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Summary.   This paper presents a model that relates tensile and tear strengths for 
architectural fabrics used in tension membrane structures.  Extension of the model is also 
presented as a means to use these two material strengths in establishing an allowable size of 
defects in a given field of stress.  

1. Introduction 
Two commonly used methods are available for testing and reporting the strength of architectural 
fabrics.  These are the (strip) tensile and the trapezoidal tear tests.  Design of fabric structures is 
commonly based on the tensile strength of the fabric, typically using a large factor of safety (4 or 5) to 
account for various uncertainties.  It is well regarded however that tensile failure is typically not the 
mode of failure but rather tear.  Currently the designer has limited opportunity to recognize tear 
strength in the design, despite this being the more common mode of failure.   

2. Trapezoid Test 
The trapezoid tear test of ASTM D5587 is the basis for discussion however the development herein 
may be applied to similar tests such as EN 1875-3.  A generic figure of the sample is given below, 
which also establishes a local coordinate axis taken parallel to the slit with the origin at the edge of the 
slit and positive in the direction of expected tear propagation.   

 

 

 

 

 

Figure 1: Generic Test Specimen 
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Because the non-parallel sides of the specimen are placed in parallel grips, there is an initial gap 
(slackness) that varies over the transverse coordinate x.   Denoting the gap as g(x), and considering 
there to be initially no slackness at x = 0, the initial gauge length of the sample is given as 
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As the test proceeds, the elongation of the sample in the machine direction is taken to vary linearly 
over the transverse coordinate x, with a step function to account for the initial slackness at x > 0.  This 
elongation is shown below at some time before tear propagation along with the total machine 
displacement dM relative to the point when there is no slackness at the initial edge of the slit.   

 

 

 

 

Figure 2:  Elongation versus Transverse Coordinate 

The strain in the sample is then expressed simply as the change in length divided by the initial gauge 
length.  Because the gauge length also varies with x, this results in the nonlinear relation given below, 
where H(x) is the Heaviside step function.  
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In the above, the change in initial gauge length is represented by the term with x in the denominator.  
If 2x is small compared to kL0 , this term may be ignored and the above reduces to a linear relation 
equivalent to that of a constant gage length L0 over the entire transverse length.  This simplified strain 
distribution follows the same form as the elongation shown above and will be used for further 
development.   

For ease of development, a linear stress-strain relation is assumed.  It will be seen later however, that 
this is linear assumption is not essential for application of the model developed here.  For clarity, 
throughout this paper the term stress is not used in the classical engineering sense of force divided by 
area but rather the commonly adopted usage in the fabric industry of force divided by length (i.e., the 
thickness is disregarded).  Using the subscript 0 for terms evaluated at x = 0 and similarly the subscript 
b for terms evaluated at x = b gives the following relations.   
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The total force F in this idealized stress distribution is simply the area under the triangle.   

1;
2 0 == µσ
µ bF  (4) 

The constant m is introduced at this point only for the purpose of later discussion.  It will be termed 
here as the ductility parameter because it determines the area under the stress-strain curve based on the 
shape, the extreme stress, and the distance.  Introducing the material stiffness E (units of force per 
length) and assembling these relations allows the above to be cast in in the following form.   
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The above equation will be referred to later as the tensile-tear relation, because it relates the peak 
tensile stress to the total force in a trapezoidal tear test.  It is noted that this is not an empirical relation 
but rather one derived from basic engineering mechanics and the linear assumptions given herein.  
Unless noted otherwise, a unit ductility parameter (m = 1) will be used throughout this paper.  
Similarly, the parameters derived from the ASTM D4851 test specimen of k = 2 and L0 = 40 mm (1.6 
in) will be used.   

3. Nonlinear Considerations 
The development of the above included some linear approximations.  It is argued here that these do 
not need to be adhered to strictly in order to apply the tensile-tear relation.   

The assumption of a constant gauge length that resulted in a linear strain distribution is considered 
first.  The correct relation for the total force without this assumption (but still maintaining the linear 
stress-strain assumption) is expressed below. 
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This function is evaluated numerically using the nonlinear strain equation presented earlier and 
compared in the figure below with the force computed by the linear strain assumption.   
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Figure 3: Tensile Strength v. Tear Strength 

Parameters used in the figure above are m = 1, k = 2, and L0 = 1.6”.  It is noted that the lines from the 
two methods are clearly divergent (i.e., the difference increases with force) however in the selected 
range, the difference appears to be within the variability associated with test data.  For clarity, this is 
the only consideration given in this paper to the full nonlinear strain relation and all remaining work is 
based on the tensile-tear relation developed with the linear strain assumption.   

Fabric generally exhibits a nonlinear stress-strain relation, which is thought to be well addressed in 
this model by the ductility parameter m.  This use bears strong analogy to the model of the Whitmore 
stress block commonly used for concrete.  From a design point of view, the actual stress distribution is 
typically of less interest than the load-carrying capacity.  It is thought that this parameter would be 
material-specific and in this regard, the specific nature of the ductility (e.g, material yielding, yarn 
mobility, weave type, coating stiffness) is of less concern than simply its existence or lack thereof.  
For example, the stress distribution associated with peak tear strength might have the form given 
below and a m value determined from the area under the curve.   

 

 

 

Figure 4: Conceptual use of m for Nonlinear Material  
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The determination of this parameter is beyond the scope of this work however it is thought that 
material test data and the tensile-tear model could be readily used for this purpose.  Specifically, given 
the values k and L0 for a particular test method (e.g., ASTM D4851), the manufacturer’s reported 
values for tear strength and tensile strength could be used to solve for m in the tensile-tear relation.  
Numerical evaluation might be used as well provided that the nonlinear material parameters are 
reasonably quantified.   

4. Product Comparison 
The tensile-tear relation is compared with manufacturer’s test data for PTFE woven fabric from St. 
Gobain.  In this comparison, the same L0 = 1.6” derived from ASTM D4851 is used along with the 
ductility parameter m = 1.   

 

Figure 5: Tensile-Tear Relation vs. Product Data 

There is generally little material ductility associated with fiberglass therefore the selected ductility 
parameter m = 1 appears appropriate.  As noted earlier, different values of m may be appropriate for 
different materials and is thought to give an indication of the overall ductility of the fabric as a system, 
irrespective of the exact nature of the ductility (e.g., material yielding, yarn mobility, …).    

5. Application 
The tensile-tear relation can be applied in evaluating the potential for tear propagation in a constant 
stress field.  In this development, it is assumed that the stress is uniform in a given direction however 
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not necessarily equal in the two material directions.  The development here is first given for a uniaxial 
stress field as follows and then modified as will be seen later.   

The concept in applying this model is that the net force in the cut must be redistributed to nearby 
regions.  The ability for the nearby regions to realize this force is assumed to be related to the 
trapezoid tear strength according to the tensile-tear model.  Again returning to a linear model for ease 
of development, the stress distribution normal to the axis of a cut with a length c is shown below.   

 

 

 

 

 

Figure 6: Assumed Stress Distribution in Vicinity of Cut 

The term su is the uniform stress level in an infinite field.  The local increase to level s0 in the vicinity 
of the cut is necessary to maintain equilibrium.  The slope of the linearly varying portion is then 
estimated from the tensile-tear model by the relation below.   
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Based on force equilibrium, the following is obtained.   

( ) 10 bc uu σσσ −=  (8) 

Using this relation and the slope presented above, a quadratic equation in su appears which has the 
roots given below.   

    (9) 

    (9) 

The above form makes it clear that the smaller root is of interest however it is more readily applied 
when the slope m is removed from the equation.  Selecting the smaller root and making this 
substitution gives the form below.  
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The above form is appealing because it expresses the peak magnitude of an otherwise uniform stress 
field (su) in the presence of a cut with a length c in terms of only the material properties (s0, E, m) and 
the geometry of the trapezoidal tear test specimen (k, L0).  It is noted that as c approaches zero, the full 
peak tensile strength is predicted.  Further, it is noted that although the trapezoid tear strength does not 
explicitly appear in the equation, it was used in the development and appears implicitly through the 
geometry of the test sample and the ductility parameter.   

6. Comparison with Other Models 
The model above is compared with two other proposed models.  These are both empirical models and 
although they employ the results of the trapezoid tear test, they do not explicitly consider the specimen 
geometry.   

The first is an early development used in-house by Geiger Gossen Campbell Engineers which 
expresses the maximum stress Smax in terms of the strip tensile strength Sst, the tear strength Rult, and 
the maximum cut length Lmax by the two equations given below and termed the GGC model.   
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The term Lt is a life-cycle factor (specified by the manufacturer) and f is a resistance factor with regard 
to tension failure (fT) or tear failure (fF).  The values for these parameters are not of interest in this 
paper however for reference Lt = 0.75, fT = 0.33, and fF = 0.625 are not uncommon depending on the 
material.  Clearly the first equation is related to ordinary tensile strength evaluation and the second 
considers tear strength.  Only the second is of interest in this paper.   

The second model considered here is that proposed by Rendely1.  Using the notation above the 
relation presented is reproduced below.   
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It is first noted that this model contains four constants but only three are unique (i.e., the above may be 
reduced to a form with only three constants).  It may be envisioned however that four are more 
convenient as there is discussion of specific phenomena that might be associated with each.  In light of 
this, it is also noted that for the model to be dimensionally correct, the constraint arises that the 
product C2C4 must be equal to one which, although not mentioned, could also be the intent of using 
four constants.  It is inferred that the above form is to be used in conjunction with an additional 
evaluation of ordinary tensile strength similar to the first of two equations presented above in the GGC 
model.  Constants presented by Rendely1 for initial evaluation are C1 = 1, C2 = 0.5, C3 = 2, and C4 = 
0.5 and this particular set does not result in a dimensionally correct model.  These three models are 
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compared in the figure below for an arbitrarily chosen example of Sst = 92 kN/m (525 pli) and Rult = 
311 N (70 lb) only to examine the trends.   

 

Figure 7: Comparison of Tensile-Tear Models 

As noted earlier, it is clear to see from the above that as the cut length approaches zero in the tensile-
tear model, the predicted strength approaches the tensile strength.  This is in contrast to the other two 
models compared here, in which the tensile strength approaches infinity, of course requiring them to 
be used in conjunction with the ordinary tensile strength evaluation.   

Because the comparison models approach infinity as the cut length becomes smaller, they are more 
useful for quantifying the effect larger cuts than small manufacturing defects.  In this example, a 
defect smaller than 40 mm for the Rendely1 model (7 mm for the GGC model) predicts a tensile 
strength greater than the strip tensile strength, which renders these models useless for defects below 
this range.  It is thought that this makes the present model particularly appealing as it is well suited to 
accounting for some small quantifiable random defect, particularly if such defect is inherent in 
manufacturing.   

The two relations presented here for comparison appear to exhibit the same trend throughout, differing 
only in the selected constants.   

7. Bi-Axial Stress Field 
The above is based on uniaxial stress field.  To extend the application to a biaxial field the following 
concept is presented.  A transverse stress sx is expected to cause a restoring stress sr in the vicinity of a 
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cut.  This is conceptually similar to a uniform lateral force on a cable where sr is related to the 
transverse force and sx is related to the tension.   

 

 

 

 

 

 

 

Figure 8: Assumed Stress Components in Vicinity of Cut 

Not shown in the figure above is the overall stress in the direction transverse to the cut, which serves 
to open the cut.  The restoring stress will serve to decrease the peak stress s0 at the face of the cut 
shown in Figure xx.  For clarity, this is considered here to be a simple model of a more complex 
phenomenon and unrelated to Poisson’s ratio.  Given this notion, it only remains to quantify this 
restoring stress and the model presented below.   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

2

1

1

C

y

xC

yr e σ
σ

σσ   (13) 

Clearly this simplification ignores many aspects, including shear transfer within the fabric some 
distance away from the cut.  The above form is presented here primarily for consideration by future 
researchers.  It is based on the notion that the restoring stress is zero in the absence of a transverse 
stress and approaches su as the transverse stress approaches infinity.   

Determination of the appropriate constants for different materials is outside the scope of this work 
however a computer model was constructed and small amount of numerical evaluation is used to 
verify the behavior and give initial values.  As such, parameters of this model are not important 
however they are given here for reference.  Selected values are moduli of Ex = Ey = 875 kN/m (5000 
pli), reference load of sy = 23 kN/m (133 pli), grid spacing of 19 mm (0.75 in) and a cut length of 76 
mm (3 in).  The figure below shows the model in a deformed configuration (i.e., with the cut open).     
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Figure 9: Numerical Model with Cut 

The normal stress sy in the vicinity of the cut is averaged for different values of the transverse stress sx 
and these are termed sr for the purpose of developing this model.  Computed values are divided by the 
nominal normal stress and shown below together with the model presented above using the constants 
C1 = 0.05 and C2 = 0.5.   

 

Figure 10: Computer Results vs. Proposed Model 

As noted above, further development of this model is outside the scope of this work.  However, it is 
thought that this is a reasonable approach to account for a more complex phenomena and warrants 
further consideration.  The main intent of this model is to provide some means of accounting for a 
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biaxial stress field.  In this regard, the tensile-tear relation given above is augmented to include this 
reduction from sr with the following replacement.   

rσσσ +← 00  (14) 

This gives that the peak tensile stress s0 accounting for a given imperfection in an otherwise uniform 
stress field is increased according to the presence of the restoring stress sr.  It is recommended that 
further development of this model consider also the length of cut in determining sr so that it does not 
artificially increase s0.   

8. Conclusions 
A dimensionally correct model was presented that relates trapezoid tear strength to tensile strength. 
Good correlation with manufacturer’s data is seen. Further study is needed to examine a variety of 
different materials and products.   

This model can be employed as a means to use these two material strengths in establishing an 
allowable size of defects in a given field of stress.  Comparison is made with results from available test 
data on the strength of imperfect specimens.  

An approach to accounting for the effects of biaxial membrane stresses on the tensile-tear strength 
relation is suggested but requires further development.    
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