
An On-line Test Strategy and Analysis for a 1T1R
Crossbar Memory

Manuel Escudero-Lopez, Francesc Moll and Antonio Rubio
Electronics Engineering Department
Universitat Politecnica de Catalunya

Barcelona, Spain
manuel.escudero@upc.edu, francesc.moll@upc.edu, antonio.rubio@upc.edu

Ioannis Vourkas
Dept. of Electrical Engineering

Pontificia Universidad Catolica de Chile
Santiago, Chile
iovourkas@uc.cl

Abstract—Memristors are emerging devices known by their
nonvolability, compatibility with CMOS processes and high
density in circuits density in circuits mostly owing to the crossbar
nanoarchitecture. One of their most notable applications is in
the memory system field. Despite their promising characteristics
and the advancements in this emerging technology, variability
and reliability are still principal issues for memristors. For these
reasons, exploring techniques that check the integrity of circuits is
of primary importance. Therefore, this paper proposes a method
to perform an on-line test capable to detect a single failure inside
the memory crossbar array.

I. INTRODUCTION

Resistive switching devices (memristors) are emerging elec-
tronic devices that are receiving significant attention because
of their promising properties including being passive non-
volatile memory elements, storing data in the form of re-
sistance. Altough they were postulated by L. Chua back in
1971 [1], Chuas theory was connected with practice only in
2008 [2]. Some other interesting characteristics of memristors
are the compatibility with CMOS technology and the highest
possible device integration density [3]. It is expected that
memristive device speed could match that of CMOS devices.
Nonetheless, currently it isn’t a mature enough technology
and there is space for improvement in several aspects. For
instance, variability and reliability are considered among the
most critical issues [4].

Memristors are suitable devices for applications such as
memories and computing, both digital and analog. As mem-
ristors are nonvolatile, they are ideal to store data even when
not powered. This feature and their potential high device
density are two key properties for memory applications. How-
ever, variability and reliability must be controlled in these
applications and strategies to cope with these issues must be
developed. On-line testing is a useful technique as memristors
may fail eventually due to its improvable reliability. There
are some works about on-line testing circuits with memristor
crossbars; e.g. [5] applies design for testability to detect open
faults in crossbar, whereas [6] takes advantage of sneak-path
currents to perform the testing procedure faster and [7] designs
to detect bridge defects.

In this context, our work presents a simple fault model
for a single one transistor one memristors (1T1R) cell more
focused in the possible malfunction of the cell devices than

the previous works, as well as the interferences between cells
when faults occur and a method to detect them during the
system normal operation. The paper is organized as follows.
Section II introduces the device model used in the work,
Section III depicts the memory system, Section IV shows the
fault model considered, Section V presents the on-line test
procedure and Section VI shows the simulation results. Finally,
Section VII concludes the paper.

II. MEMRISTOR FUNDAMENTALS IN BRIEF

The memristor is a passive two-terminal device, a passive
circuit element with a characteristic parameter named memris-
tance. Memristance is conceptually defined as the derivative
of flux with respect to electric charge, but it is commonly
explained as a resistance that depends on the previous his-
tory of the electric charge that passes through it. There are
different types of memristors: bipolar or unipolar, filamentary
or homogeneous switching [8]. For instance, in the resistive
RAM (ReRAM) device assumed in this paper, the change in
its memristance is attributed to the creation or destruction of
one or more conductive filaments inside the metal-insulator-
metal device structure (in line with the soft breakdown of an
oxide intermediate layer).

The memristor model adopted in this work is presented in
[9]. The model is based on the formation of a two-dimensional
conductive filament, described as a cylinder that modulates its
length and width according to the voltage applied to the termi-
nals of the device. It features variability, parasitic elements and
temperature effects, among other features. The used parameter
values have been extracted from TiN/HfOx/TiOx/Pt devices of
10 nm feature size. The typical I-V pinched curve observed
in memristors is shown in Figure 1, where VM and IM are
the voltage across the memristor and the flowing current,
respectively. The I/V curve was generated using a triangular
signal of amplitude 2 V and period 40 ns. The memristor
switches to low resistive state (LRS) when a positive voltage
is applied. Then a negative voltage gradually increases the
memristance, finally leading to a high resistive state (HRS).

In a memory application memristors are tipically excited
with voltage pulses. The width and voltage level are important
to achieve desired resistance states. A long, high voltage pulse
is needed to bring the memristor to a given state, while a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. I/V characteristic curve of the used memristors model. The inset shows
the memristors symbol and polarity convention used for the applied voltage
and the flowing current.

0 5 10 15 20 25 30 35 40

Pulse width (ns)

0

50

100

150

200

250

300

350

400

R
L
R

S
 (

k
Ω

)

2 V

1.8 V

Fig. 2. Low resistance states reached with voltage pulses of 2 V and 1.8 V,
for pulse widths from 1 ns to 40 ns.

short, low voltage pulse is sufficient to get the resistance of
the device without modifying the state adequate for a reading
phase. To illustrate the change of state due to different voltage
pulses a simulation is carried out. A memristor is initialized at
a HRS state (about 1.5 MΩ) and excited with voltage pulses
of 1.8 V and 2 V and different width pulses. Figure 2 shows
the obtained results: as voltage and pulse width increase the
change in the memristance is higher. This is especially clear
for small pulse widths. In order to read and write memristors,
voltage pulses of Vread = 1 V 10 ns long and Vwrite = 2
V 120 ns have been chosen to read and write the memristor,
respectively.

III. TARGET SYSTEM ARCHITECTURE

Before moving to the complete memory system considered
in this work, Figure 3 shows a single memory cell with simple
peripheral circuitry which we analyze first. The 1T1R cell of
interest consists of a memristor M connected in series with
an NMOS select transistor [10]. Memristor M stores 1 bit of
information, where LRS in our case stands for logic ‘1’ and

Fig. 3. 1-bit storage unit consisting of a memristor as a memory cell, and
peripheral circuitry which enable writing and reading the content of the cell.

HRS logic ‘0’, respectively. The NMOS device enables the
peripheral circuitry to perform the following three operations:
write ‘1’ or ‘0’ to the cell, and read the state stored in the
cell.

Two inverters work as drivers to write the memristor M .
They are powered to Vwrite level. It is assumed that the
inverters can supply enough current to memristors. The one
at the bottom of the figure is a tri-state inverter, so it must
provide a high-impedance output to not interfere with the
PMOS transistor used for reading. To write cell to ‘1’, x = ‘0’
and y = ‘1’ so VM = Vwrite. To write cell to ‘0’, the signal
values are switched, x = ‘1’ and y = ‘0’ so VM = −Vwrite.
When writing, both inverters must be working, hence en = ‘1’.

Finally, to read the state of M , the tri-state inverter output
is disabled setting en = ‘0’, the PMOS is enabled setting
read = ‘0’ and x = ‘1’. Using this configuration, M is put
in series with the PMOS and y will act as the read output. A
voltage at node y near ground indicates a LRS or ‘1’ while
voltage at y near Vread means a HRS or ‘0’.

Figure 4 shows the complete memory architecture consid-
ered in this work. The memristive crossbar array is the core
of the system and contains m rows and n columns of 1T1R
cells, as depicted in the inset. These cells are interconnected
using common horizontal and vertical lines named xi and
yj respectively, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The
addition of the NMOS select transistor in every cell prevents
from any unwanted changes in the state of memristors due to
sneak current paths, as well as facilitates the proper read and
write operation. The NMOS transistor is controlled by the gate
signal hi, which is common to all cells belonging to the same
row i.

At the boundaries of the crossbar there are peripheral
circuits for control and read operations. Again, inverters which
drive the memristors are powered to Vwrite voltage as they are
intended to write the content of memory cells. Column drivers
are tri-state inverters and their enable signal is connected to
a single node en. The read circuitry is powered with Vread

voltage (assuming Vread < Vwrite). PMOS transistors used to



Fig. 4. Memory system overview: m × n 1T1R crossbar with control and
read circuitry.

read memristors are controlled with a single read gate signal.
The read circuitry also includes n comparators plus a resistor
of value Rthres that acts as a threshold between LRS and
HRS. The logic level at the comparator is in accordance with
the stored memristor state, i.e. ‘0’ (0 volts) is HRS and ‘1’
(Vread) is LRS.

This memory crossbar is built to operate not only with
single cells, but with the entire row. Now, the four operations
available are write entire row to ‘1’, write entire row to ‘0’,
write a word to an entire row and read an entire row. To write
or read an entire row i, the row must be enabled selecting hi

and inverters and PMOS transistors are configured depending
the operation and by following similar instructions as in the
case of one single cell described previously.

IV. FAULT MODEL

The circuit complexity in integrated circuits has been grow-
ing very fast but at the cost of an increase of physical
failures. Many different types of faults may appear in a circuit,
in the manufacturing process or during its useful lifetime.
Memristors are not an exception. Their inherent “structure-
modifying” nature of operations (i.e. the soft breakdown in
the intermediate metal-oxide) and their still immature manu-
facturing processes are both issues of reliability.

In this work, a single fault scenario inside the memory
crossbar cells is assumed, that being neither in the inter-
connections nor the external circuitry. The fault is assumed
only in the memory cell and may arise from two different
sources: the select transistor or the memristor. Transistors may
be stuck-on (Ts−on) or stuck-open (Ts−open). In modeling,
this corresponds to substituting the transistor by a resistor of
a low or high value depending on the type of failure. As for
the memristor, it can get stuck in a LRS (called Ms−LRS)
or HRS (called Ms−HRS). Likewise, the modeling approach
for these failures concerns using a resistor with a low or
high value instead of a memristor. In this case, resistance
values depend on the typical HRS or LRS achieved in the

write operation. Table I summarizes the considered faults. This
notwithstanding, other system faults, e.g. the case of having a
memristors not switched completely, are not considered here
since we set a single resistance threshold for reading the state
and there is no undefined intermediate resistance band.

TABLE I
FAULT MODELS IN CROSSBAR CELLS (SINGLE FAULTS)

Fault Name Description

Transistor stuck-at-on Ts−on Channel remains conductive.
Transistor stuck-at-open Ts−open Channel remains cut-off.
Memristor stuck-in-LRS Ms−LRS Unalterable LRS.
Memristor stuck-in-HRS Ms−HRS Unalterable HRS.

V. ON-LINE TEST STRATEGY

Having established the system architecture and the fault
model, in this section the proposed on-line testing algorithm is
presented. The main goal is to check a single fault, that being
any of the four types mentioned before, occurring inside the
memory crossbar. This process must be robust and keep the
original stored data unaltered. The strategy, which is similar
that in [11], consists in writing some known data in every
row, checking them for unexpected data, and evaluating this
unexpected data at the end of the algorithm. For each row the
following actions take place:

1) Read row content and store the data.
2) Write the entire row to ‘1’.
3) Check if the content of the entire row is ‘1’.
4) Write the entire row to ‘0’.
5) Check if the content of the entire row is ‘0’.
6) Retrieve stored data and write to the row.

Next, we analyze how each type of fault is detected using
the previous scheme.

A. Ts−open, Ms−LRS and Ms−HRS detection

Let’s assume that inside the row the algorithm is goint to
check there is one of the previously mentioned faults. After
writing ‘1’ to an entire row, the read output should be ‘1’ for
all cells in the row. If there is a Ms−HRS or Ts−open fault
in the active row it will be detected when reading the entire
row, as its high resistance is interpreted as a memristor in a
HRS and the read output is ‘0’ for the faulty cell. However,
Ms−LRS fault in the active row is not detectable as it already
shows a LRS and it’s mistaken by a functional memristor.
Then, after writing the entire row to ‘0’, the read output should
be ‘1’ for all cells in the row. If there is a Ms−LRS fault in
the active row is will be detected when the row is read. That
cell will be stuck to a LRS and the read output is ‘1’. Again,
Ms−HRS and Ts−open in the active row are not detectable as
their high resistance shown will be, at least, as high as the
other written cells.



Fig. 5. Cell (2,2) has a fault Ts−on. When reading any cell (i,2) of the same
column, the faulty cell interferes in the operation.

B. Ts−on detection

Note that Ts−on is not detectable using write entire row to
‘0’ or write entire row to ‘1’ operations separately. Figure 5
depicts a cell with this fault, for instance the cell (2,2). This
schematic will be useful to explain how Ts−on.

Writing the entire row to ‘1’ operation, if the row to be
written is number 2, the memristor M2,2 is written as normally.
In the case that the written row is i (another than 2), the
memristor of the faulty cell interferes in the read process, but
as the memristor Mi,2 are already in LRS, the total resistance
seen by the read circuit is approximately equivalent to the
LRS, completely masking the fault.

Writing the entire row to ‘0’, if the written row is number 2,
the memristor M2,2 is previously written to ‘0’. When another
row i is being written, the memristor M2,2 interferes in the
read process. Unfortunately the content of this memristor is
unknown. Hence if memristor M2,2 is in LRS the resistance
seen by the read circuit is approximately equivalent to the
LRS and not the expected value of HRS (previously written
in memristor Mi,2.

Indeed, Ts−on is not detectable using single operations.
Even more, this fault is ruining the reading process. In order to
be detectable, the fact that the faulty cell interferes the reading
of another row is exploited. Write ‘1’ and write ‘0’ operations
are performed slightly different.

In write ‘1’ operation, inverters are configured to write each
row to ‘1’. Theoretically, only the active row is written because
other rows are disabled. However, if there is a cell with Ts−on

in another row than the active one, its memristor will be
written to ‘1’. When checking the active row, the Ts−on fault
is masked as explained before.

In write ‘0’ operation, inverters are configured to write only
all the active row to ‘0’. Doing so keeps the memristor of the
failing cell in LRS. When checking the active row, the reading
reveals a fault if Ts−on isn’t located at the active row and is
masked if it’s in the active row.

With this tricky sequence of operations, a Ts−on appears as
a column with m − 1 faulty cells in a column and only one
functional. Obviously, a final evaluation is required to mark

the functional cell as the real faulty cell. Finally, Ts−on is
recognizable once modified the write operations. Input signals
applied in each operation of the online test are detailed in
Table II. Note that this procedure doesn’t affect the detection
of the other faults Ts−open, Ms−LRS and Ms−HRS .

TABLE II
INPUT SIGNALS CONFIGURATION FOR EACH OPERATION

Signal Read Write ‘1’ Write ‘0’

hi 1 1 1
hk, ∀k 6= i 0 0 0

read 0 1 1
en 0 1 1
xi 1 0 1

xk, ∀k 6= i 1 0 0
yj ,∀j X 1 0

C. Online test algorithm

The complete on-line test process is shown in the following
algorithm. The first for loop is in charge of detecting unex-
pected data among the rows. Content of each row is stored
in sn−1 . . . s0 before it is written. Also dn−1 . . . d0 is used to
save temporarily the read data to be analysed. The second for
loop evaluates the unexpected data. If there is more than one
cell mark as faulty, the last for loop looks for the only one
that is correct (Ts−on fault case).

1: for i from 0 to m− 1 do
2: read row i → sn−1 . . . s0
3: write entire row i to ‘1’
4: read row i → dn−1 . . . d0
5: for j from 0 to n− 1 do
6: if (dj = ‘0’) then
7: mark cell (i,j) as faulty cell
8: end if
9: end for

10: write entire row i to ‘0’
11: read row i → dn−1 . . . d0
12: for j from 0 to n− 1 do
13: if (dj = ‘1’) then
14: mark cell (i,j) as faulty cell
15: end if
16: end for
17: write entire row i to sn−1 . . . s0
18: end for
19: for j from 0 to n− 1 do
20: if (all cells in column j are faulty but one cell(k,j))

then
21: mark cell (k,j) as faulty and unmark other cells in

column j
22: end if
23: end for

Finally, note that this technique is still useful when there
are more faulty cells as long as there is only one faulty cell
per column.



VI. RESULTS

In this section, the circuitry used in the system is checked
through simulation (using Cadence Virtuoso ADE) in order
to verify errors are detectable as mentioned in section IV.
Inverters and pass transistors are simulated using a predictive
transistor model for 65 nm node [12]. The comparator is
implemented as a Verilog-A block. Values used in simulations
are Vwrite = 2 V, Vread = 1 V, Rthres = 200 kΩ and
Rs−on = 1 kΩ, where Rs−on is the resistance of the transistor
stuck-at-on. Memristors are always initialized at HRS.

First, a simulation of the circuit shown in Figure 3 is
performed. Inverters are designed to drive enough current to
write succesfully the memristor M . The performance of the
circuit is shown in Figure 6a. The memristor starts at HRS.
In the read stage, a ‘0’ is at read output. After writing a ‘1’,
a LRS is observed. Finally, a ‘0’ is written in the memristor
and the read output is HRS again as expected. The write pulse
width is 120 ns, long enough to change the memristor state,
and the read one is 10 ns, short enough to keep the state. With
these voltage pulses, HRS value is 1.5 MΩ and LRS 21 kΩ.

After it is shown that all the single cell operations work as
expected, now the most interesting case of fault detection is
when there is a Ts−on fault and the corresponding memristors
interferes with another cell found in the active crossbar row. As
shown in Figure 5, M2,2 is the faulty cell of the memory array
and the faulty transistor is represented using the equivalent
model presented in Table I. The on-line test starts to check
the cells of the first row (i = 1) and this first iteration is
simulated. Instead of simulating the entire system with just
one faulty cell, only the target cell to be read and the faulty
cell are included in the simulation. Input and output signals are
plotted in Figure 6b. Interconnect resistance and capacitance
are neglected for simplicity as our purpose is first to check
validity of the proposed approach and signal trends. M2,2 and
Mi,2 are initialized at HRS. Reading the output after the write
‘1’ operation is correct but reading after the write ‘0’ operation
detects an unexpected output, i.e. a LRS where it should be a
HRS. The test marks the M1,2 cell as faulty. When the second
row is checked, as explained in the Section 3c, there is any
unexpected output and the faulty cell is marked as non-faulty.
As every other row is checked, each Mi,2 is marked as faulty.
At the end of the algorithm, the faulty and non-faulty marks are
swapped. Hence, Ts−on is detected in M2,2 cell as expected.

Finally, it is important to spend few words on the memory
used by the algorithm to achieve its goal. Obviously, there
is a need for an auxiliary memory. When storing the data
contained in the cells before starting the on-line test only the
data of an entire row is stored. However, when the algorithm
marks faulty cells the cost may be high as the system scales.
The algorithm can be improved to overcome this issue, i.e. to
store only few last faulty and non-faulty marks and make a
decision of the fault scenario taking into account the single
failure assumption.

VII. CONCLUSION

An on-line test strategy has been proposed here able to
detect single failures of the memory cells in 1T1R crossbar-
based memory systems. The memory crossbar can operate
normally and testing can be performed anytime. Although
variability is critical in memristors, the proposed method
allows easily detecting different types of faults. Simulation
results confirm that the interference from a faulty cell in the
on-line test procedure doesn’t mislead the result.

ACKNOWLEDGMENT

This work has been funded by the Spanish MINECO and
ERDF (TEC2013-45638-C3-2-R).

REFERENCES

[1] L. Chua, “Memristor - The Missing Circuit Element”, IEEE Trans. Circuit
Theory, vol. CT-18, pp.507-519 Sept. 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, S. Williams, “The missing
memristor found”, Letters, Nature, vol. 453, pp. 80-84, May 2008.

[3] H.-S. Philip Wong, H.-Y. Lee, S. Y., Y.-S. Chen, et. al., “Metal-Oxide
RRAM”, Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June
2012.

[4] P. Pouyan, E. Amat, A. Rubio, “Reliability Challenges in Design of
Memristive Memories”, 5th European Workshop on CMOS Variability
(VARI), pp. 1-6, Sept. 2014.

[5] S. Hamdioui, M. Taouil, N. Z. Haron, “Testing Open Defects in
Memristor-Based Memories”, IEEE Trans. Comput., vol. 64, no. 1, pp.
247-259, Jan. 2015

[6] S. Kannan, J. Rajendran, R. Karri, “Sneak-path Testing of Memristor-
based Memories”, International Conference on Embedded Systems (VL-
SID), Jan. 2013.

[7] N. Arshad, F. Salehuddin, S. I. Salim, N. Soin, “Defect-oriented Test and
Design-for-Testability Technique for Resistive Random Access Memory”,
Journal of Telecommunication, Electronic and Computer Engineering,
vol. 7, no. 2, July-December 2015.

[8] I. Vourkas and G. C. Sirakoulis, “Memristive crossbar-based nonvolatile
memory” in Memristor-Based Nanoelectronic Computing Circuits and
Architectures, 1st ed. Switzerland: Springer, 2016, pp 101147.

[9] H. Li, Z. Jiang, P. Huang, Y. Wu, H. Y. Chen, et. al., “Variation-aware,
reliability-emphasized design and optimization of RRAM using SPICE
model”, Design, Automation & Test in Europe Conference & Exhibition
(DATE), March 2015.

[10] J. Y. Seok, et al., “A Review of Three-Dimensional Resistive Switching
Cross-Bar Array Memories from the Integration and Materials Property
Points of View”, Advanced Function Materials, vol. 24, no.34, pp. 5316-
5339, 2014.

[11] M. Nicolaidis, “Transparent BIST for RAMs”, International Test Con-
ference Proceedings, Baltimore, MD, pp. 598-607, Oct. 1992.

[12] Predictive Transistor Model Website from Arizona State University:
http://ptm.asu.edu/



0 V

V
write

0 V

V
read

0 V

V
write

0 V

V
write

0 V

V
write

0 V

V
write

0 50 100 150 200 250

time (ns)

0 V

V
read

(a) Simulation of a single cell.

0 V

V
write

0 V

V
write

0 V

V
read

0 V

V
write

0 V

V
write

0 V

V
write

0 V

V
write

0 V

V
write

0 V

V
write

0 50 100 150 200 250

time (ns)

0 V

V
read

(b) Simulation of a cell with the interference of a faulty cell.

Fig. 6. Simulation results for a target cell with the interference of a faulty cell.


