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Summary. This report clearly demonstrates the capabilities of an advanced research area 

of applied mathematics, i.e., computational geometry to be applied for shaping dimensional 
structures. Vector-matrix models are provided to cover the composite membrane piecewise-
smooth structures composed of surface elements with zero Gaussian curvature.  

General algorithms are presented for finding cutting lines for cylindrically and conically-
shaped elements, into which the curves contained in the developable surfaces transform. A 
dome-like peak-shaped structure comprising components of both cylindrical and conical 
shape is given as an example to present equations describing the cutting lines explicitly, 
which makes it possible to implement a high-precision technique for producing such a 
structure.  

 
1 INTRODUCTION 

Developable surfaces as shaping structural components have found wide application in 
construction technology practices. Because of their large variety, developable surface 
structures make it possible to realize a wide spectrum of original solutions in architectural 
design to meet various demands of artistic, aesthetic, and constructional preferences, 
including the possibility of creating free-form designs ranging from Pseudo-Russian style to a 
high-tech development. Moreover, having a straight-line directrix affords a facility for 
creating various dimensional structures of fanciful shapes using straight-line supporting 
members only.  

In particular, developable surfaces are in great demand when it comes down to designing 
tent structures to be made of composite vinyl fabrics, because using developable surface 
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technique makes it possible to cut out planar pieces which are then bent as required and are 
joined along the cutting lines.  

 
2   METHODS FOR PROJECTING A DIRECTING CURVE IN STRUCTURAL 
DESIGN APPLICAITONS 

One of the available -- and quite simple -- methods for shaping structural components of 
sheet materials as developable surfaces can be realized analytically on the basis of a 
procedure for either parallel or central projection of a free-form directing curve on a given 
plane (Fig. 1). In the former case, the component to be obtained is of a cylindrical shape, 
while in the latter case the component is to be of a conical shape.  

For the purposes of analytical representation of components of cylindrical or conical shape, 
the following should be specified:  

– an equation of directing curve  urr нн


 , 21 uuu  ; 
– a unit vector of a normal n  to the projection plane;  
– a position of a random point С  in the projection plane Сr

 ; and 
– a unit vector l


 of the directing curve for a cylinder surface or of the projecting center Sr


 

for a conical surface.  
Then the required components of shaping surfaces are described with the following 

equations:  

     urvurvr пн 1 
 ,  10  v , 21 uuu  ,                         (1) 

 

 

Figure 1: Projecting arrangements: a – parallel projection; b – central projection 
 
where  urп

  is a position vector of points contained in the curve projected on a given plane.  
For a cylindrical surface, the equation for this curve in a vector notation takes the form 
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and for a conical surface  
 
     Sн

Sн

SC
Sп rur

nrur
nrrrr 









  (3) 

 

3 ANALYTICAL METHODS FOR CUTTING OUT RULED COMPONENTS OF 
TENT AND SHEET STRUCTURES  

Let us consider a general algorithm for constructing on an involute plane a cutting line into 
which curves contained in the cylindrical or conical surfaces transform.  

Assume that a smooth curve is specified as       uzuyuxr ,,н 
   21 uuu   on a cylindrical 

surface so that one of the vectors of the coordinate base  kji


,,  coincides with the vector l

 

and 0н  lr


  (a doted symbol is to designate a parameter derivative). For a certainty, let us 
assume lk


 . Now let us find the equation of the curve into which the curve  urн

  is 
transforming in the course of the cylindrical surface development. Let us introduce a 
Cartesian involute plane of projection   , . Then one of the coordinates for the resultant 
curve is determined as the length of the projection of the given directing curve on the plane 
perpendicular to the generatrix of the cylindrical surface, and the other coordinate coincides 
with a spatial coordinate along the z axis. It means that 

 






















 
,

,
2

1

22

uz

du
du
dy

du
dxu

u



      21 uuu  . (4) 

If the curve is determined on a conical surface, then the transformed curve to be resulted 
from the conical surface development can be found easier in polar coordinates:  

 
 







,ψψ
,ρρ

u
u    21 uuu  .        (5) 

At the same time, the elemental polar angle d  can be found as a ratio of the “reduced” 
elemental arc 22 ddssd   to the distance ρ  from a random point on the curve to the apex 

 SSSS z,y,xr 


 of the conical surface 





22 ddsd    or   

    
 

du
rr

rrrrrr
d

Sн

нSннSн
2

222







 .   (6) 

The equations of the required curve on the projection of the conical surface development in 
the parametric representation take the form 
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4 CUTTING THE COMPONENTS OUT OF TENT AND SHEET STRUCTURES  
Let us consider an algorithm for constructing mathematical models of surfaces and 

involute surfaces by example of a four-wedge peak-shaped tent model depicted in Fig. 2.  

 
 

With the skin made of tent cloth materials, this peak-shaped tent is a tightly stretched 
structure supported by a polygonal base, which is stretched using a central pole. In general, 
such peak-shaped tent is characterized with three structural parameters: a peak height h, a 
circumscribed circle base radius R, and a number of base edges n. In this example, the 
parameters are h = 3.5 м, R = 5 м, and n = 4. The tent surface is made of wedge-shaped 
pieces, with each wedge being surface-modeled with an elliptic cylinder surface.  

The first wedge is determined with an elliptic cylinder equation  

1
22







 







 

b
bz

a
cosRx , (8) 

where a and b are the ellipse semiaxes; bounded with the planes 

0z ,  tgxy ,     (9) 

where n  is an internal half-angle of the tent sector (Fig. 3). 
The ellipse halfaxes (Fig. 4) can be described via the tent’s structural parameters, 

substituting the point A coordinates into Equation (8) at kba  : 
 

1
22







 







 

b
bh

kb
cosR .    (10) 

Figure 2: A four-wedge peak-shaped tent model 
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Hence,   
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khcosRa
2

222 
 .   (11) 

The mathematical model for a wedge as a shape of cylindrical surface element is described 
with an equation 

)()1()( 21I trvtrvr 
 , 10  v ,     (12) 
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Figure 4: Elliptic cylinder section 
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Figure 3: A pick-tent base schematic drawing  
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The functions (13) determine the directing curves of an element of the ruled surface.  
Elements of wedge pieces of the peak-shaped tent are obtained by rotating the first wedge 

piece around the Oz axis by angles of 2 ,   and 23  with the use of corresponding affine 
transformation matrixes.  

As the peak-shaped tent is composed of the elements of cylindrical surface, the method 
described above can be used for cutting out the tent elements. Let us put down an equation for 
the directrix of elliptical cylinder in the parametric form: 

















 
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




 

;cos

,sincos

2
2

2
2

b
bz

a
Rx

  
a

R 


cosarcsin0  .    (14) 

For the part of ellipse depicted in Fig. 4 we find  








,cos
,sincos

bbz
aRx   

a
R  cosarcsin0 .    (15) 

Then the equation for the cylindrical surface directrix takes the form  

 






















cos
tgsincos

sincos
)(2

bb
aR
aR

r , 
a

R  cosarcsin0 .   (16) 

The curve bounding an element of the cylindrical surface determined with an equation
)t(rr 22


 , upon the development of the cylindrical surface in the plane of Oξη according to 

Equation (4), is described with the expressions 








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);(

,

y

ds
s

       

, 22 dzdxds  .   (17) 

As  dcosadx , and  dsinbdz , then 

 dbcos)ba(dsinbcosadzdxds 2222222222 .  (18) 

Subject to the found expressions, we obtain the equation for a cutting line as 












 


.)sinacos(R

,dbcos)ba(

tg
0

2222
  

a
cosRarcsin 

0 .  (19) 
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Similarly, one can find an equation for a cutting line, which corresponds to the tent edge 
)t(rr 11


 . A pattern of a wedge piece cut-out of the tent to be obtained using the involutes of 

)t(r1
  and )t(r2

 is displayed in Fig. 5. 

 

 
The considered tent model can be modified somewhat (Fig. 6) to render visual smoothness 

to the area of transition from one wedge to another. To this end, let us divide each wedge 
surface into three elements, with the middle element on each wedge surface being modeled 
with elliptic cylinder surface and the side elements being modeled with conical surfaces.  

 

 
The middle element of the front surface of the tent (Fig. 7) is determined with Equation (8) 

of an elliptic cylinder bounded with the planes  

0z , 
3

tg  xy  ,      (20) 

using the same model parameters as for the four-wedge tent considered above.  
The left side element of the tent (Fig. 8) on the front wedge surface is modeled with an 

equation  

)t(r)v()t(rvrII 32 1 
 , 10  v ,  cosRt0 ,   (21) 

Figure 6: A peak-shaped tent model: a – a general view of the model; b – a schematic arrangement of 
cylindrical and conical elements 

a b 

Figure 5: A pattern of a wedge piece of the tent 
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where the directing curve )t(r3


 of the conical surface is determined with a function that can be 
obtained by Equation (2) central projecting of the directing curve )t(r2

  on the plane 
 tgxy , with the projection  center  being  located  in  the  point  with  the  position  vector 

 

 
 0;d;cosRrS 


. The function )t(r3


 has the form determined by the expression 

   
   S

S

S
S r)t(r

nr)t(r
nrrrtr 









 2

2

0
3 ,    (22) 

where  0;cos;sinn 
  is the normal to the projection plane,  0000 ;;r 

  is the position 
vector of a point contained in the projection center. 
 

 

 
To obtain an equation for the curve )t(r3


, let us perform the following calculations: 

   cosdsincosRnrr S


0 , 

     






  22

2 3 cosRta
a
bb,dtgt),cosRt(r)t(r S

 ,  (23) 

     cosdtgtsin)cosRt(nr)t(r S 32


. 

Figure 8: A model of the left-side element of the wedge surface 

Figure 7: A model of the middle element of a wedge surface  
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For convenience, let us introduce the following designations:  

 
 

 
 

 
   
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vtu
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
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3

32

0 



 

(24) 

 dsinRcosv  ,  costgsinu 3 . 

Considering the designations introduced above, the function determining the curve )t(r3
  

takes the form 

 
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




























 















22

3 3tg

cosRta
a
bb

tuv
v

dt
tuv

vd

)cosRt(
tuv

vcosR

)t(r
 . (25) 

Figure 6 shows a tent surface constructed with the use of the mathematical model 
described above. The middle and the left-side elements of the front surface of the wedge were 
determined with Equation (1). The right-side element of the front wedge surface can be found 
using mirroring transformation of the left-side element relative to the plane Ozx. The elements 
of other wedge surfaces are obtained by rotation of the corresponding elements of the front 
wedge surface relative to the axis Oz by the angles of 2 ,   and 23 , respectively.  

To cut out patterns for the tent wedges, development of the cylindrical and conical surface 
elements is performed according to the algorithms set forth above.  

Development of the cylindrical surface is carried out similarly to what has been considered 
earlier for the four-wedge peak-shaped tent having wedges in the form of cylindrical surface 
elements. Equations for the cutting lines are put down in the following form 
















 


,)sinacos(R

,dbcos)b(a

3
tg

0

2222

  
a

cosRarcsin 
0 .  (26) 

To construct an evolvent for a conical element of the test, a position vector of the conical 
surface apex is required to be determined as well as the corresponding directrix line.  

The involute of )t(r2
  curve on the plane of the conical surface development can be found 

according to the relationships similar to Equation (7): 
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       cosRt0 , (27) 

where ρ is the polar radius, ds is an elementary arc of the developed curve, and ψ is the polar 
angle.  

Subject to the conditions of the problem being considered, the values in Equation (7) are 
determined with the following expressions:  
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

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
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
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

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  (28) 
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  222

222

3tg1



cosRtaa

cosRtbdtds . 

Substituting these values into Equation (27), one of the cutting lines for a tent conical 
surface element can be found.  

To find the other cutting line, development of the curve )t(r3
  needs to be carried out, 

which is determined with Equation (25) and is contained in the conical surface. The polar 
radius and its increment and the elemental arc of the curved developed, which are included in 
Equation (27) for the cutting line, in this case can be determined with the following 
expressions:  

     
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2222
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
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2
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3 cosRta
a
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 (29)
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    
     

   
 

     
,

cosRta
a
bbdtgtcosRt

cosRtaa
cosRtbcosRta

a
bbf

cosRta
a
bbdtgtcosRt

tgdtgtcosRtf

2
2222

22

22

2
2222

3

3

33







 
























 











 




 

222 dzdydxds  , 

где  dtf)cosRt(fdx  ,   dttgfdtgtfdy 33
 ,  

   
 

dt
cosRtaa

cosRtbffcosRta
a
bbdz 
























 

22

22  ,    
  vtu

uf
vtu

vuf





 2 . 

Substituting the expressions found for ρ, ds and dρ into Equation (27), the equations for the 
second cutting line of a tent conical element are obtained. 

The evolvents of cylindrical and conical elements are presented in Figs. 9 and 10. 

 

 

 
 
Figures 11-13 demonstrate of the algorithm for designing the described patterns 

implemented in actual structures.  
 

Figure 10: Involute surface of a conical element of a tent  

Figure 9: Involute surface of a cylindrical element of a tent  
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Figure 11: A tent structure as an awning over a boat deck on the Iset river  
 

 
 

Figure 12: A tent structure serving as a café on Malysheva Street, Yekaterinburg  
 

 
 

Figure 13: Tents serving as exhibition pavilions in Nyzhnii Tagil 




