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Summary: The paper presents a three degree of freedom formulation for the dynamic 
relaxation modelling of tubular bearing systems applied in arch supported membranes and 
closed hoop supported cable net bridging structures.   For tubular arch structures the 
numerical modelling method has been validated against analytical and finite element models 
with span/rise ratios up to 20.  Beyond this, and particularly as arches flatten under limit state 
loads the method becomes impractical.  A revised process is given for the modelling when 
approaching failure states, and is applied and validated for the case of a very flexible arch 
supported membrane structure subject to snap through buckling.   The paper also illustrates 
how the torsion/bending theory can be used to cover different closed hoop supporting 
systems, and the numerical modelling is applied to a multi-span bridging structure employing 
tubular hoops of various sizes and shapes around which spiral a prestressed cable network.     

 
 
1 DYNAMIC RELAXATION 

The description of Dynamic Relaxation (DR) summarized briefly below for skeletal and 
membrane structures assumes kinetic damping to obtain a static equilibrium state.  In this 
procedure the undamped motion of the structure is traced and when a local peak in the total 
kinetic energy of the system is detected, all velocity components are set to zero. The process 
is then restarted from the current geometry and repeated through further generally decreasing 
peaks until the energy of all modes of vibration has been dissipated and static equilibrium is 
achieved.  The initial concept for dynamic relaxation can be expressed as Newton’s second 
law governing the motion of any node i in direction x at time t.   Writing the acceleration term 
in finite difference form and rearranging the equation gives a recurrence equation for updating 
velocity components: 
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Hence obtain the updated geometry projected to time t+Δt/2; having obtained the complete 
current geometry the new link forces can be determined and resolved together with applied 
load components Pix to give the updated residuals: 
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(1b)

The procedure is thus time stepped using Eqs.1a & 1b until a kinetic energy peak is 
detected. Velocity components are then reset to zero and the process is repeated until adequate 
convergence with negligible kinetic energy is achieved.  In equation 1b the term (F/L)m is the 
current tension coefficient in any link m -  a cable, strut or side of a membrane element [1]. 

2 IN-PLANE BENDING 

 Figure 1a represents consecutive nodes along an initially straight tubular (CHS) beam 
traverse, and figure 1b two adjacent deformed segments, a & b, viewed normal to the plane of 
nodes ijk which are assumed to lie on a circular arc of radius R.  The spacing of nodes along 
the traverse must be sufficiently close to allow this assumption, but the segment lengths need 
not be equal. 

  

Figure 1a & 1b 

From the geometry of the figure the angle subtended by the chord cl at the centre of radius 
R is 2 , and thus the radius of curvature through i j k and the consequent moment in the arc 
are: 
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sin2

clR       and      
R
EIM        where EI is assumed constant along the 

traverse. 
 

The free body shears of elements a and b complying with moment M at j are therefore: 
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(2)

These must be taken as acting normal to the chords and in the local plane of i j k.  The 
calculations and transformations required in a DR scheme are thus very simple, with sets of 
three consecutive nodes being considered sequentially along the entire traverse; each set lying 
in different planes when modelling a spatial curve. 

2.1 Out of plane bending of a closed ring 
It might be questioned whether the above is applicable to a spatially twisted spline since 

apparently no torsional stiffness enters into the analysis;  yet in fact this is the case provided 
the spline is initially straight and with EI constant about any axis.  Taking a simple example 
of an initially straight tube bent into a closed ring of radius R, with equal and opposite loads P 
applied at the quarter points normal to the plane of the ring (figure 2): 

 
Figure 2 
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If the bending moment about a radial axis at A is M and the torsion at this location is T, 
then moment equilibrium about axes parallel to x and y through A give: 

   sincossin1
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But the prestressing moment (about an axis normal to the plane of the ring) is REI ,  and 
the component of this along the axis of T  is: 

Rd
dw

R
EIT \  

(4)

 
Where w is the normal displacement. Differentiating this gives the full elastic stiffness 
moment: 
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(5)

Thus the whole of torsion T is due to the prestressing effect (of bending the initially 
straight spline tube into a closed ring),  and there is no component due to twisting and elastic 
torsion constant GJ.    
 

Substituting T or  M  from equations (3) into (4) or (5),  and integrating gives: 
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If    is the displacement of the downward loads relative to the upward loads then: 
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For the same ring, but unstrained in its initial circular state, the displacement(s) 

corresponding to the same out-of-plane loading can be shown to be: 
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where δm is the component due to transverse bending and δt is the component due to torsion. 
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It is interesting to note that the out-of-plane stiffness given by Eqn. (6a) which is due 
principally to geometric stiffening by initial straining, is greater than that given by Eqn. (6b).       
(in contrast, the in-plane stiffness is identical for both provided EI is the same). 

2.2 Extension to approximate analysis of circular arches 
For membrane structures supported by pin-ended circular arches of radius R0 which are 

initially unstrained at this radius, equations 2 with a 3 degree of freedom analysis can still be 
used provided “initial state” shears S1 and S2 are applied to the two end segments throughout 
the analysis, as shown in figure 3.  Provided both sets of shears are applied in the common 
plane defined by the two end vectors l1 and l2, the shears must balance statically for the 
structure as a whole no matter what may be the spatial deformations. 

 
Figure 3 

Note that if these shears were applied to the end segments of an originally straight spline, 
all nodes along the spline would lie exactly on an arc of radius R0 (irrespective of any 
variations in segment lengths); the shears are required in the analysis to give the initial arc 
state, and although it is clearly highly strained in this state, all of the interior shears cancel – 
so the effect is the same as an unstrained arc.  When calculating in-plane moments at the end 
of an analysis the effect of R0 must obviously be accounted for using  011 RREIM   , 
where R is the local radius of the deformed arc.  Out-of-plane moments could be determined 
using displacements normal to the average plane of the deformed arc, but these would be 
inaccurate since they are derived from incorrect (over stiff) transverse deformations. As stated 
above, for membranes which are mechanically fixed to an arch the analysis is approximate 
since the value of EI would correspond to the stiffness in only one direction – the radial 
direction for in-plane bending of the arch; and the out-of-plane stiffness is not correct. 
However, for the case of membranes supported over circular arc hoops this is of no 
consequence since slight slip of the membrane over the arch will anyway occur.  A similar 
argument justifies the use of this approach for “battened” membranes.  
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3 ACCOUNTING FOR TORSION & TRANSVERSE BENDING IN INITIALLY 
UNSTRAINGED SPATIAL TRAVERSES 

The limitations of the above analysis are more severe when it comes to the analysis of 
compound traverses consisting of a sequence of circular arcs with different radii.  Although 
each segment might be analysed as above by the use of fictitious end shears (as in figure 3), 
there would be no torsional connection between the segments, so a compound arch modelled 
in such a way would become a mechanism. The following theory accounts for torsion and 
transverse bending moments in compound tubular traverses, in addition to the modelling of 
the radial moments as previously described.  In most practical design cases, both deformations 
(transverse and radial deflections) and moments (torsional, transverse and radial bending) 
may be correctly modelled. This is achieved by applying an artificial “torsional factor” (which 
is the factor by which the real torsional stiffness GJ must be reduced in order that transverse 
deformations (ie normal to the arch plane) may be correctly modelled.  In some other more 
restrictive cases, for example with arch systems with a very low rise to span ratio (eg < 1/40) 
and/or slenderness ratios which are very high (eg > 500),  the transverse deformations will be 
incorrectly modelled since the arch will be too stiff in the transverse direction (see sections 
3.5. and 3.6).   

 
With only three degrees of freedom (u, v, w) it is possible to determine by finite difference 

modelling the in-plane distortions and moments (fig 1b) and the increment of twist and hence 
torsion in each link element of a spatially curved traverse (see following section);  but it is not 
possible to determine directly also the transverse bending deformations.   However, assuming 
that the lines of action of all forces exerted by connecting elements such as cables or 
membranes act through the centerline of the tubular traverse (ie with no applied torsion 
forces), then the transverse moments are always statically related to the rate of change of 
torsions in the traverse.  Considering a small element of the traverse viewed normal to its 
local plane: 

  

Figure 4 

Resolving for equilibrium of moments along axis t – t: 
T+dT.dα  = M.sin(dα) + T.cos(dα) ~> M.dα + T  for α  ~> 0  

                                           dα                                                        

(7)

Hence: 
M = dT 

            dα 

(8)

Thus if the torsion in consecutive elements and the local (in-plane) curvature is known the 
transverse (out-of-plane) moment at the interconnecting node can be determined from  eqn. 8. 
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The in-plane moment (fig 1b) was determined using two consecutive links.  The amount of 

twist in any link and hence the torsion must be determined by considering three consecutive 
links (fig 5a): 

 
Figure 5a        Figure 5b 

Vk & Vl  are the normal direction cosine vectors of triangles jkl and klm which determine 
the current twist angle between them φ’, or the initial unstressed state of twist φi  . 
 

Suppose change due to deformation is as shown in figure 5b,  where φ’ > φi :      
Restoring forces at m and j due to torsion in kl are as shown:  Pm  &  Pj ;  and associated 
forces to restore lateral moment equilibrium must act as shown at k & l:   Pk  &  Pl . 
 

Pj  and  Pm  are related to the Torsion T in kl : 
Pj . hj  =   Pm . hm  = T  = GJ. (φ’ – φi)  

                                                   Lkl 

(9)

 
 

Where  hj &  hm = heights of triangles jkl  &  klm  from base kl. 
 

Considering the static equilibrium of the 3 link unit: 
 

  

Figure 6 

Resolving normal to plane containing axis zz and kl: 
Pm cos(φ’/2) + Pk cos(φ’/2)  =  Pl cos(φ’/2) + Pj cos(φ’/2) (10)

Pm + Pk  =  Pl + Pj   
 

Moments about zz (cancelling cos(φ’/2) from each term) give: 
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Pj . a + Pm . (b + c) = Pl . b (11)

Hence Pj  &  Pm are determined from (9),  and from  (11)  &  (10): 
Pl = (Pj . a + Pm.(b + c)) / b     and     Pk = Pl + Pj - Pm  (12)

 
Note that in shallow arcs (Assuming similar consecutive element lengths) the forces Pk & 

Pl are typically 3 x teh values of Pj and Pm, yet it is the latter that are determined directly in 
the DR process process from current deformations. But the bending forces exerted by 
successive sets of 3 elements along a traverse will tend to oppose and cancel each other, and 
will do so exactly if the torsions are constant (eq. 8). 

 
An obvious special case occurs when two consecutive links are or become co-linear so 

that φ for kl becomes zero.  This can occur during snap-through buckling, and this is the 
major aspect which will be considered in sections 4 and 5 of this paper. 

3.1 Torsion Factor for closed ring traverses 

During the DR analysis the value of GJ (eq 9) will govern the torsional deformations and 
hence also the associated transverse bending.  In the case of the initially unstrained closed 
ring (figure 2) with four point loading the transverse flexibility for coupled bending and 
torsion is given by equation 6b, in which EI is the value relating to transverse bending 
(normal to the ring plane). The finite difference (DR) analysis outlined above utilizes only the 
torsional stiffness to obtain torsional forces from the change in twist angle; the transverse 
moments being obtained as derivatives of the torsion from equation (8).  Thus in the closed 
ring case shown in figure 2, to obtain deformations which are the same as the real case (as in 
eq 6b) the torsion constant must be set to GJ’ = Tfac .GJ, where the “torsional factor” is:  

Tfac = δt /( δm + δt )  (13)

Tfac = 1 / (1 + 4.03 C1)  with C1 = GJ/EIt      

For a CHS steel tube the EIt value for transverse bending is identical to that for in-plane 
bending and if the value of C1 = 0.8 then Tfac = 0.237 (or with C1 = 1 then Tfac = 0.199, but 
note that the difference in deflections given by equation 6b would be only approximately 4%). 

 
Numerical tests analyzing closed ring structures with a range of different diameters and 

tubular section sizes have shown that deformations, torsions, in-plane moments and out-of-
plane moments are all accurately predicted using the above theory. 

3.2 Extension to oval hoops with double and single symmetry 
The type of analysis applied in section 2.1 for a closed ring under four point transverse 

loading to derive deformations in the form :  Δ = δm + δt  (with δm due to transverse bending 
and δt due to torsion) can also be applied to doubly symmetric oval shaped hoops defined by 
radii R and r.   

 
In this case, and simplifying by setting GJ = EI ,  both δm and δt  take the form:   
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δ = (a.R3 + b.R2.r + c.R.r2 + d.r3).P/2EI  

where the coefficients  a,b,c,d depend on the ratio r/R and are different for the bending and 
torsion components of deflection.  The torsion factor for use in numerical analyses can then 
be obtained as Tfac = δt /( δm + δt ).   For the case of singly symmetric or egg shaped hoops 
(fig. 7) by suitable adjustment of the ratios r/R in each half the same torsion factor can be 
applied throughout the hoop. 

  

Figure 7 

The above type of analysis was applied in reference 2 to a multi-span bridging structure 
employing tubular hoops of various sizes and shapes around which spiral a prestressed cable 
network – see figures 8.  The top and bottom booms are connected to the hoops by internal 
diagonal bracings and the booms are connected to each-other only by vertical ties; the bridge 
deck would correspond with the level of the lower boom.  The scale of the bridge, with 
enclosed spans of typically 100m and deck width of 6.5m, is suitable for pedestrians, cyclists 
and small electric vehicles, and the structure was assessed for appropriate design load states 
and resilience to collapse. 
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Figure 8: Perspective and elevations of one multi-span section 

3.3 Torsion factor for open arches 
In general, for open arch traverses, the torsion factor may vary quite widely depending 

particularly on the radius of curvature of the arch and the total arc length, but also being 
limited by the slenderness ratio and the rise / span ratio.  Values for torsion factor in the case 
of open arches might be assessed by considering a circular arc beam with equal and opposite 
loads P applied transverse to the arch at the ¼ points, as shown in figure 9:  

 
Figure 9 

 
The end reactions Q = P(secφ)/2 ,  where φ = θ/2   
 
For 0 < α < φ:    the transverse moment  M = Q.R.sinα   &   torsion  T = Q.R(1 – cosα)             
For φ < α < θ:   M = Q.R.sinα – P.R.sin(α– φ)   &   
T = P.R(cos(α – φ) – 1 + secφ.(1-cosα)/2)  
 
The deflection of the ends (at Q) relative to the ¼ point positions (at P) can be derived as 

two components; the first associated with transverse bending alone is:  
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δm = K . P.R3 /2EIt (14a)

Where: 
      K = (φ.secφ – sinφ)/2  (14b)

The second component due solely to torsion can be derived as: 
δt = k . PR3 / 2GJ (15a)

Where: 
   k = φ (2.5secφ + 2cosφ -3) – sinφ (secφ + 0.5) (15b)

In the DR analysis, the total transverse deformations are based only on the twists and 
torsions related to a reduced torsion constant, Tfac x GJ, the torsion factor must therefore be 
set equal to: 

      
Tfac= δt / (δt + δm) = k / (k + C1K) ,  where as before C1 = GJ / EIt (16)

All of the above relates to the particular test case of transverse loadings at the ¼ points of 
arch beams (with end reaction loads also normal to the arch), and the values of Tfac predicted, 
although independent of loading magnitude, may not be independent of loading distributions; 
however it does enable approximate modelling of the transverse flexibility so that the 
interactions between membrane surface fields and a supporting arch can be accounted for. 

3.4 Numerical Stability & Convergence 
Numerical stability of the DR process is controlled by fictitious mass components used at 

each node.  These mass components are directly proportional to the stiffness of elements 
attached to a node.  The elastic axial stiffness of an element is EA/L, and the bending stiffness 
of an arch beam element is 2EI/L3.   However, it can be shown that the stiffness of a node due 
to the coupled torsional & transverse bending effect is K . (EI/L3). (R/L)2 , where R is the in-
plane radius of curvature and L is the element length.   The value of K ~> 1,  and thus since 
generally  R >>L, the coupled torsion / bending stiffness and its contribution to the nodal 
mass components will be much greater than for ordinary elastic bending (eg the in-plane 
bending).  As a consequence of these increased mass components the convergence rate is 
slower for this type of analysis.  All of the nodal mass components are set automatically 
within the numerical process, thus the problem of numerical divergence is not an issue.  
However, a type of quasi-stability can occur when the bending stiffnesses (in-plane or 
coupled torsion / bending) are greater than the axial stiffness – and that may occur when 
element lengths are very small. 

3.5 Numerical test cases 
The following series of tests are for CHS circular arches of 100m span and varying radii of 

curvature such that the ratios of (0.5 x  arc length/radius of curvature) comply with the 
practical range π/4 – π/16  (or rise/span ratios of 5 – 20).  For each test case a comparison is 
made with the theoretical predictions for: 
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deflection at the ¼ point :  Δ = δm + δt   from equations 14 & 15,       
transverse moment at the ¼ point  Mq = 0.5P.R.tan(θ/2) ,    
and torsion at the crown  Tc  = P.R.(Sin(θ/2) – 1) . 
 

In the numerical tests the arches are all subdivided into 32 elements and values are 
tabulated for Δ,  Mo (the out-of-plane moment corresponding to Mq),  Mi (the in-plane 
moment at the same ¼ point), and the center point torsion T (corresponding to Tc). 

 
These results are each listed for the value of Tfac predicted in table 1, with a second value 

giving a best fit to the theoretical deflection.   Non-linear finite element modelling results 
taken from reference 2 are also given for comparison.  

Table 1: Test cases for a series of CHS arches 

θ R (radius of curv.) P (loads) δm δt 

arc2a π/4 70.71 m 100kN 0.468 0.127
Theory:  Δ=0.595 MO =1464 kNm Tc =582 kNm

Tfac  Δ MO Mi T
Numerical: 0.214 0.53 1455 118 & -161 581

0.191 0.594 1452 132 & -181 580
FE model: 0.595 1461 135 & -192 582

θ R (radius of curv.) P (loads) δm δt 

arc3a π/8 130.66 m 100kN 0.355 0.024
Theory:  Δ=0.379 MO =1299 kNm Tc =256 kNm

Tfac  Δ MO Mi T
Numerical: 0.064 0.323 1282 185 & -138 256

0.055 0.378 1275 219 & -156 256
FE model: 0.381 1298 215 & -153 256

θ R (radius of curv.) P (loads) δm δt 

arc4a π/12 193.19 m 100kN 0.338 0.01
Theory:  Δ=0.348 MO =1272 kNm Tc =167 kNm

Tfac  Δ MO Mi T
Numerical: 0.029 0.3 1248 185 & -310 166

0.025 0.344 1240 212 & -358 165
FE model: 0.349 1270 210 & -352 167

θ R (radius of curv.) P (loads) δm δt 

arc5a π/16 256.29 m 100kN 0.337 0.005
Theory:  Δ=0.342 MO =1262 kNm Tc =124 kNm

Tfac  Δ MO Mi T
Numerical: 0.016 0.295 1222 240 & -430 123

0.014 0.346 1207 281 & -516 122
FE model: 0.342 1261 275 & -511 124  
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For shallower arches it is not possible to obtain the correct lateral deformations because the 
least value of Tfac to obtain convergence is restricted (for example to the value 0.008 in the 
case below, with span/rise ratio of 40): 

 
Table 2: Test cases for a shallow CHS arch 

θ R (radius of curv.) P (loads) δm δt 

arc6a π/32 510.12 m 100kN 0.329 0.001
Theory:  Δ=0.330 MO =1253 kNm Tc =62 kNm

Tfac  Δ MO Mi T
Numerical: 0.0042  -  -  -  - 

*0.008 0.155 1211 244 & -620 61  

3.6 Discussion of results 
The out-of-plane (or transverse) static moments and torsions are in all test cases of 

acceptable accuracy but the transverse deflection / flexibility, which in the case of coupled 
arch and membrane structures will also govern the moments and torsions, is predicted with 
acceptable accuracy only up to a span/rise ratio of 20  (for slenderness ratio of 350).  These 
limits would encompass many practical design cases for service loading conditions, but the 
apparent restriction on radii of curvature must cause difficulties when attempting ultimate 
load analyses of slender arches approaching snap-through buckling.  As shown in the above 
tests, the shallower an arch becomes the smaller is the required value of Tfac to give the 
correct flexibility, but there is a limit to Tfac below which numerical convergence cannot be 
obtained.   An additional problem in this context is that the effective coupled torsion/ 
transverse bending stiffness is proportional to (R/L)2 where L is the local element modelling 
length;  the increasing value of R will thus govern the fictitious mass components which must 
be used in the DR process to ensure stability and convergence.  So as snap through buckling is 
approached the mass factors will need to be greatly increased and simultaneously the value of 
Tfac reduced (with the limit restricted to a least feasible value).  The value of Tfac governs the 
transverse deformations and consequently also the amount of stretch and flattening of the arch 
crown; this in turn governs the in-plane moments that are induced (+ve at the ¼ points and –
ve at the crown). These in-plane moments are also related to the amount of twist in the arch, 
which is greatly increased by the reduced torsion constant (Tfac x GJ). But in this context the 
greatest twist t the quarter points in any of the test cases is approximately 10o, so it appears 
that the arch stretching (and associated crown flattening) is the dominant effect. This cannot 
be predicted by the analytical model; however it is confirmed by the non-linear finite element 
modelling. 

4 ALTERNATIVE MODELLIG USING FICTITIOUS END SHEARS 
An important aspect in the design of lightweight and flexible arch supported structures is 

the assessment of ultimate load states – in particular snap-through buckling;  but as noted 
above, there is a potential problem of modelling snap-through buckling for coupled 
membrane/arch systems using the torsion / bending analysis approach,  especially for very 
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slender and flexible arches.  This is investigated in detail in the next section of this paper, 
where it is shown that the alternative technique of analyzing an initially unstrained circular 
arch as a straight spline with end shears superimposed to induce the same initial curvature 
(figure 3) can provide a more useful approach to the modelling of such failure modes.  
However, it is instructive first to compare results for a slender bare arch (having properties 
identical to those used in the next section (5) and slenderness ratio of 530) with those obtained 
from models using fictitious end shears.   The table below compares results for theory and the 
best deflection fit of the torsion/bending model, and also non-linear Finite Element modelling, 
with results for the end shears model: 

 
Table 3: Comparison Models 

    θ     P     δ    Mo     δ    Mo     δ    Mo     δ   Mo
  π/2 5 0.603 125 0.602 125   0.166 60
  π/4 50 1.082 732 1.078 713 1.081 732 0.763 616
  π/8 50 0.69 650 0.695 611 0.7 648 0.635 609
  π/16 50 0.622 631 0.336 599 0.612 634 0.606 578
  π/32 50 0.6 626 0.085 620    0.599  498 (596)

Analytical Torsion/Bending Finite Element End Shears

 

 

The End Shears model gives good values for deflections of the shallowest arch the Mo 
value is low, but of course the arch has twisted and the resultant of both in-plane & out-of-
plane moments is 596 kNm.  Even for the extreme case of θ= π/64 (span/rise=80) the 
deflection with this model is predicted as 0.595m (close to the straight beam value of 
PL3/384EI = 0.592m).   The model is clearly very inaccurate at the lowest span/rise ratio of 2 
(semi-circle), but at more realistic span/rise ratios at or above 5 it becomes acceptable. The 
results in table 1 for the torsion/bending model appear generally good, but the transverse 
deformations of the shallowest arch beams are greatly in error – due to the restricted value of 
torsion factor required to obtain convergence.  Overall, the end shears model appears to be the 
only suitable one for very shallow arches.    

 
The results in table 1 for the torsion/bending model appear generally good, but the 

transverse deformations of the shallowest arch beams are greatly in error – due to the 
restricted value of the torsion factor required to obtain convergence. Overall the end shears 
model appears to be the only suitable one for very shallow arches. 

 
For arches of compound shape comprising differing radii, and/or spatially curved arches, 

the two systems can be combined – with “splines” (using end shears) coupled by 
torsion/bending “splices” with five segments. 

5 ANALYSIS OF A COUPLED MEMBRANE/ARCH SYSTEM 
The following studies are for a symmetric membrane structure of about 3100m2 supported 

by a central arch of 100m span and 16m rise.   The arch has the same properties previously 
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used for the studies in table 1: with EA = 5400 kN,  EI = 220 MNm2 and slenderness ratio of 
about 530;  for all of the studies the arch is sub-divided into 48 segments.  The form of the 
structure is shown in the attached plot files arcz0 (plan view), arcx0 (view in direction x) and 
arcy0 (view in direction y) – note that x and y plots have different scales.  The latter 
elevations are rotated by 1° about the y and x axes respectively, and all subsequent elevation 
plots for the various loaded states are similarly denoted and presented.  The membrane is 
divided into two main regions with four “panels” per region, each containing one edge 
scallop.  Asymmetric loading is applied as uniform snow loading p on panels 1 & 2 of region 
1 only.  Thus quarter of the structure is loaded, and the loading induces sway of the arch in 
both the x and y directions. 

 
For the torsion/bending model the initial geometry and properties of the arch suggest an 

appropriate torsion factor Tfac= 0.35 (using equation 16 with 14b & 15b and C1= 1).   
However, as the arch deforms under high loadings the value of Tfac should be reduced 
(ultimately to a very low value, but restricted by conditions for numerical convergence).  For 
the studies below the lowest value of Tfac which could be used was approximately 0.035; 
some results in table 2 for torsion/bending models are therefore given for both these values of 
Tfac.  

 
In table 2, the notation used for the various models and results is arcT1 for the 

torsion/bending model with p=1 kN/m2 and Tfac = 0.35, arcT1c for the same loading, but Tfac 
= 0.035, and arcS1 for the same loading using end shears model.  Similar notations are used 
for the alternative loading intensities as listed in the table.  Models for which deformed state 
plots are attached are denoted * (the notation for these plots being arcSx1 & arcSy1 for 
model arcS1 * etc.).   The values tabulated in table 2 for each test model and loading are δ1 = 
the transverse (or y) deflection at the ¼ point of the arch between panels 1 & 2, Cmax = 
maximum compression in the arch,   Mo1 & Mo2 – the out-of-plane (or transverse) moments at 
the two ¼ points of the arch, Mi1 & Mi2 the in-plane moments at the ¼ points, and for the 
torsion/bending models T = maximum torsion (at crown point).   

 
In addition to the plots indicated in the table for the various stable load states (up to 1.35 

kN/m2),  plots arcSx4 and arcSy4 are included which show, for the end shears model,  the 
initial stages of snap-through buckling;  this occurred at a load level of p = 1.42 kN/m2.   
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Table 4: Bending and twisting moment results for a series of coupled arch/membrane systems 
 

Model p kN/m2   Tfac δ1 Cmax kN   Mo1   Mo2   Mi1   Mi2 T
arcT1 1 0.35 0.737 1564 -1729 886 -1099 1064 382
arcT1c * 1 0.035 0.898 1640 -1051 445 -1051 1171 106
arcS1 * 1  - 0.897 1627 -684 709 -1120 1161  - 

arcT01 0.1 0.35 0.0728 615 -161 104 -74 107 37
arcS01 0.1  - 0.0806 617 -78 45 -77 109  - 

arcT3c 1.35 0.035 1.476 2209 -1592 634 -1850 1996 169
arcS3   * 1.35  - 1.447 2174 -993 1403 -1568 1931  -  

5 DISCUSSION OF RESULTS 
For the load level p = 1.0 kN/m2 the results for transverse deflection, maximum arch 

compression, and the in-plane moments at ¼ points are similar for each model, but for the 
torsion/bending model the maximum predicted out-of-plane moment is much greater, 
particularly for the stiffer arch with Tfac = 0.35.  As Tfac reduces the results become closer, and 
the lower value of Tfac is probably more realistic since the arch has become very flat in the 
loaded area (view arcTy1).  The results show a similar pattern to the first set of tests:  
deflections, compressions, and in-plane moments are in reasonable agreement for all models, 
but the transverse moments predicted by the torsion/bending model are significantly different 
to those of the end shears model.    

 
A much more significant issue is the collapse load modelling of flexible arch structures. The 
torsion/bending model cannot actually achieve snap-through since when it flattens it becomes 
quasi-stable (neither diverging nor converging but oscillating between two states).  The 
nearest approach was a loading intensity of 1.35 kN/m2 as given in table 2, and in order to 
obtain those results a gradual approach was necessary, using successively reducing values of 
Tfac and increasing fictitious masses (or conditioning factor); in all, four stages were used, 
each with many thousands of iterations.  In contrast the end shears model converged fully at 
least 10 x faster.  At this higher loading (near collapse) the results for deflections, 
compressions and in-plane moments are very similar for all models, but the transverse 
moments predicted by the torsion/bending model are again much higher.  However, it is 
demonstrated in the following that the end shears model does give the correct solution for the 
ultimate snap-through collapse. 

 
In the analysis of the torsion/bending model the in-plane moments at all interior nodes are 

computed at each iteration as Mi = EI x (1/R – 1/R0) where 1/R is the current curvature and 
1/R0 is the initial curvature in the unstrained state.  For the end shears model that expression 
is used only for the moment applied to set the correcting/fictitious shears in the end links (S = 
Mi /L).  For all other (interior) links of the arch the shears are set as S = (Mi + Mj)/L where the 
moments at the link nodes i or j are set using only the current curvature:  Mi = EI x (1/R) 
since the initial curvature effects are internally cancelled.  (At the output stage of course these 
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moments are determined using the change of curvature from the initial state).  It has been 
noted previously in section 1 (equations 6) that the initial in-plane curvature of a spline bent 
from straight (as in the end shears model) provides substantial geometric stiffness to out-of–
plane movements, but for a section of an arch which has flattened and lost all of this 
curvature, the bending resistance to movements in both the radial and transverse directions is 
the same value based on the subsequent curvature departure from this straight state.   

 
To provide a check on the validity of the failure load prediction of 1.42 kN/m2 by the end 

shears model, and the extent to which this solution may be path dependent, the following 
sequence of loadings were run using the end shears model:    Half symmetric loading of 0.8 
kN/m2 on panels 1 and 2 of both regions 1 and 2 – this produced deformations which had 
practically flattened the loaded area of the arch (with no out-of-plane deformations).  Using 
the above deformed state as a starting condition the loads were redistributed to 1.0 kN/m2 on 
panels 1 & 2 of region 1 and 0.5 kN/m2 on panels 1 & 2 of region 2.  From this second state, 
all of the loading in region 2 was then released and the loading in region 1 increased to 1.4 
kN/m2 on panels 1 & 2.   As a check on the deflections and stress resultants predicted from 
this run the structure was re-run with this loading applied to the zero condition (prestress 
state); the results obtained were identical.   On the basis of these studies it is reasonable to 
conclude that the snap-through failure loading of 1.42 kN/m2 predicted by the end shears 
model is reliable. 
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8 PLOTS OF THE INITIAL AND DEFORMED STATES OF THE ARCH 
SUPPORTED MEMBRANE 

8.1 Initial prestress form of the structure 

(a)  

(b)  

(c)  

Figure 20: (a) Plan View arcz0, (b)arcx0, (c)arcy0 
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8.2 Deformed states 

(a)   (b)  

(c)  (d)  

(e)  (f)  

Figure 31: (a) arcSx1, (b) arcSy1, (c) arcSx3, (d) arcSy3, (e) arcSx4, (f) arcSy4 
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