '1';         
                    else 
                        En_Pulse <= '0'; 
                        EN_STDP <= '0'; 
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                    end if; 
                when P0 => 
                    STATE1 <= P1; 
                when P1 => 
                    if Pulse=train_time*rest_time then 
                       STATE1 <= NP; 
                    else 
                       En_Pulse <= '1'; 
                       EN_STDP <= '1';    
                    end if; 
                end case; 
        end if; 
    end process; 
     
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if (EN_Neuron='1') then 
                if(En_Pulse='1') then 
                    if Pulse=train_time*rest_time then 
                        Pulse<=(others => '0'); 
                    else 
                        Pulse <= Pulse + 1; 
                    end if; 
                end if; 
            end if; 
         end if; 
    end process; 
     
-- AER 
 
     AERX:AER_Bus 
     GENERIC MAP( 
           neuron_adr => neuron_adr, 
           neuron_num => neuron_num) 
     PORT MAP( 
           CLK => CLK, 
           Spikes => Spikes, 
           EN_Neuron => EN_Neuron, 
           AER => AER); 
     
-- IZH Neurons 
     
    Network : for I in input_neuron_num+1 to neuron_num generate 
     NX:IZH_Neuron 
     GENERIC MAP( 
           number => I, 
           width => width, 
           neuron_adr => neuron_adr, 
           weights => weights) 
     PORT MAP( 
           CLK => CLK, 
           RST => RST_Signal, 
           EN => EN_Neuron, 
           WE => WE(I), 
           Addr => Addr(I), 
           Weight => Weight(I), 
           AER_Bus => AER, 
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           Spike_out => Spikes(I)); 
    end generate Network;     
     
-- STDP 
     
    Pre_Spikes <= Spikes(input_neuron_num-training_neuron_num downto 0); 
     
    EN_Train <= EN_STDP and EN_Neuron; 
     
    Training : for I in input_neuron_num+1 to neuron_num generate 
     TX:STDP 
     GENERIC MAP( 
           neuron_adr => neuron_adr, 
           weights => weights, 
           input_neuron_num => input_neuron_num, 
           training_neuron_num => training_neuron_num, 
           pre_reg => pre_reg, 
           post_reg => post_reg) 
     PORT MAP( 
           CLK => CLK, 
           RST => RST_Signal, 
           EN => EN_Train, 
           EN_Addr => EN_Addr, 
           Pre_Spikes => Pre_Spikes, 
           Post_Spike => Spikes(I-training_neuron_num), 
           WE => WE(I), 
           Addr => Addr(I), 
           Weight => Weight(I)); 
    end generate Training; 
 
end Behavioral; 
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1.2. Izhikevich neuron 
 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    11:53:08 02/12/2017  
-- Module Name:    IZH_Neuron - Behavioral  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity IZH_Neuron is 
    Generic ( number : in integer; 
              width : in integer; 
              neuron_adr : in integer; 
              weights : in integer); 
    Port ( CLK : in std_logic; 
           RST : in std_logic; 
           EN  : in std_logic; 
           WE  : in std_logic; 
           Addr : in std_logic_vector(neuron_adr downto 0); 
           Weight : in std_logic_vector(weights downto 0); 
           AER_Bus : in std_logic_vector(neuron_adr downto 0); 
           Spike_out : out std_logic); 
end IZH_Neuron; 
 
architecture Behavioral of IZH_Neuron is 
 
COMPONENT RAM_09 
GENERIC( 
    width : in integer; 
    neuron_adr : in integer; 
    weights : in integer; 
    number : in integer); 
PORT( 
    clk : in std_logic;  
    we : in std_logic; 
    a : in std_logic_vector(neuron_adr downto 0);  
    dpra : in std_logic_vector(neuron_adr downto 0);  
    di : in std_logic_vector(weights downto 0);  
    dpo : out std_logic_vector(weights downto 0)); 
end COMPONENT; 
 
signal c,d,thresh : signed(width downto 0); 
signal I,v_n,v_n1,u_n,u_n1 : signed(width downto 0) := (others => '0'); 
signal v1,v2,v3,u1,u2,u3,u4,u5 : signed(width downto 0); 
 
signal Synaptic_in : std_logic_vector(weights downto 0); 
signal Spike : std_logic; 
 
type signed_array is array (0 to 1) of signed(width downto 0); 
signal I_store, v_store, u_store : signed_array := (others => 
(others=>'0') ); 
 
begin 
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-- RAM 
 
    RAM:RAM_09  
    GENERIC MAP(  
        number => number, 
        width => width, 
        neuron_adr => neuron_adr, 
        weights => weights) 
    PORT MAP( 
        clk => CLK, 
        we => WE, 
        a => Addr, 
        dpra => AER_Bus, 
        di => Weight,  
        dpo => Synaptic_in); 
 
-- Input align 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
          if (EN='1') then 
            I_store(0)<=resize(signed(Synaptic_in),I_store(0)'length); 
            I<=I_store(1); 
            if I_store(0)>-140 then 
               I_store(1)<=I_store(0); 
            else 
               I_store(1)<=to_signed(-140,I_store(0)'length); 
            end if; 
          else 
               
I_store(0)<=I_store(0)+resize(signed(Synaptic_in),I_store(0)'length); 
          end if; 
        end if; 
    end process; 
     
-- "v" Store 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
          if (EN='1') then 
            v_store(0)<=v_n1; 
            v_store(1)<=v_store(0); 
            v_n<=v_store(1); 
          end if; 
        end if; 
    end process; 
 
-- "u" Store 
     
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
          if (EN='1') then 
            u_store(0)<=u_n1; 
            u_store(1)<=u_store(0); 
            u_n<=u_store(1); 
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          end if; 
        end if; 
    end process; 
 
-- Parameters 
 
    c <= to_signed(-650,width+1); 
    d <= to_signed(80,width+1); 
    thresh <= to_signed(300,width+1); 
     
-- "v" Pipeline 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
          if (EN='1') then 
            v3 <= resize( shift_right(v_n*v_n,8)        -- v_n^2/256 
            + shift_left(v_n,1) + shift_left(v_n,2)     -- v_n + 5*v_n 
            + to_signed(1400,width+1)                   -- + 1400 
            - u_n + I,v3'length);                       -- - u_n + I 
          end if; 
        end if; 
    end process; 
     
    Spike <= '1' when v3 > thresh else 
             '0'; 
     
    v_n1 <=  c when RST = '1' else 
             v3 when Spike = '0' else 
             c  when Spike = '1' else 
             (others => '0'); 
               
    Spike_out <= Spike; 
 
-- "u" Pipeline 
 
    u1 <= shift_right(v_n,2);   -- v_n/4 
    u2 <= u1-u_n;               -- v_n/4 - u_n 
    u3 <= shift_right(u2,6);    -- (v_n/4 - u_n)/64 
    u4 <= u_n + u3;             -- u_n + (v_n/4 - u_n)/64 
    u5 <= u4+d;                 -- u_n + (v_n/4 - u_n)/64 + d 
     
    u_n1 <= u4 when RST = '1' else 
            u4 when Spike = '0' else 
            u5 when Spike = '1' else 
            (others => '0');     
     
end Behavioral; 
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1.3. RAM 
 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    10:00:00 03/05/2017  
-- Module Name:    RAM_09 - Behavioral 
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all;  
use ieee.std_logic_unsigned.all; 
use ieee.numeric_std.all; 
use std.textio.all; 
use ieee.std_logic_textio.all; 
 
entity RAM_09 is  
    generic ( number : in integer; 
              width : in integer; 
              neuron_adr : in integer; 
              weights : in integer); 
    port ( 
        clk : in std_logic;  
        we : in std_logic; 
        a : in std_logic_vector(neuron_adr downto 0);  
        dpra : in std_logic_vector(neuron_adr downto 0);  
        di : in std_logic_vector(weights downto 0);  
        dpo : out std_logic_vector(weights downto 0));  
end RAM_09; 
 
architecture syn of RAM_09 is  
    type ram_type is array (0 to 63) of std_logic_vector(weights downto 
0);  
     
    impure function init_mem(mif_file_name : in string) return ram_type 
is 
        file mif_file : text open read_mode is mif_file_name; 
        variable mif_line : line; 
        variable temp_bv : bit_vector(weights downto 0); 
        variable temp_mem : ram_type; 
    begin 
        for i in ram_type'range loop 
            readline(mif_file, mif_line); 
            read(mif_line, temp_bv); 
            temp_mem(i) := to_stdlogicvector(temp_bv); 
        end loop; 
        return temp_mem; 
    end function; 
         
    signal RAM : ram_type := 
init_mem("C:\Users\emerino\Desktop\SNN_1\RAM\RAM" & INTEGER'IMAGE(number) 
& ".mif"); 
 
begin 
    process (clk)  
    begin  
        if (clk'event and clk = '1') then  
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            if (we = '1') then  
                RAM(conv_integer(a)) <= di; 
            end if;  
        end if;  
    end process; 
 
dpo <= RAM(conv_integer(dpra)); 
 
end syn; 
  



  Eduard-Guillem Merino Mallorquí 

94   

1.4. AER system 
 
-------------------------------------------------------------------------
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    10:59:16 02/26/2017  
-- Module Name:    AER Bus - Behavioral 
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.std_logic_unsigned.all; 
use ieee.numeric_std.all; 
 
entity AER_Bus is 
    Generic ( neuron_adr : in integer;        
              neuron_num : in integer);       
    Port ( CLK : in STD_LOGIC; 
           Spikes : in STD_LOGIC_VECTOR(neuron_num downto 0); 
           EN_Neuron : out STD_LOGIC; 
           AER : out STD_LOGIC_VECTOR(neuron_adr downto 0)); 
end AER_Bus; 
 
architecture Behavioral of AER_Bus is 
 
type memory_type is array (0 to 7) of std_logic_vector(neuron_num downto 
0); 
signal memory : memory_type := (others => (others => '0')); 
    
signal FIFO_En : std_logic := '1'; 
signal FIFO_in, FIFO_out : std_logic_vector(neuron_num downto 0); 
signal FIFO_ptr : unsigned(2 downto 0) :="000"; 
 
signal ENC_in,ENC_Spikes : std_logic_vector(neuron_num downto 0) := 
(others => '0'); 
signal ENC_out : std_logic_vector(neuron_adr downto 0) := (others => 
'0'); 
 
begin 
 
-- FIFO 
 
    FIFO_in <= Spikes; 
 
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if(FIFO_En='1') then   
                if(FIFO_ptr>0) then 
                    FIFO_out <= memory(0); 
                    for I in 0 to 6 loop 
                        memory(I)<=memory(I+1); 
                    end loop; 
                    if(FIFO_in>0) then 
                        memory(to_integer(FIFO_ptr)) <= FIFO_in; 
                    else 
                        FIFO_ptr <= FIFO_ptr - 1; 



Digital system for spiking neural network emulation   

  95 

                    end if; 
                else 
                    FIFO_out <= FIFO_in;  
                end if;                                            
            else 
                if(FIFO_ptr /= "110" and FIFO_in>0) then 
                    FIFO_ptr <= FIFO_ptr + 1; 
                    memory(to_integer(FIFO_ptr)) <= FIFO_in; 
                end if; 
            end if; 
        end if; 
    end process;  
     
-- Demux of spikes 
         
    ENC_in <= FIFO_out when FIFO_En='1' else 
              ENC_spikes when FIFO_En='0' else  
              (others=>'0');  
 
-- Encoder 
    
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            for I in ENC_in'range loop 
                if (ENC_in(I) = '1') then  
                    ENC_out <= 
std_logic_vector(to_signed(I,neuron_adr+1));  
                    ENC_Spikes <= ENC_in; 
                    ENC_Spikes(I) <= '0';               
                    exit; 
                else 
                    ENC_out <= (others=>'1'); 
                end if; 
            end loop;             
        end if; 
    end process; 
 
    AER <= ENC_out; 
     
    FIFO_En <= '1' when ENC_Spikes="00000" else '0'; 
     
-- Neuron's Enable 
 
    process(clk) 
    begin 
        if (CLK='1' and CLK'event) then 
            if FIFO_En='1' then 
                EN_Neuron<='1'; 
            else 
                EN_Neuron<='0'; 
            end if;            
        end if; 
    end process; 
 
end Behavioral; 
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1.5. STDP (Spike-Timing-Dependent Plasticity) 
 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    12:14:40 01/04/2017  
-- Module Name:    STDP - Behavioral  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use ieee.numeric_std.all; 
use ieee.std_logic_misc.all; 
 
entity STDP is 
    Generic(  
       neuron_adr : in integer; 
       weights : in integer; 
       input_neuron_num : in integer; 
       training_neuron_num : in integer; 
       pre_reg : in integer; 
       post_reg : in integer); 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           EN : in STD_LOGIC; 
           EN_Addr : in STD_LOGIC; 
           Pre_Spikes : in STD_LOGIC_VECTOR(input_neuron_num-
training_neuron_num downto 0); 
           Post_Spike : in STD_LOGIC; 
           WE : out STD_LOGIC; 
           Addr : out STD_LOGIC_VECTOR(neuron_adr downto 0); 
           Weight : out STD_LOGIC_VECTOR (weights downto 0)); 
end STDP; 
 
architecture Behavioral of STDP is 
 
signal pre_shift_reg : std_logic_vector(15 downto 0) := (others => '0'); 
signal post_shift_reg : std_logic_vector(5 downto 0) := (others => '0'); 
signal Pre_Spike,pre_gate,post_gate,decr_sel,incr_sel,decr,incr: 
std_logic := '0'; 
signal Syn_Addr : unsigned(neuron_adr downto 0) := (others => '0'); 
 
type memory_weight is array (0 to input_neuron_num-training_neuron_num) 
of signed(weights downto 0); 
signal Syn_Weight : memory_weight := (others => (others => '0')); 
 
type TYPES is (NP,P0); 
signal STATE: TYPES; 
 
begin 
 
-- Synaptic Addr counter and Pre-Spike selector 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            if (EN='1') then      
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                if EN_Addr='1' then 
                    if Syn_Addr = input_neuron_num-training_neuron_num 
then 
                        Syn_Addr<=(others => '0');  
                    else 
                        Syn_Addr<=Syn_Addr+1; 
                    end if; 
                end if; 
            end if;      
        end if; 
    end process; 
     
    Pre_Spike<=Pre_Spikes(to_integer(Syn_Addr)); 
    Addr <= std_logic_vector(Syn_Addr); 
 
-- Pre-Spike Shift Register 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            if(RST='1') then 
                pre_shift_reg <= (others=>'0'); 
            elsif (EN='1') then   
                pre_shift_reg(pre_reg) <= Pre_Spike; 
                for I in pre_reg-1 downto 0 loop 
                    pre_shift_reg(I) <= pre_shift_reg(I+1); 
                end loop; 
            end if; 
        end if; 
    end process; 
     
-- Pre-Spike OR Gates 
 
    pre_gate <= or_reduce(pre_shift_reg); 
                 
-- Post-Spike Shift Register 
     
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            if(RST='1') then 
                post_shift_reg <= (others=>'0'); 
            elsif (EN='1') then 
                post_shift_reg(post_reg) <= Post_Spike; 
                for I in post_reg-1 downto 0 loop 
                    post_shift_reg(I) <= post_shift_reg(I+1); 
                end loop; 
            end if; 
        end if; 
    end process; 
     
-- Post_Spike OR Gate 
     
    post_gate <= or_reduce(post_shift_reg); 
                  
-- I/D Sel 
 
    process (CLK) 
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    begin 
        if (CLK='1' and CLK'event) then 
            if(RST='1') then 
                incr_sel <= '0'; 
                decr_sel <= '0'; 
            elsif (EN='1') then 
                if(Pre_Spike='1') then 
                    incr_sel <= '0'; 
                    decr_sel <= '1'; 
                end if; 
                if(Post_Spike='1') then 
                    decr_sel <= '0'; 
                    incr_sel <= '1'; 
                end if;  
            end if;       
        end if; 
    end process; 
     
-- Decr and Incr Gates 
 
    decr <= pre_gate AND (decr_sel AND post_gate); 
    incr <= pre_gate AND (incr_sel AND post_gate); 
     
-- Synpatic Weight Counter 
 
    process (CLK) 
    begin 
        if (CLK='1' and CLK'event) then 
            if(RST='1') then 
                Syn_Weight(to_integer(Syn_Addr))<=(others=>'0'); 
                WE <= '1'; 
            elsif(EN='1') then 
                if(decr='1') then 
                    if Syn_Weight(to_integer(Syn_Addr))>-100 then 
                        Syn_Weight(to_integer(Syn_Addr)) <= 
Syn_Weight(to_integer(Syn_Addr)) - to_signed(1,weights+1); 
                        WE <= '1'; 
                    end if; 
                elsif(incr='1') then 
                    if Syn_Weight(to_integer(Syn_Addr))<300 then 
                        Syn_Weight(to_integer(Syn_Addr)) <= 
Syn_Weight(to_integer(Syn_Addr)) + to_signed(1,weights+1); 
                        WE <= '1'; 
                    end if; 
                else 
                    WE <= '0'; 
                end if;  
            end if;     
        end if; 
    end process; 
     
    Weight <= std_logic_vector(Syn_Weight(to_integer(Syn_Addr))); 
     
end Behavioral; 
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2. Constraints 

1.1. Nexys4 Master 

 
## This file is a general .xdc for the Nexys4 rev B board 
## To use it in a project: 
## - uncomment the lines corresponding to used pins 
## - rename the used ports (in each line, after get_ports) according to 
the top level signal names in the project 
 
## Clock signal 
##Bank = 35, Pin name = IO_L12P_T1_MRCC_35,                 Sch name = 
CLK100MHZ 
set_property PACKAGE_PIN E3 [get_ports CLK]                          
set_property IOSTANDARD LVCMOS33 [get_ports CLK] 
create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5.0} 
[get_ports CLK] 
 
set_property CFGBVS Vcco [current_design] 
set_property config_voltage 3.3 [current_design] 
 
set_input_delay -clock sys_clk_pin 1.0 [get_ports RST] 
set_input_delay -clock sys_clk_pin 1.0 [get_ports BTN] 
set_input_delay -clock sys_clk_pin 1.0 [get_ports SEL] 
set_input_delay -clock sys_clk_pin 1.0 [get_ports Image] 
set_input_delay -clock sys_clk_pin 1.0 [get_ports Neuron] 
set_output_delay -clock sys_clk_pin -1.5 [get_ports Spikes_out] 
 
##Buttons 
##Bank = 15, Pin name = IO_L11N_T1_SRCC_15,                 Sch name = 
BTNC 
set_property PACKAGE_PIN E16 [get_ports BTN]                         
    set_property IOSTANDARD LVCMOS33 [get_ports BTN] 
##Bank = 15, Pin name = IO_L14P_T2_SRCC_15,                 Sch name = 
BTNU 
set_property PACKAGE_PIN F15 [get_ports RST]                         
    set_property IOSTANDARD LVCMOS33 [get_ports RST] 
##Bank = CONFIG, Pin name = IO_L15N_T2_DQS_DOUT_CSO_B_14, Sch name = 
BTNL 
set_property PACKAGE_PIN T16 [get_ports SEL]      

set_property IOSTANDARD LVCMOS33 [get_ports SEL] 
 
## Switches 
##Bank = 34, Pin name = IO_L21P_T3_DQS_34,                  Sch name = 
SW0 
set_property PACKAGE_PIN U9 [get_ports {Image[0]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[0]}] 
##Bank = 34, Pin name = IO_25_34,                           Sch name = 
SW1 
set_property PACKAGE_PIN U8 [get_ports {Image[1]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[1]}] 
##Bank = 34, Pin name = IO_L23P_T3_34,                      Sch name = 
SW2 
set_property PACKAGE_PIN R7 [get_ports {Image[2]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[2]}] 
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##Bank = 34, Pin name = IO_L19P_T3_34,                      Sch name = 
SW3 
set_property PACKAGE_PIN R6 [get_ports {Image[3]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[3]}] 
##Bank = 34, Pin name = IO_L19N_T3_VREF_34,                 Sch name = 
SW4 
set_property PACKAGE_PIN R5 [get_ports {Image[4]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[4]}] 
##Bank = 34, Pin name = IO_L20P_T3_34,                      Sch name = 
SW5 
set_property PACKAGE_PIN V7 [get_ports {Image[5]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[5]}] 
##Bank = 34, Pin name = IO_L20N_T3_34,                      Sch name = 
SW6 
set_property PACKAGE_PIN V6 [get_ports {Image[6]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[6]}] 
##Bank = 34, Pin name = IO_L10P_T1_34,                      Sch name = 
SW7 
set_property PACKAGE_PIN V5 [get_ports {Image[7]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[7]}] 
##Bank = 34, Pin name = IO_L8P_T1-34,                       Sch name = 
SW8 
set_property PACKAGE_PIN U4 [get_ports {Image[8]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[8]}] 
##Bank = 34, Pin name = IO_L9N_T1_DQS_34,                   Sch name = 
SW9 
set_property PACKAGE_PIN V2 [get_ports {Image[9]}]                   
    set_property IOSTANDARD LVCMOS33 [get_ports {Image[9]}] 
##Bank = 34, Pin name = IO_L9P_T1_DQS_34,                   Sch name = 
SW10 
set_property PACKAGE_PIN U2 [get_ports {Neuron[0]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[0]}] 
##Bank = 34, Pin name = IO_L11N_T1_MRCC_34,                 Sch name = 
SW11 
set_property PACKAGE_PIN T3 [get_ports {Neuron[1]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[1]}] 
##Bank = 34, Pin name = IO_L17N_T2_34,                      Sch name = 
SW12 
set_property PACKAGE_PIN T1 [get_ports {Neuron[2]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[2]}] 
##Bank = 34, Pin name = IO_L11P_T1_SRCC_34,                 Sch name = 
SW13 
set_property PACKAGE_PIN R3 [get_ports {Neuron[3]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[3]}] 
##Bank = 34, Pin name = IO_L14N_T2_SRCC_34,                 Sch name = 
SW14 
set_property PACKAGE_PIN P3 [get_ports {Neuron[4]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[4]}] 
##Bank = 34, Pin name = IO_L14P_T2_SRCC_34,                 Sch name = 
SW15 
set_property PACKAGE_PIN P4 [get_ports {Neuron[5]}]                  
    set_property IOSTANDARD LVCMOS33 [get_ports {Neuron[5]}] 
     
##Pmod Header JA 
##Bank = 15, Pin name = IO_L1N_T0_AD0N_15,                    Sch name = 
JA1 
set_property PACKAGE_PIN B13 [get_ports {Spikes_out[0]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[0]}] 
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##Bank = 15, Pin name = IO_L5N_T0_AD9N_15,                    Sch name = 
JA2 
set_property PACKAGE_PIN F14 [get_ports {Spikes_out[1]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[1]}] 
##Bank = 15, Pin name = IO_L16N_T2_A27_15,                    Sch name = 
JA3 
set_property PACKAGE_PIN D17 [get_ports {Spikes_out[2]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[2]}] 
##Bank = 15, Pin name = IO_L16P_T2_A28_15,                    Sch name = 
JA4 
set_property PACKAGE_PIN E17 [get_ports {Spikes_out[3]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[3]}] 
    
##Pmod Header JB 
##Bank = 15, Pin name = IO_L15N_T2_DQS_ADV_B_15,                Sch name 
= JB1 
set_property PACKAGE_PIN G14 [get_ports {Spikes_out[4]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[4]}] 
##Bank = 14, Pin name = IO_L13P_T2_MRCC_14,                    Sch name = 
JB2 
set_property PACKAGE_PIN P15 [get_ports {Spikes_out[5]}]                     
    set_property IOSTANDARD LVCMOS33 [get_ports {Spikes_out[5]}] 

 

  



  Eduard-Guillem Merino Mallorquí 

102   

3. Simulation Sources 

1.1. Top entity – Testbench 

 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    11:40:19 03/03/2017 
-- Module Name:    Top - Testbench  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
use ieee.numeric_std.all; 
  
ENTITY Testbench IS 
Generic ( image_num : integer := 9; 
          width : integer := 12; 
          neuron_adr : integer := 5;   -- Up to 32 neuron_adr 
          weights : integer := 10;      -- 255 downto -256 
          input_neuron_num : integer := 40; -- Number of virtual neurons 
+1 
          training_neuron_num : integer := 6; -- Number of training 
neurons 
          neuron_num : integer := 46);  -- Number of neurons +1 
END Testbench; 
  
ARCHITECTURE behavior OF Testbench IS  
 
    -- Component Declaration for the Unit Under Test (UUT) 
  
    COMPONENT Top 
    PORT( 
       CLK : in STD_LOGIC; 
       RST : in STD_LOGIC; 
       BTN : in STD_LOGIC; 
       SEL : in STD_LOGIC; 
       Image : in STD_LOGIC_VECTOR(image_num downto 0); 
       Neuron : in STD_LOGIC_VECTOR(neuron_num-input_neuron_num-1 downto 
0); 
       Spikes_out : out STD_LOGIC_VECTOR(neuron_num-input_neuron_num-1 
downto 0)); 
    END COMPONENT; 
 
   --Inputs 
   signal CLK : std_logic := '0'; 
   signal RST : std_logic := '0'; 
   signal BTN : std_logic := '0'; 
   signal SEL : std_logic := '0'; 
   signal Image : std_logic_vector(image_num downto 0) := (others => 
'0'); 
   signal Neuron : std_logic_vector(neuron_num-input_neuron_num-1 downto 
0) := (others => '0'); 
    
   --Outputs 
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   signal Spikes_out : STD_LOGIC_VECTOR(neuron_num-input_neuron_num-1 
downto 0) := (others => '0'); 
 
   -- Clock period definitions 
   constant CLK_period : time := 10 ns; 
    
BEGIN 
     
       -- Instantiate the Unit Under Test (UUT) 
      uut: Top PORT MAP ( 
             CLK => CLK, 
             RST => RST, 
             BTN => BTN, 

       SEL => SEL, 
             Image => Image, 
             Neuron => Neuron, 
             Spikes_out => Spikes_out 
           ); 
    
      -- Clock process definitions 
      CLK_process :process 
      begin 
           CLK <= '0'; 
           wait for CLK_period/2; 
           CLK <= '1'; 
           wait for CLK_period/2; 
      end process; 
       
   -- Stimulus process 
      stim_proc: process 
      begin               
         -- hold reset state for 100 ns. 
           RST<='1'; 
        wait for CLK_period*5;     
           RST<='0'; 
        wait for 200us; 
           Image <= (0=>'1',others => '0'); -- 0 
           Neuron <= (0=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us;     
           BTN<='0'; 
         
        wait for 600us; 
           Image <= (1=>'1',others => '0'); -- 1 
           Neuron <= (1=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us; 
           BTN<='0'; 
         
        wait for 600us;         
           Image <= (2=>'1',others => '0'); -- 2 
           Neuron <= (2=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us; 
           BTN<='0';  
             
        wait for 600us;           
           Image <= (3=>'1',others => '0'); -- 3 
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           Neuron <= (3=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us; 
           BTN<='0';  
            
        wait for 600us;           
           Image <= (4=>'1',others => '0'); -- 4  
           Neuron <= (4=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us; 
           BTN<='0';    
          
        wait for 600us;           
           Image <= (5=>'1',others => '0'); -- 5 
           Neuron <= (5=>'1',others => '0'); 
           BTN<='1'; 
        wait for 10us; 
           BTN<='0';      
         
        wait for 600us; 
           SEL<='1'; 

     Neuron <= (others => '0'); 
           Image <= (0=>'1',others => '0');  
        wait for 400us; 
           Image <= (1=>'1',others => '0'); 
        wait for 400us; 
           Image <= (2=>'1',others => '0'); 
        wait for 400us; 
           Image <= (3=>'1',others => '0');  
        wait for 400us; 
           Image <= (4=>'1',others => '0'); 
        wait for 400us; 
           Image <= (5=>'1',others => '0');  
        wait for 400us; 
           Image <= (others => '0'); 
           RST <='1'; 
        wait for 20us; 
           BTN<='1'; 
            
           wait for 1000us; 
              RST <='0'; 
              BTN<='0'; 
              Neuron <= (others => '0'); 
              Image <= (0=>'1',others => '0');  
           wait for 400us; 
              Image <= (1=>'1',others => '0'); 
           wait for 400us; 
              Image <= (2=>'1',others => '0'); 
           wait for 400us; 
              Image <= (3=>'1',others => '0');  
           wait for 400us; 
              Image <= (4=>'1',others => '0'); 
           wait for 400us; 
              Image <= (5=>'1',others => '0');  
           wait for 400us; 
              Image <= (others => '0'); 
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        wait;           
                               
      end process; 
    
   END;  
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1.2. Izhikevich Neuron – Testbench 

 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    14:27:19 02/17/2017 
-- Module Name:    IZH_Neuron - Testbench  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
use ieee.numeric_std.all; 
  
ENTITY Testbench IS 
    GENERIC(  
    number : integer := 0; 
    width : integer := 12; 
    neuron_adr : integer := 5; 
    weights : integer := 10);  
END Testbench; 
  
ARCHITECTURE behavior OF Testbench IS  
  
    -- Component Declaration for the Unit Under Test (UUT) 
  
    COMPONENT IZH_Neuron 
    GENERIC( 
       number : in integer; 
       width : in integer; 
       neuron_adr : in integer; 
       weights : in integer); 
    PORT( 
       CLK : in std_logic; 
       RST : in std_logic; 
       EN  : in std_logic; 
       WE  : in std_logic; 
       Addr : in std_logic_vector(neuron_adr downto 0); 
       Weight : in std_logic_vector(weights downto 0); 
       AER_Bus : in std_logic_vector(neuron_adr downto 0); 
       Spike_out : out std_logic); 
    END COMPONENT; 
 
   --Inputs 
   signal CLK : std_logic := '0'; 
   signal RST : std_logic := '0'; 
   signal EN : std_logic := '0'; 
   signal WE : std_logic := '0'; 
   signal Addr : std_logic_vector(neuron_adr downto 0) := (others => 
'0'); 
   signal Weight : std_logic_vector(weights downto 0) := (others => '0'); 
   signal AER_Bus : std_logic_vector(neuron_adr downto 0) := (others => 
'0'); 
 
    --Outputs 
   signal Spike_out : std_logic; 
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   -- Clock period definitions 
   constant CLK_period : time := 10 ns; 
  
BEGIN 
  
    -- Instantiate the Unit Under Test (UUT) 
   uut: IZH_Neuron 
        GENERIC MAP ( 
           number => number, 
           width => width, 
           neuron_adr => neuron_adr, 
           weights => weights)  
        PORT MAP ( 
          CLK => CLK, 
          RST => RST, 
          EN => EN, 
          WE => WE, 
          Addr => Addr, 
          Weight => Weight, 
          AER_Bus => AER_Bus, 
          Spike_out => Spike_out 
        ); 
 
   -- Clock process definitions 
   CLK_process :process 
   begin 
        CLK <= '0'; 
        wait for CLK_period/2; 
        CLK <= '1'; 
        wait for CLK_period/2; 
   end process; 
  
 
   -- Stimulus process 
   stim_proc: process 
   begin         
      -- hold reset state for 100 ns. 
        EN<='1'; 
        RST<='1'; 
        AER_Bus <= (others=>'1'); 
      wait for CLK_period*5;     
        RST<='0'; 
      wait for 50 ns; 
        WE<='1'; 
        Weight <= std_logic_vector(to_signed(120,Weight'length)); 
        Addr <= std_logic_vector(to_signed(1,Addr'length)); 
      wait for 50 ns; 
        WE<='0'; 
      wait for 50 ns; 
            AER_Bus <= std_logic_vector(to_signed(1,AER_Bus'length)); 
      wait; 
   end process; 
 
END; 
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1.3. AER Bus – Testbench 

 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    11:40:19 03/03/2017 
-- Module Name:    AER_Bus - Testbench  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
use ieee.numeric_std.all; 
  
ENTITY Testbench IS 
Generic ( neuron_adr : integer := 4;   -- Up to 32 neuron_adr 
          neuron_num : integer := 4);  -- Number of neurons +1 
END Testbench; 
  
ARCHITECTURE behavior OF Testbench IS  
 
    -- Component Declaration for the Unit Under Test (UUT) 
  
    COMPONENT AER_Bus 
    GENERIC( 
       neuron_adr : in integer; 
       neuron_num : in integer); 
    PORT( 
       CLK : in STD_LOGIC; 
       Spikes : in STD_LOGIC_VECTOR(neuron_num downto 0); 
       EN_Neuron : out STD_LOGIC; 
       AER : out STD_LOGIC_VECTOR(neuron_adr downto 0)); 
    END COMPONENT; 
 
   --Inputs 
   signal CLK : std_logic := '0'; 
   signal Spikes : std_logic_vector(neuron_num downto 0) := (others => 
'0'); 
 
   --Outputs 
   signal EN_Neuron : STD_LOGIC := '0'; 
   signal AER : STD_LOGIC_VECTOR(neuron_adr downto 0) := (others => '0'); 
 
   -- Clock period definitions 
   constant CLK_period : time := 10 ns; 
    
BEGIN 
     
       -- Instantiate the Unit Under Test (UUT) 
      uut: AER_Bus  
      GENERIC MAP ( 
             neuron_adr => neuron_adr, 
             neuron_num => neuron_num) 
      PORT MAP ( 
             CLK => CLK, 
             Spikes => Spikes, 
             EN_Neuron => EN_Neuron, 
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             AER => AER 
           ); 
    
      -- Clock process definitions 
      CLK_process :process 
      begin 
           CLK <= '0'; 
           wait for CLK_period/2; 
           CLK <= '1'; 
           wait for CLK_period/2; 
      end process; 
       
   -- Stimulus process 
      stim_proc: process 
      begin         
         -- hold reset state for 100 ns. 
           Spikes <= "00000"; 
         wait for 10 ns; 
           Spikes <= "00001";  
         wait for CLK_period;  
           Spikes <= "00000";  
         wait for 20 ns; 
           Spikes <= "11011"; 
         wait for CLK_period;  
           Spikes <= "00000"; 
         wait for CLK_period; 
           Spikes <= "00110"; 
         wait for CLK_period;  
           Spikes <= "00000";         
         wait; 
      end process; 
    
   END; 
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1.4. STDP – Testbench 

 
------------------------------------------------------------------------- 
-- Engineer:       Eduard-Guillem Merino Mallorqui 
-- Create Date:    14:15:20 05/05/2017 
-- Module Name:    STDP - Testbench  
-- Project Name:   Digital System for Neural Network Emulation 
------------------------------------------------------------------------- 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
use ieee.numeric_std.all; 
  
ENTITY Testbench IS 
Generic ( neuron_adr : integer := 4; 
          weights : integer := 10; 
          input_neuron_num : integer := 2; 
          training_neuron_num : integer := 0; 
          pre_reg : integer := 15; 
          post_reg : integer := 5); 
END Testbench; 
  
ARCHITECTURE behavior OF Testbench IS  
 
    -- Component Declaration for the Unit Under Test (UUT) 
  
    COMPONENT STDP 
    GENERIC(  
          neuron_adr : in integer; 
          weights : in integer; 
          input_neuron_num : in integer; 
          training_neuron_num : in integer; 
          pre_reg : in integer; 
          post_reg : in integer); 
    PORT( CLK : in STD_LOGIC; 
          RST : in STD_LOGIC; 
          EN : in STD_LOGIC; 
          EN_Addr : in STD_LOGIC; 
          Pre_Spikes : in STD_LOGIC_VECTOR(input_neuron_num-
training_neuron_num downto 0); 
          Post_Spike : in STD_LOGIC; 
          WE : out STD_LOGIC; 
          Addr : out STD_LOGIC_VECTOR(neuron_adr downto 0); 
          Weight : out STD_LOGIC_VECTOR (weights downto 0)); 
    END COMPONENT; 
 
   --Inputs 
   signal CLK : std_logic := '0'; 
   signal RST : std_logic := '0'; 
   signal EN : std_logic := '0'; 
   signal EN_Addr : std_logic := '0'; 
   signal Pre_Spikes : std_logic_vector(input_neuron_num-
training_neuron_num downto 0) := (others => '0'); 
   signal Post_Spike : std_logic := '0'; 
 
   --Outputs 
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   signal WE : STD_LOGIC := '0';  
   signal Addr : STD_LOGIC_VECTOR(neuron_adr downto 0) := (others => 
'0'); 
   signal Weight : STD_LOGIC_VECTOR(weights downto 0) := (others => '0'); 
 
   -- Clock period definitions 
   constant CLK_period : time := 10 ns; 
    
BEGIN 
     
       -- Instantiate the Unit Under Test (UUT) 
      uut: STDP  
      GENERIC MAP ( 
            neuron_adr => neuron_adr, 
            weights => weights, 
            input_neuron_num => input_neuron_num, 
            training_neuron_num => training_neuron_num, 
            pre_reg => pre_reg, 
            post_reg => post_reg) 
      PORT MAP ( 
             CLK => CLK, 
             RST => RST, 
             EN => EN, 
             EN_Addr => EN_Addr, 
             Pre_Spikes => Pre_Spikes, 
             Post_Spike => Post_Spike, 
             WE => WE, 
             Addr => Addr, 
             Weight => Weight 
           ); 
    
      -- Clock process definitions 
      CLK_process :process 
      begin 
           CLK <= '0'; 
           wait for CLK_period/2; 
           CLK <= '1'; 
           wait for CLK_period/2; 
      end process; 
       
   -- Stimulus process 
      stim_proc: process 
      begin         
         -- hold reset state for 100 ns. 
           RST <= '1'; 
         wait for 10 ns; 
           RST <= '0'; 
           EN <= '1'; 
         wait for CLK_period;  
           Pre_Spikes <= "101"; 
         wait for CLK_period; 
           Pre_Spikes <= "000";             
         wait for CLK_period*9; 
           Post_Spike <= '1'; 
         wait for CLK_period;  
           Post_Spike <= '0'; 
           
         wait for 70 ns;  
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           EN_Addr <= '1'; 
         wait for CLK_period; 
           EN_Addr <= '0';  
           Pre_Spikes <= "101"; 
         wait for CLK_period; 
           Pre_Spikes <= "000";             
         wait for CLK_period*11; 
           Post_Spike <= '1'; 
         wait for CLK_period;  
           Post_Spike <= '0'; 
            
         wait for 70 ns;  
             EN_Addr <= '1'; 
           wait for CLK_period; 
             EN_Addr <= '0';  
             Pre_Spikes <= "101"; 
           wait for CLK_period; 
             Pre_Spikes <= "000";             
           wait for CLK_period*11; 
             Post_Spike <= '1'; 
           wait for CLK_period;  
             Post_Spike <= '0'; 
                
         wait; 
      end process; 
    
   END; 
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A3. Blueprints 
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