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Summary. We present a topologically-based doubly curved building system, based on a
single bending thin plate element. The system extends Buckminster Fuller’s plydome
research, by proposing an elastic form-finding technique through the introduction of strategic
singularities in a periodic grid of originally coplanar plates. The potential of this technique is
explored and showcased through the design and manufacture of a large scale prototype.

1 INTRODUCTION

The advent of novel simulation techniques and the affordability of reliable elastic materials
has produced a blossom of new elastic form-finding strategies under the name of
active-bending>‘. One of the interests of this approach lies in the potential of form defining by
elastic deformation from straight and planar elements®. This approach has been pursued and
has been of special interest to the authors in the quest of structurally efficient doubly curved
lightweight elastic shells by simple and low-tech means®'*!,

In this respect, plate elements, defined as thin and planar, are interesting elements because
they can be efficiently nested as fractions of standard industrial laminated products, such as
composites or plywood. They are therefore cheap and produce minimal waste. On the other
hand, planarity is a potential asset due to the convenient coplanar joining compared to rods
eliminating the need for torsional stiffening. Finally, thin elastic plates can potentially adapt
to a pseudo double curvature, unlike the single curvature of a plank, here considered as a
narrow plate.
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Figure 1: a) B. Fuller’s Plydome b) Chinese grasshopper cage c¢) Proposed Plate network

Taking advantage of the emergence of plywood, Buckminster Fuller used the adaptability
of such panels in the framework of his studies on materialising geodesic domes®. Plywood
panels define the shape of a sphere being connected on the topological points of a geodesic
dome while bending mainly around one axis (Figure 1a). Elastic deformation is used in a
geometry based approach®, by which the building system adapts to a shape and the topological
singularities emerge. Inversely, in systems like traditional basketry, it’s the topological
singularities which are indeed introduced in elastic fabrics, in a behaviour based approach
(Figure 1b).

In both these active-bending cases, light-weight doubly curved shells are obtained but
whereas in the first case, the shape is imposed, in the second it is form-found. Triggered by
curiosity and empiric serendipity, we produced some models of an interesting system with
latent potential (Figure Ic). This presented itself as a combined strategy involving the
potential of both approaches described, the use of large identical panels and the mesh
singularity design.

2 MESH SINGULARITIES AND CURVATURE

From basketry we can easily understand the effect of singularities (irregular vertices) in the
curvature of an elastic mesh. In this behaviour based approach, doubly curved elements can
be obtained either by grid distortion (lengths within the grid are different, Figure 3a) or by
grid topology modification (equal lengths in the grid, Figure 1a and 3b). In the latter, which is
the one we focus on, it’s easily understood that adding or removing uniform “fabric” will
produce negative or positive curvature. By doing so, we introduce an irregularity in the vertex
valence of the underlying mesh structure.
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Figure 2: Effect of mesh singularities on elastic fabric curvature

This vertex defect is a curvature concentration of the “relaxed mesh” and has a fixed size
increment depending on the grid valence the fabric is based on (regular basketry is based in
periodic platonic tilings: triangular, orthogonal, hexagonal and combinations of them such as
trihexagonals). In the simulation in Figure 2, we appreciate the effect in the curvature of an
elastic sheet, of the addition or removal of “fabric”, equivalent to the reduction or growth of
the vertex defect.

There is an exact description of such singularities by virtue of Euler’s polyhedron theorem
which relates the number of mesh faces, edges and vertices to the genus of the mesh:
F-E+V=2-2g. This, in turn, links to the “total angle defect” through Descartes’ polyhedron
theorem, a discrete version of the Gauss-Bonnet theorem of differential geometry where
curvature is concentrated on the vertices. Thus, the angle defect at a vertex equals 2n minus
the sum of all the angles at the vertex (Descartes). As an illustration, for a sphere topological
object, we would need a total angle defect of 4mt, which is 8 times Y4 w (3 valence vertex) as in
a cube, or 12 times 'sm (5 valence vertex) as in an icosahedron. (Figure 2). In another
example, when building hyperbolic tetrapods, we can assemble 4 nonogons (4*-1m) or 12
heptagons (12*-'5m) for the same -4x total angle defect. (Figure 6d and 6e).
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Figure 3: elastic structural fabric research by the authors a) grid distortion (Jukbuin pavilion). b) topology
design (S’aranella shell).
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The eloquent material efficiency in basketry, triggered our interest in the challenge of
up-scaling structural fabrics. Deforming an elastic grid (Figure 3a) was straightforward but
limited in terms of negative curvature. Topological operations were only possible when no
fiber continuity was involved (Figure32b) but in both cases, the remaining structure was too
thin too carry loads or to be covered. Solving both the covering, and the fiber continuity
problem, with larger and less connected pieces of “fabric”, yet taking advantage of the
topological manipulation option, the plate system arose as a potential alternative.

3 ELASTIC LATTICE OF PLATES

3.1 Plate behaviour

We can simplify the behaviour of thin elastic plates and assume they bend primarily in one
direction, thus producing single curvature locally. In-plane stretching and edge effects are
negligible®. We can therefore assume that, globally, a plate can obtain pseudo double
curvature, based on the combination of areas of local single curvature (Figure 4). Simplifying
the model, the plate under a combination of several bending actions is a patchwork of
developable surfaces.

a b

Figure 4: Simplification of the behaviour of a plate

3.2 Plate network behaviour

Plate network is here defined as an elastic macro-material composed of coplanar plates and
connected at their vertex and not their edge, always leaving open gaps corresponding to the
dual graph of their connectivity. In an analogy to topological basketry, material is missing at
the vertex of their dual graph, meaning no material is present at the singularity loci, where
high curvature and therefore stress concentrations occur (Figure 5). It is clear that plate
networks assembled in this manner, unlike plates, are able to bend in two directions due to the
stress relief of the blank spaces. This opens up the possibility of assembling complex
bending-active systems with multiple curvature properties, thus allowing for a large spectrum
of design options. Additionally, plate networks are inherently stable due to the built-up
stresses acquired during the bending process.
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Figure 5: Deformation on networked plates. Material is not present at the singularity loci, the curvature
concentration and high stresses are avoided. Space where material should stretch or compress is empty.

In a further analogy and inspired by the representation of complex molecules with beading
techniques™* (Figure 10), we propose plate networks as a very simplified but representative
model of two-dimensional hexagonal carbon lattices. Graphene and derived allotropes like
fullerenes or graphitic structures are networked molecules based exclusively on trivalent
carbon atoms. Because the carbon bonds are very rigid, graphitic curved structures are based
on the variation of the element connectivity and not on the variation of the element size. This
analogy is especially interesting because of the awe-inspiring enormous body of work we can
already access and use as reference from the field of physical and theoretical curved
nanostructures'®. This breadth of molecular geometry offers the opportunity of designing and
assembling structures across a large spectrum of complexity. Moreover, networked plates
may, in reverse, be a suitable behaviour exploration tool for such molecular elastic sheets,
thus becoming an explorative or learning topology game set.

4 PHYSICAL EXPLORATION

With this in mind, we were invited to organise a workshop at KOGE at the University of
Innsbruck. KOGE is well-known for their research and teaching on form-finding topics and
therefore a perfect place to explore the possibilities of plate networks, driven to dive deep in
topological madness by the enthusiasm of the students. The single restriction we introduced
was in the form of a small rectangle of thin plywood with 4 holes at vertices.

It turned out to be a playful game set, so fast to prototype that the limited number of
identical plates were in constant (and elastic) transformation, being recombined in complete
different topologies. After first completely trivial and joyful connectivity, students were
excited by other fields'**" and motivated on taming the topology, thus reassembling the
plates into specific nontrivial curved structures (Figure 6).
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Figure 6: Physical models. a) B.Fuller’s geodesic dome cap from 3 pentagons. b) Hyperbolic neck of toroid c)

Hyperbolic triarch from 3 heptagons. d) Tetrapod with 4 nonogons . €) Fragment of toroid with pentagons and

heptagons. f) Higher-genus fullerene. g) Tetrapod with 12 heptagons. h) toroid with pentagons and octagons. 1)
Gyroid fragment

S SIMULATION

In parallel to physical modelling, we implement a two-step form-finding dynamic
relaxation method in the Kangaroo solver, that helps with understanding the effect of plate
network topology variance and curvature (Figure 7). The topology assembler is prepared to
parse every trivial triangular mesh and the simulation quickly computes the form.

P =

Angular defect  Pi 212 P 173 P
Polygon sides 3 4 5

Figure 7: Incremental variation of topological charges
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Firstly, the topology is built by approaching hexagonally shaped meshes contracting the
cables that connect their topological neighbours (Figure 8, a). Using a distance threshold,
mesh vertices are then welded when stopping the simulation (Figure 8, b). In the second
simulation run, elastic bending stiffness is added as a restriction on the mesh, and final form
emerges when converging by having changed previous hinged edges into coplanar fixed
connections (Figure 2 and 8c).

For the purpose of an approximate simulation tool, this analogy with the plates and plate
triplets is more robust and reliable than modelling the individual plates and the contact that
occurs in reality by overlapping.

Figure 8: a) mesh topology preparation and two-step dynamic relaxation: b) welding and ¢) bending

For testing, we were removing random points from triangular meshes, provoking similar
buckling phenomena as dislocations (leading to the introduction of singularities in hexagonal
lattices) in graphene sheets'.

Even though similar results can be obtained with a simpler elastic topology relaxation in
terms of global form understanding (Figure 2), the modelling of the plate width allows a
closer approximation to the plate curvature radius analysis, thus providing a fast prototyping
method that was used for deciding physical large scale dimensions.

Figure 9: Form-finding simulation of several non-trivial topologies. The uniformly introduction of pentagons is
intended to generate shell-like forms.
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6 GYROID

Minimal triply periodic surfaces (MTPSs) are very interesting as membranes because they
fulfill both the condition of maximising the surface and locally minimizing the area °>. Among
the classic MTPSs, which are highly hyperbolic graphitic sheets, we chose to realise the
recently discovered gyroid®. As it is proposed?, the graphitic representation of the gyroid is a
continuous patchwork of twisting octagons surrounded by hexagonal rings.
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Figure 10: a) scheme of 2 twisted chains of octagons and common polygonal faces. b) sown adjacent beaded
twisted strips. ¢) entire beaded model. (a,b,c with permission) d) plate G TPMS model.
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Figure 11: Gyroid assembly

Based on our experience, we could directly translate graphene trivalence schemes into
plate networks so successfully in small scale models (Figure 11), that we decided to do a
larger one (Figure 12). This exercise has shown a very interesting property of elastic plate
networks in that it can easily represent, within acceptable tolerances of manufacturing,
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surfaces of zero mean curvature, i,e, minimal surfaces. From a practical point of view, the fact
they are minimal also leads to an optimal use of material in their construction. In particular, it
is worth mentioning that they have shown the capacity to represent infinitely periodic
minimal surfaces such as the gyroid.

Figure 12: Final assembly of plate graphitic Gyroid

7 CONCLUSIONS

This paper has presented a novel topologically-based doubly curved building system
using thin elastic plates.

Plate networks can be treated as elastic fabrics, and manipulated using the same topology
operations that are used in related fields such as basketry or molecular geometry.

The curvature properties of the network are easily evaluated using standard mathematical
theory. Inspired by the Plydome and beaded molecules, the system has been used to
produce a variety of curved structures, including positive and negative Gaussian
curvature. Although limited with respect to the realisation of arbitrary/free-form shapes,
plate networks offer a way for topological emergence to appear in building systems.

In its most ambitious rendering, the plate network system has been applied to triply
periodic minimal surfaces, successfully being deployed in the case of the gyroid.

175



Enrique Soriano, Pep Tornabell, Dragos I. Naicu and Giinther H.Filz

8 ACKNOWLEDGMENTS

We wish to thank the KOGE unit at Innsbruck for being such a warm host, providing a
very enthusiast student crew and giving us the chance to taste the amazing Tirol food and
snow quality. We want to specially thank Giinther Filz and Walter Klasz. The students were:
Julian Pongratz, Ander Auer, Marius, Gabriel, Oliver von Malm, Valentina, Christof
Schlapak.

Figures 10a, 10b and 10c were used with the kind permission of their authors B.-Y. Jin, C.
Chuang, C.-C. Tsoo who were a source of inspiration. Finally we want to acknowledge Daniel
Piker, as the author of the physical simulation engine Kangaroo here used, and as a fruitful
source of knowledge and explanation.

REFERENCES

[1] A.G. Martin. 4 basketmaker’s approach to structural morphology. Proceedings of the
International Association for Shell and Spatial Structures (IASS) Symposium 2015

[2] A. H. Schoen, Infinite Periodic Minimal Surfaces without Self-Intersection, NASA
Technical Note, TN D-5541, 1970

[3] B.-Y. Jin, C. Chuang, C.-C. Tsoo. Constructing Molecules with Beads: The Geometry of
Topologically Nontrivial Fullerenes, Proceedings of Bridges: Mathematics, Music, Art,
Architecture, Culture pp. 391-394, 2010.

[4] C. Chuang, B.-Y. Jin, W.-C. Wei, C.-C Tsoo. Beaded Representation of Canonical P, D,
and G Triply Periodic Minimal Surfaces, Proceedings of Bridges: Mathematical Connections
in Art, Music, and Science, 2012, 503-506.

[5]J. Lienhard, S. Schleicher & J. Knippers. Bending-active Structures — Research Pavilion
ICD/ITKE, in Nethercot, D.; Pellegrino, S. et al. (eds) Proceedings of the International
Symposium of the IABSE-IASS Symposium, London, UK

[6] J. Lienhard, H. Alpermann, C. Gengnagel and J.Knippers. Active Bending, a Review on
Structures where Bending is used as a Self Formation Process. International Journal of Space
Structures 2013

[7] D. Piker. Kangaroo: Form finding with computational physics. Architectural Design
Volume 83, Issue 2, March 2013, Pages 136-137

[8] L. G. Jaeger and B. G. Neal. Elementary Theory of Elastic Plates . Elsevier 1964

[9] P. Tornabell, E. Soriano, R. Sastre. Pliable structures with rigid couplings for parallel
leaf-springs. A pliable timber torus pavilion. MARAS 2014

[10] E. Soriano, P.Tornabell, R.Sastre. Behaviour and geometry based approach in elastic
timber grid shell. AAG 2012

[11] D. Naicu, R. Harris, C.Williams. Timber gridshells: Design methods and their
application to a temporary pavilion. World Conference on Timber Engineering 2014

[12]J. P. Petit. Le Topologicon, 1979.

[13] H. Terrones and M. Terrones. Curved nanostructured materials. New J. Phys. 2003

176





