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Abstract

Network robustness against cascades is a major topic in the fields of complex networks. In this paper, we
propose an attack-cost-based cascading failure model, where the attack cost of nodes is positively related
to its degree. We compare four attacking strategies: the random removal strategy (RRS), the low-degree
removal strategy (LDRS), the high-degree removal strategy (HDRS) and the genetic algorithm removal
strategy (GARS). It is shown that the network robustness against cascades is heavily affected by attack
costs and the network exhibits the weakest robustness under GARS. We also explore the relationship
between the network robustness and tolerance parameter under these attacking strategies. The simulation
results indicate that the critical value of tolerance parameter under GARS is greatly larger than that of
other attacking strategies. Our work can supply insight into the robustness and vulnerability of complex
networks corresponding to cascading failures.
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1. Introduction

Complex networks have been found to be effective
to describe many networked systems in nature and
society, such as the Internet, power grids and com-
munication systems, and so on. Over the past few
decades, complex network research has made great
achievements in many areas 1,2, including network
modeling 3,4,5, evolutionary games 6,7, optimization
8, epidemic spreading 9 and traffic dynamics 10,11,12,
etc.

Because of the great importance of vulnerabil-
ity and robustness for many real-world complex

networks, the robustness of networks has attracted
many researchers in recent years 13,14,15. In partic-
ular, the problem of cascades with load redistribu-
tion on networked systems has aroused widespread
concern 16,17,18,19. Some important aspects of cas-
cades have been extensively researched, including
the models for describing the cascading failures
20,21,22, the defense and control strategies for cas-
cades 23,24,25,26, the cascading models in real net-
works 27,28,29. Motter et al. 20 put forward a global
load-based cascading model. The authors shown
that, in the case of attack triggered by breaking
down a single vital node, the heterogeneity of com-
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plex networks can make them extraordinary frag-
ile. Subsequently, by proposing a mechanism of
local weighted flow redistribution, Wang and Chen
30 studied the cascade phenomena on weighted net-
worked systems. They found that the strongest ro-
bustness level of weighted complex network is ac-
complished when the link weight equals to kik j,
where ki and k j are the degrees of the vertexes linked
by the edge. Recently, Wang et al. 18 proposed a
simple cascade model and investigate cascade phe-
nomena triggered by breaking down the highest-load
node in complex networks. They found that the fluc-
tuations of cascading dynamics in networks is ab-
normal and the resilience of networks against cas-
cades decreases inversely when the node’s capacity
increases.

However, most previous works of network ro-
bustness assume that the attack cost is the same 31,32.
Actually, for many real-world networks, the removal
cost of a link or a node may be quite various 33. In
this paper, the factor of attack cost is merged into
the cascading failure model and the cost of breaking
down a node is related to its degree. The results in-
dicate that the network robustness against cascading
failures is heavily affected by the node’s attack cost,
and the genetic algorithm removal strategy (GARS)
displays a better performance than other attacking
strategies.

This paper is organized as follows. In the sec-
tion 2, we describe the attack-cost-based cascading
failure model and node attacking strategies specifi-
cally. Simulation results and correspondent theoret-
ical analysis are provided in Section 3. Finally, our
conclusions are drawn in section 4.

2. The model

2.1. Network model

It is known that many real-world networks display a
scale-free property, for example the Internet, WWW
and transportation networks 34,35. In this paper, we
use the Barabási-Albert (BA) network 5 to explore
the cascades tolerance of scale-free complex net-
works. The BA network is generated by growth and
preferential attachment rules, which can be found
in many realistic networks. Starting from m0 fully

linked nodes, at each time step one new node will
be added to the BA network model. The new one
is preferentially linked to m (m 6 m0) old ones with
the probability Πi = ki/∑ j k j, where ki is the degree
of node i. In this paper, we will set the parameters of
BA networks as m0 = m = 2 and N = 1000, where
N is the size of the network.

2.2. Attack-cost-based cascading failure model

Previous models of network robustness usually as-
sumed that the attacking cost for any node or link is
unified. Actually, due to the heterogeneous practical
property of nodes or links, the attack cost of them
can be quite different. Following common practices
33, we use the degree of nodes to metric the attack-
ing cost of nodes, i.e., ρi = ki, where ρi is the cost
to remove node i and ki is the degree of node i. The
total attack cost is normalized as:

ρ =
∑v∈Z kv

∑N
j=1 k j

, (1)

where k j is the degree of node j, Z is the set of re-
moved nodes and N is the number of nodes in the
network. The robustness of networks is measured
by the relative size of the largest connected cluster
G = N′/N, where N is the size of the initial network
and N′ is the size of the largest connected cluster
after cascades. High G values represent robust net-
works, while low G values correspond to vulnerable
networks 20.

Previous works have shown that for BA networks
the node’s load scales with its degree as 36,37,38:

Li ∼ k1.6
i , (2)

where ki is the degree of node i. Here we set the
load of node i as k1.6

i . The capacity of node j is the
maximum load which can be processed by node j,
meaning that node j has a limited power to handle
its load 20:

C j = (1+α)L j, (3)

where α (α > 0) is a tolerance parameter, and L j
is the load of node j in the original network. Obvi-
ously, the tolerance parameter α denotes the power
of nodes to process the extra load. The larger the
value of α , the higher the security margin to resist
the flow perturbations.
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Next, we will introduce attacking strategies in
detail.
Random removal strategy (RRS):

The procedure of RRS is described as follows.
At each time step of the strategy, one node is cho-
sen randomly from the unremoved node set of the
network.
Low-degree removal strategy (LDRS):

LDRS is described as follows. At each time step
a node with the lowest degree in the initial network
is chosen from the unremoved node set of the net-
work. If there are two nodes with the same degree,
a node will be selected randomly.
High-degree removal strategy (HDRS):

HDRS is a widely used intentional attacking
strategy 32. Under HDRS, a node with the highest
degree in the initial network is selected at each time
step from the unremoved node set of the network. If
there are two nodes with the same degree, we ran-
domly chose one node.
Genetic algorithm removal strategy (GARS):

It is known that computational intelligence al-
gorithms can effectively solve many complex opti-
mization problems 8,39,40. Genetic algorithm (GA) is
a well-known computational intelligence algorithm
41, which was put forward in 1970s. It simulates
the evolution procedure in nature and uses the oper-
ators for instance selection, crossover and mutation
to achieve the enhancement of the fitness value of
solutions in population.

Considering the heterogeneous attack cost of
nodes and the advantage of GA algorithm, we pro-
pose an attack-cost-based attacking strategy named
genetic algorithm removal strategy (GARS). In
GARS, the length of each chromosome is N, where
N is the number of nodes in the network. A node is
denoted by a gene and the state of the node is repre-
sented by the value of binary bit corresponded to the
gene, where 1 denotes the node is removed from the
network while 0 denotes the node is alive. We set
the crossover probability Pc = 0.95, the population
size n = 30 and the maximum generation gm = 100.
Here, the uniform mutation is used and the mutation
probability Pm = 0.1.

The basic procedure of GA in GARS is de-
scribed as follows:

Step 1: Set t = 1 and the size of population
n = 30. To speed up the optimization speed, we gen-
erate one solution (chromosome) by HDRS, one so-
lution by LDRS and randomly generate remainder
28 solutions to compose the first generation popula-
tion, P1. Evaluating the fitness value of each solution
in P1, where the fitness is defined by the value of G
after cascading failures.

Step 2: An offspring population Qt is created
as follows: (i) Using roulette wheel selection rule,
we select two solutions x and y from Pt according to
their fitness values. (ii) We use a crossover probabil-
ity Pc to produce offspring. Calculating the ρ value
of each new offspring, if the value of ρ beyond the
given total cost value, then randomly select one node
and recover its connection state, i.e., change the bit
value of the node from 1 to 0. Iterating this proce-
dure until the ρ value of the offspring not large than
the given total cost value. Afterwards, we add these
offspring to Qt .

Step 3: Every solution x ∈ Qt is uniformly mu-
tated with a given mutation rate Pm.

Step 4: Assign a fitness value to each solution
x ∈ Qt according to the value of G corresponded to
each solution.

Step 5: Chose n solutions from Qt according to
their fitness values and duplicate these solutions to
Pt+1.

Step 6: If the maximum generation is reached,
return the solution with the highest fitness value
in the final population and terminate the algorithm,
else, set t = t +1 and go to Step 2.

In the GARS strategy, the removal nodes are
identified by the state of binary bits in the resulting
solution of GA.

For above attacking strategies, the removed
node set Z is null at the beginning. At each time
step a node i is selected by the given attacking strat-
egy and the attacking cost of the node ρi is summed
to ρ , i.e., ρ = ρ +ρi. If the ρ value is less than or
equal to the given total attacking cost, then node i
joins in Z set and node i and its direct links are re-
moved simultaneously, otherwise ρ = ρ − ρi. The
iteration is proceeded until ρ equals to the given to-
tal attacking cost or we can not find a suitable node
to join in the set of Z.
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Afterwards, the cascading failure is generated
by removing the node u with the highest load in
the remained largest connected component. In our
model, we adopt the local weighted flow redistribu-
tion rule 30, where we tend to allocate more loads to
the higher-capacity direct neighbours of failed node
to prevent more nodes from overload. Specifically,
the loads of the disabled node u, represented by Fu,
are distributed to the nearest neighbours of node u.
The extra load ∆Fj received by the neighbouring
node j is defined as:

∆Fj = Fu
k j

∑l∈Γu kl
, (4)

where Γu is the neighboring node set of node u.
With regard to node j, a nearest neighbour of the
failed node u, if Fj +∆Fj > C j, then node j and its
direct edges are synchronously removed, resulting
in reallocation of the load of Fj +∆Fj and probably
further breaking down remaining vulnerable nodes.
The procedure will be continued until there are no
more overloaded nodes. At the last step, the value
of G in current network will be computed.

3. Simulation results and discussion

Firstly, we study the relationship between G and the
total attack cost ρ under different attacking strate-
gies (Fig. 1). It is indicate that the value of G de-
creases as the value of ρ increases, indicating that
the network becomes more vulnerable as the total
attack cost increases. On the other hand, the value
of G under GARS strategy is the lowest, illustrating
that the performance of GARS is better than that of
other three attacking strategies. Especially, the value
of G drops quickly under GARS when the value of
ρ is low, which means that in the initial attack phase
the performance of GARS can be significantly im-
proved even if we increase a small quantity of attack
costs.

Next, we investigate the relationship between G
and α with respect to four attacking strategies (Fig.
2(a)). Here we set the total attack cost ρ = 0.2. One
can see that under all attacking strategies the value of
G increases with the value of α increases, illustrat-
ing that the node capacity is of a more safety zone

with respect to the node failure as α increases. Fur-
thermore, the value of G under GARS is smaller than
that of other strategies, which means that GARS out-
performs other attacking strategies.
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Fig. 1. G as a function of the total attack cost ρ under four
attacking strategies. Here we set the parameters of BA net-
work N = 1000, m0 = m = 2 and α = 1.0. The results are
the average over 100 independent realizations.

The critical value αc is the lowest value of
safety capability to prevent networks from global
cascades 42,43,44. When α < αc, the giant cluster
disappears, reflecting that the global cascading fail-
ure emerges. While in the case of α > αc, the global
cascade will not emerge. In the inset of Fig. 2(a),
we depict the critical value αc under four attacking
strategies. This shows that the value of αc with re-
spect to GARS is the highest, showing the weak-
est network robustness under GARS. To explore the
influence of the network size on the critical value
αc, we plot the relationship between G and α under
GARS with different network sizes (Fig. 2(b)). This
indicates that the value of αc decreases as the net-
work size increases, reflecting that under GARS the
network robustness increases with its size. Due to
the fixed maximum generation of GA in GARS, the
larger the network size, the harder it is for GARS to
find outstanding nodes for attack.
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Fig. 2. (a) G as a function of the tolerance parameter
α under four attacking strategies. The inset shows the
critical value αc for different attacking strategies, where
network size N = 1000. (b) G versus the tolerance pa-
rameter α under GARS for different network sizes (N =
500,1000,1500,2000,2500,3000). Here we set ρ = 0.2
and BA scale-free networks with m0 = m = 2 are used. The
results are the average over 100 independent realizations.

To explore the effect of total attack cost on the
performance of GARS, we plot G versus α with re-
spect to GARS for different total attack costs (ρ =
0,0.2,0.4,0.6,0.8). The results illustrate that the ro-
bustness of networks decreases as ρ value increases
(Fig. 3), indicating that the total attack cost is of a
vital effect on the cascades tolerance of complex net-
works. When ρ > 0.6, the relative size of the largest
connected cluster G ≈ 0, reflecting that the network
is completely disintegrated. In the case of ρ = 0, the
value of G ≈ 1 when the value of α is high, which
means that the network can be well protected even if
GARS attacking strategy is used.

Finally, we investigate the relation between G
and ρ for different values of tolerance parameter
(α = 0,0.5,1.0,1.5,2.0). The results show that the
network robustness increases as α value increases,
meaning that larger tolerance parameters will make
networks more stronger to defend cascades even at-
tack cost is taken into account. Besides, in the case
of α = 0 and 0.5, the network is quite vulnerable
even though the value of ρ is very small (ρ 6 0.05).
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Fig. 3. G as a function of α under GARS for different total
node attack costs. BA scale-free networks with N = 1000
and m0 = m = 2 are used. The results are the average over
100 independent realizations.
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Fig. 4. G as a function of the total attack cost ρ under GARS
for different tolerance parameters. Here we set N = 1000
and m0 = m = 2. The results are the average over 100 inde-
pendent realizations.

4. Conclusion

In this paper, we have proposed an attack-cost-based
cascading failure model and compared four attack-
ing strategies, where attack costs correspond to the
degree of nodes. The results show that attack costs
are of important impacts on the cascades tolerance
of networks and the genetic algorithm removal strat-
egy (GARS) can make networks more weaker than
other three attacking strategies. We investigate the
relationship between the network robustness and tol-
erance parameter when attack costs are taken into
account. It is found that the critical value of tol-
erance parameter under GARS is much larger than
that of other strategies and decreases as the network
size increases. We also explore the relationship be-
tween the network robustness and attack costs under
different values of tolerance parameter. The simula-
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tion results indicate that, for low values of tolerance
parameter, the network is quite fragile even though
the value of total attack cost is very small.
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